JP2007052382A - Magnetic field actuation refractable lens - Google Patents

Magnetic field actuation refractable lens Download PDF

Info

Publication number
JP2007052382A
JP2007052382A JP2005261301A JP2005261301A JP2007052382A JP 2007052382 A JP2007052382 A JP 2007052382A JP 2005261301 A JP2005261301 A JP 2005261301A JP 2005261301 A JP2005261301 A JP 2005261301A JP 2007052382 A JP2007052382 A JP 2007052382A
Authority
JP
Japan
Prior art keywords
magnetic field
lens
fluids
fluid
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005261301A
Other languages
Japanese (ja)
Inventor
Fusao Terada
房夫 寺田
Junichi Terada
淳一 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005261301A priority Critical patent/JP2007052382A/en
Publication of JP2007052382A publication Critical patent/JP2007052382A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lens in which an optical path or a focal point is made variable by adjusting polarity, direction, intensity, and so forth of a magnetic field. <P>SOLUTION: The refractable lens is mainly constituted of a transparent container, a plurality of transparent fluids sealed therein, and a device externally applying the magnetic field to the fluids using a magnetic pole. In this constitution, the sealed fluids to be used are selected according to the combination of one actuated by the magnetic field and having the nature of moving deformation (for example, ionic liquid) and liquid insensitive thereto. Thus, the distribution of the ratio of both the fluids in the thickness direction of a planar lens is gradually varied and the refractive state of transmission light is varied, by externally generating the magnetic field with an electromagnet or the like and adequately controlling the polarity, the direction, and the intensity to supply respective magnetic poles therewith, thereby making the optical path or the focal point variable. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、磁界の分布あるいは強度を制御することにより自在に光学的焦点あるいは光路を可変とするレンズを提供することにより、小型では顕微鏡、メガネから大型では照明装置および窓ガラス等民生用および産業用の光学利用技術分野に広く活用できる。The present invention provides a lens whose optical focus or optical path can be freely changed by controlling the distribution or strength of a magnetic field, so that it can be used for consumer and industrial purposes such as a microscope for small size, a lighting device and a window glass for large size. It can be widely used in the field of optical utilization technology.

従来、単独の光学レンズで焦点や屈折率を可変することは固体では極めて困難で、ほとんど実用化されていない。現在この目的で開発されているものはレンズ体を可撓性材料で形成し外力もしくは内力により変形させるものと、固体透明容器内に液晶等特殊溶液を封入し外部から電界等で制御しようとするごく限られた視界用途のものに大別される。  Conventionally, it is extremely difficult to change the focal point and the refractive index with a single optical lens in a solid state, and it has hardly been put into practical use. Currently developed for this purpose are lenses that are made of a flexible material and deformed by external or internal force, and special liquids such as liquid crystal are sealed in a solid transparent container and externally controlled by an electric field or the like. It can be broadly divided into those for limited visibility.

上述した従来技術は、前者では比較的大きな力を要しかつ変形も自在に得にくい。また後者では微細構造でのみ可能であるがその構造は従来の液晶レベル以上の複雑さで、かつ得られる焦点の可変領域は限定的であり光量も損失が大であった。本発明によればかかる課題を簡単な構造と方法で解決できる。  The above-described prior art requires a relatively large force in the former and is difficult to obtain freely. In the latter case, it is possible only with a fine structure, but the structure is more complicated than the conventional liquid crystal level, the focus variable region to be obtained is limited, and the light quantity is large. According to the present invention, this problem can be solved with a simple structure and method.

本発明は、主に透明な容器と内封される複数の流体および外部よりこの流体に磁界を印加する装置で構成される。このように構成する際、用いる内封流体は磁界によってよく作動し流動したりあるいはよく変形する性質を有するもの(これを流体Aと仮称する)と、ほとんど反応しないか上記のものとは逆の反応を示す性質を有し(これを流体Bと仮称する)、かつ両者は互いにほとんど溶解せず、かつ磁界非印加時に互いによく融和するそれぞれほぼ透明なものを選定する。これに外部より、例えば電磁石等で磁界を生成し極性、方向および強度を適宜制御してそれぞれの磁極に印加する。The present invention is mainly composed of a transparent container, a plurality of fluids enclosed therein, and a device for applying a magnetic field to the fluids from the outside. When configured in this way, the encapsulated fluid to be used operates well by a magnetic field and has the property of flowing or deforming well (this is tentatively referred to as fluid A), and it hardly reacts or is opposite to the above. The materials are selected so as to have a reaction property (this is tentatively referred to as “fluid B”), both of which are almost insoluble, and which are well transparent with each other when a magnetic field is not applied. A magnetic field is generated from the outside, for example, with an electromagnet or the like, and the polarity, direction, and strength are appropriately controlled and applied to each magnetic pole.

前項のように磁界を印加すると非印加時の流体と異なり、流体Aのみ磁界に応じて作動分離しその磁界方向に傾斜的な分布をとり、結果的に容器中の残る流体Bもこれを補完する形態に傾斜的分布となる。これにより光路方向のそれぞれの流体の厚みが変化させられ光の屈折の状況も変化する。この調節により、焦点の変化の実現はもちろん、光の通過の仕方も自在に変化可能となる。上記容器に固体状固定レンズを組み合わせ補完的に用いより効果を高めることも可能である。When a magnetic field is applied as in the previous section, unlike fluid when no voltage is applied, only fluid A is separated according to the magnetic field and has a gradient distribution in the direction of the magnetic field. As a result, fluid B remaining in the container also complements this. It becomes a gradient distribution in the form to do. Thereby, the thickness of each fluid in the optical path direction is changed, and the state of light refraction is also changed. By this adjustment, not only the change of focus can be realized, but also the way of passage of light can be freely changed. It is also possible to enhance the effect by using a solid fixed lens in combination with the container.

本発明の基本構成は前項までに述べた通りであるが、レンズの形態に応じて磁極の配置は選定設定される。例えば略矩形形状の平面状レンズではその対辺上に異磁極を設置することが効果的で、円形形状の同様レンズでは円周辺と中心部にそれぞれ設置すると良い。ここに流体Aの例としてはイオン流体があり透明で磁界に対し応答よく作動する特性を示す。また補完的に作動する流体Bには水、油、有機溶剤等の組み合わせがあり、場合により2つ以上の流体の混合も可能である。いずれの流体も透明度の高いことが必要であるが、サングラス等で遮光性や変色性を求める場合はその目的にあった材料流体が選定される。この際封入された流体Aと流体Bの容積の総和は一定で変化しないので容器に変形等は生じない。なお両流体の屈折率は互いに異なるものである。The basic configuration of the present invention is as described above, but the arrangement of the magnetic poles is selected and set according to the form of the lens. For example, in the case of a substantially rectangular planar lens, it is effective to install different magnetic poles on the opposite side, and in the case of a circular lens, it is preferable to install it at the periphery and the center. Here, as an example of the fluid A, there is an ionic fluid, which shows a characteristic of being transparent and operating with good response to a magnetic field. Further, the fluid B that operates complementarily includes a combination of water, oil, an organic solvent, and the like, and in some cases, two or more fluids can be mixed. Any fluid needs to have high transparency, but when a light shielding property or a color change property is required with sunglasses or the like, a material fluid suitable for the purpose is selected. At this time, the total volume of the encapsulated fluid A and fluid B is constant and does not change, so that deformation or the like does not occur in the container. Note that the refractive indexes of the two fluids are different from each other.

本発明を図1および図2に示す実施例について説明する。図1は略矩形形状の平面状レンズの側断面を、図2は略円形形状の同様レンズを示し、いずれも(1)はレンズ本体、(2)は流体A、(3)は流体B、(4)は磁極A、(5)は磁極Bを示す。なお、光路、電磁石および制御部は図示しない。今1例として、図1でレンズ本体(1)は透明な樹脂等の平面状容器を構成しその側断面上の上下両端に分離して設けられた磁極A(4)および磁極B(5)に磁界を印加する時、非印加時は一体であった両流体A,Bが同図斜線のごとく分離し、この例では磁極Aにより多く吸着される性質をもつ流体A(2)の全体もしくは部分は同磁極A(4)方向により多く集積され、逆側の磁極B(5)には少なくなり傾斜的分布を示す。残余の流体B(3)も結果的に補完的な傾斜的分布となる。この際、両流体A,Bの固有の屈折率が異なると同図水平方向の光軸方向の両流体の厚みもそれぞれ両磁極からの距離に応じて連続傾斜的に変化し、結果的に光路における屈折率は変化させられしたがって全体的にレンズはその焦点特性が変化したことになる。また、図2は外郭が円形の容器での同様の例であるが、ここでは円の中心部に磁極A(4)を、円の周囲に磁極B(5)が設けられている。これに磁界を印加するとその磁界強度の分布に応じて同図のように流体A(2)は円中心が盛り上がり周辺ほどその割合が減少する略放射状態に分布状態が変化する。残余の流体B(3)も補完的に分布状態が変化する。その作用効果は前述例と同様である。なお磁極Aと磁極Bの流体Aに対する作動は両者の特性により適宜選定されその磁性および作動強度は既述のように電磁石で電磁力の調整制御をして行う。また永久磁石により作動させるものではこれを物理的に移動し適宜磁極の配置や方向および強度を変化させて得る。また上記容器を形成するレンズ本体(1)にはその平面状面に固体の固定レンズ(6)をあらかじめ設け補完的に作動させればより容易に大きな効果が期待できる。The present invention will be described with reference to the embodiments shown in FIGS. FIG. 1 shows a side cross section of a substantially rectangular planar lens, FIG. 2 shows a similar lens having a substantially circular shape, both of which (1) is a lens body, (2) is fluid A, (3) is fluid B, (4) shows the magnetic pole A, and (5) shows the magnetic pole B. The optical path, electromagnet, and control unit are not shown. As an example now, in FIG. 1, the lens body (1) constitutes a flat container such as a transparent resin, and is provided with magnetic poles A (4) and B (5) provided separately at both upper and lower ends on the side cross section. When a magnetic field is applied to the two fluids A and B, which are integrated when no magnetic field is applied, are separated as shown by diagonal lines in this figure. In this example, the entire fluid A (2) having the property of being attracted more by the magnetic pole A or More portions are accumulated in the same magnetic pole A (4) direction, and the magnetic pole B (5) on the opposite side is reduced and shows a gradient distribution. The remaining fluid B (3) also results in a complementary gradient distribution. At this time, if the intrinsic refractive indexes of the fluids A and B are different, the thicknesses of both fluids in the horizontal direction of the optical axis in the same figure also change continuously in accordance with the distances from both magnetic poles, resulting in the optical path. The index of refraction at is changed, so that overall the lens has its focal characteristics changed. FIG. 2 shows a similar example of a container having a circular outer shell. Here, a magnetic pole A (4) is provided at the center of the circle, and a magnetic pole B (5) is provided around the circle. When a magnetic field is applied to this, the distribution state of the fluid A (2) changes to a substantially radiating state in which the ratio of the fluid A (2) increases as the center of the circle swells and decreases as shown in FIG. The distribution state of the remaining fluid B (3) also changes complementarily. The effect is the same as that of the above-mentioned example. The operation of the magnetic pole A and the magnetic pole B with respect to the fluid A is appropriately selected according to the characteristics of both, and the magnetism and the operating strength are controlled by adjusting the electromagnetic force with the electromagnet as described above. Moreover, in the thing operated by a permanent magnet, this is physically moved and it obtains by changing the arrangement | positioning, direction, and intensity | strength of a magnetic pole suitably. Further, if the lens body (1) forming the container is previously provided with a solid fixed lens (6) on its planar surface and is operated in a complementary manner, a large effect can be expected more easily.

以上説明したように、本発明の磁界作動型屈折可変レンズによれば簡単な構造で少ない駆動エネルギーを用いて自在に焦点や光路を変化できるので多くの光学分野に活用可能となる。特にメガネ、カメラ、顕微鏡、望遠鏡等においては対象物からの入射光への自動焦点方式が可能となる。また対象物への照明や光投射では、投射光の焦点や方向および強度の調節が自在になる。なお光路の変化を強調利用すれば光スイッチや光学機器あるいは窓ガラスの偏光効果によるブラインド効果等も期待できる。その他前項で述べたような遮光特性の応用も可能である。As described above, according to the magnetic field actuated variable refractive lens of the present invention, the focal point and the optical path can be freely changed with a simple structure and using a small amount of driving energy, so that it can be utilized in many optical fields. Particularly in glasses, cameras, microscopes, telescopes, etc., an automatic focusing method for incident light from an object becomes possible. Further, in the illumination and light projection to the object, the focus, direction and intensity of the projection light can be freely adjusted. If the change in the optical path is emphasized, a blind effect due to the polarization effect of the optical switch, the optical device, or the window glass can be expected. In addition, the application of the light shielding characteristic as described in the previous section is also possible.

略矩形形状の平面状レンズの側断面図を示す。A side sectional view of a substantially rectangular planar lens is shown. 略円形形状の平面状レンズの側断面図を示す。A side sectional view of a substantially circular planar lens is shown.

符号の説明Explanation of symbols

(1) レンズ本体
(2) 流体A
(3) 流体B
(4) 磁極A
(5) 磁極B
(6) 固定レンズ゛
(1) Lens body (2) Fluid A
(3) Fluid B
(4) Magnetic pole A
(5) Magnetic pole B
(6) Fixed lens

Claims (2)

磁極に磁界を印加する制御装置と内部にこの磁界に感応し移動もしくは変形作動する少なくとも1種類のほぼ透明の流体と、別の屈折率の異なる透明流体を組み合わせ一体的に平面状薄型容器に封入し、磁界の極性、方向、強度等の調整により上記複数液体の厚み方向の組成比率を変化させ、これを通過する光を所定の光路に屈折させてなる屈折可変レンズ。A control device that applies a magnetic field to the magnetic pole, at least one type of substantially transparent fluid that moves or deforms in response to this magnetic field, and another transparent fluid having a different refractive index are combined in a flat thin container. A variable refractive lens in which the composition ratio in the thickness direction of the plurality of liquids is changed by adjusting the polarity, direction, intensity, etc. of the magnetic field, and light passing through the liquid is refracted in a predetermined optical path. 前項容器の平面表面上に前項レンズと補完的に作用する固体の固定形状レンズを設けること。A solid fixed-shape lens that works complementarily with the previous lens is provided on the planar surface of the previous container.
JP2005261301A 2005-08-12 2005-08-12 Magnetic field actuation refractable lens Pending JP2007052382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005261301A JP2007052382A (en) 2005-08-12 2005-08-12 Magnetic field actuation refractable lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005261301A JP2007052382A (en) 2005-08-12 2005-08-12 Magnetic field actuation refractable lens

Publications (1)

Publication Number Publication Date
JP2007052382A true JP2007052382A (en) 2007-03-01

Family

ID=37916864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005261301A Pending JP2007052382A (en) 2005-08-12 2005-08-12 Magnetic field actuation refractable lens

Country Status (1)

Country Link
JP (1) JP2007052382A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009100895A1 (en) * 2008-02-14 2009-08-20 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Optical elements with gradient structure
KR100924230B1 (en) 2007-06-21 2009-11-02 성균관대학교산학협력단 Focal length adjustable transparent lens using electro-active ion-exchange actuator
US11226712B2 (en) 2016-03-24 2022-01-18 Sony Corporation Information processing device and information processing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100924230B1 (en) 2007-06-21 2009-11-02 성균관대학교산학협력단 Focal length adjustable transparent lens using electro-active ion-exchange actuator
WO2009100895A1 (en) * 2008-02-14 2009-08-20 Leibniz-Institut Für Neue Materialien Gemeinnützige Gmbh Optical elements with gradient structure
KR20100126732A (en) * 2008-02-14 2010-12-02 라이브니츠-인스티투트 퓌어 노이에 마테리알리엔 게마인누찌게 게엠베하 Optical elements with gradient structure
US8389592B2 (en) 2008-02-14 2013-03-05 Leibniz-Institut Fuer Neue Materialien Gemeinnuetzige Gmbh Optical elements with gradient structure
KR101588910B1 (en) 2008-02-14 2016-02-12 라이브니츠-인스티투트 퓌어 노이에 마테리알리엔 게마인누찌게 게엠베하 Optical elements with gradient structure
US11226712B2 (en) 2016-03-24 2022-01-18 Sony Corporation Information processing device and information processing method

Similar Documents

Publication Publication Date Title
US20080252960A1 (en) Optical Element
Blum et al. Compact optical design solutions using focus tunable lenses
Cheng et al. Adaptive mechanical-wetting lens actuated by ferrofluids
CN100533178C (en) Motionless zoom lens
Yilmaz et al. Rotationally tunable polarization-insensitive single and multifocal metasurface
EP1756630B1 (en) Optical element using a magnetic fluid
JP2005317879A (en) Light-emitting device with liquid-crystal lens
WO2005015267A2 (en) Digital focus lens system
Choi et al. Perspective and potential of smart optical materials
Li et al. Optical switch based on electrowetting liquid lens
CN105467579A (en) MEMS light valve and display device
US9323039B2 (en) Particle manipulation system and projection device
Blum et al. Optotune focus tunable lenses and laser speckle reduction based on electroactive polymers
Lin et al. Stretchable metalens with tunable focal length and achromatic characteristics
Sim et al. Novel biconvex structure electrowetting liquid lenticular lens for 2D/3D convertible display
Zhou et al. Phase change induced active metasurface devices for dynamic wavefront control
JP2007052382A (en) Magnetic field actuation refractable lens
Liu et al. Light intensity and FOV-controlled adaptive fluidic iris
CN103487933B (en) A kind of variable-focus lens system and Zooming method thereof
Kim et al. Electro-wetting lenticular lens with improved diopter for 2D and 3D conversion using lens-shaped ETPTA chamber
JP2008175918A (en) Optical element and photographing optical system, and imaging method and photographing method
CN103792754B (en) The liquid crystal lens array of lenses pixel is formed based on ultraviolet light scanning photoconductive material
JP2004157487A (en) Microlens assembly
Rong et al. Electrowetting optical switch with circular tunable aperture
KR100728368B1 (en) Liquid Crystal Display Backlight Unit Include Cone Structure Type Bright Enhancement Film And Manufacture Method of Above Bright Enhancement Film

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20070305

Free format text: JAPANESE INTERMEDIATE CODE: A711