JP2007050860A - トルク伝達装置、その制御装置およびその制御方法 - Google Patents

トルク伝達装置、その制御装置およびその制御方法 Download PDF

Info

Publication number
JP2007050860A
JP2007050860A JP2005239063A JP2005239063A JP2007050860A JP 2007050860 A JP2007050860 A JP 2007050860A JP 2005239063 A JP2005239063 A JP 2005239063A JP 2005239063 A JP2005239063 A JP 2005239063A JP 2007050860 A JP2007050860 A JP 2007050860A
Authority
JP
Japan
Prior art keywords
motor generator
side member
speed
clutch
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005239063A
Other languages
English (en)
Inventor
Yasuhiko Fujita
康彦 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Exedy Corp
Original Assignee
Exedy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exedy Corp filed Critical Exedy Corp
Priority to JP2005239063A priority Critical patent/JP2007050860A/ja
Publication of JP2007050860A publication Critical patent/JP2007050860A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Structure Of Transmissions (AREA)
  • Control Of Transmission Device (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

【課題】 モータジェネレータを備えたトルク伝達装置において、モータジェネレータの回生効率を向上させる。
【解決手段】 トルク伝達装置1は、エンジン8の出力トルクをトランスミッション9に伝達するとともにエンジン8をアシストするためのトルク伝達装置1であって、フライホイール82に連結された第1入力部材21と、トランスミッション9の入力シャフト91と、入力シャフト91との間でトルク伝達が可能なモータジェネレータ3と、入力シャフト91とモータジェネレータ3との間に配置され入力シャフト91およびモータジェネレータ3の一方から他方へ伝達される回転運動の速度を変速可能な変速機構4とを備えている。
【選択図】 図1

Description

本発明は、トルク伝達装置、その制御装置およびその制御方法、特に、モータジェネレータが設けられたトルク伝達装置、その制御装置およびその制御方法に関する。
近年、自動車の燃費を向上させるために、モータジェネレータが設けられたトルク伝達装置が提案されている。この種のトルク伝達装置としては、例えばエンジンとトランスミッションとの間に湿式多板クラッチとモータジェネレータとが配置されたハイブリッド駆動装置が知られている(例えば、特許文献1を参照。)。
このハイブリッド駆動装置は、フライホイールとモータジェネレータとの間でトルクを伝達あるいは遮断する第1クラッチと、モータジェネレータとトランスミッションの入力シャフトとの間でトルクを伝達あるいは遮断する第2クラッチとを備えている。エンジンの出力トルクをトランスミッションへ伝達する場合やエンジンおよびモータジェネレータの出力トルクをトランスミッションへ伝達する場合は第1クラッチおよび第2クラッチが連結される。モータジェネレータの出力トルクのみをトランスミッションへ伝達する場合は第1クラッチが切断され第2クラッチが連結される。また、モータジェネレータにより回生を行う場合は、第1クラッチが切断され第2クラッチが連結され、トランスミッション側の回転運動がロータに伝達される。
このように、このハイブリッド駆動装置では、エンジンの効率に応じて第1クラッチおよび第2クラッチにより駆動源を選択したり、あるいはモータジェネレータにより回生を行い運動エネルギを電気エネルギに変換したりすることで、車両の運動エネルギを有効利用し、燃費の向上を図っている。
特開2002−87080号公報
以上に述べたトルク伝達装置は、さらなる燃費の向上を目的として様々な改良がなされている。例えば、このトルク伝達装置ではモータジェネレータによる回生時には車両の運動エネルギを有効利用しているため、モータジェネレータの回生効率の向上が燃費に大きく影響する。したがって、燃費を向上させるためにモータジェネレータの回生効率を向上させることが求められている。
本発明の課題は、モータジェネレータを備えたトルク伝達装置において、モータジェネレータの回生効率を向上させることにある。
請求項1に記載のトルク伝達装置は、エンジンの出力トルクをトランスミッションに伝達するとともにエンジンをアシストするためのトルク伝達装置であって、エンジン側の部材に連結された入力側部材と、トランスミッション側の部材に連結された出力側部材と、出力側部材との間でトルク伝達が可能なモータジェネレータと、出力側部材とモータジェネレータとの間に配置され出力側部材およびモータジェネレータの一方から他方へ伝達される回転運動の速度を変速可能な変速機構とを備えている。
モータジェネレータの回生効率はモータジェネレータのロータの回転速度により変動する。具体的には、モータジェネレータの固有特性にもよるが、一般的にロータの回転速度が大きくなるとモータジェネレータの回生効率は向上する。このトルク伝達装置では、出力側部材とモータジェネレータとの間に変速機構が設けられているため、出力側部材の回転速度に比べてモータジェネレータの回転速度を増速することができる。これにより、従来に比べてモータジェネレータの回生効率を向上させることができる。
請求項2に記載のトルク伝達装置は、請求項1において、変速機構が出力側部材からモータジェネレータに伝達される回転運動の速度を増速可能である。
このトルク伝達装置では、出力側部材の回転速度に比べてモータジェネレータのロータの回転速度を増速することができ、モータジェネレータの回生効率を向上させることができる。
請求項3に記載のトルク伝達装置は、請求項1または2において、モータジェネレータおよび変速機構を内部に収容するためのハウジングをさらに備えている。モータジェネレータは、ステータと、ステータと相対回転可能に配置されたロータとを有している。変速機構は、ロータに装着されたリングギヤと、リングギヤと噛み合う複数のプラネタリギヤと、複数のプラネタリギヤおよび出力側部材を連結するキャリアと、複数のプラネタリギヤと噛み合うサンギヤとを有している。
このトルク伝達装置では、変速機構が遊星歯車機構を有しているため、軸方向寸法の増大を抑えつつモータジェネレータの回生効率の向上を図ることができる。
請求項4に記載のトルク伝達装置は、請求項3において、変速機構がサンギヤおよびハウジングの間でトルクを伝達あるいは遮断する第2クラッチをさらに有している。
このトルク伝達装置では、第2クラッチを連結することによりサンギヤをハウジングに固定することができるため、プラネタリギヤおよびリングギヤによりロータの回転速度を確実に増速させることができる。
請求項5に記載のトルク伝達装置は、請求項3または4において、変速機構がリングギヤ、プラネタリギヤおよびサンギヤのいずれか2つの間でトルクを伝達あるいは遮断する第3クラッチをさらに有している。
前述のようにロータの回転速度が大きくなると、モータジェネレータの回生効率は向上する。しかし、ロータの回転速度がある一定の値を超えると、ロータの回転速度が大きくなるにしたがって回生効率が低下してしまう。このトルク伝達装置では、第3クラッチを連結することによりリングギヤ、プラネタリギヤおよびサンギヤのいずれか2つの相対運動を規制することができる。すなわち、変速機構での変速が行われない。これにより、ロータの回転速度が一定の値を超えた場合にでも、モータジェネレータの回生効率の低下を防止することができる。
請求項6に記載のトルク伝達装置は、請求項1から5のいずれかにおいて、入力側部材およびモータジェネレータの間でトルクを伝達あるいは遮断するための第1クラッチをさらに備えている。
このトルク伝達装置では、回生時において第1クラッチを切断することによりエンジンでのフリクションロスがモータジェネレータへ伝達されるのを防止することができ、車両の運動エネルギをより有効に利用することができる。
請求項7に記載の回生制御装置は、エンジン側の部材に連結された入力側部材と、トランスミッション側の部材に連結された出力側部材と、ステータとステータの内周側に相対回転可能に配置されたロータとを有し出力側部材との間でトルク伝達が可能なモータジェネレータと、出力側部材とモータジェネレータとの間に配置され出力側部材およびモータジェネレータの一方から他方へ伝達される回転運動の速度を変速可能な変速機構とを備えたトルク伝達装置の回生制御装置であって、車両の走行状態に基づいて回生開始および回生停止を判断するための回生制御部と、ロータの回転速度を検出するための回転速度検出部と、変速機構の変速を切り換えるための変速切換部と、回生制御部、回生速度検出部および変速切換部と接続された変速制御部とを備えている。変速制御部は、回生制御部からの回生開始信号が入力された場合に、回転速度検出部から出力される回転速度と予め設定された基準回転速度とを比較し、回転速度が基準回転速度を超えているか否かを判断するとともに、判断結果に基づいて変速切換部へ変速切換信号を出力する。
前述のようにロータの回転速度が大きくなると、モータジェネレータの回生効率は向上する。しかし、ロータの回転速度がある一定の値を超えると、ロータの回転速度が大きくなるにしたがって回生効率が低下してしまう。この回生制御装置では、変速制御部によりロータの回転速度と基準回転速度とを比較し、ロータの回転速度が基準回転速度を超えているか否かで変速機構での変速を切り換えることができる。すなわち、この回生制御装置では、モータジェネレータの回生効率が向上するようにロータの回転速度を増速させたりあるいは回生効率が低下しないようにロータの回転速度を増速させなかったりすることができる。これにより、この回生制御装置では従来よりもモータジェネレータの回生効率を向上させることができる。
請求項8に記載の回生制御装置は、請求項7において、検出した回転速度が基準回転速度以下である場合のみ変速制御部は出力側部材からロータへ伝達される回転運動の速度を増速させる。
請求項9に記載の回生制御装置は、請求項7または8において、変速機構がロータに装着されたリングギヤと、リングギヤと噛み合う複数のプラネタリギヤと、複数のプラネタリギヤおよび出力側部材を連結するキャリアと、複数のプラネタリギヤと噛み合うサンギヤと、サンギヤおよびハウジングの間でトルクを伝達あるいは遮断する第2クラッチと、リングギヤ、プラネタリギヤおよびサンギヤのいずれか2つの間でトルクを伝達あるいは遮断する第3クラッチとを有している。変速制御部は、第2および第3クラッチの連結および切断を切換可能である。
この回生制御装置では、変速制御部が第2および第3クラッチの連結および切断を切換可能であるため、変速機構の変速を第2および第3クラッチにより切り換えることができる。
請求項10に記載の制御方法は、エンジン側の部材に連結された入力側部材と、トランスミッション側の部材に連結された出力側部材と、ステータとステータの内周側に相対回転可能に配置されたロータとを有し出力側部材との間でトルク伝達が可能なモータジェネレータと、出力側部材およびモータジェネレータとの間に配置され出力側部材およびモータジェネレータの一方から他方へ伝達される回転運動を変速可能な変速機構と、モータジェネレータの回生を制御するための回生制御装置とを備えたトルク伝達装置の制御方法であって、回生制御装置においてロータの回転速度を検出する回転速度検出工程と、回生制御装置において検出した回転速度と予め設定された基準回転速度とを比較し、検出した回転速度が基準回転速度を超えているか否かを判断する判断工程と、回生制御装置において判断工程からの判断結果に基づいて変速機構での変速を切り換える変速切換工程とを含んでいる。
この制御方法では、回転速度検出工程と、判断工程と、変速切換工程とを含んでいるため、モータジェネレータの回生効率が向上するようにロータの回転速度を増速させたりあるいは回生効率が低下しないようにロータの回転速度を増速させなかったりすることができる。これにより、この回生制御装置では従来よりもモータジェネレータの回生効率を向上させることができる。
請求項11に記載の制御方法は、請求項10において、変速切換工程では検出した回転速度が基準回転速度以下である場合のみ出力側部材からロータへ伝達される回転運動の速度を増速させる。
請求項12に記載の制御方法は、請求項10または11において、変速機構がロータに装着されたリングギヤと、リングギヤと噛み合う複数のプラネタリギヤと、複数のプラネタリギヤおよび出力側部材を連結するキャリアと、複数のプラネタリギヤと噛み合うサンギヤと、サンギヤおよびハウジングの間でトルクを伝達あるいは遮断する第2クラッチと、リングギヤ、プラネタリギヤおよびサンギヤのいずれか2つの間でトルクを伝達あるいは遮断する第3クラッチとを有している。変速切換工程では、検出した回転速度が基準回転速度以下である場合には第2クラッチが連結および第3クラッチが切断され、検出した回転速度が基準回転速度を超えている場合には第2クラッチが切断および第3クラッチが連結される。
この制御方法では、ロータの回転速度に応じて第2および第3クラッチの連結および切断を切換可能であるため、モータジェネレータの回生効率が向上するロータの回転速度を選択することができる。これにより、モータジェネレータの回生効率をより向上させることができる。
本発明に係るトルク伝達装置では、モータジェネレータと出力側部材との間に変速機構を設けることでモータジェネレータの回生効率を向上させることができる。
本発明に係る回生制御装置および制御方法では、モータジェネレータの回生効率が向上するロータの回転速度を選択することができ、モータジェネレータの回生効率を向上させることができる。
本発明の各実施形態を図面を参照しながら説明する。
A.第1実施形態
1.トルク伝達装置の構成
図1に本発明の第1実施形態としてのトルク伝達装置1の構成図、図2に本発明の第1実施形態としてのトルク伝達装置1の縦断面概略図を示す。トルク伝達装置1は、エンジン8の出力トルクをトランスミッション9に伝達するための装置であって、図1および図2に示すようにハウジング5と、ダンパー機構6と、第1クラッチ2と、モータジェネレータ3と、変速機構4とを備えている。
(1)ハウジング5
図1および図2に示すように、ハウジング5は、第1クラッチ2、モータジェネレータ3および変速機構4を内部に収容しており、第1ハウジング51と、第2ハウジング52と、第3ハウジング53とを有している。
第1ハウジング51は、第1クラッチ2、モータジェネレータ3および変速機構4の外周側に配置された筒状の部材であり、図2に示すようにエンジン8のハウジング81に固定されている。第2ハウジング52は、第1ハウジング51のトランスミッション9側に配置されており、第1ハウジング51に固定されている。また、第1および第2ハウジング51、52は、トランスミッション9側のハウジング92に固定されている。第3ハウジング53は、後述するモータジェネレータ3のステータ31とともに第1ハウジング51の内周側に固定されている。トランスミッション9の入力シャフト91(出力側部材)は第2ハウジング52を貫通しており、その貫通部は第1シール部材52aによりシールされている。第1クラッチ2の第1入力部材21は第3ハウジング53を貫通しており、その貫通部は第2シール部材53aによりシールされている。
(2)ダンパー機構6
ダンパー機構6は、エンジン8の燃焼変動による回転振動を吸収するためのもので、エンジン8のフライホイール82に連結されている。図2に示すように、ダンパー機構6は、外周部に過大トルクの伝達を防止するためのトルク制限部6aを有している。ダンパー機構6は、後述する第1クラッチ2の第1入力部材21(入力側部材)とスプライン係合している。エンジン8の出力トルクは、フライホイール82およびダンパー機構6を介して第1入力部材21に入力される。ダンパー機構6の構成は従来のものと何ら変わるところがないため、詳細な説明は省略する。
(3)第1クラッチ2
図3に第1クラッチ2周辺の縦断面概略図を示す。第1クラッチ2は、ダンパー機構6と後述するモータジェネレータ3との間でトルクを伝達あるいは遮断するための湿式多板クラッチであって、図3に示すように第1入力部材21と、第1摩擦連結部22と、第1付勢力発生機構23と、第1出力部材24と、第1係止部材25とを有している。第1入力部材21は、第1軸受53bにより第3ハウジング53に対して相対回転可能に支持されている。第1出力部材24および第1係止部材25は、後述するモータジェネレータ3のロータ32に一体回転可能に固定されている。第1係止部材25は、第2軸受53cにより第3ハウジング53に対して相対回転可能に支持されている。
第1摩擦連結部22は、第1入力部材21と第1出力部材24とを摩擦力により連結するためのもので、複数の第1ドライブプレート22aと、複数の第1ドリブンプレート22bとを有している。第1ドライブプレート22aは、環状のプレート部材であり、第1入力筒状部21aの外周部に相対回転不能にかつ軸方向へ相対移動可能に係合している。第1ドリブンプレート22bは、環状のプレート部材であり、第1出力部材24の内周部に相対回転不能にかつ軸方向へ相対移動可能に係合している。第1ドライブプレート22aおよび第1ドリブンプレート22bは、軸方向に交互に配置されている。
第1付勢力発生機構23は、第1摩擦連結部22へ軸方向の付勢力を与えるためのもので、第1ピストン23aと、第1保持部材23bと、第1弾性部材23cとを有している。第1ピストン23aは、環状の部材であり、第1出力部材24に軸方向に相対移動可能に係合している。第1保持部材23bは、第1出力部材24に固定された環状の部材である。第1保持部材23bの外周部と第1ピストン23aとの係合部は、シールされている。第1弾性部材23cは、第1ピストン23aと第1保持部材23bとの軸方向間に圧縮された状態で配置されている。第1ピストン23aと第1出力部材24との間には、環状の第1油圧室23dが形成されている。第1ピストン23aと第1保持部材23bとの間には、環状の第1油圧キャンセル室23eが形成されている。
(4)モータジェネレータ3
モータジェネレータ3は、エンジン8をアシストするための動力源であり、ステータ31と、ロータ32とを有している。ステータ31は、ハウジング5の内周部に固定された環状の部材である。ステータ31は、コイル33が巻回されており、車両に搭載されたバッテリ(図示せず)に電気的に接続されている。ロータ32は、ステータ31の内周側に相対回転可能に配置された環状の部材であり、外周側に永久磁石からなるロータマグネットを有している。ロータ32には、前述の第1出力部材24、第1係止部材25および後述のリングギヤ41が固定されている。したがって、ロータ32、第1出力部材24、第1係止部材25およびリングギヤ41が一体で回転する。
(5)変速機構4
図4に変速機構4周辺の縦断面概略図を示す。変速機構4は、トランスミッション9およびモータジェネレータ3の間で伝達される回転速度を変速するためのもので、図4に示すように遊星歯車機構40と、第2クラッチ44と、第3クラッチ47とを有している。
1)遊星歯車機構40
遊星歯車機構40は、モータジェネレータ3およびトランスミッション9の間の回転速度を変速するためのもので、リングギヤ41と、複数のプラネタリギヤ42と、サンギヤ43と、第1キャリア42cと、第2キャリア42eとを有している。リングギヤ41は、図3に示すようにロータ32に固定された環状の部材である。プラネタリギヤ42は、リングギヤ41の内周側に配置されており、リングギヤ41と噛合している。サンギヤ43は、複数のプラネタリギヤ42の内周側に配置されており、プラネタリギヤ42と噛合している。プラネタリギヤ42には、第3軸受42bを介してピン42aが相対回転可能に設けられている。
第1キャリア42cおよび第2キャリア42eは、プラネタリギヤ42のエンジン8側およびトランスミッション9側に配置された環状の部材であり、第3軸受42bに装着されている。すなわち、プラネタリギヤ42は、第1キャリア42cおよび第2キャリア42eにより円周方向に連結されている。
第1キャリア42cは、第2ハウジング52の外周側に配置されており、第4軸受52cにより第2ハウジング52に対して相対回転可能に支持されている。第1キャリア42cは、トランスミッション9の入力シャフト91の端部にスプライン係合している。第1キャリア42cの外周部には第1出力部材24が挿嵌されており、第1出力部材24は第5軸受52dにより第1キャリア42cに対して相対回転可能に支持されている。また、第1入力部材21は、第6軸受21bにより第1キャリア42cに対して相対回転可能に支持されており、第6軸受21cにより第1キャリア42cに対して軸方向へ相対移動不能に支持されている。
第2キャリア42eは、プラネタリギヤ42に対して第1キャリア42cの反対側に配置されている。第2キャリア42eの外周部には、後述する第3クラッチ47の第3摩擦連結部48が相対回転不能にかつ軸方向へ相対移動可能に係合している。
2)第2クラッチ44
第2クラッチ44は、サンギヤ43とハウジング5との間でトルクを伝達あるいは遮断するための湿式多板クラッチで、第2摩擦連結部45と、第2付勢力発生機構46とを有している。第2摩擦連結部45は、サンギヤ43とハウジング5とを摩擦力により連結するためのもので、複数の第2ドライブプレート45aと、複数の第2ドリブンプレート45bとを有している。第2ドライブプレート45aは、環状のプレート部材であり、サンギヤ43の外周部に相対回転不能にかつ軸方向へ相対移動可能に係合している。第2ドリブンプレート45bは、環状のプレート部材であり、第2ハウジング52に固定された複数の支持部材45cに相対回転不能にかつ軸方向へ相対移動可能に係合している。第2ドライブプレート45aおよび第2ドリブンプレート45bは、軸方向に交互に配置されている。
第2付勢力発生機構46は、第2摩擦連結部45へ軸方向の付勢力を与えるためのもので、第2ピストン46aと、第2保持部材46bと、第2弾性部材46cと、第2係止部材46fとを有している。第2ピストン46aは、環状の部材であり、第2係止部材46fに対して軸方向に相対移動可能に係合している。第2保持部材46bは、支持部材45cに嵌め込まれた環状の部材である。第2弾性部材46cは、第2ピストン46aと第2保持部材46bとの軸方向間に圧縮された状態で配置されている。第2係止部材46fと第2ピストン46aとの軸方向間には、環状の第2油圧室46dが形成されている。第2係止部材46fと第2ピストン46aとの半径方向間には、環状の第2油圧キャンセル室46eが形成されている。
3)第3クラッチ47
第3クラッチ47は、プラネタリギヤ42とサンギヤ43との間でトルクを伝達あるいは遮断するための湿式多板クラッチで、第3摩擦連結部48と、第3付勢力発生機構49とを有している。第3摩擦連結部48は、プラネタリギヤ42とサンギヤ43とを摩擦力により連結するためのもので、複数の第3ドライブプレート48aと、複数の第3ドリブンプレート48bとを有している。第3ドライブプレート48aは、環状のプレート部材であり、第2キャリア42eの外周部に相対回転不能にかつ軸方向へ相対移動可能に係合している。第3ドリブンプレート48bは、環状のプレート部材であり、サンギヤ43に相対回転不能にかつ軸方向へ相対移動可能に係合している。第3ドライブプレート48aおよび第3ドリブンプレート48bは、軸方向に交互に配置されている。
第3付勢力発生機構49は、第3摩擦連結部48へ軸方向の付勢力を与えるためのもので、第3ピストン49aと、第3保持部材49bと、第3弾性部材49cとを有している。第3ピストン49aは、環状の部材であり、サンギヤ43に対して軸方向に相対移動可能に係合している。第3保持部材49bは、サンギヤ43に固定された環状の部材である。第3保持部材49bの外周部と第3ピストン49aとの係合部はシールされている。第3弾性部材49cは、第3ピストン49aと第3保持部材49bとの軸方向間に圧縮された状態で配置されている。第3ピストン49aとサンギヤ43との間には、環状の第3油圧室49dが形成されている。第3ピストン49aと第3保持部材49bとの間には、環状の第3油圧キャンセル室49eが形成されている。
2.ロータの回転速度と回生効率との関係について
モータジェネレータは、電気エネルギにより駆動力を発生させるとともに、トランスミッションから伝達される回転運動を電気エネルギに変換する回生を行う。モータジェネレータにより回生を行うことで、車両のもつ運動エネルギを電気エネルギに変換し再利用することができる。したがって、モータジェネレータの回生効率は、車両の燃費に大きく影響する。
モータジェネレータのチューニングの状態にもよるが、一般的にモータジェネレータの回生効率はロータの回転速度により変動する。図5にロータ回転速度と回生効率との関係を示す。図5のグラフはほんの一例であり、チューニングの状態により回転速度と回生効率との関係は変動する。
図5から明らかなように、ロータの回転速度が大きくなるとモータジェネレータの回生効率が向上する。そしてロータの回転速度がある一定の値を超えると、ロータの回転速度が大きくなるにしたがって回生効率が徐々に低下する。図5の場合、ロータの回転速度が4000〜5000rpmを境にロータの回転速度と回生効率との関係が変化している。したがって、回生時においてトランスミッションの入力シャフトの回転速度に比べてロータの回転速度を大きくすることで、ある一定の範囲内でモータジェネレータの回生効率を向上させることができる。
3.変速機構4のギヤ比と動作について
前述のようにロータの回転速度が大きくなるとモータジェネレータの回生効率が向上する。しかし、従来のトルク伝達装置では回生時においてトランスミッションの入力シャフトとロータとの間で回転速度が変速されていない。そのため、トランスミッション側の回転速度に相当する回生効率しか得ることができない。
そこで本発明に係るトルク伝達装置1では、変速機構4によりトランスミッションの入力シャフトとロータとの間で回転速度を変速可能な構成としている。具体的には、このトルク伝達装置1ではエンジン8およびモータジェネレータ3での正駆動時とモータジェネレータ3の回生時である逆駆動時とで変速機構4により変速比を変えることができる構成としている。図6に変速機構4の速度線図を示す。図6は、リングギヤ41、プラネタリギヤ42およびサンギヤ43の歯数Nr、Np、NsがNr=63、Np=39、Ns=24である場合を示している。図6において、「S」はサンギヤ43、「C」は第1キャリア42c、「R」はリングギヤ41を示している。
正駆動時においては、変速機構4の第2クラッチ44が切断されるとともに、第3クラッチ47が連結される。第3クラッチ47が連結されると、プラネタリギヤ42およびサンギヤ43の相対回転が規制される。この結果、リングギヤ41、プラネタリギヤ42およびサンギヤ43が一体で回転する。これにより、正駆動時においては変速機構4により変速されずエンジン8およびモータジェネレータ3の回転はそのままトランスミッション9へ伝達される。図6において、この状態は速度線Aで示されている。
一方、モータジェネレータ3の逆駆動時においては、第2クラッチ44が連結されるとともに、第3クラッチ47が切断される。この結果、サンギヤ43はハウジング5に対して固定され、プラネタリギヤ42およびリングギヤ41の間で回転速度が変速される。前述のギヤ比の場合、図6に示すようにリングギヤ41の回転速度は第1キャリア42cすなわち入力シャフト91の回転速度1.381倍となる。図6では、この状態は速度線Bで示されている。
そして、これを前述の図5で説明すると、例えばトランスミッション9の入力シャフト91の回転速度が2000rpmの場合、その回転がロータ32に変速されずに伝達されると、モータジェネレータ3の回生効率は約85%となる。それに対して、変速機構4によりロータ32の回転速度を増速した場合、ロータ32の回転速度は約2800rpmとなる。この結果、モータジェネレータ3の回生効率は約88%に上昇する。
このように、変速機構4によりトランスミッション9側の回転速度に比べてロータ32の回転速度を増速させることで、従来よりもモータジェネレータ3の回生効率を向上させることができる。
4.制御方法について
前述のように、モータジェネレータの回生効率を向上させることができるのは、例えば図5に示すようにロータの回転速度が0〜5000rpmの範囲内である。ロータの回転速度が5000rpmを超えると、モータジェネレータの回生効率は低下する。したがって、より回生効率を向上させるためには逆駆動時において必ずロータ32の回転速度を変速機構4により増速するわけではなく、ロータ32の回転速度に応じて増速または変速なしを切り換える必要がある。ここでは、その制御について説明する。
図7に回生制御装置70の構成概略図を示す。回生制御装置70は、各部からの信号等に基づいてモータジェネレータ3での回生および変速機構4での変速切換を制御するためのもので、回転速度検出部72と、モータジェネレータ制御部77と、インバータ73と、バッテリ74と、油圧制御部75(変速切換部)と、回生制御部71と、変速制御部76とを備えている。回生制御装置70は、例えば車両のトルク伝達制御装置(図示せず)の一部を構成している。
回転速度検出部72は、ロータ32の回転速度を検出するためのもので、回転速度センサ72aと、速度変換部72bとを有している。回転速度センサ72aは、ロータ32の回転速度を検出するためのもので、図2に示すように第1係止部材25の外周部に近接して配置されており、第3ハウジング53に固定されている。速度変換部72bは、図7に示すように回転速度センサ72aと電気的に接続されており、回転速度センサ72aからの電気信号を回転速度に変換し、後述する変速制御部76に出力する。
モータジェネレータ制御部77は、インバータ73を介してモータジェネレータ3の出力トルクや回生制動トルク等を制御するためのものである。バッテリ74は、モータジェネレータ3の回生により発生した電気エネルギを充電するためのものである。油圧制御部75は、第1クラッチ2、第2クラッチ44および第3クラッチ47へ油圧を供給して連結および切断を切り換えるためのものであり、複数のバルブブロックや油圧ポンプ等から構成されている。油圧制御部75は、変速制御部76からの出力信号により各クラッチの連結および切断を切り換える。インバータ73、バッテリ74および油圧制御部75は、従来のものと何ら変わるところがないため、詳細な説明は省略する。
回生制御部71は、回生制御装置70の中枢をなすものであり、各部の信号に基づいて変速制御部76に回生開始および回生停止信号を出力する。具体的には、回生制御部71は、例えばCPU、RAM、ROM等を備えており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムにしたがって信号処理を実行する。例えば回生制御部71は、車両のアクセルおよびブレーキの操作量等の信号に基づいて車両の加速および減速等の状態を判断し、車両が減速している場合は変速制御部76に回生開始信号を出力し、車両が加速あるいは一定速度で走行する場合は変速制御部76に回生停止信号を出力する。
変速制御部76は、各部の信号に基づいて回生効率が向上するように変速機構4の変速を切り換えるためのもので、回生制御部71、回転速度検出部72、モータジェネレータ制御部77および油圧制御部75に接続されている。
ここで、回生制御装置70における制御方法について説明する。図8に回生制御装置70の制御フロー図の一例を示す。
回生制御部71が変速制御部76へ回生開始信号を出力すると(S1)、変速制御部76はロータ32の回転速度を検出するよう回転速度検出部72へ回転速度検出信号を出力する。回転速度検出部72は、回転速度センサ72aおよび速度変換部72bによりロータ32の回転速度を検出すると、変速制御部76へ回転速度信号を出力する(回転速度検出工程S2)。回転速度検出部72はロータ32の回転速度を常時検出してもよいし、変速制御部76からの回転速度検出信号に基づいて回転速度を検出してもよい。回転速度検出部72からの回転速度信号が変速制御部76へ入力されると、変速制御部76は、ロータ32の回転速度と予め設定された基準回転速度とを比較し、ロータ32の回転速度が基準回転速度を超えているか否かを判断する(判断工程S3)。基準回転速度としては、前述のように例えば4000〜5000rpmが考えられる。
ロータ32の回転速度が基準回転速度以下である場合、ロータ32の回転速度を増速させると回生効率が向上するため、変速制御部76はロータ32の回転速度がトランスミッション9の入力シャフト91の回転速度よりも増速されるように油圧制御部75へ増速信号(変速切換信号)を出力する。変速制御部76からの増速信号が油圧制御部75に入力されると、油圧制御部75は、変速制御部76からの増速信号に基づいて、第2クラッチ44を連結するとともに、第3クラッチ47を切断する(変速切換工程S4)。そして、変速制御部76からの回生開始信号がモータジェネレータ制御部77へ入力されると、モータジェネレータ3およびインバータ73により回生が開始される(S6)。これにより、ロータ32の回転速度が増速され、モータジェネレータ3の回生効率が向上する。なお、回生開始および回生停止信号は、変速制御部76ではなく回生制御部71からモータジェネレータ制御部77へ直接出力されてもよい。
また、ロータ32の回転速度が基準回転速度を超えている場合は、ロータ32の回転速度を増速させると回生効率が低下するため、変速制御部76はロータ32の回転速度がトランスミッション9の入力シャフト91の回転速度よりも増速されないように油圧制御部75に減速信号(変速切換信号)を出力する。変速制御部76からの減速信号が油圧制御部75に入力されると、油圧制御部75は、変速制御部76からの減速信号に基づいて、第2クラッチ44を切断するとともに、第3クラッチ47を連結する(変速切換工程S5)。そして、変速制御部76からの回生開始信号がモータジェネレータ制御部77へ入力されると、モータジェネレータ3およびインバータ73により回生が開始される(S6)。これにより、ロータ32および入力シャフト91の回転速度が等しくなり、モータジェネレータ3の回生効率の低下を防止することができる。
また、回生開始から回生停止までの間に判断工程S3においてロータ32の回転速度と基準回転速度との関係が変化した場合は、その判断結果に基づいて第2クラッチ44および第3クラッチ47の連結および切断が行われる(S7)。そして、回生制御部71から変速制御部76へ回生停止信号が出力されると、変速制御部76からモータジェネレータ制御部77へ回生停止信号が入力され、モータジェネレータ3およびインバータ73による回生が停止される(S7、S8)。
さらに、回生時において第1クラッチ2を切断した場合、エンジン8でのフリクションロスによりモータジェネレータ3での発電量が低下するのを防止することができ、車両の運動エネルギをより有効利用することができる。
以上に述べた回生制御装置70によりロータ32の増速等の切り換えを行うことで、従来よりもトルク伝達装置1の回生効率をさらに向上させることができる。
5.トルク伝達装置の動作
トルク伝達装置1の動作について車両の走行状態ごとに図1を参照しながら説明する
(1)発進時
車両の発進時においては、第1クラッチ2および第2クラッチ44が切断され、第3クラッチ47が連結された状態で、モータジェネレータ3に電力が供給される。この結果、モータジェネレータ3から駆動力が発生し、この駆動力が遊星歯車機構40を介してトランスミッション9の入力シャフト91に伝達され、車両がモータジェネレータ3の駆動力のみで発進される。このとき、第2クラッチ44が切断されており、第3クラッチ47が連結されているため、プラネタリギヤ42とサンギヤ43とが一体回転する。すなわち、ロータ32と遊星歯車機構40とが一体となって回転し、遊星歯車機構40により回転速度が変速されない。そして、モータジェネレータ3のロータ32の回転速度がエンジン8のアイドリング回転速度相当になった時点で、エンジン8が始動するとともに第1クラッチ2が連結される。
(2)低負荷加速走行
車両の加速時においては、エンジン8の駆動力を増加させつつモータジェネレータ3の駆動力を低下させていき、最終的にはモータジェネレータ3の駆動力をゼロとしてエンジン8の駆動力のみで加速する。
(3)モータジェネレータのみによる微速走行
第1クラッチ2の連結を解除した状態で、エンジン8への燃料供給を停止し、モータジェネレータ3のみを駆動する。この場合は、モータジェネレータ3の駆動力が遊星歯車機構40および入力シャフト91に伝達されて車両が走行する。一方、モータジェネレータ3の駆動力は、第1クラッチ2が切断されているためエンジン8には伝達されない。この結果、エンジン8はモータジェネレータ3で駆動されることはなく、エンジン8でのフリクションロスを防止でき、エネルギ効率を向上させることができる。また、モータジェネレータ3の回転制御で速度を微調節でき、複雑な半クラッチ制御を行う必要がなくなる。
(4)エンジンのみによる走行
第1クラッチ2を連結しエンジン8を駆動する一方、モータジェネレータ3には電力供給を行わない。この結果、エンジン8からの駆動力は、ダンパー機構6、第1クラッチ2、ロータ32および遊星歯車機構40を介して入力シャフト91に入力され、車両はエンジン8の駆動力のみで走行する。
(5)高負荷走行
第1クラッチ2を連結した状態で、エンジン8およびモータジェネレータ3の両方を駆動する。この場合は、エンジンからの駆動力がダンパー機構6、第1クラッチ2、ロータ32および遊星歯車機構40を介して入力シャフト91に伝達されるとともに、モータジェネレータ3の駆動力がロータ32および遊星歯車機構40を介して入力シャフト91に伝達される。これにより、両者の駆動力がトランスミッション9に伝達され、高負荷走行が可能となる。
(6)軽減速・軽制動
第1クラッチ2および第3クラッチ47の連結を解除するとともに、第2クラッチ44を連結する。この場合は、トランスミッション9側からの駆動力が、入力シャフト91および遊星歯車機構40を介してロータ32に伝達される。すなわち、トランスミッション9側からの駆動力によりモータジェネレータ3が逆駆動される。これにより、車両の運動エネルギの一部がモータジェネレータ3にて回生され電気エネルギとしてバッテリに充電されると共に、回生制動が実現される。
このとき、第3クラッチ47が切断され第2クラッチ44が連結されているため、サンギヤ43がハウジング5に固定されるとともに、プラネタリギヤ42が回転可能となる。この結果、入力シャフト91の回転がプラネタリギヤ42およびリングギヤ41を介してロータ32に伝達される。
プラネタリギヤ42からリングギヤ41へトルクが伝達される際、リングギヤ41の回転がプラネタリギヤ42および第1キャリア42cの回転よりも増速される。具体的には、例えば前述の歯数の組み合わせの場合、ロータ32およびリングギヤ41の回転速度はプラネタリギヤ42の回転速度の約1.4倍となる。そして図5に示すように、ロータ32の回転速度が大きくなると、モータジェネレータ3の回生効率が向上する。したがって、変速機構4により回生時のロータ32の回転速度を増速することで、モータジェネレータ3の回生効率を向上させることができる。
また、第1クラッチ2が切断されているため、エンジン8側に駆動力は伝達されず、エンジン8の逆駆動によるフリクションロスが発生せず、モータジェネレータ3での発電量の低下を防止することができる。
(7)急減速・急制動
この場合、第1クラッチ2を連結する。そうすると、トランスミッション9側からの駆動力でモータジェネレータ3およびエンジンの両者が逆駆動される。これにより回生制動に加えてエンジン8のフリクションも利用でき、高い減速力・制動力が得られる。
B.第2実施形態
前述の第1実施形態としてのトルク伝達装置1の軸方向寸法を短縮するために、第2実施形態が考えられる。図8に本発明の第2実施形態としてのトルク伝達装置101の構成図を示す。
このトルク伝達装置101は、第1実施形態のトルク伝達装置1と基本構成は同じである。しかし図8に示すように、このトルク伝達装置101では、モータジェネレータ103のロータ132の内周側に第1クラッチ102ではなく変速機構104の遊星歯車機構140が配置されている。第1クラッチ102はモータジェネレータ103のエンジン側に配置されている。これにより、トルク伝達装置101の軸方向寸法の短縮が可能となる。
また、このトルク伝達装置101では、リングギヤ141とサンギヤ143との間に第3クラッチ147が設けられている。これにより、第1実施形態と同様に第3クラッチ147を連結すると、遊星歯車機構140を一体で回転させることができ、ロータ132の回転速度の変速を切り換えることができる。なお、第3クラッチ147は、リングギヤ141とプラネタリギヤ142との間に設けられていてもよい。
C.その他の実施形態
(1)変速機構
前述の実施形態では、変速機構として遊星歯車機構を用いているが、これに限定されない。回生時にトランスミッションの入力シャフトの回転速度に対してロータの回転速度を増速することができれば、他の変速機構(例えばCVT等)であってモータジェネレータの回生効率を向上させることができる。
本発明の第1実施形態としてのトルク伝達装置1の構成図。 本発明の第1実施形態としてのトルク伝達装置1の縦断面概略図。 本発明の第1実施形態としてのトルク伝達装置1の第1クラッチ2周辺の縦断面概略図。 本発明の第1実施形態としてのトルク伝達装置1の変速機構4周辺の縦断面概略図。 ロータの回転速度と回生効率との関係を示す図。 変速機構4の速度線図。 回生制御装置70の構成概略図。 回生制御装置70の制御フローの一例。 本発明の第2実施形態としてのトルク伝達装置101の構成図。
符号の説明
1 トルク伝達装置
2 第1クラッチ
3 モータジェネレータ
4 変速機構
5 ハウジング
6 ダンパー機構
8 エンジン
82 フライホイール(入力側部材)
9 トランスミッション
91 入力シャフト(出力側部材)
31 ステータ
32 ロータ
33 コイル
41 リングギヤ
42 プラネタリギヤ
43 サンギヤ
44 第2クラッチ
45 第2摩擦連結部
46 第2付勢力発生機構
47 第3クラッチ
48 第3摩擦連結部
49 第3付勢力発生機構
51 第1ハウジング
52 第2ハウジング
53 第3ハウジング
70 回生制御装置
71 回生制御部
72 回転速度検出部
73 インバータ
74 バッテリ
75 油圧制御部(変速切換部)
76 変速制御部
77 モータジェネレータ制御部

Claims (12)

  1. エンジンの出力トルクをトランスミッションに伝達するとともに前記エンジンをアシストするためのトルク伝達装置であって、
    前記エンジン側の部材に連結された入力側部材と、
    前記トランスミッション側の部材に連結された出力側部材と、
    前記出力側部材との間でトルク伝達が可能なモータジェネレータと、
    前記出力側部材と前記モータジェネレータとの間に配置され、前記出力側部材およびモータジェネレータの一方から他方へ伝達される回転運動の速度を変速可能な変速機構と、
    を備えたトルク伝達装置。
  2. 前記変速機構は、前記出力側部材から前記モータジェネレータへ伝達される回転運動の速度を増速可能である、
    請求項1に記載のトルク伝達装置。
  3. 前記モータジェネレータおよび変速機構を内部に収容するためのハウジングをさらに備え、
    前記モータジェネレータは、ステータと、前記ステータと相対回転可能に配置されたロータとを有し、
    前記変速機構は、前記ロータに装着されたリングギヤと、前記リングギヤと噛み合う複数のプラネタリギヤと、前記複数のプラネタリギヤおよび出力側部材を連結するキャリアと、前記複数のプラネタリギヤと噛み合うサンギヤとを有している、
    請求項1または2に記載のトルク伝達装置。
  4. 前記変速機構は、前記サンギヤおよびハウジングの間でトルクを伝達あるいは遮断する第2クラッチをさらに有している、
    請求項3に記載のトルク伝達装置。
  5. 前記変速機構は、前記リングギヤ、プラネタリギヤおよびサンギヤのいずれか2つの間でトルクを伝達あるいは遮断する第3クラッチをさらに有している、
    請求項3または4に記載のトルク伝達装置。
  6. 前記入力側部材およびモータジェネレータの間でトルクを伝達あるいは遮断するための第1クラッチをさらに備えた、
    請求項1から5のいずれかに記載のトルク伝達装置。
  7. エンジン側の部材に連結された入力側部材と、トランスミッション側の部材に連結された出力側部材と、ステータと前記ステータの内周側に相対回転可能に配置されたロータとを有し前記出力側部材との間でトルク伝達が可能なモータジェネレータと、前記出力側部材と前記モータジェネレータとの間に配置され前記出力側部材およびモータジェネレータの一方から他方へ伝達される回転運動の速度を変速可能な変速機構とを備えたトルク伝達装置の回生制御装置であって、
    車両の走行状態に基づいて回生開始および回生停止を判断するための回生制御部と、
    前記ロータの回転速度を検出するための回転速度検出部と、
    前記変速機構の変速を切り換えるための変速切換部と、
    前記回生制御部、回生速度検出部および変速切換部と接続され、前記回生制御部からの回生開始指令が下された場合に、前記回転速度検出部から出力される前記回転速度と予め設定された基準回転速度とを比較し、前記回転速度が前記基準回転速度を超えているか否かを判断するとともに、判断結果に基づいて前記変速切換部へ変速切換指令を下すための変速制御部と、
    を備えた回生制御装置。
  8. 前記変速制御部は、前記検出した回転速度が前記基準回転速度以下である場合のみ前記出力側部材から前記ロータへ伝達される回転運動の速度を増速させる、
    請求項7に記載の回生制御装置。
  9. 前記変速機構は、前記ロータに装着されたリングギヤと、前記リングギヤと噛み合う複数のプラネタリギヤと、前記複数のプラネタリギヤおよび出力側部材を連結するキャリアと、前記複数のプラネタリギヤと噛み合うサンギヤと、前記サンギヤおよびハウジングの間でトルクを伝達あるいは遮断する第2クラッチと、前記リングギヤ、プラネタリギヤおよびサンギヤのいずれか2つの間でトルクを伝達あるいは遮断する第3クラッチとを有しており、
    前記変速制御部は、前記第2および第3クラッチの連結および切断を切換可能である、
    請求項7または8に記載の回生制御装置。
  10. エンジン側の部材に連結された入力側部材と、トランスミッション側の部材に連結された出力側部材と、ステータと前記ステータの内周側に相対回転可能に配置されたロータとを有し前記出力側部材との間でトルク伝達が可能なモータジェネレータと、前記出力側部材およびモータジェネレータとの間に配置され前記出力側部材およびモータジェネレータの一方から他方へ伝達される回転運動を変速可能な変速機構と、前記モータジェネレータの回生を制御するための回生制御部とを備えたトルク伝達装置の制御方法であって、
    前記回生制御部において前記ロータの回転速度を検出する回転速度検出工程と、
    前記回生制御部において前記検出した回転速度と予め設定された基準回転速度とを比較し、前記検出した回転速度が前記基準回転速度を超えているか否かを判断する判断工程と、
    前記回生制御部において前記判断工程からの判断結果に基づいて前記変速機構での変速を切り換える変速切換工程と、
    を含んでいるトルク伝達装置の制御方法。
  11. 前記変速切換工程では、前記検出した回転速度が前記基準回転速度以下である場合のみ前記出力側部材から前記ロータへ伝達される回転運動の速度を増速させる、
    請求項10に記載のトルク伝達装置の制御方法。
  12. 前記変速機構は、前記ロータに装着されたリングギヤと、前記リングギヤと噛み合う複数のプラネタリギヤと、前記複数のプラネタリギヤおよび出力側部材を連結するキャリアと、前記複数のプラネタリギヤと噛み合うサンギヤと、前記サンギヤおよびハウジングの間でトルクを伝達あるいは遮断する第2クラッチと、前記リングギヤ、プラネタリギヤおよびサンギヤのいずれか2つの間でトルクを伝達あるいは遮断する第3クラッチとを有しており、
    前記変速切換工程では、前記検出した回転速度が前記基準回転速度以下である場合には前記第2クラッチが連結および前記第3クラッチが切断され、前記検出した回転速度が前記基準回転速度を超えている場合には前記第2クラッチが切断および前記第3クラッチが連結される、
    請求項10または11に記載のトルク伝達装置の制御方法。
JP2005239063A 2005-08-19 2005-08-19 トルク伝達装置、その制御装置およびその制御方法 Pending JP2007050860A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005239063A JP2007050860A (ja) 2005-08-19 2005-08-19 トルク伝達装置、その制御装置およびその制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005239063A JP2007050860A (ja) 2005-08-19 2005-08-19 トルク伝達装置、その制御装置およびその制御方法

Publications (1)

Publication Number Publication Date
JP2007050860A true JP2007050860A (ja) 2007-03-01

Family

ID=37915595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005239063A Pending JP2007050860A (ja) 2005-08-19 2005-08-19 トルク伝達装置、その制御装置およびその制御方法

Country Status (1)

Country Link
JP (1) JP2007050860A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012162222A (ja) * 2011-02-09 2012-08-30 Denso Corp 動力伝達装置
JP2013527069A (ja) * 2010-04-12 2013-06-27 シェフラー テクノロジーズ アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト 円錐形プーリ式巻掛け伝動装置
JP5689162B1 (ja) * 2013-11-18 2015-03-25 株式会社小松製作所 トランスミッション及び作業車両

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527069A (ja) * 2010-04-12 2013-06-27 シェフラー テクノロジーズ アクチエンゲゼルシャフト ウント コンパニー コマンディートゲゼルシャフト 円錐形プーリ式巻掛け伝動装置
JP2012162222A (ja) * 2011-02-09 2012-08-30 Denso Corp 動力伝達装置
JP5689162B1 (ja) * 2013-11-18 2015-03-25 株式会社小松製作所 トランスミッション及び作業車両
WO2015072179A1 (ja) * 2013-11-18 2015-05-21 株式会社小松製作所 トランスミッション及び作業車両
CN105393022A (zh) * 2013-11-18 2016-03-09 株式会社小松制作所 变速箱以及作业车辆
US9897166B2 (en) 2013-11-18 2018-02-20 Komatsu Ltd. Transmission and working vehicle

Similar Documents

Publication Publication Date Title
US9809107B2 (en) Power transmission device
JP5252122B1 (ja) ハイブリッド車両用駆動装置
JP4852474B2 (ja) 動力装置
US20020036434A1 (en) Hybrid-vehicle drive unit
JP4758198B2 (ja) 車両用駆動装置
JP5949364B2 (ja) 動力伝達装置
JP2011079500A (ja) ハイブリッド駆動装置
JPWO2011138892A1 (ja) ハイブリッド車両の駆動装置
US20140335998A1 (en) Power transmission device for vehicle
JP2007001457A (ja) トルク伝達装置
JP4770642B2 (ja) 動力伝達システム
JP5086232B2 (ja) 自動変速機
JP2003220842A (ja) トルク伝達装置
JP2007118718A (ja) 車両用駆動装置の制御装置
JP3847720B2 (ja) 内燃機関用補機駆動装置
KR100774382B1 (ko) 하이브리드 변속기
JP2007050860A (ja) トルク伝達装置、その制御装置およびその制御方法
JP4853173B2 (ja) 動力伝達システム
JP5023991B2 (ja) ハイブリッド車両の制御装置
JP2011037401A (ja) 車両用駆動装置
JP4872697B2 (ja) 動力伝達システム
JP2011005957A (ja) 車両のエンジン始動制御装置
JP2010100179A (ja) 内燃機関始動制御装置
JPWO2019159625A1 (ja) 駆動装置、及び車両
JP2017048821A (ja) トルクコンバータ及びそれを用いた制動システム