JP2007048927A - Electric double-layer capacitor and manufacturing method thereof - Google Patents

Electric double-layer capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP2007048927A
JP2007048927A JP2005231552A JP2005231552A JP2007048927A JP 2007048927 A JP2007048927 A JP 2007048927A JP 2005231552 A JP2005231552 A JP 2005231552A JP 2005231552 A JP2005231552 A JP 2005231552A JP 2007048927 A JP2007048927 A JP 2007048927A
Authority
JP
Japan
Prior art keywords
porous film
infiltrated
separator
electric double
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005231552A
Other languages
Japanese (ja)
Other versions
JP4797505B2 (en
Inventor
Ron Horikoshi
論 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2005231552A priority Critical patent/JP4797505B2/en
Publication of JP2007048927A publication Critical patent/JP2007048927A/en
Application granted granted Critical
Publication of JP4797505B2 publication Critical patent/JP4797505B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To reduce internal resistance of a capacitor by remarkably reducing thickness in comparison with nonwoven cloth separator and assuring equivalent electric shielding property. <P>SOLUTION: A porous film (poleolefine system fine porous film) having uniform fine porous diameter formed of poleolefine system resin is provided as a separator between the positive and negative poles to which the electrolyte penetrates. Polypropylene carbonate penetrates as the solvent of the electrolyte into the porous film. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電気二重層キャパシタ及びその製造方法に関する。   The present invention relates to an electric double layer capacitor and a method for manufacturing the same.

電気二重層キャパシタを構成するには正極負極電極と電子を遮蔽するセパレータ、電極から電流をとり出す集電極及び電解質が必要である。
一般的なキャパシタを電気二重層キャパシタを図4及び図5に示す。
In order to construct an electric double layer capacitor, a positive electrode and a negative electrode, a separator that shields electrons, a collecting electrode that extracts current from the electrode, and an electrolyte are required.
A general capacitor and an electric double layer capacitor are shown in FIGS.

両図に示すように、セパレータ1を間に介在して正極、負極となる活性炭電極2,3が配置されると共にこれらセパレータ1、活性炭電極2,3を両側から集電極基材4,5、集電基板6,7、エンドプレート8,9で押さえ付けられ、絶縁カラー10を介してネジ11,12にて締め付けられている。
セパレータ1、活性炭電極2,3には予め電解液が浸透され、浸透した電解液が漏れないように電気二重層キャパシタの周縁部にはパッキン13が設けられている。
As shown in both figures, activated carbon electrodes 2 and 3 serving as a positive electrode and a negative electrode are disposed with a separator 1 interposed therebetween, and the separator 1 and the activated carbon electrodes 2 and 3 are connected to collector electrode bases 4 and 5 from both sides. It is pressed by current collecting substrates 6 and 7 and end plates 8 and 9 and tightened by screws 11 and 12 through an insulating collar 10.
The separator 1 and the activated carbon electrodes 2 and 3 are preliminarily permeated with an electrolytic solution, and a packing 13 is provided on the peripheral portion of the electric double layer capacitor so that the permeated electrolytic solution does not leak.

上述した電気二重層キャパシタは有機溶媒系のものであり、電解液としては、プロピレンカーボネート(溶媒)+4級アンモニウム塩(電解質)を溶かしたものを用いている。
セパレータ1には、電子を遮蔽し正極、負極を電気的に絶縁する機能と、電解液を介してイオンを通過させる機能が必要であり、多孔質体である必要がある。
このセパレータ1は薄くなればなるほどイオン移動抵抗が小さくなり、キャパシタの内部抵抗は小さくなるが、正負極間で物理的に接触しショートする可能性が高くなり、電子遮蔽性が損なわれる。
又、セパレータ1の孔径分布、平均孔径は小さくなるほど電子遮蔽性の信頼性が高くなる。
The electric double layer capacitor described above is of an organic solvent type, and an electrolytic solution in which propylene carbonate (solvent) + quaternary ammonium salt (electrolyte) is dissolved is used.
The separator 1 needs to have a function of shielding electrons and electrically insulating the positive electrode and the negative electrode, and a function of allowing ions to pass through the electrolytic solution, and needs to be a porous body.
The thinner the separator 1 is, the smaller the ion movement resistance is and the lower the internal resistance of the capacitor is. However, the possibility of physical contact between the positive and negative electrodes and a short circuit is increased, and the electron shielding property is impaired.
Moreover, the reliability of electron shielding becomes higher as the pore size distribution and average pore size of the separator 1 become smaller.

現在一般的に用いられているセパレータ1としては、セルロース繊維(紙)及び樹脂繊維をプレスし不織布としたもの(セルロース系不織布)が一般的である。
不織布は安価であり、容易に大量生産可能であるが、図1に示すように、孔径分布0.1~1.5μm、平均孔径は1.8μmであり、気孔率60%程度で電子遮蔽性を確保するにはある程度の厚み(50μm程度)が必要となる。
特開2000-106327号 特開平11−86828号
The separator 1 generally used at present is generally a non-woven fabric obtained by pressing cellulose fibers (paper) and resin fibers (cellulose-based non-woven fabric).
Nonwoven fabrics are inexpensive and can be easily mass-produced, but as shown in FIG. 1, the pore size distribution is 0.1 to 1.5 μm, the average pore size is 1.8 μm, and the electron shielding property is secured with a porosity of about 60%. Requires a certain thickness (about 50 μm).
JP 2000-106327 A JP 11-86828

一般にリチウムイオン電池で使用しているポレオレフィン系微多孔膜は、図1に示すように、孔径分布0.005μm〜0.1μm、平均孔径0.015μmで、厚さは12〜20μm、気孔率は45~65%程度の多孔質膜である。
ポレオレフィン系微多孔膜は、不織布と比較して平均孔径が非常に小さく、かなり厚さを薄くしても、電子遮蔽性が確保でき、キャパシタの内部抵抗が小さくできることが期待できる。
Generally, a polyolefin microporous membrane used in a lithium ion battery has a pore size distribution of 0.005 μm to 0.1 μm, an average pore size of 0.015 μm, a thickness of 12 to 20 μm, and a porosity of 45 to 45, as shown in FIG. It is a porous membrane of about 65%.
The polyolefin microporous membrane has an extremely small average pore diameter compared with the nonwoven fabric, and even if the thickness is considerably reduced, it can be expected that the electron shielding property can be secured and the internal resistance of the capacitor can be reduced.

但し、こうした孔径分布が小さい多孔質膜全般に言えることであるが、電解液の浸透性が極めて悪く、電解液がセパレータの多孔質体内部に入りにくいことが問題点にあげられる。
セパレータに電解液が入り込まないと、イオン移動が妨げられキャパシタとして全く機能しない。
However, as can be said for all porous membranes having such a small pore size distribution, the problem is that the permeability of the electrolytic solution is very poor and the electrolytic solution is difficult to enter the porous body of the separator.
If the electrolyte does not enter the separator, ion movement is hindered and the capacitor does not function at all.

そこで、電解液を真空含浸させる方法もあるが、ある程度平均孔径が大きな膜でないと効果が無く、完全に電解液を含浸させるには、現状のセルロース繊維又は樹脂繊維系不織布の数時間に対して、十数時間必要となる。
また、中には電解液が全く入らないものもあり、数種類の微多孔膜については全てそのままの状態では電解液が浸透しない。
Therefore, there is also a method of vacuum impregnating the electrolytic solution, but there is no effect unless the membrane has a large average pore diameter to some extent, and in order to completely impregnate the electrolytic solution, several hours of the current cellulose fiber or resin fiber-based nonwoven fabric , Dozens of hours are required.
Some electrolytes do not enter at all, and several types of microporous membranes do not penetrate as they are.

上記課題を解決する本発明の請求項1に係る電気二重層キャパシタは、電解液の浸透した正極と負極との間に、セパレータとしてポリオレフィン系樹脂よりなる均一微多孔径を有する多孔質フィルム(以下、ポレオレフィン系微多孔膜という)が介在し、該多孔質フィルムには、前記電解液の溶媒であるポリプロピレンカーボネートが浸透していることを特徴とする。   An electric double layer capacitor according to claim 1 of the present invention that solves the above problems is a porous film having a uniform microporous diameter (hereinafter referred to as a separator) made of polyolefin resin as a separator between a positive electrode and a negative electrode infiltrated with an electrolytic solution. , A polyolefin microporous membrane), and the porous film is infiltrated with polypropylene carbonate, which is a solvent for the electrolytic solution.

上記課題を解決する本発明の請求項2に係る電気二重層キャパシタは、請求項1において、前記多孔質フィルムは、孔径分布が0.005μm〜0.1μm、平均孔径0.015μmで、厚さが12〜20μm、気孔率45〜65%であることを特徴とする。   The electric double layer capacitor according to claim 2 of the present invention for solving the above-mentioned problems is the electric double layer capacitor according to claim 1, wherein the porous film has a pore size distribution of 0.005 μm to 0.1 μm, an average pore size of 0.015 μm, and a thickness of 12 to It is characterized by being 20 μm and a porosity of 45 to 65%.

上記課題を解決する本発明の請求項3に係る電気二重層キャパシタの製造方法は、ポリオレフィン系樹脂よりなる均一微多孔径を有する多孔質フィルムには電解液の溶媒であるポリプロピレンカーボネートを浸透させる一方、正極、負極には電解液を浸透させ、次いで、電解液を浸透した前記正極、負極との間に、ポリプロピレンカーボネートの浸透した前記多孔質フィルムをセパレータとして間に介在させ、これらを集電極、エンドプレートで両側から押さえ付けることを特徴とする。   In the method of manufacturing an electric double layer capacitor according to claim 3 of the present invention for solving the above-described problem, a porous film having a uniform microporous diameter made of a polyolefin resin is infiltrated with polypropylene carbonate as a solvent of an electrolytic solution. The positive electrode and the negative electrode are infiltrated with an electrolytic solution, and then the porous film infiltrated with polypropylene carbonate is interposed as a separator between the positive electrode and the negative electrode infiltrated with the electrolytic solution. It is characterized by pressing from both sides with an end plate.

上記課題を解決する本発明の請求項4に係る電気二重層キャパシタの製造方法は、ポリオレフィン系樹脂よりなる均一微多孔径を有する多孔質フィルムに電解液の溶媒であるポリプロピレンカーボネートを浸透させた後、ポリプロピレンカーボネートの浸透した前記多孔質フィルムをセパレータとして正極、負極の間に介在させ、これらを集電極、エンドプレートで両側から押さえ付け、更にこれらを電解液中に浸漬させることにより、前記正極、負極に電解液を浸透させることを特徴とする。   The method for producing an electric double layer capacitor according to claim 4 of the present invention for solving the above-described problem is that after impregnating polypropylene carbonate, which is a solvent of an electrolytic solution, into a porous film having a uniform microporous diameter made of a polyolefin resin. The porous film infiltrated with polypropylene carbonate is interposed between the positive electrode and the negative electrode as a separator, and these are collected from the collector electrode and the end plate from both sides, and further immersed in the electrolytic solution, It is characterized by infiltrating an electrolyte into the negative electrode.

上記課題を解決する本発明の請求項5に係る電気二重層キャパシタの製造方法は、ポリオレフィン系樹脂よりなる均一微多孔径を有する多孔質フィルムに電解液の溶媒であるポリプロピレンカーボネートを浸透させた後、ポリプロピレンカーボネートの浸透した前記多孔質フィルムをセパレータとして正極、負極の間に介在させ、これらの両側から集電極を配し共に巻き取った後、更にこれらを筐体に納め電解液中に浸漬させることにより、前記正極、負極に電解液を浸透させることを特徴とする。   The method for producing an electric double layer capacitor according to claim 5 of the present invention for solving the above-described problem is that after impregnating polypropylene carbonate, which is a solvent of an electrolytic solution, into a porous film having a uniform microporous diameter made of polyolefin resin. The porous film infiltrated with polypropylene carbonate is interposed between the positive electrode and the negative electrode as a separator, and the collector electrode is arranged from both sides and wound together, and then placed in a casing and immersed in the electrolytic solution. Thus, an electrolyte solution is infiltrated into the positive electrode and the negative electrode.

上記課題を解決する本発明の請求項6に係る電気二重層キャパシタの製造方法は、請求項3,4又は5において、前記多孔質フィルムは、孔径分布が0.005μm〜0.1μm、平均孔径0.015μmで、厚さが12〜20μm、気孔率45〜65%であることを特徴とする。   The method for producing an electric double layer capacitor according to claim 6 of the present invention for solving the above-mentioned problems is the method according to claim 3, 4 or 5, wherein the porous film has a pore size distribution of 0.005 μm to 0.1 μm and an average pore size of 0.015 μm. The thickness is 12 to 20 μm and the porosity is 45 to 65%.

本発明では、電気二重層キャパシタのセパレータとして、不織布と比較して平均孔径が非常に小さく、かなり厚さを薄くしても、電子遮蔽性が確保できるポレオレフィン系微多孔膜を使用するものであり、そのため、キャパシタの内部抵抗が小さくできる。
また、ポレオレフィン系微多孔膜には、電解液がなかなか浸透しないが、プロピレンカーボネート単体は、液粘度が小さく平均孔径が小さい膜であるポレオレフィン系微多孔膜でも容易に浸透する。
そこで、プロピレンカーボネート単体を浸透させたポレオレフィン系微多孔膜を、電解液の浸透した正極、負極の間に配置すれば、電子遮蔽性が確保しつつ、正極、負極の間のイオン移動を確保することが可能となる。
In the present invention, as a separator of an electric double layer capacitor, a polyolefin microporous film that has an extremely small average pore diameter compared to a non-woven fabric and can secure an electron shielding property even if the thickness is considerably reduced is used. Therefore, the internal resistance of the capacitor can be reduced.
In addition, the electrolyte does not easily penetrate into the polyolefin microporous membrane, but propylene carbonate alone easily penetrates into the polyolefin microporous membrane which is a membrane having a low liquid viscosity and a small average pore diameter.
Therefore, if a polyolefin microporous membrane infiltrated with propylene carbonate alone is placed between the positive electrode and negative electrode in which the electrolyte has penetrated, the electron migration is ensured while the ion transfer between the positive electrode and the negative electrode is ensured. It becomes possible to do.

本発明は、電気二重層キャパシタのセパレータとしてポレオレフィン系微多孔膜を使用すると共に、このポレオレフィン系微多孔膜にプロピレンカーボネート単体を浸透させるものである。
ポレオレフィン系微多孔膜としては、リチウム電池用のセパレータとして開発されたハイポア(旭化成株式会社の商品名)が知られている。
電解質はハイポアには浸透しないが、プロピレンカーボネート単体は、液粘度が小さいため、平均孔径が小さいハイポアでも容易に浸透する。
尚、プロピレンカーボネート単体では電解質イオンが無く、正極、負極には電解液を浸透する必要がある。
In the present invention, a polyolefin microporous film is used as a separator for an electric double layer capacitor, and propylene carbonate alone is infiltrated into the polyolefin microporous film.
As a polyolefin microporous membrane, Hypore (trade name of Asahi Kasei Co., Ltd.) developed as a separator for lithium batteries is known.
Although the electrolyte does not penetrate into the hypopores, propylene carbonate alone has a low liquid viscosity, so that it easily penetrates even through hypopores with a small average pore diameter.
Note that propylene carbonate alone has no electrolyte ions, and the positive electrode and the negative electrode need to be infiltrated with an electrolytic solution.

本発明の一実施例によるキャパシタ特性改善効果について、以下の通り比較した。
セパレータとしては、微多孔膜で最も厚みの薄い12μm、平均孔径、0.015μm、空隙率61%のものを使用した。
一般的なセルロース系不織布セパレータ50μm厚のものとキャパシタ特性を表1で比較した。
表1に示すように、本実施例の方がセルロース系不織布セパレータよりも低抵抗であることが判る。
The effect of improving capacitor characteristics according to one embodiment of the present invention was compared as follows.
As the separator, a microporous membrane having the thinnest thickness of 12 μm, an average pore diameter of 0.015 μm, and a porosity of 61% was used.
Table 1 compares the capacitor characteristics with those of a general cellulose-based nonwoven fabric separator having a thickness of 50 μm.
As shown in Table 1, it turns out that the direction of a present Example is lower resistance than a cellulose nonwoven fabric separator.

Figure 2007048927
Figure 2007048927

本実施例では、キャパシタの電極にはフェノール系樹脂繊維を水蒸気賦活した活性炭繊維布電極を正極、負極とも用い質量をそろえて試験を行った。
キャパシタ特性の算出方法は、以下の通りである。
図2に示すように、キャパシタを2.3Vで5分間充電した後、定電流放電させ放電カーブから、静電容量、内部抵抗を計算した。
静電容量は、下式で放電回帰直線から推定した。
C(F)=k/Id
内部抵抗は、放電回帰直線から推定した。
R(Ω)=(V0−V1)/Id
In this example, an activated carbon fiber cloth electrode obtained by steam activation of phenolic resin fibers was used as the capacitor electrode for both the positive electrode and the negative electrode.
The calculation method of the capacitor characteristic is as follows.
As shown in FIG. 2, the capacitor was charged at 2.3 V for 5 minutes and then discharged at a constant current, and the capacitance and internal resistance were calculated from the discharge curve.
The capacitance was estimated from the discharge regression line using the following equation.
C (F) = k / Id
The internal resistance was estimated from the discharge regression line.
R (Ω) = (V0−V1) / Id

電気遮蔽性を確認するために自己放電試験を実施し、2.3Vで2時間充電後、電圧低下を確認したが、図3に示すとおり、従来品と同等な特性を得た。
キャパシタの内部抵抗について、具体的な試験結果を表2、表3に示す。
表2は、セパレータに電解液(PC/TEMA)を浸透させたときの抵抗を示す結果である。
電解液は、プロピレンカーボネート(PC)を溶媒とし、4級アンモニウム塩(TEMA)を電解質とした。
A self-discharge test was conducted to confirm the electrical shielding property, and after 2 hours of charging at 2.3 V, a voltage drop was confirmed. As shown in FIG. 3, the same characteristics as the conventional product were obtained.
Tables 2 and 3 show specific test results for the internal resistance of the capacitor.
Table 2 shows the results of resistance when the electrolytic solution (PC / TEMA) is infiltrated into the separator.
The electrolyte was propylene carbonate (PC) as a solvent and quaternary ammonium salt (TEMA) as an electrolyte.

表3は、セパレータにプロピレンカーボネート(PC)を十分に浸透させた結果である。
課電150hは、25V、60℃の条件で行った。
ME040Aは、セルロース繊維(紙)及び樹脂繊維をプレスし不織布としたサンプルである。
912A,S4848は、何れもポレオレフィン系微多孔膜を示すサンプルであり、表4に示すように、厚さ(μm)、 透気度(sec/100cc)、 気孔率(%)が異なる。
Table 3 shows the result of sufficiently infiltrating the separator with propylene carbonate (PC).
The charging 150h was performed under the conditions of 25V and 60 ° C.
ME040A is a sample obtained by pressing cellulose fibers (paper) and resin fibers into a nonwoven fabric.
912A and S4848 are samples showing a polyolefin microporous membrane, and as shown in Table 4, the thickness (μm), air permeability (sec / 100cc), and porosity (%) are different.

表2に示すように、従来技術に係るME040Aは電解液が十分に浸透しているため、初期及び課電150hにおいても十分に低い抵抗を示しているのに対し、ポレオレフィン系微多孔膜である912A,S4848は、電解液(PC/TEMA)がほとんど浸透しておらず、抵抗がME040Aよりも大きい。S4848も912Aほどではないが、ME040Aに比較すると大きい。
表3に示すように、ポレオレフィン系微多孔膜にはプロピレンカーボネートが十分に浸透しているため、抵抗値が低くなっており、912Aにあっては表2に示すME040Aよりも僅かであるが抵抗が低くなっている。
As shown in Table 2, the ME040A according to the prior art shows a sufficiently low resistance even at the initial stage and at 150 hours of charging because the electrolyte is sufficiently permeated. Certain 912A and S4848 are hardly penetrated by the electrolyte (PC / TEMA), and the resistance is larger than ME040A. S4848 is not as big as 912A, but it is larger than ME040A.
As shown in Table 3, since the propylene carbonate sufficiently permeates into the polyolefin microporous membrane, the resistance value is low. In 912A, it is slightly less than ME040A shown in Table 2. Resistance is low.

Figure 2007048927
Figure 2007048927

Figure 2007048927
Figure 2007048927

Figure 2007048927
Figure 2007048927

このように説明したように、本実施例によれば、従来不織布セパレータと比較して極めて厚さが薄く、かつ同等な電気遮蔽性を持つポレオレフィン系微多孔膜の使用が可能となり、キャパシタの内部抵抗を低減させる事が可能となる。   As described above, according to this example, it is possible to use a polyolefin microporous film that is extremely thin compared to a conventional nonwoven fabric separator and has an equivalent electric shielding property. The internal resistance can be reduced.

本発明の第1の実施例に係る電気二重層キャパシタは、以下の手順に従って製造される。
先ず、一方の電極Aに規定量の電解液(溶媒+電解質)を浸透させる。
次に、ポレオレフィン系微多孔膜であるセパレータをプロピレンカーボネート槽の中に入れ、プロピレンカーボネートを浸透させる。
引き続き、プロピレンカーボネートの浸透したセパレータを一方の電極A上に置き、この上に他方の電極Bを乗せる。
その後、他方の電極Bに規定量の電解液を浸透させる。
そして、これらセパレータ、電極A,Bの両側を集電極、締め付け板で押さえる。
The electric double layer capacitor according to the first embodiment of the present invention is manufactured according to the following procedure.
First, a prescribed amount of electrolytic solution (solvent + electrolyte) is infiltrated into one electrode A.
Next, the separator which is a polyolefin microporous film is put in a propylene carbonate tank, and propylene carbonate is infiltrated.
Subsequently, a separator infiltrated with propylene carbonate is placed on one electrode A, and the other electrode B is placed thereon.
Thereafter, a prescribed amount of electrolyte solution is infiltrated into the other electrode B.
Then, both sides of these separators and electrodes A and B are pressed by collectors and clamping plates.

本発明の第2の実施例に係る電気二重層キャパシタは、以下の手順に従って製造される。
先ず、ポレオレフィン系微多孔膜であるセパレータをプロピレンカーボネート槽の中に入れ、プロピレンカーボネートを浸透させる。
次に、プロピレンカーボネートの浸透したセパレータを、電解液がまだ浸透していない電極A,Bで挟む。
引き続き、これらセパレータ、電極A,Bの両側を集電極、締め付け板で押さえる。
その後、これらよりなるセル内に規定量の電解液(溶媒+電解質)をに導入し、電極A,Bに電解液を浸透させる。
The electric double layer capacitor according to the second embodiment of the present invention is manufactured according to the following procedure.
First, a separator, which is a polyolefin microporous film, is placed in a propylene carbonate tank and impregnated with propylene carbonate.
Next, the separator infiltrated with propylene carbonate is sandwiched between electrodes A and B into which the electrolytic solution has not yet penetrated.
Subsequently, both sides of the separator and the electrodes A and B are pressed with a collecting electrode and a clamping plate.
Thereafter, a specified amount of electrolyte (solvent + electrolyte) is introduced into the cell made of these, and the electrodes A and B are permeated with the electrolyte.

本発明の第3の実施例に係る電気二重層キャパシタは、以下の手順に従って製造される。
先ず、ポレオレフィン系微多孔膜であるセパレータをプロピレンカーボネート槽の中に入れ、プロピレンカーボネートを浸透させる。
次に、プロピレンカーボネートの浸透したパレータの両側に、電解液の浸透していない電極A,B、集電極を配し共に巻き取る。
引き続き、巻き取ったセパレータ、電極A,B、集電極をアルミ缶等の筐体に納め、規定量の電解液(溶媒+電解質)を筐体に入れ、電極A,Bに電解液を浸透させる。
その後、端子を取り出し封止を行う。
実施例1,2については、単セルのみならず、バイポーラ、モノポーラ構造の多積層体でも効果があると考えられる。
The electric double layer capacitor according to the third embodiment of the present invention is manufactured according to the following procedure.
First, a separator, which is a polyolefin microporous film, is placed in a propylene carbonate tank and impregnated with propylene carbonate.
Next, the electrodes A and B, which are not infiltrated with the electrolyte solution, and the collector electrodes are arranged on both sides of the palator infiltrated with propylene carbonate and wound together.
Next, the wound separator, electrodes A and B, and the collecting electrode are placed in a casing such as an aluminum can, a specified amount of electrolyte (solvent + electrolyte) is placed in the casing, and the electrolyte is infiltrated into electrodes A and B. .
Thereafter, the terminal is taken out and sealed.
Examples 1 and 2 are considered to be effective not only in a single cell but also in a multi-layered structure of bipolar and monopolar structures.

本発明は、電気二重層キャパシタ及びその製造方法に利用される。   The present invention is used in an electric double layer capacitor and a method for manufacturing the same.

セパレータの孔径分布例を示すグラフである。It is a graph which shows the hole diameter distribution example of a separator. キャパシタの放電カーブを示すグラフである。It is a graph which shows the discharge curve of a capacitor. 自己放電特性を示すグラフである。It is a graph which shows a self-discharge characteristic. 従来の電気二重層キャパシタの組立斜視図である。It is an assembly perspective view of the conventional electric double layer capacitor. 従来の電気二重層キャパシタの断面図である。It is sectional drawing of the conventional electric double layer capacitor.

符号の説明Explanation of symbols

1 セパレータ
2,3 活性炭電極
4,5 集電極基材
6,7 集電極板
8,9 エンドプレート
10 絶縁カラー
11,12 ネジ
DESCRIPTION OF SYMBOLS 1 Separator 2,3 Activated carbon electrode 4,5 Current collecting base material 6,7 Current collecting plate 8,9 End plate 10 Insulating collar 11,12 Screw

Claims (6)

電解液の浸透した正極と負極との間に、セパレータとしてポリオレフィン系樹脂よりなる均一微多孔径を有する多孔質フィルムが介在し、該多孔質フィルムには、前記電解液の溶媒であるポリプロピレンカーボネートが浸透していることを特徴とする電気二重層キャパシタ。   A porous film having a uniform microporous diameter made of polyolefin resin as a separator is interposed between the positive electrode and the negative electrode infiltrated with the electrolytic solution, and polypropylene carbonate which is a solvent for the electrolytic solution is interposed in the porous film. An electric double layer capacitor characterized by permeation. 前記多孔質フィルムは、孔径分布が0.005μm〜0.1μm、平均孔径0.015μmで、厚さが12〜20μm、気孔率45〜65%であることを特徴とする請求項1記載の電気二重層キャパシタ。   2. The electric double layer capacitor according to claim 1, wherein the porous film has a pore size distribution of 0.005 μm to 0.1 μm, an average pore size of 0.015 μm, a thickness of 12 to 20 μm, and a porosity of 45 to 65%. . ポリオレフィン系樹脂よりなる均一微多孔径を有する多孔質フィルムには電解液の溶媒であるポリプロピレンカーボネートを浸透させる一方、正極、負極には電解液を浸透させ、次いで、電解液を浸透した前記正極、負極との間に、ポリプロピレンカーボネートの浸透した前記多孔質フィルムをセパレータとして介在させ、これらを集電極、エンドプレートで両側から押さえ付けることを特徴とする電気二重層キャパシタの製造方法。   A porous film made of a polyolefin-based resin having a uniform microporous diameter is infiltrated with polypropylene carbonate, which is a solvent for the electrolytic solution, while the positive electrode and the negative electrode are infiltrated with the electrolytic solution, and then the positive electrode infiltrated with the electrolytic solution, A method for producing an electric double layer capacitor, characterized in that the porous film infiltrated with polypropylene carbonate is interposed as a separator between a negative electrode and a negative electrode and an end plate. ポリオレフィン系樹脂よりなる均一微多孔径を有する多孔質フィルムに電解液の溶媒であるポリプロピレンカーボネートを浸透させた後、ポリプロピレンカーボネートの浸透した前記多孔質フィルムをセパレータとして正極、負極の間に介在させ、これらを集電極、エンドプレートで両側から押さえ付け、更にこれらを電解液中に浸漬させることにより、前記正極、負極に電解液を浸透させることを特徴とする電気二重層キャパシタの製造方法。   After impregnating polypropylene carbonate, which is a solvent of the electrolytic solution, into a porous film having a uniform microporous diameter made of a polyolefin-based resin, the porous film infiltrated with polypropylene carbonate is interposed between a positive electrode and a negative electrode as a separator, A method for producing an electric double layer capacitor, characterized in that the electrolyte solution is infiltrated into the positive electrode and the negative electrode by pressing them from both sides with a collector electrode and an end plate and further immersing them in the electrolyte solution. ポリオレフィン系樹脂よりなる均一微多孔径を有する多孔質フィルムに電解液の溶媒であるポリプロピレンカーボネートを浸透させた後、ポリプロピレンカーボネートの浸透した前記多孔質フィルムをセパレータとして正極、負極の間に介在させ、これらの両側から集電極を配し共に巻き取った後、更にこれらを筐体に納め電解液中に浸漬させることにより、前記正極、負極に電解液を浸透させることを特徴とする電気二重層キャパシタの製造方法。   After impregnating polypropylene carbonate, which is a solvent of the electrolytic solution, into a porous film having a uniform microporous diameter made of a polyolefin-based resin, the porous film infiltrated with polypropylene carbonate is interposed between a positive electrode and a negative electrode as a separator, An electric double layer capacitor characterized in that the collector electrode is disposed from both sides and wound together, and further, the electrode is placed in a casing and immersed in the electrolyte solution, so that the electrolyte solution is infiltrated into the positive electrode and the negative electrode. Manufacturing method. 前記多孔質フィルムは、孔径分布が0.005μm〜0.1μm、平均孔径0.015μmで、厚さが12〜20μm、気孔率45〜65%であることを特徴とする請求項3,4又は5記載の電気二重層キャパシタの製造方法。   6. The porous film according to claim 3, 4 or 5, wherein the porous film has a pore size distribution of 0.005 μm to 0.1 μm, an average pore size of 0.015 μm, a thickness of 12 to 20 μm, and a porosity of 45 to 65%. Manufacturing method of electric double layer capacitor.
JP2005231552A 2005-08-10 2005-08-10 Manufacturing method of electric double layer capacitor Expired - Fee Related JP4797505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005231552A JP4797505B2 (en) 2005-08-10 2005-08-10 Manufacturing method of electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005231552A JP4797505B2 (en) 2005-08-10 2005-08-10 Manufacturing method of electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2007048927A true JP2007048927A (en) 2007-02-22
JP4797505B2 JP4797505B2 (en) 2011-10-19

Family

ID=37851511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005231552A Expired - Fee Related JP4797505B2 (en) 2005-08-10 2005-08-10 Manufacturing method of electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP4797505B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228263A (en) * 2010-03-29 2011-11-10 Seiko Instruments Inc Electrochemical element

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064769A (en) * 1996-08-14 1998-03-06 Asahi Glass Co Ltd Electric double layer capacitor
JP2000248095A (en) * 1999-02-26 2000-09-12 Asahi Chem Ind Co Ltd Partially hydrophilized microporous polyolefin membrane
JP2003297678A (en) * 2002-04-02 2003-10-17 Meidensha Corp Electric double layer capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064769A (en) * 1996-08-14 1998-03-06 Asahi Glass Co Ltd Electric double layer capacitor
JP2000248095A (en) * 1999-02-26 2000-09-12 Asahi Chem Ind Co Ltd Partially hydrophilized microporous polyolefin membrane
JP2003297678A (en) * 2002-04-02 2003-10-17 Meidensha Corp Electric double layer capacitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011228263A (en) * 2010-03-29 2011-11-10 Seiko Instruments Inc Electrochemical element

Also Published As

Publication number Publication date
JP4797505B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
Pan et al. Mesoporous Cladophora cellulose separators for lithium-ion batteries
RU2598357C2 (en) Mat made of glass fibers or polyolefin fibers used as a separator in lead-acid battery
US20180337380A1 (en) Battery electrode plate reinforcement mat having improved wettability characteristics and methods of use therefor
JP6401197B2 (en) Electrochemical device and method for producing electrochemical device
JP2008186707A (en) Separator for electrochemical element
KR20080064963A (en) Electrochemical double layer capacitors including improved nanofiber separators
CN108666142B (en) Electrochemical device
JP6401198B2 (en) Electrochemical device and method for producing electrochemical device
US7760486B2 (en) Aluminum electrolytic capacitors utilizing fine fiber spacers
JP2015088703A (en) Separator for capacitors, and capacitor using the same
CN107230554B (en) Electrochemical device
US7885053B2 (en) Electric double layer capacitor and method for manufacturing same
JP2018148229A (en) Electrochemical device and method for manufacturing the same
JP2014064030A (en) Electrochemical capacitor
JP4495516B2 (en) Separator for electronic parts and method for manufacturing the same
JP2018148230A (en) Electrochemical device and electrochemical device manufacturing method
CN108666632A (en) Electrochemical device
US20090122466A1 (en) Electrochemical capacitors
JP4797505B2 (en) Manufacturing method of electric double layer capacitor
TWI808105B (en) Separator for electrochemical element and electrochemical element
JP2006351365A (en) Separator for electronic components, and the electronic component
JP2007087680A (en) Electrode-polyelectrolyte film complex for electronic component and its manufacturing method
CN107578925B (en) Electrochemical device electrode and its manufacturing method, electrochemical device
JP2010277800A (en) Separator for power storage device
JP3085392B2 (en) Electric double layer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees