JP2007048640A - X-ray tube apparatus - Google Patents

X-ray tube apparatus Download PDF

Info

Publication number
JP2007048640A
JP2007048640A JP2005232725A JP2005232725A JP2007048640A JP 2007048640 A JP2007048640 A JP 2007048640A JP 2005232725 A JP2005232725 A JP 2005232725A JP 2005232725 A JP2005232725 A JP 2005232725A JP 2007048640 A JP2007048640 A JP 2007048640A
Authority
JP
Japan
Prior art keywords
ray tube
anode
unit
cathode
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005232725A
Other languages
Japanese (ja)
Other versions
JP4847067B2 (en
Inventor
Yoshiaki Tsuburaya
喜明 円谷
Hidefumi Okamura
秀文 岡村
Takashi Miyashita
隆志 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2005232725A priority Critical patent/JP4847067B2/en
Publication of JP2007048640A publication Critical patent/JP2007048640A/en
Application granted granted Critical
Publication of JP4847067B2 publication Critical patent/JP4847067B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • X-Ray Techniques (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an X-ray tube apparatus wherein cooling is miniaturized and cooling efficiency of a part of the X-ray tube requiring the cooling can be improved. <P>SOLUTION: In the X-ray tube apparatus of this invention housing the X-ray tube in a tube container, the tube container is divided into a plurality of chambers with a flange 8, and each of the divided chambers is cooled by a different cooling method. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、X線照射時に発生される熱の放出特性を向上させたX線管装置に関する。   The present invention relates to an X-ray tube apparatus having improved characteristics of releasing heat generated during X-ray irradiation.

X線管装置は、X線照射時に大量の熱が発生し、その放出には様々な手法が用いられている(例えば、特許文献1)。
特開2004-103568号公報
The X-ray tube device generates a large amount of heat during X-ray irradiation, and various methods are used for its release (for example, Patent Document 1).
JP 2004-103568 A

上記、[特許文献1]では、管容器内のX線管とステータの間に冷媒循環路を設け、さらに、その冷媒を循環させるためのポンプを配置した結果、X線管装置が大きく、重くなり、X線管装置を搭載するX線撮影装置が、X線管装置の移動する軌道内にある物と、X線管装置との接触を避ける必要がある。   In the above [Patent Document 1], as a result of providing a refrigerant circulation path between the X-ray tube in the tube container and the stator and further arranging a pump for circulating the refrigerant, the X-ray tube device is large and heavy. Therefore, it is necessary for the X-ray imaging apparatus equipped with the X-ray tube apparatus to avoid contact between the X-ray tube apparatus and an object in the orbit where the X-ray tube apparatus moves.

本発明の目的は、冷却器を小型化し、その冷却が必要なX線管の部分の冷却効率を向上させることが可能なX線管装置を提供することにある。   An object of the present invention is to provide an X-ray tube apparatus capable of reducing the size of a cooler and improving the cooling efficiency of the portion of the X-ray tube that needs to be cooled.

本発明によれば、特にその冷却が必要なX線管の部分の冷却効率を向上させることができる。
X線管を管容器に収容したX線管装置において、前記管容器を複数の室に分割し、その分割された室毎に異なる冷却法にて、それぞれ冷却する。
According to the present invention, it is possible to improve the cooling efficiency of the portion of the X-ray tube that particularly needs to be cooled.
In an X-ray tube apparatus in which an X-ray tube is accommodated in a tube container, the tube container is divided into a plurality of chambers, and each of the divided chambers is cooled by a different cooling method.

本発明の第1の実施形態について、陽極接地型のX線管装置の場合を例にとり図1の概略構造図を参照して説明する。管容器1内部にはX線管2が収納されている。X線管2は真空外囲器3などから構成され、真空外囲器3の一部にX線用出力窓4が設けられている。真空外囲器3は中央部の最も径が大きいセンターバルブ5と、センターバルブ5の両端にセンターバルブ5よりも径が小さい陰極バルブ6及び陽極バルブ7などから構成され、センターバルブ5と陽極バルブ7は管軸を中心にして配置し、陰極バルブ6は管軸からずれて配置している。   The first embodiment of the present invention will be described with reference to the schematic structural diagram of FIG. 1, taking an anode grounded X-ray tube apparatus as an example. An X-ray tube 2 is accommodated in the tube container 1. The X-ray tube 2 includes a vacuum envelope 3 and the like, and an X-ray output window 4 is provided in a part of the vacuum envelope 3. The vacuum envelope 3 includes a center valve 5 having the largest diameter at the center, and a cathode valve 6 and an anode valve 7 having a diameter smaller than that of the center valve 5 at both ends of the center valve 5, and the center valve 5 and the anode valve. 7 is arranged around the tube axis, and the cathode bulb 6 is arranged offset from the tube axis.

また、陽極バルブ7のセンターバルブ5に近い側にはフランジ8を例えば、ろう付けや溶接といった手段で接合し配置している。X線管2はフランジ8により、例えばOリング9を用いてシールして管容器1に固定され、管容器1内を陽極ユニット10とアースユニット11の2つのユニットに分割する。また、センターバルブ5には陽極ターゲット12が配置され、陰極バルブ6には陰極13が配置されている。陰極13は絶縁性の陰極支持体14によって支持され、陰極支持体14が陰極バルブ6に固定され、陰極バルブ6は陰極支持体14の端部を管容器1の外側に配置して管容器1に固定されている。陽極ターゲット12は回転子のロータ15と締結されて回転体を構成し、この回転体は回転支持機構16と締結され、回転可能に支持され、端部が陽極バルブ7に固定されている。   Further, a flange 8 is joined and disposed on the side of the anode valve 7 near the center valve 5 by means of, for example, brazing or welding. The X-ray tube 2 is sealed by a flange 8 using, for example, an O-ring 9 and fixed to the tube container 1, and the inside of the tube container 1 is divided into two units, an anode unit 10 and an earth unit 11. An anode target 12 is disposed on the center valve 5, and a cathode 13 is disposed on the cathode bulb 6. The cathode 13 is supported by an insulating cathode support 14, and the cathode support 14 is fixed to the cathode bulb 6. The cathode bulb 6 has an end portion of the cathode support 14 arranged outside the tube vessel 1 and the tube vessel 1 It is fixed to. The anode target 12 is fastened to a rotor 15 of the rotor to form a rotating body. The rotating body is fastened to a rotation support mechanism 16, is rotatably supported, and an end is fixed to the anode valve 7.

陽極ユニット10には陽極バルブ7を囲む位置に誘導電磁界を発生するステータ17を配置する。ステータ17のコイルには誘導磁界発生時に約500Vの電圧が印加されるため、絶縁が必要となる。従って陽極ユニット10には絶縁性の冷媒、例えば絶縁油18を充填する。一方、アースユニット11には、アース電位のセンターバルブ5や陰極バルブ6が配置されるため、アースユニット11の冷媒19として、陽極ユニット10と同様に絶縁油18、または熱伝導率が絶縁油18よりも高い冷媒を充填し、さらに2本のホース20によって冷却器21を連結する。冷却器21は循環ポンプ22や熱交換器23などから構成され、循環ポンプ22は、アースユニット11の冷媒19を、アースユニット11及び冷却器21間を結んで循環させる。熱交換器23は、X線管2の冷却によって温度が上昇したアースユニット11の冷媒19の熱を放出させる。   In the anode unit 10, a stator 17 that generates an induction electromagnetic field is disposed at a position surrounding the anode valve 7. Since a voltage of about 500 V is applied to the coil of the stator 17 when an induction magnetic field is generated, insulation is necessary. Therefore, the anode unit 10 is filled with an insulating refrigerant, for example, insulating oil 18. On the other hand, since the center valve 5 and the cathode valve 6 having the earth potential are disposed in the earth unit 11, the insulating oil 18 or the thermal conductivity of the insulating oil 18 is the same as that of the anode unit 10 as the refrigerant 19 of the earth unit 11. The refrigerant is filled with a higher refrigerant, and the cooler 21 is connected by two hoses 20. The cooler 21 includes a circulation pump 22, a heat exchanger 23, and the like. The circulation pump 22 circulates the refrigerant 19 of the ground unit 11 between the ground unit 11 and the cooler 21. The heat exchanger 23 releases the heat of the refrigerant 19 of the earth unit 11 whose temperature has been increased by cooling the X-ray tube 2.

上記した構成において、ステータ17が発生する誘導電磁界により陽極ターゲット12が回転し、高電圧が印加された陰極13から放出された熱電子が陽極ターゲット12の焦点に衝突してX線を発生する。このとき、入力の約99%が熱エネルギーに変換されるために陽極ターゲット12の温度が上昇する。また、ステータ17はコイルに流れる電流によって発熱する。陽極ユニット10の冷媒である絶縁油18は、ステータ17の発熱や陽極ターゲット12の熱により温度上昇するが、管容器1の陽極ユニット10表面から約40℃の外気(空気)へ放熱する。アースユニット11は、陽極ターゲット12の熱により、アースユニット11の冷媒19の温度も上昇する。しかし、アースユニット11から冷却器21へ送られたアースユニット11の冷媒19は、外気との間で熱交換器23により熱交換され、熱を外部に放出し、管容器1へ戻されるが、図2に示すように冷媒と外気との温度差ΔTが大きいほど、冷却効率が向上する。   In the above configuration, the anode target 12 is rotated by the induction electromagnetic field generated by the stator 17, and the thermoelectrons emitted from the cathode 13 to which a high voltage is applied collide with the focal point of the anode target 12 to generate X-rays. . At this time, since about 99% of the input is converted into heat energy, the temperature of the anode target 12 rises. The stator 17 generates heat due to the current flowing through the coil. The insulating oil 18 that is a refrigerant of the anode unit 10 rises in temperature due to heat generated by the stator 17 and heat of the anode target 12, but dissipates heat from the surface of the anode unit 10 of the tube container 1 to outside air (air) at about 40 ° C. In the earth unit 11, the temperature of the refrigerant 19 of the earth unit 11 also rises due to the heat of the anode target 12. However, the refrigerant 19 of the earth unit 11 sent from the earth unit 11 to the cooler 21 is heat-exchanged with the outside air by the heat exchanger 23, releases heat to the outside, and is returned to the tube container 1. As shown in FIG. 2, the cooling efficiency improves as the temperature difference ΔT between the refrigerant and the outside air increases.

上記した本実施形態によれば、例えば陽極ユニット10のステータ17や陽極ターゲット12から陽極バルブ7への熱伝導による熱が百数十Wあった場合、管容器1の陽極ユニット10表面からの放熱により絶縁油18の温度を従来技術と同等の80℃以下とすることが可能である。これにより絶縁性能を維持、絶縁油18の熱劣化を防止することが可能となる。またアースユニット11の冷媒19の温度を例えば従来技術よりも15℃上げて95℃とし、外気との温度差ΔTを55℃として使用すると、冷却効率を約40%向上させることが可能となる。或いは従来通りの冷却率で使用する場合、熱交換器23を小さくすることができるため、冷却器21も小型にすることが可能となる。   According to the above-described embodiment, for example, when the heat due to heat conduction from the stator 17 or the anode target 12 of the anode unit 10 to the anode valve 7 is several hundred tens of watts, heat is radiated from the surface of the anode unit 10 of the tube container 1. As a result, the temperature of the insulating oil 18 can be set to 80 ° C. or less, which is equivalent to that of the prior art. As a result, it is possible to maintain insulation performance and to prevent thermal deterioration of the insulating oil 18. Further, if the temperature of the refrigerant 19 of the earth unit 11 is increased by 15 ° C. to 95 ° C., for example, and the temperature difference ΔT from the outside air is 55 ° C., the cooling efficiency can be improved by about 40%. Or when using it with the conventional cooling rate, since the heat exchanger 23 can be made small, the cooler 21 can also be reduced in size.

次に本発明の第2〜4の実施形態について図3〜5により説明する。
図3〜5は第1の実施形態おいて、回転陽極X線管装置の使用頻度が高く、陽極ユニット10への入熱が増加した場合に、陽極ユニット10の放熱特性を向上させる手段である。図3の第2の実施形態は管容器1の陽極ユニット10側表面に熱の放出用のヒートシンク25を配置したもの、図4の第3の実施形態は陽極ユニット10に冷却器21より小型の冷却器26を配置したもの、図5の第4の実施形態は管容器1の陽極ユニット10側表面にペルチェ素子29などの熱電素子を配置したものである。例えば回転陽極X線管装置の使用頻度が高く、陽極ユニット10への熱が第1の実施形態の場合より多い場合、第2〜4の実施形態により陽極ユニット10の放熱特性を向上させることで、絶縁油18の温度を従来技術と同等の80℃以下にすることが可能となる。これにより絶縁性能を維持、絶縁油18の熱劣化を防止することが可能となる。
Next, second to fourth embodiments of the present invention will be described with reference to FIGS.
3 to 5 are means for improving the heat dissipation characteristics of the anode unit 10 when the rotating anode X-ray tube apparatus is used frequently and heat input to the anode unit 10 is increased in the first embodiment. . In the second embodiment of FIG. 3, a heat sink 25 for releasing heat is arranged on the surface of the tube container 1 on the anode unit 10 side, and in the third embodiment of FIG. 4, the anode unit 10 is smaller than the cooler 21. In the fourth embodiment shown in FIG. 5 in which the cooler 26 is arranged, a thermoelectric element such as a Peltier element 29 is arranged on the surface of the tube container 1 on the anode unit 10 side. For example, when the rotating anode X-ray tube device is used frequently and the heat to the anode unit 10 is higher than in the first embodiment, the heat dissipation characteristics of the anode unit 10 can be improved by the second to fourth embodiments. In addition, the temperature of the insulating oil 18 can be set to 80 ° C. or lower, which is the same as that in the prior art. As a result, it is possible to maintain the insulating performance and prevent the thermal deterioration of the insulating oil 18.

次に第5の実施形態について図6により説明する。図6は陰極13に負の高電圧、陽極30に正の高電圧を印加して使用する中性点接地型のX線管装置の場合についてである。X線管2の真空外囲器3の陰極側及び陽極側に陰極フランジ31及び陽極フランジ32を設ける。X線管2は陰極フランジ31、陽極フランジ32により、例えばOリング9を用いてシールして管容器1に固定、支持され、管容器1内を陰極ユニット33、アースユニット11及び陽極ユニット10の3つのユニットに分割する。この時、陽極フランジ32の形状を真空外囲器3の陽極ターゲット12の裏面と対向する部位が、アースユニット11の冷媒19に接するような折り返しを設けた形状とする。陰極13及び陽極30には、高電圧が印加されるため絶縁が必要となる。従って陰極ユニット33、陽極ユニット11には、絶縁性の冷媒、例えば絶縁油18を充填する。   Next, a fifth embodiment will be described with reference to FIG. FIG. 6 shows the case of a neutral grounded X-ray tube apparatus that is used with a negative high voltage applied to the cathode 13 and a positive high voltage applied to the anode 30. A cathode flange 31 and an anode flange 32 are provided on the cathode side and the anode side of the vacuum envelope 3 of the X-ray tube 2. The X-ray tube 2 is sealed with, for example, an O-ring 9 by a cathode flange 31 and an anode flange 32 and fixed and supported to the tube container 1. Inside the tube container 1, the cathode unit 33, the earth unit 11 and the anode unit 10 Divide into 3 units. At this time, the anode flange 32 is shaped so that the portion of the vacuum envelope 3 facing the back surface of the anode target 12 is in contact with the refrigerant 19 of the earth unit 11. Since a high voltage is applied to the cathode 13 and the anode 30, insulation is required. Therefore, the cathode unit 33 and the anode unit 11 are filled with an insulating refrigerant, for example, the insulating oil 18.

また、アースユニット11はアース電位のため絶縁が不要となるため、アースユニット11の冷媒19として絶縁油18、または熱伝導率が絶縁油18よりも高い冷媒を充填し、さらに2本のホース20によって冷却器21を連結する。X線管2動作時には、陰極ユニット33の入力はフィラメントの数十Wの発熱とアースユニット11からの熱伝導があるが入力は少ないので、絶縁油18の温度は性能安定動作温度以下の約60℃である。また陽極ユニット10は、第1の実施形態と同様で、80℃以下とすることが可能であり、陰極ユニット33、陽極ユニット10ともに絶縁性能を維持、絶縁油18の熱劣化を防止することが可能となる。またアースユニット11の冷媒19の温度も、第1の実施形態と同様で、従来技術よりも高温で使用することが可能となる。
以上により、第1の実施形態と同様の効果を得ることが可能となる。また陰極ユニット33、或いは陽極ユニット11においては、上記の第2〜4の実施形態を適用することも可能である。
また、上記実施形態では、回転陽極型のX線管で説明した固定陽極型であっても良い。
In addition, since the earth unit 11 is grounded, insulation is unnecessary, and therefore, the refrigerant 19 of the earth unit 11 is filled with insulating oil 18 or refrigerant having a higher thermal conductivity than that of the insulating oil 18, and two hoses 20 are further filled. The cooler 21 is connected by When the X-ray tube 2 is in operation, the input of the cathode unit 33 has heat of several tens of watts of the filament and heat conduction from the earth unit 11, but the input is small. ° C. Further, the anode unit 10 can be set to 80 ° C. or lower as in the first embodiment, and both the cathode unit 33 and the anode unit 10 can maintain the insulating performance and prevent the thermal deterioration of the insulating oil 18. It becomes possible. Further, the temperature of the refrigerant 19 of the earth unit 11 is the same as that of the first embodiment, and can be used at a higher temperature than the conventional technology.
As described above, the same effects as those of the first embodiment can be obtained. In the cathode unit 33 or the anode unit 11, the above second to fourth embodiments can be applied.
Moreover, in the said embodiment, the fixed anode type demonstrated with the rotary anode type X-ray tube may be sufficient.

本発明における第1の実施形態を表す断面図。1 is a cross-sectional view illustrating a first embodiment of the present invention. 冷媒と外気の温度差と冷却率の関係を表す図。The figure showing the relationship between the temperature difference of a refrigerant | coolant and external air, and a cooling rate. 本発明における第2の実施形態を表す断面図。Sectional drawing showing the 2nd Embodiment in this invention. 本発明における第3の実施形態を表す断面図。Sectional drawing showing the 3rd Embodiment in this invention. 本発明における第4の実施形態を表す断面図。Sectional drawing showing the 4th Embodiment in this invention. 本発明における第5の実施形態を表す断面図。Sectional drawing showing the 5th Embodiment in this invention.

符号の説明Explanation of symbols

1 管容器、2 X線管、3 真空外囲器、4 X線用出力窓、5 センターバルブ、6 陰極バルブ、7 陽極バルブ、8 フランジ、9 Oリング、10 陽極ユニット、11 アースユニット、12 陽極ターゲット、13 陰極、14 陰極支持体、15 ロータ、16 回転支持機構、17 ステータ、18 絶縁油、19 アースユニットの冷媒、20 ホース、21 冷却器、22 循環ポンプ、23 熱交換器、24 放射窓、25 ヒートシンク、26 小型の冷却器、27 小型の循環ポンプ、28 小型の熱交換器、29 ペルチェ素子、30 陽極、31 陰極フランジ、32 陽極フランジ、33 陰極ユニット   1 tube container, 2 X-ray tube, 3 vacuum envelope, 4 X-ray output window, 5 center valve, 6 cathode valve, 7 anode valve, 8 flange, 9 O-ring, 10 anode unit, 11 earth unit, 12 Anode target, 13 cathode, 14 cathode support, 15 rotor, 16 rotation support mechanism, 17 stator, 18 insulating oil, 19 earth unit refrigerant, 20 hose, 21 cooler, 22 circulation pump, 23 heat exchanger, 24 radiation Window, 25 Heat sink, 26 Small cooler, 27 Small circulation pump, 28 Small heat exchanger, 29 Peltier element, 30 Anode, 31 Cathode flange, 32 Anode flange, 33 Cathode unit

Claims (3)

X線管を管容器に収容したX線管装置において、
前記管容器を複数の室に分割し、その分割された室毎に異なる冷却法にて、それぞれ冷却することを特徴とするX線管装置。
In the X-ray tube device in which the X-ray tube is accommodated in the tube container,
An X-ray tube apparatus, wherein the tube container is divided into a plurality of chambers, and each of the divided chambers is cooled by a different cooling method.
上記複数の室の分割は、絶縁が要又は不要であることで分割するこを特徴とする請求項1に記載のX線管装置。   The X-ray tube apparatus according to claim 1, wherein the plurality of chambers are divided when insulation is necessary or unnecessary. 上記絶縁を要するX線管の陽極が配置される第1の室と、
上記絶縁を要しないX線管の陰極の配置される第2の室とにそれぞれ冷媒を充填し、
前記第2の室に熱交換器を含む冷却装置、放熱材、熱電対の少なくとも1つを配置することを特徴とする請求項2に記載のX線管装置。
A first chamber in which the anode of the X-ray tube requiring insulation is disposed;
Each of the second chambers in which the cathodes of the X-ray tubes that do not require insulation are placed are filled with a refrigerant,
The X-ray tube apparatus according to claim 2, wherein at least one of a cooling device including a heat exchanger, a heat radiating material, and a thermocouple is disposed in the second chamber.
JP2005232725A 2005-08-11 2005-08-11 X-ray tube device Expired - Fee Related JP4847067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005232725A JP4847067B2 (en) 2005-08-11 2005-08-11 X-ray tube device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005232725A JP4847067B2 (en) 2005-08-11 2005-08-11 X-ray tube device

Publications (2)

Publication Number Publication Date
JP2007048640A true JP2007048640A (en) 2007-02-22
JP4847067B2 JP4847067B2 (en) 2011-12-28

Family

ID=37851292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005232725A Expired - Fee Related JP4847067B2 (en) 2005-08-11 2005-08-11 X-ray tube device

Country Status (1)

Country Link
JP (1) JP4847067B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335389A (en) * 1994-06-13 1995-12-22 Toshiba Corp X-ray tube device
JPH0969396A (en) * 1995-08-31 1997-03-11 Toshiba Corp X-ray tube device
JP2000003799A (en) * 1998-04-21 2000-01-07 Picker Internatl Inc Cooling of x-ray device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335389A (en) * 1994-06-13 1995-12-22 Toshiba Corp X-ray tube device
JPH0969396A (en) * 1995-08-31 1997-03-11 Toshiba Corp X-ray tube device
JP2000003799A (en) * 1998-04-21 2000-01-07 Picker Internatl Inc Cooling of x-ray device

Also Published As

Publication number Publication date
JP4847067B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP6039283B2 (en) Radiation generator and radiation imaging apparatus
JP6039282B2 (en) Radiation generator and radiation imaging apparatus
JP2001143646A (en) Method of cooling x ray tube with rotary anode assembly by means of heat pipe
JP4908341B2 (en) Rotating anode type X-ray tube device
US6377659B1 (en) X-ray tubes and x-ray systems having a thermal gradient device
JP2001505359A (en) X-ray generator having composite housing
IL180440A (en) Compact source of a high-brightness x-ray beam
US20130148781A1 (en) Radiation generating apparatus
US20140311697A1 (en) Integral liquid-coolant passageways in an x-ray tube
US5535255A (en) System for the cooling of an anode for an X-ray tube in a radiogenic unit without heat exchanger
JP2001319606A (en) Vapor-chamber target for x-ray tube
US11562875B2 (en) Hybrid air and liquid X-ray cooling system comprising a hybrid heat-transfer device including a plurality of fin elements, a liquid channel including a cooling liquid, and a circulation pump
JP2005520300A (en) Liquid metal heat pipe structure for X-ray targets
US8054945B2 (en) Evacuated enclosure window cooling
JP2003123999A (en) X-ray tube device
WO2013174435A1 (en) Cooled stationary anode for an x-ray tube
JP4847067B2 (en) X-ray tube device
KR101742642B1 (en) Cooling structure of x-ray tube having thermoelectric element
JP2009252648A (en) Rotating anode x-ray tube device
JP2007042434A (en) X-ray tube
JP2009043651A (en) Rotating anode type x-ray tube device
US12029593B2 (en) X-ray high-voltage generator having a two-phase cooling system
JP2015520929A (en) Cooling rotating anode for X-ray tube
US20230293123A1 (en) X-ray high-voltage generator having a two-phase cooling system
JP4846214B2 (en) Rotating anode X-ray tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees