JP2007046116A - Furnace body of converter - Google Patents

Furnace body of converter Download PDF

Info

Publication number
JP2007046116A
JP2007046116A JP2005232464A JP2005232464A JP2007046116A JP 2007046116 A JP2007046116 A JP 2007046116A JP 2005232464 A JP2005232464 A JP 2005232464A JP 2005232464 A JP2005232464 A JP 2005232464A JP 2007046116 A JP2007046116 A JP 2007046116A
Authority
JP
Japan
Prior art keywords
furnace
furnace body
inner diameter
height
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005232464A
Other languages
Japanese (ja)
Inventor
Masanobu Nakamura
正信 中村
Koichiro Semura
康一郎 瀬村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005232464A priority Critical patent/JP2007046116A/en
Publication of JP2007046116A publication Critical patent/JP2007046116A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a furnace body of a converter, in which spitting granular iron hardly deposits on the throat. <P>SOLUTION: The furnace body of the top and bottom combined blown converter has height H, an inner diameter R of the throat, an inner diameter D of a straight body part of the furnace body, a volume Vi of molten steel which can be retained by the furnace body when the furnace body is tilted at 90 degrees toward a tapping side, and a total volume Vo in the furnace so that they can satisfy the expressions of: 2.828ln(R)+5.252≤H≤2.828ln(R)+7.3958; H/D≥1.4; and Vi/Vo≥0.06. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば上底吹き転炉の炉体に関する。   The present invention relates to a furnace body of, for example, an upper bottom blow converter.

従来より、特許文献1に示すように転炉の操業においては、炉体内に溶銑を装入し、炉体の炉口へ上吹き用のランスを挿入した後に、このランスから溶銑に向けて酸素ガスを吹き付けることによって吹錬を行っている。このとき、転炉の操業では、炉体の底部からガスを吹き込んで溶銑を攪拌しながら酸素ガスを吹き込むようにしている。
ランスから酸素ガスを吹き込む際、酸素ガスが溶銑の表面に衝突するため、溶銑の一部がスピッティング粒鉄となって炉口へと飛んでいき、このスピッティング粒鉄が炉口へ付着して地金(以降、炉口に付着した地金のことを付着地金という)となる。
Conventionally, as shown in Patent Document 1, in the operation of a converter, hot metal is charged into the furnace body, a lance for up-blowing is inserted into the furnace port of the furnace body, and then oxygen is directed from the lance toward the hot metal. Blowing is performed by blowing gas. At this time, in the operation of the converter, gas is blown from the bottom of the furnace body, and oxygen gas is blown while stirring the molten iron.
When oxygen gas is blown from the lance, the oxygen gas collides with the surface of the hot metal, so a part of the hot metal becomes spitting iron and flies to the furnace mouth, and the spitting iron particles adhere to the furnace mouth. The bullion (hereinafter, the bullion attached to the furnace port is called the attached bullion).

炉口周りに付着地金が付着して堆積すると炉口が小さくなってしまうことから、例えば、炉体内にスクラップを装入する際、スクラップを炉体内へ入れるスクラップシュートが炉口に詰まってしまってスクラップを炉体内へ入れられない問題が発生する。
また、溶銑(溶鋼)の温度[℃]の測定を行うサブランスを炉体内へ挿入する際、前記サブランスが付着地金に衝突してしまう危険性がある。また、チャージ数が多くなるにつれて炉体の底部(炉底部)の耐火物が溶損して減少する結果、次第に相対的に炉口近傍が重くなり、転炉が起きあがりにくくなる傾動トリップが発生する恐れがある。
For example, when charging scrap into the furnace body, the scrap chute that puts the scrap into the furnace body is clogged in the furnace mouth, because the adhering metal around the furnace mouth is deposited and deposited. This causes a problem that scrap cannot be put into the furnace.
Further, when a sub lance for measuring the temperature [° C.] of hot metal (molten steel) is inserted into the furnace body, there is a risk that the sub lance will collide with the adhered metal. Also, as the number of charges increases, the refractory at the bottom of the furnace body (furnace bottom) melts and decreases, and as a result, the vicinity of the furnace port gradually becomes heavier, and a tilting trip that makes it difficult for the converter to start up may occur. There is.

このように、炉口周りに付着地金が堆積すると様々な問題を引き起こすことから転炉の操業においては付着地金が所定以上堆積すると、例えば、酸素パイプを用いて炉口に付着した付着地金を溶断した後、スクラップシュートを用いて付着地金を除去したり、専用の地金溶解ランスを用いて溶解したりしている。
特開2005−28939号公報
In this way, depositing adhering metal around the furnace port causes various problems, so if the adhering metal deposits more than a predetermined amount in the operation of the converter, for example, the adhering metal adhering to the furnace port using an oxygen pipe is used. After the gold is melted, the ingot is removed using a scrap chute or melted using a dedicated metal melting lance.
JP 2005-28939 A

しかしながら、付着地金の除去作業を行う間は、転炉の操業を停止しなければならず、生産性が低下してしまう問題がある。また、付着地金の除去作業の際に、炉口の絞り部の耐火物が地金と共に脱落することがあり、転炉寿命が短くなる問題がある。
このような問題に鑑み、転炉の操業においては、炉口周りでの付着地金の堆積速度を低下させる、即ち、付着地金となるスピッティング粒鉄が炉口へ付着し難くすることで前記除去作業をできるだけ少なくすることが望まれている。そこで、ランスチップの改善などを行うことで、スピッティング粒鉄が炉口へ付着しないようにする技術が考えられているが、十分な効果が得られていないのが実情である。
However, the operation of the converter must be stopped during the removal work of the adhering metal, and there is a problem that productivity is lowered. In addition, there is a problem in that the refractory at the throttle portion of the furnace port may fall off together with the metal during the removal work of the attached metal, which shortens the converter life.
In view of such problems, in the operation of the converter, the deposition rate of the ingot metal around the furnace mouth is reduced, that is, the spitting granular iron that becomes the ingot metal is made difficult to adhere to the furnace mouth. It is desired to minimize the removal work. Therefore, a technique for preventing spitting granular iron from adhering to the furnace port by improving the lance tip has been considered, but the actual situation is that a sufficient effect has not been obtained.

そこで、本発明は、上記問題点に鑑み、付着地金となるスピッティング粒鉄が炉口へ付着し難い転炉の炉体を提供することを目的とする。   Therefore, in view of the above problems, an object of the present invention is to provide a furnace body of a converter in which spitting granular iron serving as an adhesion metal is difficult to adhere to a furnace port.

前記目的を達成するために、本発明は、次の手段を講じた。即ち、本発明における課題解決のための技術的手段は、上底吹きの操業を行う転炉の炉体が、式(1)〜式(3)を満たす形状の点にある。   In order to achieve the above object, the present invention has taken the following measures. That is, the technical means for solving the problems in the present invention is that the furnace body of the converter performing the operation of blowing the top bottom satisfies the formulas (1) to (3).

Figure 2007046116
Figure 2007046116

このようにすることで、付着地金となるスピッティング粒鉄が炉口へ付着し難くなり、炉口付近における付着地金の堆積速度(成長速度)を低下させることができ、付着地金の除去作業を少なくすることができる。
式(1)〜式(3)の導出する考え方について図1〜6を用いて説明する。
まず、使用する変数について説明する。図1に示すように、炉体の炉内高さHiを、炉口から湯面までの距離とする。詳しくは、炉内高さHiは、炉体内に溶銑,冷銑,故銑,鉄屑などの主原料を装入した際の湯面から炉口までの距離である。炉体の直胴部内径Dを炉体の直胴部内に耐火物を設けたときの耐火物間の距離(内径)とする。また、炉体高さHを炉体の底部に設けた耐火物の上面から炉口までの距離とし、炉口内径Rを炉体の絞り部の端部内径、即ち、絞り部の最端部(炉口縁)に設けた耐火物間の(距離)内径とする。
By doing in this way, it becomes difficult for spitting granular iron used as adhesion metal to adhere to a furnace mouth, the deposition rate (growth rate) of adhesion metal near the furnace mouth can be reduced, and adhesion metal Removal work can be reduced.
The way of deriving equations (1) to (3) will be described with reference to FIGS.
First, the variables used will be described. As shown in FIG. 1, the furnace height Hi of the furnace body is the distance from the furnace port to the molten metal surface. Specifically, the furnace height Hi is the distance from the molten metal surface to the furnace opening when the main raw materials such as hot metal, cold iron, waste, and iron scrap are charged into the furnace body. The straight body portion inner diameter D of the furnace body is defined as a distance (inner diameter) between the refractories when the refractory is provided in the straight body portion of the furnace body. Further, the furnace body height H is the distance from the top surface of the refractory provided at the bottom of the furnace body to the furnace port, and the furnace port inner diameter R is the inner diameter of the end of the throttle part of the furnace body, that is, the endmost part of the throttle part ( The inner diameter (distance) between the refractories provided at the furnace port edge.

図2に示すように、炉内保持容積Viを、炉体を出鋼側へ90°傾けた際に炉体が保持可能な溶鋼容積(言い換えれば、溶銑容積)、即ち、炉体を出鋼側へ90°傾けた際に炉口からスラグ、さらには、溶鋼が出ないようにできる容積とする。炉内容積Voを炉体内の全容積とする。
以下、具体的な導出方法について説明する。
発明者は、過去の操業において炉口へ付着した付着地金を採取し、その断面積や組成分析などを行った結果、スピッティング粒鉄の粒径が1mm程度のものが付着地金となることが分かった。
As shown in FIG. 2, the in-furnace holding volume Vi is a molten steel volume (in other words, hot metal volume) that can be held by the furnace body when the furnace body is tilted by 90 ° toward the steel output side, that is, the furnace body is turned out. When tilted 90 ° to the side, the volume should be such that slag and molten steel are not emitted from the furnace port. The furnace volume Vo is the total volume in the furnace body.
Hereinafter, a specific derivation method will be described.
The inventor collected adhering metal adhering to the furnace port in the past operation, and as a result of performing cross-sectional area and composition analysis, the one having a particle diameter of spitting granular iron of about 1 mm becomes the adhering metal. I understood that.

そこで、発明者は前記粒径が1mm程度のスピッティング粒鉄が炉口に付着しない炉内高さHiと炉体の炉口内径Rとについて検討した。具体的には、図3に示すように、炉口内径Rを横軸にとり、炉内高さHiを縦軸にとり、粒径が1mmのスピッティング粒鉄が炉口に付着しない各炉内高さHiと炉口内径Rとを複数の実験や物理的な計算により算出し、図3にプロットした。
前記物理的な計算は、図8に示すように、酸素を炉体内に吹き込んだ状態でのスピッティング粒鉄の速度vと、酸素を吹き込んだ際に発生する上昇気流(COガス)の速度V(空塔速度)と、抗力と、重力とに着目し、これらを用いて、スピッティング粒鉄が炉口に付着しない運動方程式をたてて、これを解くこととしている。なお、スピッティング粒鉄を球状とした。
Therefore, the inventor examined the furnace height Hi and the furnace port inner diameter R of the furnace body at which the spitting granular iron having a particle size of about 1 mm does not adhere to the furnace port. Specifically, as shown in FIG. 3, the inner diameter R of the furnace port is taken on the horizontal axis, the height Hi in the furnace is taken on the vertical axis, and each of the furnace heights in which spitting granular iron having a particle diameter of 1 mm does not adhere to the furnace mouth. The height Hi and the furnace port inner diameter R were calculated by a plurality of experiments and physical calculations and plotted in FIG.
As shown in FIG. 8, the physical calculation includes the speed v of spitting granular iron in a state where oxygen is blown into the furnace body, and the velocity V of the rising air flow (CO gas) generated when oxygen is blown. Focusing on (superficial velocity), drag, and gravity, we use these to establish an equation of motion in which spitting granular iron does not adhere to the furnace port and solve it. In addition, spitting grain iron was made spherical.

図3に示すように、例えば、ランスの送酸速度が700Nm3/分であるとき、粒径1mmのスピッティング粒鉄が炉口に付着しない炉内高さHiと炉口内径Rとは、ラインK1(以降、未付着ラインK1とする)になった。この場合は、炉内高さHiと炉口内径Rとを未付着ラインK1上になるように決定することで、スピッティング粒鉄が付着し難い炉体を構成できることが分かった。
ここで、前記炉口内径Rは炉体直胴部内径Dで示すことも可能であって、炉内高さHiを炉体高さHで示すことも可能であるため、図3で炉口内径Rを炉体直胴部内径Dに置き換えると共に、炉内高さHiを炉体高さHに置き換えたとして、炉体高さHと炉体直胴部内径Dとの関係について考える。
As shown in FIG. 3, for example, when the lance acid feed rate is 700 Nm 3 / min, the furnace height Hi and the furnace mouth inner diameter R at which the spitting granular iron having a particle diameter of 1 mm does not adhere to the furnace mouth are: Line K1 (hereinafter referred to as an unattached line K1). In this case, it was found that by determining the furnace height Hi and the furnace port inner diameter R so as to be on the non-attachment line K1, it is possible to configure a furnace body in which spitting granular iron is difficult to adhere.
Here, the inner diameter R of the furnace port can be indicated by the inner diameter D of the straight body of the furnace body, and the furnace height Hi can also be indicated by the furnace body height H. Considering the relationship between the furnace body height H and the furnace body straight body inner diameter D, R is replaced with the furnace body straight body inner diameter D and the furnace height Hi is replaced with the furnace body height H.

ラインK1によって、炉体高さHと炉体直胴部内径Dとを決定すると様々な内容積の炉体を構成することができるが、炉体の内容積は、1チャージ当たりに精錬する量に合わせて決定するのが妥当である。
そこで、発明者は図3に炉内容積が一定の炉内容積一定ラインV1を描き、当該炉内容積一定ラインV1と前記未付着ラインk1との接点P1を求めた。
炉口内径R(炉体直胴部内径D)と炉内高さHi(炉体高さH)との関係が点P1になるとき、炉内容積が一定の炉体では最もスピッティング粒鉄が付着し難い炉体となることが分かる。
When the furnace body height H and the furnace body straight body inner diameter D are determined by the line K1, furnace bodies having various internal volumes can be configured, but the internal volume of the furnace body is an amount to be refined per charge. It is reasonable to decide together.
Therefore, the inventor drawn a constant furnace volume line V1 having a constant furnace volume in FIG. 3, and obtained a contact point P1 between the constant furnace volume line V1 and the non-attached line k1.
When the relationship between the furnace port inner diameter R (furnace body barrel inner diameter D) and the furnace height Hi (furnace body height H) is point P1, the most spitting granulated iron in the furnace body with a constant furnace volume. It turns out that it becomes a furnace body which is hard to adhere.

ここで、前記点P1付近を見てみるとその付近で前記未付着ラインK1と炉内容積一定ラインV1とは近接又は重なっており、未付着ラインK1と炉内容積一定ラインVとの近接点P2,P3においても前記点P1と同等の効果を得ることができる。
したがって、未付着ラインK1において点P2〜P3の範囲で、炉口内径Rと炉内高さHiとを決定することが好ましい。
上記と同じように、操業条件などを考慮して複数の未付着ラインと、複数の炉内容積一定ラインとの近接点を複数求め、これらの近接点に対する近似曲線を求めると、図3に示すように、曲線L1,L2になった。
Here, when the vicinity of the point P1 is seen, the non-adhered line K1 and the constant furnace volume line V1 are close or overlapped with each other, and the adjacent point between the non-adhered line K1 and the constant furnace volume line V In P2 and P3, the same effect as the point P1 can be obtained.
Therefore, it is preferable to determine the furnace port inner diameter R and the furnace height Hi within the range of points P2 to P3 in the non-attached line K1.
In the same manner as described above, a plurality of adjacent points between a plurality of non-adhered lines and a plurality of constant-in-furnace volume lines are obtained in consideration of operating conditions, and an approximate curve for these adjacent points is obtained, as shown in FIG. Thus, the curves L1 and L2 were obtained.

図4に示すように、図3の炉内高さHiを炉体高さHに置き換えて、前記曲線L1,L2をフィッティングすると曲線L3,L4になった。
この曲線の近似式を求めると、曲線L3は2.828ln(R)+7.3948となり、曲線L4は2.828ln(R)+5.252となった。
したがって、炉体高さHが曲線L3及び曲線L4で囲まれる領域(最適な領域)にあるとき、即ち、前記式(1)を満たすようにすれば付着地金の堆積速度(成長速度)を低下させることができる。
As shown in FIG. 4, when the furnace height H in FIG. 3 is replaced with the furnace body height H and the curves L1 and L2 are fitted, curves L3 and L4 are obtained.
When an approximate expression of this curve is obtained, the curve L3 is 2.828ln (R) +7.3948, and the curve L4 is 2.828ln (R) +5.252.
Therefore, when the furnace body height H is in the region (optimal region) surrounded by the curves L3 and L4, that is, if the equation (1) is satisfied, the deposition rate (growth rate) of the attached metal is reduced. Can be made.

さて、炉体高さHと炉体直胴部内径Dとの関係を考えてみると、例えば、炉体高さHに対して炉体直胴部内径Dが大きくなり過ぎると、溶銑を装入した際に溶銑の深さが浅くなると共にその深さに対する溶銑の湯幅が大きくなりすぎるため、操業の際に溶銑の攪拌などが十分に行えない問題がある。
そこで、発明者は、溶銑を装入した際に溶銑の深さを所定以上確保できるようにすると共に、その溶銑の湯幅が所定以上大きくならないようになる炉体高さHと炉体直胴部内径Dとの縦横比率(H/D)を実験により求めた。転炉の操業において、前記縦横比率をH/D≧1.4[式(2)]にすれば、溶銑の攪拌が十分に行えることが分かった。
Now, considering the relationship between the furnace body height H and the furnace body straight body inner diameter D, for example, when the furnace body straight body inner diameter D becomes too large with respect to the furnace body height H, the hot metal was charged. At this time, the hot metal depth becomes shallower and the hot metal width of the hot metal becomes too large, so that there is a problem that the hot metal cannot be sufficiently stirred during operation.
Therefore, the inventor makes it possible to ensure a predetermined depth or more of molten iron when the molten iron is charged, and the furnace body height H and the straight body portion of the furnace body so that the hot metal width of the molten iron does not become larger than a predetermined value. The aspect ratio (H / D) with the inner diameter D was determined by experiment. In the operation of the converter, it was found that if the aspect ratio is H / D ≧ 1.4 [Expression (2)], the molten iron can be sufficiently stirred.

さて、通常、炉体内の溶鋼(溶銑)を炉体から出鋼(出湯)するとき、炉体を出鋼側に傾けて炉体の出鋼口(出湯口)から出鋼する。溶鋼を出鋼する際、スラグが炉口から出ると、溶鋼を受ける溶鋼鍋内のスラグ量が多くなり溶鋼の品質低下を招く、さらに炉口から流出したスラグが溶鋼鍋に入らず溶鋼鍋を搬送する受鋼台車を焼損する恐れがあるため、スラグが炉口から出ないようにする必要がある。
溶鋼を出鋼する際、即ち、炉体を出鋼側に傾けたとき、スラグが炉口から出ないようにする炉内容積Voと炉内保持容積Viとを実験により調べた。これらの関係がVi/Vo≧0.06にすると、出鋼の際に炉口からスラグが出ることはなく、スムーズに出鋼作業を行うことができた。
Now, normally, when the molten steel (hot metal) in the furnace body is discharged from the furnace body (tapping water), the furnace body is tilted toward the outgoing steel side and is discharged from the outlet port (outlet opening) of the furnace body. When slag comes out from the furnace opening when the molten steel is discharged, the amount of slag in the molten steel pan that receives the molten steel increases and the quality of the molten steel deteriorates.In addition, the slag that has flowed out of the furnace opening does not enter the molten steel ladle. It is necessary to prevent the slag from coming out of the furnace port because there is a risk of burning the steel receiving cart.
When the molten steel was discharged, that is, when the furnace body was tilted toward the steel output side, the furnace volume Vo and the furnace holding volume Vi were checked by experiments to prevent slag from coming out of the furnace port. When these relations were set to Vi / Vo ≧ 0.06, slag did not come out from the furnace port at the time of steel output, and the steel output work could be performed smoothly.

なお、式(1)〜式(3)は、吹錬を行う種類に関わらず適用できる。即ち、上記で示した炉体は、脱りん処理のみを行う炉体にも適用できるし,脱炭処理のみを行う炉体にも適用できる。当然の如く、脱りん処理及び脱炭処理の両方を行う炉体にも適用できるし、上底吹きの操業を行う転炉の炉体であればすべてのものに適用可能である。   In addition, Formula (1)-Formula (3) are applicable irrespective of the kind which performs blowing. That is, the furnace body shown above can be applied to a furnace body that performs only dephosphorization processing, and can also be applied to a furnace body that performs only decarburization processing. As a matter of course, the present invention can be applied to a furnace body that performs both dephosphorization and decarburization processes, and can be applied to all converter bodies that perform top-bottom blowing operation.

本発明によれば、付着地金となるスピッティング粒鉄が炉口へ付着しにくくなる。   According to this invention, it becomes difficult for spitting granular iron used as adhesion metal to adhere to a furnace mouth.

以下、本発明の実施の形態を、図面に基づき説明する。
図1は本発明の転炉の炉体の全体側面図を示している。図1に示すように本発明の転炉は、転炉の上側から酸素を吹きつけ且つ、転炉の底部からガスを吹き込むことができる上底吹き転炉であり、転炉の炉体1内に溶銑(溶鋼)やスクラップ等が収容可能となっている。
前記炉体1は有底で筒状に形成された鉄皮2と、この鉄皮2の内部に設けられた複数の耐火物3(耐火レンガ)から構成されている。炉体1の底部4にはガスを吹き込むための底吹き羽口5が設けられ、この底吹羽口5(炉体の底部4)に対向する側に炉口6が形成されている。炉口6に酸素などを吹くための上吹きランス7が挿入可能になっている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an overall side view of a furnace body of a converter according to the present invention. As shown in FIG. 1, the converter of the present invention is an upper-bottom blown converter in which oxygen can be blown from the upper side of the converter and gas can be blown from the bottom of the converter. In addition, hot metal (molten steel), scrap, etc. can be accommodated.
The furnace body 1 is composed of a bottomed and cylindrically formed iron shell 2 and a plurality of refractories 3 (refractory bricks) provided inside the iron shell 2. The bottom 4 of the furnace body 1 is provided with a bottom blowing tuyere 5 for injecting gas, and a furnace mouth 6 is formed on the side facing the bottom blowing tuyere 5 (bottom 4 of the furnace body). An upper blowing lance 7 for blowing oxygen or the like into the furnace port 6 can be inserted.

鉄皮2は、底部10と、この底部10から炉口6側にいくにしたがって徐々に内径及び外径が大きくなる拡大部11と、この拡大部11から連続していて内径及び外径が略一定の直胴部12と、この直胴部12から炉口6側にいくにしたがって徐々に内径及び外径が小さくなる絞り部13とを備えたものとなっている。
前記耐火物3は、鉄皮2の底部10,拡大部11,直胴部12及び絞り部13に沿うように順番に鉄皮2内に貼り付けられ、貼り付けられた耐火物3の内面が鉄皮2の内面に略沿ったものとなっている。鉄皮2の直胴部12に溶銑8(溶鋼)を出湯(出鋼)するための出湯口9(出鋼口)が形成されている。
The iron skin 2 has a bottom portion 10, an enlarged portion 11 whose inner diameter and outer diameter gradually increase from the bottom portion 10 toward the furnace port 6, and a continuous inner diameter and outer diameter from the enlarged portion 11. It has a constant straight body 12 and a throttle part 13 whose inner and outer diameters gradually decrease from the straight body 12 toward the furnace port 6 side.
The refractory 3 is affixed in order in the iron shell 2 along the bottom part 10, the enlarged part 11, the straight body part 12, and the throttle part 13 of the iron skin 2, and the inner surface of the affixed refractory 3 is It is substantially along the inner surface of the iron skin 2. A hot water outlet 9 (outgoing steel outlet) is formed in the straight body portion 12 of the iron skin 2 for hot metal 8 (molten steel).

以上のことから、炉体1には、鉄皮2及び耐火物3によって、外径又は内径が徐々に大きくなる炉拡大部15が形成され、この炉拡大部15に連続して形成され外径又は内径が略一定となる炉直胴部16と、この炉直胴部16から炉口6にいくにしたがって外径又は内径が小さくなる炉絞り部17とがそれぞれ形成されている。そして、前記炉拡大部15、炉直胴部16及び炉絞り部17の内径や炉内高さは、鉄皮2に耐火物3を貼り付ける際に、耐火物3の厚みT1を調整することによって自在に変更することができる。前記厚みT1は、鉄皮2の内面に対向する対向部から径内側までの距離である。   From the above, the furnace body 1 is formed with the furnace shell 15 and the refractory 3 so as to form the furnace expansion portion 15 whose outer diameter or inner diameter gradually increases, and is formed continuously from the furnace expansion portion 15. Alternatively, a furnace straight body portion 16 having a substantially constant inner diameter and a furnace throttle portion 17 having an outer diameter or an inner diameter that decreases from the furnace straight body portion 16 toward the furnace port 6 are formed. And the inner diameter and the furnace height of the said furnace expansion part 15, the furnace straight body part 16, and the furnace constriction part 17 adjust the thickness T1 of the refractory 3 when affixing the refractory 3 to the iron shell 2. Can be changed freely. The thickness T <b> 1 is a distance from the facing portion facing the inner surface of the iron skin 2 to the inside of the diameter.

転炉の炉体1の形状は式(1)〜式(3)を満たすように設定されている。   The shape of the furnace body 1 of the converter is set so as to satisfy the expressions (1) to (3).

Figure 2007046116
Figure 2007046116

式(1)〜式(3)において、炉体高さHは、炉口6から炉体1の底部4に貼り付けた耐火物3の内面14(上面)までの距離である。詳しくは、図1に示すように、炉体高さHは炉体1の左右方向中心位置での高さとする。炉口内径Rは炉絞り部17(鉄皮2の絞り部13)の最端部に設けた耐火物3の内径、詳しくは、左側の最端部耐火物3aの内面から右側の最端部耐火物3bの内面までの距離である。
また、炉体直胴部内径Dは、炉直胴部12に設けた耐火物3の内径、詳しくは、左側の炉直胴部16に位置する耐火物3cの内面から右側の炉直胴部16に位置する耐火物3dの内面までの距離であり、前記炉内保持容積Viは、炉体1を出鋼側(出湯側)へ90°傾けた際に炉体1が溶銑を保持できる容積である。炉内容積Voは炉体内の全容積(耐火物3で取り囲まれた容積)である。
In the formulas (1) to (3), the furnace body height H is the distance from the furnace port 6 to the inner surface 14 (upper surface) of the refractory 3 attached to the bottom 4 of the furnace body 1. Specifically, as shown in FIG. 1, the furnace body height H is the height at the center position in the left-right direction of the furnace body 1. The inner diameter R of the furnace port is the inner diameter of the refractory 3 provided at the outermost end of the furnace restricting portion 17 (the restricting portion 13 of the iron shell 2), more specifically, from the inner surface of the leftmost end refractory 3a to the rightmost end portion. It is the distance to the inner surface of the refractory 3b.
Further, the inner diameter D of the furnace body straight body portion is the inner diameter of the refractory 3 provided in the furnace body body 12, and more specifically, the furnace body body portion on the right side from the inner surface of the refractory 3c located in the furnace body body 16 on the left side. 16 is a distance to the inner surface of the refractory 3d positioned at 16, and the furnace holding volume Vi is a volume that allows the furnace body 1 to hold the molten iron when the furnace body 1 is tilted by 90 ° toward the outgoing steel side (tapping water side). It is. The furnace volume Vo is the total volume in the furnace (the volume surrounded by the refractory 3).

式(2)は実験により求めたもので、実験炉で炉内高さHと炉体直胴部内径Dとを変化させながら複数の脱りん処理を行った結果から求めた。
図5は、実験結果をまとめたもので、炉体高さHを炉体直胴部内径Dで割った縦横比率(H/D)を横軸にとり、縦軸に脱りんの効率を縦軸にとって、これらの実験データをプロットしたものである。なお、脱りん効率は、脱りん開始時のりん濃度を[P]iとし、脱りん終了時のりん濃度を[P]fとし、開始時のりん濃度[P]iから終了時のりん濃度[P]fを引いて、この値を開始時のりん濃度[P]iで割ることにより、脱りんの割合を百分率で示したものである。
Equation (2) was obtained by experiment, and was obtained from the result of performing a plurality of dephosphorization processes while changing the furnace height H and the furnace body straight body inner diameter D in the experimental furnace.
FIG. 5 summarizes the experimental results. The horizontal / horizontal ratio (H / D) obtained by dividing the furnace height H by the inner diameter D of the furnace body is shown on the horizontal axis, and the dephosphorization efficiency is shown on the vertical axis. These are experimental data plotted. The phosphorus removal efficiency is defined as the phosphorus concentration at the start of dephosphorization is [P] i, the phosphorus concentration at the end of dephosphorization is [P] f, and the phosphorus concentration at the start from the phosphorus concentration [P] i at the end. The percentage of dephosphorization is expressed as a percentage by subtracting [P] f and dividing this value by the starting phosphorus concentration [P] i.

図5に示すように、前記縦横比率が1.4以上であるときは殆どの脱りん処理において脱りん効率(脱りん割合)が60%を超えており、脱りん処理における攪拌には問題がなかった。
式(3)は式(2)と同様に実験により求めたもので、実験炉で炉内保持容積Viと炉内容積Voとを変化させながら複数の脱りん処理を行った結果から求めた。
図6は、実験結果をまとめたもので、炉内保持容積Viを炉内容積Voで割った保持率(Vi/Vo)を横軸にとり、出鋼時間を縦軸にとって、これらの実験データをプロットしたものである。
As shown in FIG. 5, when the aspect ratio is 1.4 or more, the dephosphorization efficiency (dephosphorization ratio) exceeds 60% in most dephosphorization processes, and there is a problem with stirring in the dephosphorization process. There wasn't.
Equation (3) was obtained by experiment in the same manner as equation (2), and was obtained from the result of performing a plurality of dephosphorization processes while changing the in-furnace holding volume Vi and the in-furnace volume Vo in the experimental furnace.
FIG. 6 summarizes the experimental results. The horizontal axis represents the retention rate (Vi / Vo) obtained by dividing the in-furnace holding volume Vi by the in-furnace volume Vo, and the vertical axis represents the steel output time. It is a plot.

図6に示すように、前記保持率が0.06未満であると、出鋼(出湯)の際にスラグSが炉口6から流出してその影響で出鋼時間が6分以上かかってしまい問題があった。保持率が0.06以上であるときは、スラグSが炉口6から流出することもなく、出鋼時間は6分以内にすることができた。
なお、上記では、保持率を0.06以上にする、即ち、Vi/Vo≧0.06にすると良いことを出鋼の観点(脱炭処理を行った後に溶鋼を出鋼するという観点)から説明したが、湯面上に脱りん処理の際にも脱炭処理と同じようにスラグSが形成される。
As shown in FIG. 6, when the retention rate is less than 0.06, the slag S flows out from the furnace port 6 during steel output (tapping water), and the output time takes 6 minutes or more. There was a problem. When the retention rate was 0.06 or more, the slag S did not flow out of the furnace port 6 and the steel output time could be made within 6 minutes.
In the above, the retention rate should be 0.06 or more, that is, Vi / Vo ≧ 0.06 from the viewpoint of steelmaking (from the viewpoint of producing molten steel after decarburization treatment). As described above, the slag S is formed on the surface of the hot water in the same manner as the decarburization process during the dephosphorization process.

したがって、脱りん処理を行った後の出湯の際にもスラグSが炉口6からでないようにする必要があるので、Vi/Vo≧0.06の関係は脱炭処理の際に限定されず、脱りん処理を行って溶銑を出湯する際に保持率を0.06以上にするとよい。言い換えれば、Vi/Vo≧0.06にするということは、脱りん処理又は脱炭処理のどちらにでも適用することができる。
図7は、炉体の形状を変えて操業を行った結果をまとめたものである。図7の実施例1,2は式(1)〜式(3)のすべてを満たす形状の炉体1(転炉)を形成して脱りん処理を伴いつつ脱炭処理を行ったもので、比較例1〜7は、少なくとも式(1)〜式(3)の一つを満たさないように脱りん処理を伴いつつ脱炭処理を行った。なお、実施例及び比較例において、転炉へ装入した溶銑の[P]濃度は、0.030〜0.040% と、P規格の上限である0.020%より高いものを使用し、脱りん処理が必要な条件で行った。また、酸素を吹き込むランスは、その孔数が6個、その孔径が42mm、送酸の吐出角度15°、酸素を送り出す送酸素速度は3.0Nm3/分・t、ランスの高さ2.8m(湯面からランス先端までの高さ),底吹きガスの流量(速度)を0.06Nm3/分・tとして、各実験例及び比較例の操業条件を同じにした。
Therefore, since it is necessary to prevent the slag S from coming out of the furnace port 6 even in the hot water after the dephosphorization process, the relationship of Vi / Vo ≧ 0.06 is not limited to the decarburization process. The holding rate is preferably 0.06 or more when dephosphorization is performed and hot metal is discharged. In other words, Vi / Vo ≧ 0.06 can be applied to either dephosphorization or decarburization.
FIG. 7 summarizes the results of operation by changing the shape of the furnace body. Examples 1 and 2 in FIG. 7 are obtained by forming a furnace body 1 (converter) having a shape satisfying all of the expressions (1) to (3) and performing a decarburization process with a dephosphorization process. In Comparative Examples 1 to 7, decarburization was performed with dephosphorization so as not to satisfy at least one of formulas (1) to (3). In the examples and comparative examples, the [P] concentration of the hot metal charged into the converter is 0.030 to 0.040%, which is higher than the upper limit of 0.020% of the P standard, The dephosphorization treatment was performed under the necessary conditions. Further, the lance for blowing oxygen has 6 holes, its hole diameter is 42 mm, the acid delivery angle is 15 °, the oxygen delivery speed for delivering oxygen is 3.0 Nm 3 / min · t, and the lance height is 2. The operating conditions of each experimental example and comparative example were the same, with 8 m (height from the hot water surface to the tip of the lance) and the flow rate (velocity) of the bottom blowing gas set to 0.06 Nm 3 / min · t.

各実施例及び比較例では、溶鋼1ton当たりのダスト発生量(kg/t),地金取り間隔(ch/回),即ち、付着地金の除去を終了してから再度除去作業を開始するまでに操業できる総チャージ数、放熱ロス(Mcal/t),溶鋼1ton当たりの溶製によって耐火物3が溶損する量を示す耐火物原単位(kg/t)、脱りん効率(脱P率),出鋼時間(分/ch)を調べた。
図7に示すように、式(1)を満たす炉体1では地金取り間隔が18〜20ch/回となり、式(1)を満たさない炉体1では地金取り間隔が4〜8ch/回となった。
In each of the examples and comparative examples, the amount of dust generated per ton of molten steel (kg / t), the interval of collecting the metal (ch / time), that is, from the completion of the removal of the adhering metal to the start of the removal operation again The total number of charges that can be operated, heat dissipation loss (Mcal / t), refractory basic unit (kg / t) indicating the amount of refractory 3 eroded by melting per ton of molten steel, dephosphorization efficiency (depletion rate P), Steeling time (min / ch) was examined.
As shown in FIG. 7, in the furnace body 1 satisfying the equation (1), the metal collecting interval is 18 to 20 ch / times, and in the furnace body 1 not satisfying the equation (1), the metal collecting interval is 4 to 8 ch / times. It became.

したがって、式(1)を満たす炉体1の地金取り間隔が式(1)を満たさない炉体1に比べ、地金取り間隔が大幅に大きくなった。即ち、炉体1の形状を式(1)を満たすようにすることで、付着地金の除去を終了してから再度除去作業を開始するまでの総チャージ数を増加させることができた。
式(2)を満たした炉体1では、放熱ロスが7.2〜10Mcal/tとなり、式(2)を満たしていない炉体1での放熱ロスの値が12Mcal/tや14Mcal/tのものに比べ、放熱ロスが小さくなった。また、式(2)を満たした炉体1では、脱りん効率(脱P率)が60%以上であり、式(2)を満たしていない炉体1での脱りん効率が50%前後のものに比べ、脱りん効率が高くなった。さらに、式(2)を満たした炉体1では、耐火物原単位が0.3〜0.5kg/tとなり、式(2)を満たしていない炉体1の耐火物原単位の値が0.6のものに比べ、耐火物原単位が小さくなった。
Therefore, the metal collecting interval of the furnace body 1 satisfying the equation (1) is significantly larger than that of the furnace body 1 not satisfying the equation (1). That is, by making the shape of the furnace body 1 satisfy the formula (1), it was possible to increase the total number of charges from the completion of the removal of the adhered metal to the start of the removal operation again.
In the furnace body 1 satisfying the expression (2), the heat dissipation loss is 7.2 to 10 Mcal / t, and the heat dissipation loss value in the furnace body 1 not satisfying the expression (2) is 12 Mcal / t or 14 Mcal / t. The heat dissipation loss was smaller than the one. Moreover, in the furnace body 1 which satisfy | filled Formula (2), the dephosphorization efficiency (de P rate) is 60% or more, and the dephosphorization efficiency in the furnace body 1 which does not satisfy | fill Formula (2) is around 50%. The dephosphorization efficiency was higher than that. Furthermore, in the furnace body 1 satisfying the formula (2), the refractory unit intensity is 0.3 to 0.5 kg / t, and the refractory unit value of the furnace body 1 not satisfying the expression (2) is 0. The basic unit of refractory is smaller than that of .6.

式(3)を満た炉体1では、出鋼時間が他の炉体1に比べて短く6分以内となった。
以上、式(1)〜式(3)のすべてを満たす炉体1が、付着地金が炉口6に付着し難く、放熱ロスや耐火物3の溶損も少なく、脱りん効率が高いうえに、出鋼時間も短くすることができる。
本発明の炉体1は、上記実施の形態に限定されるものではない。即ち、操業を行うことによって耐火物3の溶損し、その結果、前記炉内高さH、炉口内径R、炉体直胴部内径D、炉内保持容積Vi及び炉内容積Voが変化した場合でも上記式(1)〜(3)を満たすように、鉄皮2内に貼り付ける各耐火物3の厚みT1を調整することにより、本発明の炉体1を形成することができる。即ち、製鋼工場に設置して操業を行っている既存の炉体1に対して適用可能であるし、製鋼工場等に新設する新しい炉体1にも適用可能である。新設する場合には、式(1)〜(3)を満たすように鉄皮2に新しい耐火物3を貼り付けるようにしたり鉄皮2の形状、或いは、厚みT2を設定すればよい。
In the furnace body 1 satisfying the equation (3), the steel output time was shorter than that of the other furnace bodies 1 and was within 6 minutes.
As described above, the furnace body 1 satisfying all of the formulas (1) to (3) is less likely to cause the adhesion metal to adhere to the furnace port 6, has little heat dissipation loss and melting loss of the refractory 3, and has high dephosphorization efficiency. In addition, the time for steel output can be shortened.
The furnace body 1 of the present invention is not limited to the above embodiment. That is, the refractory 3 was melted by operation, and as a result, the furnace height H, furnace port inner diameter R, furnace body barrel inner diameter D, furnace holding volume Vi, and furnace volume Vo were changed. Even in this case, the furnace body 1 of the present invention can be formed by adjusting the thickness T1 of each refractory 3 to be affixed in the iron shell 2 so as to satisfy the above formulas (1) to (3). That is, the present invention can be applied to an existing furnace body 1 installed and operated in a steelmaking factory, and can also be applied to a new furnace body 1 newly installed in a steelmaking factory or the like. In the case of newly installing, a new refractory 3 may be attached to the iron skin 2 so as to satisfy the expressions (1) to (3), or the shape of the iron skin 2 or the thickness T2 may be set.

また、上記の説明では、縦横比率をH/D≧1.4にすれば良いことを脱りん処理の観点から説明したが、縦横比率の関係は炉体に入っている湯の攪拌に着目したものであるので、縦横比率をH/D≧1.4の関係は脱りん処理の際に限定されず、脱炭処理の際にも適用できる。言い換えれば、縦横比率をH/D≧1.4にするということは、脱りん処理又は脱炭処理のどちらにでも適用することができる。   In the above description, it has been explained from the viewpoint of dephosphorization treatment that the aspect ratio should be H / D ≧ 1.4. However, the relation of the aspect ratio paid attention to stirring of hot water contained in the furnace body. Therefore, the relationship of the aspect ratio H / D ≧ 1.4 is not limited to the dephosphorization process, and can be applied to the decarburization process. In other words, setting the aspect ratio to H / D ≧ 1.4 can be applied to either dephosphorization or decarburization.

転炉の炉体の全体側面図である。It is a whole side view of the furnace body of a converter. 炉体を90°傾けたときの全体側面図である。It is a whole side view when a furnace body is inclined 90 degrees. 炉口内径と炉内高さとの関係を示す図である。It is a figure which shows the relationship between a furnace port internal diameter and furnace height. 炉口内径と炉体高さとの関係を示す図である。It is a figure which shows the relationship between a furnace port internal diameter and furnace body height. 縦横比率と脱りん効率とを示す実験図である。It is an experiment figure which shows aspect ratio and dephosphorization efficiency. 保持率と出鋼時間とを示す実験図である。It is an experiment figure which shows a retention rate and a steel output time. 実施例及び比較例をまとめたものである。Examples and comparative examples are summarized. 酸素を吹きつけた際のスピッティング粒鉄の飛翔状態でのモデル図である。It is a model figure in the flight state of spitting granular iron at the time of blowing oxygen.

符号の説明Explanation of symbols

1 炉体
2 鉄皮
3 耐火物(耐火レンガ)
6 炉口
1 Furnace 2 Iron skin 3 Refractory (Refractory brick)
6 Furnace

Claims (1)

上底吹きの操業を行う転炉の炉体が、式(1)〜式(3)を満たす形状であることを特徴とする転炉の炉体。
Figure 2007046116
A furnace body of a converter that has a shape satisfying the expressions (1) to (3).
Figure 2007046116
JP2005232464A 2005-08-10 2005-08-10 Furnace body of converter Pending JP2007046116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005232464A JP2007046116A (en) 2005-08-10 2005-08-10 Furnace body of converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005232464A JP2007046116A (en) 2005-08-10 2005-08-10 Furnace body of converter

Publications (1)

Publication Number Publication Date
JP2007046116A true JP2007046116A (en) 2007-02-22

Family

ID=37849193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005232464A Pending JP2007046116A (en) 2005-08-10 2005-08-10 Furnace body of converter

Country Status (1)

Country Link
JP (1) JP2007046116A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014043617A (en) * 2012-08-27 2014-03-13 Nippon Steel & Sumitomo Metal Converter refining method
CN107299185A (en) * 2017-07-20 2017-10-27 中冶东方工程技术有限公司 A kind of multifunctional stainless steel converter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184616A (en) * 1992-12-21 1994-07-05 Sumitomo Metal Ind Ltd Refining apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184616A (en) * 1992-12-21 1994-07-05 Sumitomo Metal Ind Ltd Refining apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014043617A (en) * 2012-08-27 2014-03-13 Nippon Steel & Sumitomo Metal Converter refining method
CN107299185A (en) * 2017-07-20 2017-10-27 中冶东方工程技术有限公司 A kind of multifunctional stainless steel converter

Similar Documents

Publication Publication Date Title
CN104039987B (en) Steel slag reduction method
MXPA01012291A (en) Method of producing metallic iron and raw material feed device.
KR20010007296A (en) Direct smelting vessel
JP2007002305A (en) Method for smelting molten pig iron using cupola
EP0881304B1 (en) Method of vacuum decarburization/refining of molten steel and apparatus therefor
JP2007046116A (en) Furnace body of converter
JP4761937B2 (en) Blowing method for converter
JP4761938B2 (en) Blowing method for converter
JP4689782B2 (en) Method for coating slag on converter furnace wall and method for managing converter furnace bottom during slag coating
JP4979209B2 (en) How to adjust furnace profile
JP2011179041A (en) Method for removing metal in converter
JP4979514B2 (en) Hot metal dephosphorization method
EP1989336B1 (en) Reactor intended for titanium production
JP2002332513A (en) Method for removing metal on nose of melting vessel furnace
JP6939828B2 (en) Acid feeding refining method for molten iron
JP2000096119A (en) Blow-refining method for restraining sticking of metal in converter type refining furnace
US9732393B2 (en) Blowing spear for fabrication of metals and maintenance of loading and blowing operational conditions
JP3444046B2 (en) Chromium ore powder charging method in smelting reduction furnace
JP2018024911A (en) Method for melting bullion adhered in ladle in molten iron preliminary treatment
JP5929632B2 (en) Converter refining method
JPH11140525A (en) Converter blowing method restraining deposition of metal of furnace opening hole part and side wall in furnace and lance device for converter
JP2000096121A (en) Blow-refining method for restraining sticking of metal in converter type refining furnace
JP2000096122A (en) Operation method for restraining sticking of metal in refining furnace
JP2000096124A (en) Blowing method for restraining sticking of metal in converter type refining furnace
JPH0931511A (en) Smelting reduction method of iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070928

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20100323

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121029