JP2007045984A - Flame retardant resin composition, and prepreg and lamination board using the same - Google Patents

Flame retardant resin composition, and prepreg and lamination board using the same Download PDF

Info

Publication number
JP2007045984A
JP2007045984A JP2005233931A JP2005233931A JP2007045984A JP 2007045984 A JP2007045984 A JP 2007045984A JP 2005233931 A JP2005233931 A JP 2005233931A JP 2005233931 A JP2005233931 A JP 2005233931A JP 2007045984 A JP2007045984 A JP 2007045984A
Authority
JP
Japan
Prior art keywords
resin
resin composition
weight
cyanate ester
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005233931A
Other languages
Japanese (ja)
Other versions
JP4997727B2 (en
Inventor
Masanobu Toki
政伸 十亀
Masayoshi Ueno
雅義 上野
Hironao Fukuoka
弘直 福岡
Yuichi Sugano
菅野  裕一
Masayuki Katagiri
誠之 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2005233931A priority Critical patent/JP4997727B2/en
Priority to CN 200610001192 priority patent/CN1803916B/en
Priority to KR1020060003720A priority patent/KR101181948B1/en
Priority to TW095101338A priority patent/TWI391446B/en
Publication of JP2007045984A publication Critical patent/JP2007045984A/en
Application granted granted Critical
Publication of JP4997727B2 publication Critical patent/JP4997727B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/065Preparatory processes
    • C08G73/0655Preparatory processes from polycyanurates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2463/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a halogen free-based flame retardant resin composition improved in curability, water absorption properties, heat resistance in moisture absorption and insulation reliability in a resin composition from cyanic acid esters for printed wiring board materials. <P>SOLUTION: The resin composition comprises a resin from cyanic acid esters prepared by polycondensing a naphthol aralkyl resin with cyanic acid, a non-halogen-based epoxy resin and an inorganic filler as essential components. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プリント配線板用の難燃性樹脂組成物、プリプレグ、積層板に関する。   The present invention relates to a flame retardant resin composition for printed wiring boards, a prepreg, and a laminated board.

電子機器や通信機、パーソナルコンピューター等に広く用いられているプリント配線板は、高密度配線化や高集積化が進展している。これに伴い、プリント配線板に用いられる金属箔張り積層板には、耐熱性、低吸水性、吸湿耐熱性、絶縁信頼性などの特性に優れる積層板が要求されている。従来、プリント配線板用の積層板としては、エポキシ樹脂をジシアンジアミドで硬化させるFR−4タイプの積層板が広く使用されているが、この手法では高耐熱性化の要求に対応するには限界があった。耐熱性に優れるプリント配線板用樹脂としては、シアン酸エステル樹脂が知られており、ビスフェノールA型シアン酸エステル樹脂と、他の熱硬化性樹脂や熱可塑性樹脂との樹脂組成物をベースにして、近年、半導体プラスチックパッケージ用などの高機能のプリント配線板用材料などに幅広く使用されている。このビスフェノールA型シアン酸エステル樹脂は、電気特性、機械特性、耐薬品性、接着性などに優れた特性を有しているが、吸水性や吸湿耐熱性の面では、過酷な条件下では不十分な場合があり、更なる特性の向上を目指して、他の構造を有するシアン酸エステル樹脂の検討が行われている。   Printed wiring boards widely used in electronic devices, communication devices, personal computers, and the like have been developed to have higher density wiring and higher integration. Along with this, a metal foil-clad laminate used for a printed wiring board is required to have a laminate excellent in characteristics such as heat resistance, low water absorption, moisture absorption heat resistance, and insulation reliability. Conventionally, FR-4 type laminates that harden epoxy resin with dicyandiamide have been widely used as laminates for printed wiring boards, but this method has limitations in meeting the demand for higher heat resistance. there were. As a resin for printed wiring boards having excellent heat resistance, cyanate ester resin is known, and based on a resin composition of bisphenol A type cyanate ester resin and other thermosetting resin or thermoplastic resin. In recent years, it has been widely used for materials for high-performance printed wiring boards such as semiconductor plastic packages. This bisphenol A type cyanate ester resin has excellent electrical properties, mechanical properties, chemical resistance, adhesive properties, etc., but it is not suitable under severe conditions in terms of water absorption and moisture absorption heat resistance. In some cases, cyanate ester resins having other structures have been studied with the aim of further improving the properties.

他の構造のシアン酸エステル樹脂としては、ノボラック型シアン酸エステル樹脂の事例が多く見受けられる(例えば特許文献1参照)が、ノボラック型シアン酸エステル樹脂は、通常の硬化条件では、硬化不足になり易く、得られる硬化物は、吸水率が大きく、吸湿耐熱性が低下するなどの問題があった。ノボラック型シアン酸エステル樹脂の改善手法として、ビスフェノールA型シアン酸エステル樹脂とのプレポリマーが開示されている(例えば特許文献2参照)が、本プレポリマーは、硬化性の点は向上するものの、特性改善の点では未だ不十分であった。またプリント配線板用の樹脂組成物としては、通常難燃性が必要であり、一般的に臭素系難燃剤を併用する処方が用いられている(例えば特許文献3参照)が、昨今の環境問題の高まりに呼応して、ハロゲン系化合物を使用しない樹脂組成物が求められており、低吸水性、吸湿耐熱性に優れ、かつハロゲンフリー系の難燃性シアン酸エステル系樹脂組成物が切望されていた。   As examples of cyanate ester resins having other structures, there are many examples of novolac-type cyanate ester resins (see, for example, Patent Document 1), but novolak-type cyanate ester resins are insufficiently cured under normal curing conditions. The resulting cured product has problems such as high water absorption and reduced moisture absorption heat resistance. As a method for improving the novolak-type cyanate ester resin, a prepolymer with a bisphenol A-type cyanate ester resin is disclosed (for example, see Patent Document 2), but the prepolymer has improved curability, In terms of improving the characteristics, it was still insufficient. In addition, as a resin composition for a printed wiring board, usually flame retardancy is required, and generally a prescription using a brominated flame retardant is used (see, for example, Patent Document 3), but recent environmental problems Accordingly, there is a demand for a resin composition that does not use a halogen compound, and there is a strong demand for a flame retardant cyanate ester resin composition that is excellent in low water absorption, moisture absorption heat resistance, and halogen-free. It was.

特開平11-124433号公報Japanese Patent Laid-Open No. 11-124433 特開2000-191776号公報JP 2000-191776 A 特開平11-021452号公報Japanese Patent Laid-Open No. 11-021452

本発明は、プリント配線板材料用シアン酸エステル樹脂組成物において、硬化性、吸水率、吸湿時の耐熱性や絶縁信頼性を改善したハロゲンフリー系の難燃性樹脂組成物の提供を目的とするものであり、併せてこれを用いたプリプレグ及び積層板を提供するものである。   An object of the present invention is to provide a halogen-free flame-retardant resin composition having improved curability, water absorption, heat resistance during moisture absorption and insulation reliability in a cyanate ester resin composition for printed wiring board materials. The present invention also provides a prepreg and a laminate using the same.

フェノールノボラック型シアン酸エステル樹脂は、シアネート基当量が小さく、その剛直な骨格構造から、硬化時に未反応シアネート基が多く残存し易いことから、金属箔との密着性、吸水率や吸湿耐熱性などの特性において満足できるものではなかった。本発明者らは、特定構造のシアン酸エステル樹脂に非ハロゲン系エポキシ樹脂と無機充填剤を配合することで、シアン酸エステル樹脂の分子構造などによる反応阻害要因を低減させて硬化性を高め、樹脂骨格の剛直な構造により耐熱性を維持するとともに、吸水性や吸湿耐熱性等の特性に優れるハロゲンフリー系の難燃性樹脂組成物が得られることを見出し、本発明を完成するに至った。すなわち、本発明は、一般式(1)で示されるシアン酸エステル樹脂(A)と、非ハロゲン系エポキシ樹脂(B)、無機充填剤(C)を必須成分として含有する樹脂組成物であり、

Figure 2007045984
(式中、Rは水素原子またはメチル基を示し、nは1から50までの整数を示す。また、nが異なる化合物の混合物であってもよい。)
これらの樹脂組成物と基材(D)からなるプリプレグであり、これらプリプレグを硬化して得られる積層板または金属箔張り積層板である。 Phenol novolac type cyanate ester resin has a small cyanate group equivalent, and because of its rigid skeleton structure, many unreacted cyanate groups are likely to remain at the time of curing, so adhesion with metal foil, water absorption rate, moisture absorption heat resistance, etc. The characteristics were not satisfactory. The inventors of the present invention blended a non-halogen epoxy resin and an inorganic filler with a cyanate ester resin having a specific structure, thereby reducing the reaction inhibition factor due to the molecular structure of the cyanate ester resin and improving the curability. The present inventors have found that a halogen-free flame-retardant resin composition having excellent properties such as water absorption and moisture absorption heat resistance can be obtained while maintaining heat resistance due to the rigid structure of the resin skeleton, and the present invention has been completed. . That is, the present invention is a resin composition containing the cyanate ester resin (A) represented by the general formula (1), a non-halogen epoxy resin (B), and an inorganic filler (C) as essential components,
Figure 2007045984
(In the formula, R represents a hydrogen atom or a methyl group, and n represents an integer of 1 to 50. In addition, a mixture of compounds in which n is different may be used.)
It is a prepreg composed of these resin composition and substrate (D), and is a laminate or a metal foil-clad laminate obtained by curing these prepregs.

本発明による樹脂組成物は、硬化性が良好であり、得られるプリプレグを硬化してなる積層板や金属箔張り積層板は、耐熱性、吸水率、吸湿時の耐熱性や絶縁信頼性などが優れ、臭素系難燃剤を使用することなく高い難燃性を有することから、高密度化対応のプリント配線板材料に好適であり、工業的な実用性は極めて高いものである。   The resin composition according to the present invention has good curability, and the laminate or metal foil-clad laminate obtained by curing the obtained prepreg has heat resistance, water absorption, heat resistance during moisture absorption, insulation reliability, etc. Since it is excellent and has high flame retardancy without using a brominated flame retardant, it is suitable for a printed wiring board material corresponding to high density, and industrial practicality is extremely high.

本発明において用いられるシアン酸エステル樹脂(A)は、一般式(1)で示されるシアン酸エステル樹脂及びそのプレポリマーであれば特に限定されない。一般式(1)で示されるシアン酸エステル樹脂(A)は、α-ナフトールあるいはβ-ナフトール等のナフトール類とp-キシレングリコール、α,α’-ジメトキシ-p-キシレン、1,4-ジ(2-ヒドロキシ-2-プロピル)ベンゼン等の縮合剤との反応により得られるナフトールアラルキル樹脂とシアン酸とを縮重合させて得られるものであり、その製法は特に限定されず、シアン酸エステル合成として現存するいかなる方法で製造してもよい。具体的に例示すると、一般式(2)で示されるナフトールアラルキル樹脂とハロゲン化シアンを不活性有機溶媒中で、塩基性化合物存在下反応させることにより得ることができる。また、同様なナフトールアラルキル樹脂と塩基性化合物による塩を、水を含有する溶液中にて形成させ、その後、ハロゲン化シアンと2相系界面反応を行い、合成する方法を採ることもできる。

Figure 2007045984
(式中、Rは水素原子またはメチル基を示し、nは1から50までの整数を示す。また、nが異なる化合物の混合物であってもよい。)
また、シアン酸エステル樹脂(A)としては、特にRが水素であるα−ナフトールアラルキル型のシアン酸エステル樹脂が好ましいが、複数のシアン酸エステル樹脂(A)を、1種もしくは2種以上を適宜混合して使用することも可能である。 The cyanate ester resin (A) used in the present invention is not particularly limited as long as it is a cyanate ester resin represented by the general formula (1) and a prepolymer thereof. The cyanate ester resin (A) represented by the general formula (1) includes naphthols such as α-naphthol and β-naphthol, p-xylene glycol, α, α'-dimethoxy-p-xylene, 1,4-di- It is obtained by condensation polymerization of naphthol aralkyl resin obtained by reaction with a condensing agent such as (2-hydroxy-2-propyl) benzene and cyanic acid, its production method is not particularly limited, and cyanate ester synthesis May be produced by any existing method. Specifically, it can be obtained by reacting a naphthol aralkyl resin represented by the general formula (2) with cyanogen halide in an inert organic solvent in the presence of a basic compound. Further, a similar method may be employed in which a salt of a naphthol aralkyl resin and a basic compound is formed in a solution containing water, and then a two-phase interface reaction with cyanogen halide is performed.
Figure 2007045984
(In the formula, R represents a hydrogen atom or a methyl group, and n represents an integer of 1 to 50. In addition, a mixture of compounds in which n is different may be used.)
In addition, as the cyanate ester resin (A), an α-naphthol aralkyl cyanate ester resin in which R is hydrogen is particularly preferable, but a plurality of cyanate ester resins (A) are used alone or in combination of two or more. It is also possible to mix and use as appropriate.

本発明におけるシアン酸エステル樹脂(A)の配合量は、特に限定されないが、配合量が過小になると、得られる積層板の耐熱性が低下し、多くなりすぎると、溶剤溶解性や硬化性などが低下するため、シアン酸エステル樹脂(A)と非ハロゲン系エポキシ樹脂(B)の合計配合量の10〜90重量%の範囲が好ましく、30〜70重量%の範囲が特に好適である。   The blending amount of the cyanate ester resin (A) in the present invention is not particularly limited, but if the blending amount is too small, the heat resistance of the resulting laminate is reduced, and if it is too large, solvent solubility, curability, etc. Therefore, the range of 10 to 90% by weight of the total blending amount of the cyanate ester resin (A) and the non-halogen epoxy resin (B) is preferable, and the range of 30 to 70% by weight is particularly preferable.

本発明において使用される非ハロゲン系エポキシ樹脂(B)とは、1分子中に2個以上のエポキシ基を有する非ハロゲン系化合物であれば特に限定されるものではない。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、3官能フェノール型エポキシ樹脂、4官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、脂環式エポキシ樹脂、ポリオール型エポキシ樹脂、リン含有エポキシ樹脂、グリシジルアミン、グリシジルエステル、ブタジエンなどの2重結合をエポキシ化した化合物、水酸基含有シリコン樹脂類とエピクロルヒドリンとの反応により得られる化合物等が挙げられる。好適なものとして、フェノールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、リン含有エポキシ樹脂が挙げられる。これらの非ハロゲン系エポキシ樹脂(B)は、1種もしくは2種以上を適宜混合して使用することも可能である。非ハロゲン系エポキシ樹脂(B)の配合量は、特に限定されないが、シアン酸エステル樹脂(A)と非ハロゲン系エポキシ樹脂(B)の合計配合量の10〜90重量%の範囲が好ましく、30〜70重量%の範囲が特に好適である。   The non-halogen epoxy resin (B) used in the present invention is not particularly limited as long as it is a non-halogen compound having two or more epoxy groups in one molecule. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol A novolac type epoxy resin, trifunctional phenol type epoxy resin, tetrafunctional phenol type epoxy resin, naphthalene type epoxy Resin, biphenyl type epoxy resin, phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, alicyclic epoxy resin, polyol type epoxy resin, phosphorus-containing epoxy resin, glycidylamine, glycidyl ester, butadiene, etc. Examples include a compound obtained by epoxidizing a double bond, a compound obtained by a reaction between a hydroxyl group-containing silicon resin and epichlorohydrin. Preferable examples include phenol novolac type epoxy resins, biphenyl type epoxy resins, phenol aralkyl type epoxy resins, biphenyl aralkyl type epoxy resins, naphthol aralkyl type epoxy resins, and phosphorus-containing epoxy resins. These non-halogen epoxy resins (B) can be used alone or in combination of two or more. The blending amount of the non-halogen epoxy resin (B) is not particularly limited, but is preferably in the range of 10 to 90% by weight of the total blending amount of the cyanate ester resin (A) and the non-halogen epoxy resin (B), 30 A range of ˜70% by weight is particularly suitable.

本発明の樹脂組成物には、必要に応じ、硬化速度を適宜調節するために硬化促進剤を併用することも可能である。これらは、シアン酸エステル樹脂(A)や非ハロゲン系エポキシ樹脂(B)の硬化促進剤として一般に使用されるものであれば、特に限定されるものではない。これらの具体例としては、銅、亜鉛、コバルト、ニッケル等の有機金属塩類、イミダゾール類及びその誘導体、第3級アミン等が挙げられる。   If necessary, the resin composition of the present invention can be used in combination with a curing accelerator in order to adjust the curing rate as appropriate. These are not particularly limited as long as they are generally used as a curing accelerator for the cyanate ester resin (A) and the non-halogen epoxy resin (B). Specific examples thereof include organic metal salts such as copper, zinc, cobalt and nickel, imidazoles and derivatives thereof, and tertiary amines.

本発明において使用される無機充填剤(C)は、一般に使用されるものであれば、特に限定されるものではないが、その具体例としては、天然シリカ、溶融シリカ、アモルファスシリカ、中空シリカ等のシリカ類、水酸化アルミニウム、水酸化アルミニウム加熱処理品(水酸化アルミニウムを加熱処理し、結晶水の一部を減じたもの)、ベーマイト、水酸化マグネシウム等の金属水和物、酸化モリブデン、モリブデン酸亜鉛等のモリブデン化合物、ホウ酸亜鉛、錫酸亜鉛、アルミナ、クレー、カオリン、タルク、焼成クレー、焼成カオリン、焼成タルク、マイカ、ガラス短繊維(EガラスやDガラスなどのガラス微粉末類)、中空ガラスなどが挙げられる。無機充填剤(C)の平均粒子径としては、0.1〜10μm、好ましくは0.2〜5μmであり、粒度分布や平均粒子径を変化させたものを適宜組み合わせて使用することも出来る。無機充填剤(C)の配合割合は、特に限定されないが、シアン酸エステル樹脂(A)と非ハロゲン系エポキシ樹脂(B)との合計配合量100重量部に対し、10〜300重量部が好ましく、特に30〜200重量部が好適である。   The inorganic filler (C) used in the present invention is not particularly limited as long as it is generally used. Specific examples thereof include natural silica, fused silica, amorphous silica, hollow silica, and the like. Silica, aluminum hydroxide, aluminum hydroxide heat-treated product (aluminum hydroxide is heat-treated and part of the water of crystallization is reduced), boehmite, magnesium hydroxide and other metal hydrates, molybdenum oxide, molybdenum Molybdenum compounds such as zinc oxide, zinc borate, zinc stannate, alumina, clay, kaolin, talc, calcined clay, calcined kaolin, calcined talc, mica, short glass fibers (glass fine powders such as E glass and D glass) And hollow glass. The average particle size of the inorganic filler (C) is 0.1 to 10 μm, preferably 0.2 to 5 μm, and those having a changed particle size distribution or average particle size can be used in appropriate combination. The blending ratio of the inorganic filler (C) is not particularly limited, but is preferably 10 to 300 parts by weight with respect to 100 parts by weight of the total blended amount of the cyanate ester resin (A) and the non-halogen epoxy resin (B). Particularly preferred is 30 to 200 parts by weight.

本発明において使用される無機充填材(C)に関して、シランカップリング剤や湿潤分散剤を併用することも可能である。これらのシランカップリング剤としては、一般に無機物の表面処理に使用されているシランカップリング剤であれば、特に限定されるものではない。具体例としては、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシランなどのアミノシラン系、γ-グリシドキシプロピルトリメトキシシランなどのエポキシシラン系、γ-メタアクリロキシプロピルトリメトキシシランなどのビニルシラン系、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン塩酸塩などのカチオニックシラン系、フェニルシラン系などが挙げられ、1種もしくは2種以上を適宜組み合わせて使用することも可能である。また湿潤分散剤とは、塗料用に使用されている分散安定剤であれば、特に限定されるものではない。例えばビッグケミー・ジャパン製のDisperbyk-110、111、996、W 903等の酸基を有する共重合体ベースの湿潤分散剤などが挙げられる。   With respect to the inorganic filler (C) used in the present invention, a silane coupling agent or a wetting and dispersing agent can be used in combination. These silane coupling agents are not particularly limited as long as they are silane coupling agents generally used for inorganic surface treatment. Specific examples include aminosilanes such as γ-aminopropyltriethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, epoxysilanes such as γ-glycidoxypropyltrimethoxysilane, γ Vinyl silanes such as -methacryloxypropyltrimethoxysilane, cationic silanes such as N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane hydrochloride, phenylsilanes, etc. It is also possible to use one kind or a combination of two or more kinds as appropriate. The wetting dispersant is not particularly limited as long as it is a dispersion stabilizer used for coatings. For example, a copolymer-based wetting and dispersing agent having acid groups such as Disperbyk-110, 111, 996, W 903 and the like manufactured by Big Chemie Japan.

本発明の樹脂組成物には、ビスマレイミド化合物を併用することも可能である。これらは1分子中に2個以上のマレイミド基を有する化合物であれば、特に限定されるものではない。その具体例としては、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3,5-ジメチル-4-マレイミドフェニル)メタン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ビス(3,5-ジエチル-4-マレイミドフェニル)メタン、これらビスマレイミド化合物のプレポリマー、もしくはビスマレイミド化合物とアミン化合物のプレポリマーなどが挙げられ、1種もしくは2種以上を適宜混合して使用することも可能である。より好適なものとしては、ビス(4-マレイミドフェニル)メタン、2,2-ビス{4-(4-マレイミドフェノキシ)-フェニル}プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタンが挙げられる。   A bismaleimide compound can be used in combination with the resin composition of the present invention. These are not particularly limited as long as they are compounds having two or more maleimide groups in one molecule. Specific examples thereof include bis (4-maleimidophenyl) methane, 2,2-bis {4- (4-maleimidophenoxy) -phenyl} propane, bis (3,5-dimethyl-4-maleimidophenyl) methane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane, bis (3,5-diethyl-4-maleimidophenyl) methane, prepolymers of these bismaleimide compounds, or prepolymers of bismaleimide compounds and amine compounds, etc. It is also possible to use one kind or a mixture of two or more kinds as appropriate. More preferred are bis (4-maleimidophenyl) methane, 2,2-bis {4- (4-maleimidophenoxy) -phenyl} propane, bis (3-ethyl-5-methyl-4-maleimidophenyl) Methane is mentioned.

本発明の樹脂組成物には、所期の特性が損なわれない範囲において、他の熱硬化性樹脂、熱可塑性樹脂及びそのオリゴマー、エラストマー類などの種々の高分子化合物、他の難燃性の化合物、添加剤などの併用も可能である。これらは一般に使用されているものであれば、特に限定されるものではない。例えば、難燃性の化合物では、リン酸エステル、リン酸メラミンなどのリン化合物、メラミンやベンゾグアナミンなどの窒素含有化合物、オキサジン環含有化合物、シリコン系化合物などが挙げられる。添加剤としては、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤、光増感剤、染料、顔料、増粘剤、滑剤、消泡剤、分散剤、レベリング剤、光沢剤、重合禁止剤等、所望に応じて適宜組み合わせて使用することも可能である。   The resin composition of the present invention includes other thermosetting resins, thermoplastic resins and oligomers thereof, various polymer compounds such as elastomers, and other flame retardants, as long as the desired properties are not impaired. A combination of a compound and an additive is also possible. These are not particularly limited as long as they are generally used. Examples of the flame retardant compound include phosphorous compounds such as phosphate esters and melamine phosphate, nitrogen-containing compounds such as melamine and benzoguanamine, oxazine ring-containing compounds, and silicon compounds. Additives include UV absorbers, antioxidants, photopolymerization initiators, optical brighteners, photosensitizers, dyes, pigments, thickeners, lubricants, antifoaming agents, dispersants, leveling agents, brighteners In addition, a polymerization inhibitor or the like can be used in appropriate combination as desired.

本発明の樹脂組成物には、必要に応じて、有機溶剤を使用することが可能である。この有機溶剤としては、シアン酸エステル樹脂(A)と非ハロゲン系エポキシ樹脂(B)との混合物と相溶するものであれば、特に限定されるものではない。具体例としては、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類、ベンゼン、トルエン、キシレンなどの芳香族炭化水素類、ジメチルホルムアミドやジメチルアセトアミドなどのアミド類等が挙げられる。   In the resin composition of the present invention, an organic solvent can be used as necessary. The organic solvent is not particularly limited as long as it is compatible with the mixture of the cyanate ester resin (A) and the non-halogen epoxy resin (B). Specific examples include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, aromatic hydrocarbons such as benzene, toluene and xylene, amides such as dimethylformamide and dimethylacetamide, and the like.

本発明において使用される基材(D)には、各種プリント配線板材料に用いられている公知のものを使用することが出来る。例えば、Eガラス、Dガラス、Sガラス、NEガラス、クォーツ等の無機繊維、ポリイミド、ポリアミド、ポリエステルなどの有機繊維が挙げられ、目的とする用途や性能により適宜選択し、単独もしくは2種類以上を組み合わせて使用することも可能である。形状としては織布、不織布、ロービング、チョップドストランドマット、サーフェシングマットなどが挙げられる。厚みについては、特に制限はされないが、通常は0.01〜0.3mm程度を使用する。また、シランカップリング剤などで表面処理したものや、織布において物理的に開繊処理を行ったものは、吸湿耐熱性の面から好適に使用できる。また基材(D)としてポリイミド、ポリアミド、ポリエステルなどのフィルムも使用可能であり、フィルムの厚みは、特に制限されないが、0.002〜0.05mm程度が好ましく、プラズマ処理などで表面処理したものがより好ましい。   As the base material (D) used in the present invention, known materials used for various printed wiring board materials can be used. For example, inorganic fibers such as E glass, D glass, S glass, NE glass, and quartz, and organic fibers such as polyimide, polyamide, and polyester can be used. It is also possible to use in combination. Examples of the shape include woven fabric, non-woven fabric, roving, chopped strand mat, and surfacing mat. The thickness is not particularly limited, but usually about 0.01 to 0.3 mm is used. Moreover, what surface-treated with the silane coupling agent etc., and what carried out the fiber opening process physically in the woven fabric can use it suitably from the surface of moisture absorption heat resistance. In addition, a film of polyimide, polyamide, polyester, or the like can be used as the base material (D), and the thickness of the film is not particularly limited, but is preferably about 0.002 to 0.05 mm, and more preferably surface-treated by plasma treatment or the like. .

本発明のプリプレグの製造方法は、シアン酸エステル樹脂(A)と非ハロゲン系エポキシ樹脂(B)と無機充填剤(C)とを必須成分として含有する樹脂組成物と基材(D)とを組み合わせてプリプレグを製造する方法であれば、特に限定されない。例えば、上記樹脂組成物を基材(D)に含浸または塗布させた後、100〜200℃の乾燥機中で、1〜60分加熱させる方法などにより半硬化させ、プリプレグを製造する方法などが挙げられる。基材(D)に対する樹脂組成物の付着量は、プリプレグの樹脂量(無機充填剤を含む)で20〜95重量%の範囲が好ましい。   The method for producing a prepreg of the present invention comprises a resin composition containing a cyanate ester resin (A), a non-halogen epoxy resin (B), and an inorganic filler (C) as essential components, and a substrate (D). If it is the method of manufacturing a prepreg in combination, it will not specifically limit. For example, after impregnating or applying the resin composition to the base material (D), it is semi-cured by a method of heating in a dryer at 100 to 200 ° C. for 1 to 60 minutes, etc. to produce a prepreg, etc. Can be mentioned. The adhesion amount of the resin composition to the substrate (D) is preferably in the range of 20 to 95% by weight in terms of the resin amount of the prepreg (including the inorganic filler).

本発明の積層板は、上述のプリプレグを用いて積層成形したものである。具体的には前述のプリプレグを1枚あるいは複数枚以上を重ね、所望によりその片面もしくは両面に、銅やアルミニウムなどの金属箔を配置した構成で、積層成形することにより製造する。使用する金属箔は、プリント配線板材料に用いられるものであれば、特に限定されない。成形条件としては、通常のプリント配線板用積層板および多層板の手法が適用できる。例えば、多段プレス、多段真空プレス、連続成形、オートクレーブ成形機などを使用し、温度は100〜300℃、圧力は2〜100kgf/cm2、加熱時間は0.05〜5時間の範囲が一般的である。また、本発明のプリプレグと、別途作成した内層用の配線板を組み合わせ、積層成形することにより、多層板とすることも可能である。以下に合成例、実施例、比較例を示し、本発明を詳細に説明する。 The laminated board of the present invention is formed by lamination using the above prepreg. Specifically, it is manufactured by laminating one or a plurality of the above-described prepregs and laminating with a structure in which a metal foil such as copper or aluminum is arranged on one or both sides as desired. The metal foil to be used is not particularly limited as long as it is used for a printed wiring board material. As a molding condition, a general laminated board for a printed wiring board and a multilayer board can be applied. For example, using a multi-stage press, multi-stage vacuum press, continuous molding, autoclave molding machine, etc., the temperature is generally 100 to 300 ° C., the pressure is 2 to 100 kgf / cm 2 , and the heating time is generally in the range of 0.05 to 5 hours. . Moreover, it is also possible to make a multilayer board by combining the prepreg of the present invention and a separately prepared wiring board for the inner layer, and performing lamination molding. Synthesis examples, examples, and comparative examples are shown below to describe the present invention in detail.

(合成例1)α−ナフトールアラルキル型シアン酸エステル樹脂の合成

Figure 2007045984
(式中、nは1〜5の混合物)
式(3)で表されるα−ナフトールアラルキル樹脂(SN485、OH基当量:219g/eq.、新日鐵化学製) 0.47モル(OH基換算)をクロロホルム 500mlに溶解後、トリエチルアミン 0.7モルを添加混合し、これに 0.93モルの塩化シアンのクロロホルム溶液 300gを、-10℃で1.5時間かけて滴下し、30分撹拌した後、更に 0.1モルのトリエチルアミンとクロロホルム 30gの混合溶液を滴下し、30分撹拌して反応を完結させた。生成するトリエチルアミンの塩酸塩を濾別した後、得られた濾液を 0.1N塩酸 500mlで洗浄した後、水 500mlでの洗浄を4回繰り返した。これに硫酸ナトリウムによる乾燥後、75℃でエバポレートし、更に90℃で減圧脱気することにより、褐色固形の式(4)で表されるα−ナフトールアラルキル型のシアン酸エステル樹脂(赤外吸収スペクトルにおいて、2264cm-1付近にシアネート基の吸収を確認)を得た。
Figure 2007045984
(式中、nは1〜5の混合物) Synthesis Example 1 Synthesis of α-naphthol aralkyl-type cyanate ester resin
Figure 2007045984
(Where n is a mixture of 1 to 5)
Α-naphthol aralkyl resin represented by formula (3) (SN485, OH group equivalent: 219 g / eq., Manufactured by Nippon Steel Chemical Co., Ltd.) 0.47 mol (converted to OH group) is dissolved in 500 ml of chloroform, and 0.7 mol of triethylamine is added. Then, 300 g of a 0.93 mol solution of cyanogen chloride in chloroform was added dropwise at −10 ° C. over 1.5 hours, stirred for 30 minutes, and then a mixed solution of 0.1 mol of triethylamine and 30 g of chloroform was added dropwise for 30 minutes. Stir to complete the reaction. The resulting triethylamine hydrochloride was filtered off, and the obtained filtrate was washed with 500 ml of 0.1N hydrochloric acid, and then washed with 500 ml of water four times. This was dried with sodium sulfate, evaporated at 75 ° C., and further degassed at 90 ° C. under reduced pressure to give an α-naphthol aralkyl type cyanate ester resin represented by the formula (4) as a brown solid (infrared absorption) In the spectrum, absorption of a cyanate group was confirmed in the vicinity of 2264 cm −1).
Figure 2007045984
(Where n is a mixture of 1 to 5)

(実施例1)
合成例1で得たα−ナフトールアラルキル型シアン酸エステル樹脂 70重量部とフェノールノボラック型エポキシ樹脂(EPICLON N-770、大日本インキ化学工業製) 30重量部、シランカップリング剤(シランA187、日本ユニカ製) 1重量部、湿潤分散剤(BYK-W903、ビッグケミージャパン製) 1重量部をメチルエチルケトンで溶解混合し、更に水酸化アルミニウム(CL-303、住友化学製) 100重量部、オクチル酸亜鉛 0.04重量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ 0.1mmのEガラスクロスに含浸塗工し、160℃で 4分間加熱乾燥して、樹脂含有量48重量%のプリプレグを得た。次に、このプリプレグを 4枚重ね、18μmの電解銅箔を上下に配置し、圧力 30 kgf/cm2、温度 220℃で120分間プレスを行い、厚さ 0.4mmの銅張り積層板を得た。得られた銅張り積層板の物性測定結果を表1に示す。
Example 1
70 parts by weight of α-naphthol aralkyl type cyanate ester resin obtained in Synthesis Example 1 and 30 parts by weight of phenol novolac type epoxy resin (EPICLON N-770, manufactured by Dainippon Ink and Chemicals), silane coupling agent (silane A187, Japan) Unica) 1 part by weight, wetting and dispersing agent (BYK-W903, manufactured by Big Chemie Japan) 1 part by weight is dissolved and mixed with methyl ethyl ketone, and aluminum hydroxide (CL-303, manufactured by Sumitomo Chemical) 100 parts by weight, zinc octylate 0.04 part by weight was mixed to obtain a varnish. This varnish was diluted with methyl ethyl ketone, impregnated onto 0.1 mm thick E glass cloth, and dried by heating at 160 ° C. for 4 minutes to obtain a prepreg having a resin content of 48% by weight. Next, 4 sheets of this prepreg were stacked, 18μm electrolytic copper foil was placed one above the other, and pressed at a pressure of 30 kgf / cm 2 and a temperature of 220 ° C. for 120 minutes to obtain a 0.4 mm thick copper-clad laminate. . The physical property measurement results of the obtained copper-clad laminate are shown in Table 1.

(実施例2)
合成例1で得たα−ナフトールアラルキル型シアン酸エステル樹脂 50重量部とビフェニルアラルキル型エポキシ樹脂(NC-3000-H,日本化薬製) 50重量部、シランカップリング剤(シランA187) 1重量部、湿潤分散剤(BYK-W903) 1重量部をメチルエチルケトンで溶解混合し、更に水酸化アルミニウム加熱処理品(BS40、ベーマイト転化率:40%、河合石灰工業製) 30重量部、ベーマイト(BS100、河合石灰工業製)20重量部、モリブデン酸亜鉛をタルクにコートしたもの(ケムガード911C、モリブデン酸亜鉛担持:10重量%、シャーウィン・ウイリアムズ製)3重量部、オクチル酸亜鉛 0.01重量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ 0.1mmのEガラスクロスに含浸塗工し、160℃で 3分間加熱乾燥して、樹脂含有量47重量%のプリプレグを得た。これを実施例1と同様にして、厚さ 0.4mmの銅張り積層板を得た。得られた銅張り積層板の物性測定結果を表1に示す。
(Example 2)
50 parts by weight of α-naphthol aralkyl type cyanate ester resin obtained in Synthesis Example 1 and 50 parts by weight of biphenyl aralkyl type epoxy resin (NC-3000-H, manufactured by Nippon Kayaku), 1 part of silane coupling agent (silane A187) Parts, 1 part by weight of a wetting and dispersing agent (BYK-W903) dissolved and mixed with methyl ethyl ketone, and further 30 parts by weight of aluminum hydroxide heat-treated product (BS40, boehmite conversion: 40%, manufactured by Kawai Lime Industry), boehmite (BS100, (Made by Kawai Lime Industry) 20 parts by weight, zinc molybdate coated talc (chemguard 911C, zinc molybdate supported: 10% by weight, Sherwin Williams) 3 parts by weight, 0.01 parts by weight zinc octylate And got a varnish. This varnish was diluted with methyl ethyl ketone, impregnated on 0.1 mm thick E glass cloth, and dried by heating at 160 ° C. for 3 minutes to obtain a prepreg having a resin content of 47% by weight. In the same manner as in Example 1, a 0.4 mm thick copper-clad laminate was obtained. The physical property measurement results of the obtained copper-clad laminate are shown in Table 1.

(実施例3)
合成例1で得たα−ナフトールアラルキル型シアン酸エステル樹脂40重量部とリン含有エポキシ樹脂(FX-305、東都化成製) 50重量部、フェノールアラルキル型エポキシ樹脂(E-XLC-LL、三井化学製)10重量部、シランカップリング剤(シランA187) 1重量部をメチルエチルケトンで溶解混合し、更に焼成タルク(BST-200L、日本タルク製) 50重量部、オクチル酸亜鉛 0.04重量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ 0.1mmのEガラスクロスに含浸塗工し、160℃で 3分間加熱乾燥して、樹脂含有量47重量%のプリプレグを得た。これを実施例1と同様にして、厚さ 0.4mmの銅張り積層板を得た。得られた銅張り積層板の物性測定結果を表1に示す。
(Example 3)
40 parts by weight of α-naphthol aralkyl cyanate ester resin obtained in Synthesis Example 1 and 50 parts by weight of a phosphorus-containing epoxy resin (FX-305, manufactured by Tohto Kasei), phenol aralkyl type epoxy resin (E-XLC-LL, Mitsui Chemicals) 10 parts by weight, 1 part by weight of silane coupling agent (silane A187) is dissolved and mixed with methyl ethyl ketone, and 50 parts by weight of calcined talc (BST-200L, Nippon Talc) and 0.04 parts by weight of zinc octylate are mixed. A varnish was obtained. This varnish was diluted with methyl ethyl ketone, impregnated on 0.1 mm thick E glass cloth, and dried by heating at 160 ° C. for 3 minutes to obtain a prepreg having a resin content of 47% by weight. In the same manner as in Example 1, a 0.4 mm thick copper-clad laminate was obtained. The physical property measurement results of the obtained copper-clad laminate are shown in Table 1.

(実施例4)
合成例1で得たα−ナフトールアラルキル型シアン酸エステル樹脂50重量部とビフェニルアラルキル型エポキシ樹脂(NC-3000-H) 50重量部、シランカップリング剤(シランA187)1重量部をメチルエチルケトンで溶解混合し、更に球状合成シリカ(SC-2050、アドマテックス製)150重量部、オクチル酸亜鉛 0.04重量部を混合してワニスを得た。このワニスをメチルエチルケトンで希釈し、厚さ 0.1mmのEガラスクロスに含浸塗工し、160℃で 5分間加熱乾燥して、樹脂含有量47重量%のプリプレグを得た。これを実施例1と同様にして、厚さ 0.4mmの銅張り積層板を得た。得られた銅張り積層板の物性測定結果を表1に示す。
Example 4
Dissolve 50 parts by weight of α-naphthol aralkyl type cyanate ester resin obtained in Synthesis Example 1, 50 parts by weight of biphenyl aralkyl type epoxy resin (NC-3000-H) and 1 part by weight of silane coupling agent (silane A187) with methyl ethyl ketone. Further, 150 parts by weight of spherical synthetic silica (SC-2050, manufactured by Admatex) and 0.04 part by weight of zinc octylate were mixed to obtain a varnish. This varnish was diluted with methyl ethyl ketone, impregnated with 0.1 mm thick E glass cloth, and dried by heating at 160 ° C. for 5 minutes to obtain a prepreg having a resin content of 47% by weight. In the same manner as in Example 1, a 0.4 mm thick copper-clad laminate was obtained. The physical property measurement results of the obtained copper-clad laminate are shown in Table 1.

(比較例1)
実施例2において、ナフトールアラルキル型シアン酸エステル樹脂 50重量部の代わりに、2,2-ビス(4-シアネートフェニル)プロパンのプレポリマー(BT2070、三菱ガス化学製)50重量部を使用する以外は実施例2と同様にして行い、厚さ0.4mmの銅張り積層板を得た。得られた銅張り積層板の物性測定結果を表1に示す。
(Comparative Example 1)
In Example 2, instead of 50 parts by weight of naphthol aralkyl-type cyanate ester resin, 50 parts by weight of 2,2-bis (4-cyanatephenyl) propane prepolymer (BT2070, manufactured by Mitsubishi Gas Chemical) was used. The same procedure as in Example 2 was performed to obtain a copper-clad laminate having a thickness of 0.4 mm. The physical property measurement results of the obtained copper-clad laminate are shown in Table 1.

(比較例2)
実施例2において、ナフトールアラルキル型シアン酸エステル樹脂 50重量部の代わりに、フェノールノボラック型シアン酸エステル樹脂(PrimasetPT-30,ロンザ製) 50重量部を使用する以外は実施例2と同様にして行い、厚さ0.4mmの銅張り積層板を得た。得られた銅張り積層板の物性測定結果を表1に示す。
(Comparative Example 2)
In Example 2, instead of 50 parts by weight of naphthol aralkyl type cyanate ester resin, the same procedure as in Example 2 was carried out except that 50 parts by weight of phenol novolac type cyanate ester resin (PrimasetPT-30, Lonza) was used. A copper-clad laminate having a thickness of 0.4 mm was obtained. The physical property measurement results of the obtained copper-clad laminate are shown in Table 1.

Figure 2007045984
Figure 2007045984

(測定方法)
1)銅箔ピール強度:JIS C6481に準拠して測定。(単位:kgf/cm)
2)絶縁抵抗:JIS C6481に準拠して、プレシッヤークッカー試験機(平山製作所製、PC-3型)で121℃、2気圧で500時間処理後の絶縁抵抗を測定。
3) 吸水率:JIS C6481に準拠して、プレシッヤークッカー試験機(PC-3型)で121℃、2気圧で5時間処理後の吸水率を測定。
4)吸湿耐熱性:50mm×50mmのサンプルの片面の半分以外の全銅箔をエッチング除去した試験片を、プレシッヤークッカー試験機(PC-3型)で121℃、2気圧で3時間処理後、260℃のハンダ中に30秒浸漬した後の外観変化を目視で観察。(フクレ発生数/試験数)
5)耐燃性:UL 94垂直試験法に準拠して測定。
(Measuring method)
1) Copper foil peel strength: Measured according to JIS C6481. (Unit: kgf / cm)
2) Insulation resistance: In accordance with JIS C6481, the insulation resistance after treatment for 500 hours at 121 ° C and 2 atm with a prescher cooker tester (Hirayama Seisakusho, PC-3 type) was measured.
3) Water absorption: In accordance with JIS C6481, the water absorption after treatment at 121 ° C and 2 atm for 5 hours was measured with a prescher cooker (PC-3 type).
4) Moisture absorption and heat resistance: Test piece from which all copper foil except half of one side of sample of 50mm x 50mm was removed by etching was treated with pressurer cooker (PC-3 type) at 121 ° C and 2 atm for 3 hours. Later, the appearance change after 30 seconds immersion in 260 ° C solder was visually observed. (Number of swelling / number of tests)
5) Flame resistance: Measured according to UL 94 vertical test method.

Claims (3)

一般式(1)で示されるシアン酸エステル樹脂(A)と、非ハロゲン系エポキシ樹脂(B)、無機充填剤(C)を必須成分として含有する樹脂組成物。
Figure 2007045984
(式中、Rは水素原子またはメチル基を示し、nは1から50までの整数を示す。また、nが異なる化合物の混合物であってもよい。)
A resin composition comprising, as essential components, a cyanate ester resin (A) represented by general formula (1), a non-halogen epoxy resin (B), and an inorganic filler (C).
Figure 2007045984
(In the formula, R represents a hydrogen atom or a methyl group, and n represents an integer of 1 to 50. In addition, a mixture of compounds in which n is different may be used.)
請求項1に記載の樹脂組成物と基材(D)からなるプリプレグ。 A prepreg comprising the resin composition according to claim 1 and a substrate (D). 請求項2に記載のプリプレグを硬化して得られる積層板または金属箔張り積層板。 A laminate or a metal foil-clad laminate obtained by curing the prepreg according to claim 2.
JP2005233931A 2005-01-13 2005-08-12 Flame retardant resin composition, and prepreg and laminate using the same Active JP4997727B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005233931A JP4997727B2 (en) 2005-08-12 2005-08-12 Flame retardant resin composition, and prepreg and laminate using the same
CN 200610001192 CN1803916B (en) 2005-01-13 2006-01-13 Resin composite and prepreg and laminate materials used thereof
KR1020060003720A KR101181948B1 (en) 2005-01-13 2006-01-13 Resin composition, and prepreg and laminate using the same
TW095101338A TWI391446B (en) 2005-01-13 2006-01-13 Resin composition, and prepreg and laminate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005233931A JP4997727B2 (en) 2005-08-12 2005-08-12 Flame retardant resin composition, and prepreg and laminate using the same

Publications (2)

Publication Number Publication Date
JP2007045984A true JP2007045984A (en) 2007-02-22
JP4997727B2 JP4997727B2 (en) 2012-08-08

Family

ID=37849082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005233931A Active JP4997727B2 (en) 2005-01-13 2005-08-12 Flame retardant resin composition, and prepreg and laminate using the same

Country Status (1)

Country Link
JP (1) JP4997727B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090017316A1 (en) * 2007-07-12 2009-01-15 Mitsubishi Gas Chemical Company, Inc. Prepreg and laminate
JP2009206326A (en) * 2008-02-28 2009-09-10 Sumitomo Bakelite Co Ltd Multi-layer printed wiring board and semiconductor device
US7601429B2 (en) * 2007-02-07 2009-10-13 Mitsubishi Gas Chemical Company, Inc. Prepreg and laminate
JP2010065092A (en) * 2008-09-09 2010-03-25 Mitsubishi Gas Chemical Co Inc Resin composition and prepreg and laminate using the same
JP2010174242A (en) * 2009-12-28 2010-08-12 Sumitomo Bakelite Co Ltd Biphenyl aralkyl type cyanate ester resin, resin composition containing biphenyl aralkyl type cyanate ester resin, and prepreg, laminated plate, resin sheet, multilayer printed wiring board, and semiconductor device obtained using the resin composition
WO2010109861A1 (en) 2009-03-27 2010-09-30 三菱瓦斯化学株式会社 Method of storing resin solution and processes for producing prepreg and laminate
WO2011152402A1 (en) 2010-06-02 2011-12-08 三菱瓦斯化学株式会社 Resin composition, and prepreg and laminated sheet using same
WO2012099162A1 (en) * 2011-01-20 2012-07-26 三菱瓦斯化学株式会社 Resin composition, prepreg and laminate
WO2012121224A1 (en) * 2011-03-07 2012-09-13 三菱瓦斯化学株式会社 Resin composition, and prepreg and laminated sheet containing same
WO2013008684A1 (en) * 2011-07-14 2013-01-17 三菱瓦斯化学株式会社 Resin composition for printed wiring boards
WO2013056419A1 (en) * 2011-10-18 2013-04-25 广东生益科技股份有限公司 Epoxy resin composition and high frequency electronic-circuit substrate manufactured by using the same
WO2013187303A1 (en) 2012-06-12 2013-12-19 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate and printed wiring board
WO2015060266A1 (en) * 2013-10-25 2015-04-30 三菱瓦斯化学株式会社 Resin composition, prepreg, laminated sheet, and metal-foil-clad laminated board
JP2016147986A (en) * 2015-02-13 2016-08-18 パナソニックIpマネジメント株式会社 Resin composition for printed wiring board, prepreg, metal-clad laminate and printed wiring board
US9775238B2 (en) 2011-11-07 2017-09-26 Mitsubishi Gas Chemical Company, Inc. Resin composition, and prepreg and laminate using the same
JP2019194345A (en) * 2019-07-11 2019-11-07 パナソニックIpマネジメント株式会社 Resin composition for printed wiring board, prepreg, metal-clad laminate and printed wiring board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231762A (en) * 2002-02-13 2003-08-19 Mitsubishi Gas Chem Co Inc Prepreg and laminated sheet
JP2004059643A (en) * 2002-07-25 2004-02-26 Mitsubishi Gas Chem Co Inc Prepreg and laminated plate
JP2004175925A (en) * 2002-11-27 2004-06-24 Mitsubishi Gas Chem Co Inc Prepreg and laminate
JP2005264154A (en) * 2004-02-18 2005-09-29 Mitsubishi Gas Chem Co Inc New cyanate ester compound, flame-retardant resin composition and cured product thereof
JP2006193607A (en) * 2005-01-13 2006-07-27 Mitsubishi Gas Chem Co Inc Resin composition and prepreg therewith and laminated sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003231762A (en) * 2002-02-13 2003-08-19 Mitsubishi Gas Chem Co Inc Prepreg and laminated sheet
JP2004059643A (en) * 2002-07-25 2004-02-26 Mitsubishi Gas Chem Co Inc Prepreg and laminated plate
JP2004175925A (en) * 2002-11-27 2004-06-24 Mitsubishi Gas Chem Co Inc Prepreg and laminate
JP2005264154A (en) * 2004-02-18 2005-09-29 Mitsubishi Gas Chem Co Inc New cyanate ester compound, flame-retardant resin composition and cured product thereof
JP2006193607A (en) * 2005-01-13 2006-07-27 Mitsubishi Gas Chem Co Inc Resin composition and prepreg therewith and laminated sheet

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7601429B2 (en) * 2007-02-07 2009-10-13 Mitsubishi Gas Chemical Company, Inc. Prepreg and laminate
US20090017316A1 (en) * 2007-07-12 2009-01-15 Mitsubishi Gas Chemical Company, Inc. Prepreg and laminate
JP2009035728A (en) * 2007-07-12 2009-02-19 Mitsubishi Gas Chem Co Inc Prepreg and laminate
TWI512042B (en) * 2007-07-12 2015-12-11 Mitsubishi Gas Chemical Co Prepreg and laminate
US8815401B2 (en) * 2007-07-12 2014-08-26 Mitsubishi Gas Chemical Company, Inc. Prepreg and laminate
JP2009206326A (en) * 2008-02-28 2009-09-10 Sumitomo Bakelite Co Ltd Multi-layer printed wiring board and semiconductor device
JP2010065092A (en) * 2008-09-09 2010-03-25 Mitsubishi Gas Chemical Co Inc Resin composition and prepreg and laminate using the same
US8815986B2 (en) 2009-03-27 2014-08-26 Mitsubishi Gas Chemical Company, Inc. Method for storing resin solution, and method for producing prepreg and laminate
KR20110138232A (en) 2009-03-27 2011-12-26 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Method for storing resin solution, and methods for producing prepreg and laminate
WO2010109861A1 (en) 2009-03-27 2010-09-30 三菱瓦斯化学株式会社 Method of storing resin solution and processes for producing prepreg and laminate
JP2010174242A (en) * 2009-12-28 2010-08-12 Sumitomo Bakelite Co Ltd Biphenyl aralkyl type cyanate ester resin, resin composition containing biphenyl aralkyl type cyanate ester resin, and prepreg, laminated plate, resin sheet, multilayer printed wiring board, and semiconductor device obtained using the resin composition
US10017660B2 (en) 2010-06-02 2018-07-10 Mitsubishi Gas Chemical Company, Inc. Resin composition, and prepreg and laminated sheet using the same
JP5849948B2 (en) * 2010-06-02 2016-02-03 三菱瓦斯化学株式会社 Resin composition and prepreg and laminate using the same
WO2011152402A1 (en) 2010-06-02 2011-12-08 三菱瓦斯化学株式会社 Resin composition, and prepreg and laminated sheet using same
JPWO2012099162A1 (en) * 2011-01-20 2014-06-30 三菱瓦斯化学株式会社 Resin composition, prepreg, and laminate
JP5958827B2 (en) * 2011-01-20 2016-08-02 三菱瓦斯化学株式会社 Resin composition, prepreg, and laminate
WO2012099162A1 (en) * 2011-01-20 2012-07-26 三菱瓦斯化学株式会社 Resin composition, prepreg and laminate
US9955573B2 (en) 2011-01-20 2018-04-24 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg and laminate
JP5999369B2 (en) * 2011-03-07 2016-09-28 三菱瓦斯化学株式会社 Resin composition and prepreg and laminate using the same
JPWO2012121224A1 (en) * 2011-03-07 2014-07-17 三菱瓦斯化学株式会社 Resin composition and prepreg and laminate using the same
US9629239B2 (en) 2011-03-07 2017-04-18 Mitsubishi Gas Chemical Company, Inc. Resin composition, and prepreg as well as laminate using the same
WO2012121224A1 (en) * 2011-03-07 2012-09-13 三菱瓦斯化学株式会社 Resin composition, and prepreg and laminated sheet containing same
JPWO2013008684A1 (en) * 2011-07-14 2015-02-23 三菱瓦斯化学株式会社 Resin composition for printed wiring board
WO2013008684A1 (en) * 2011-07-14 2013-01-17 三菱瓦斯化学株式会社 Resin composition for printed wiring boards
KR101900125B1 (en) * 2011-07-14 2018-09-18 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition for printed wiring boards
WO2013056419A1 (en) * 2011-10-18 2013-04-25 广东生益科技股份有限公司 Epoxy resin composition and high frequency electronic-circuit substrate manufactured by using the same
US9775238B2 (en) 2011-11-07 2017-09-26 Mitsubishi Gas Chemical Company, Inc. Resin composition, and prepreg and laminate using the same
US9832870B2 (en) 2012-06-12 2017-11-28 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, metal foil-clad laminate and printed wiring board
WO2013187303A1 (en) 2012-06-12 2013-12-19 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate and printed wiring board
WO2015060266A1 (en) * 2013-10-25 2015-04-30 三菱瓦斯化学株式会社 Resin composition, prepreg, laminated sheet, and metal-foil-clad laminated board
KR20160078372A (en) * 2013-10-25 2016-07-04 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, prepreg, laminated sheet, and metal-foil-clad laminated board
JPWO2015060266A1 (en) * 2013-10-25 2017-03-09 三菱瓦斯化学株式会社 Resin composition, prepreg, laminate sheet and metal foil-clad laminate
KR102136518B1 (en) 2013-10-25 2020-07-22 미츠비시 가스 가가쿠 가부시키가이샤 Resin composition, prepreg, laminated sheet, and metal-foil-clad laminated board
JP2016147986A (en) * 2015-02-13 2016-08-18 パナソニックIpマネジメント株式会社 Resin composition for printed wiring board, prepreg, metal-clad laminate and printed wiring board
JP2019194345A (en) * 2019-07-11 2019-11-07 パナソニックIpマネジメント株式会社 Resin composition for printed wiring board, prepreg, metal-clad laminate and printed wiring board

Also Published As

Publication number Publication date
JP4997727B2 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP4997727B2 (en) Flame retardant resin composition, and prepreg and laminate using the same
JP4843944B2 (en) Resin composition and prepreg and laminate using the same
JP5849948B2 (en) Resin composition and prepreg and laminate using the same
JP5999369B2 (en) Resin composition and prepreg and laminate using the same
JP5024205B2 (en) Prepreg and laminate
JP5239743B2 (en) Resin composition and prepreg and laminate using the same
JP6314830B2 (en) Resin composition, prepreg, laminate, and printed wiring board
JP5263705B2 (en) Prepreg and laminate
EP1961554B1 (en) Prepreg and laminate
JP5692062B2 (en) Method for storing resin solution, and method for producing prepreg and laminate
JP5384809B2 (en) Prepreg and laminate
US20160125971A1 (en) Resin composition for printed wiring board material and prepreg, resin sheet, metal foil-clad laminate, and printed wiring board using the same
WO2013115069A1 (en) Resin composition for printed wiring board material, and prepreg, resin sheet, metal foil-clad laminate, and printed wiring board using same
JP2004182850A (en) Prepreg having excellent balance of characteristics and laminated sheet
JP5040102B2 (en) Prepreg and laminate
WO2013065694A1 (en) Resin composition, prepreg, and laminated sheet
JP4940680B2 (en) Resin composition and prepreg and laminate using the same
JP2004175925A (en) Prepreg and laminate
WO2017175614A1 (en) Resin composition and method for producing same, prepreg, resin sheet, laminate, metal-foil-clad laminate, and printed wiring board
JP2015151483A (en) Resin sheet, metal foil clad laminate sheet and printed wiring board
TWI391446B (en) Resin composition, and prepreg and laminate using the same
JP2010065092A (en) Resin composition and prepreg and laminate using the same
JP6774035B2 (en) Resin sheet, metal foil laminated board and printed wiring board
CN109825039B (en) Cyanate ester resin composition and use thereof
CN109971130B (en) Cyanate ester resin composition and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110809

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120430

R151 Written notification of patent or utility model registration

Ref document number: 4997727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3