JP2007042452A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2007042452A
JP2007042452A JP2005225627A JP2005225627A JP2007042452A JP 2007042452 A JP2007042452 A JP 2007042452A JP 2005225627 A JP2005225627 A JP 2005225627A JP 2005225627 A JP2005225627 A JP 2005225627A JP 2007042452 A JP2007042452 A JP 2007042452A
Authority
JP
Japan
Prior art keywords
hydrogen
fuel cell
cell system
pressure
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005225627A
Other languages
Japanese (ja)
Other versions
JP5314828B2 (en
Inventor
Takashi Sarada
孝史 皿田
Takamasa Yanase
考応 柳瀬
Toru Ozaki
徹 尾崎
Tsuneaki Tamachi
恒昭 玉地
Kazutaka Yuzurihara
一貴 譲原
Fumiharu Iwasaki
文晴 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2005225627A priority Critical patent/JP5314828B2/en
Publication of JP2007042452A publication Critical patent/JP2007042452A/en
Application granted granted Critical
Publication of JP5314828B2 publication Critical patent/JP5314828B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell system improved in hydrogen utilization rate, effective output and energy density. <P>SOLUTION: A tube structure 40 and a check valve 33 are connected to a connection 32 of a hydrogen supply 1 and an anode chamber 23 through a check valve 34. The other end of the check valve 33 is connected to the anode chamber 23 through a connection 31. When the internal pressure of the hydrogen supply 1 is high, hydrogen flowing from the hydrogen supply 1 to the anode chamber 23 flows in the tube structure 40. When the internal pressure of the hydrogen supply 1 becomes low, the tube structure 40 supplies hydrogen, thus repeating increase and decrease in the internal pressure of the fuel cell system in its internal pressure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池システムに関し、特に、燃料電池システム内部の水素が存在する部位が外部と遮断されている閉鎖系燃料電池システムに関する。   The present invention relates to a fuel cell system, and more particularly, to a closed system fuel cell system in which a portion where hydrogen exists inside the fuel cell system is blocked from the outside.

近年のエネルギー問題や環境問題の高まりから、また、情報機器の消費電力増大から、燃料電池への期待が高まっている。燃料電池は水素と酸化剤を電気化学的に反応させて電力を生じさせる電源デバイスで有り、効率向上のために各研究機関、企業による研究開発が進められている。効率向上には、発電部の電力効率向上、水素の利用率向上、水素発生や水素供給の消費電力低下が必要である。   Due to the recent increase in energy problems and environmental problems, and the increase in power consumption of information devices, expectations for fuel cells are increasing. A fuel cell is a power device that generates electricity by electrochemically reacting hydrogen and an oxidant, and research and development by various research institutes and companies is progressing to improve efficiency. In order to improve efficiency, it is necessary to improve the power efficiency of the power generation unit, improve the utilization rate of hydrogen, and reduce the power consumption of hydrogen generation and hydrogen supply.

燃料電池では水素を発電部のアノードで消費して発電する。ここで発電部の電力効率向上のためには、水素をアノードに効率良く、電極面に均一に供給することが考えられる。従来の方法によると、発電量に対して過剰な量の水素を強制的にアノードに供給し、未反応水素を外部に排出するという、フロー系燃料電池により、電極面に均一に水素を供給していた。また過剰量の水素供給には、ポンプの連続運転によっていた。   In the fuel cell, hydrogen is consumed at the anode of the power generation unit to generate power. Here, in order to improve the power efficiency of the power generation unit, it can be considered that hydrogen is efficiently supplied to the anode and uniformly supplied to the electrode surface. According to the conventional method, an excessive amount of hydrogen relative to the amount of power generation is forcibly supplied to the anode, and unreacted hydrogen is discharged to the outside. It was. Also, excessive hydrogen supply was by continuous operation of the pump.

しかし、未反応水素の排出により、元来の水素量に対して発電に寄与する水素量は少なくなり、水素の利用率が低い問題があった。またポンプで水素を送る手段においては、ポンプを連続して運転するため、消費電力量が高く、燃料電池の出力電力量に対して利用できる電力量が減ずる問題があった。   However, due to the discharge of unreacted hydrogen, the amount of hydrogen that contributes to power generation is less than the original amount of hydrogen, and there is a problem that the utilization rate of hydrogen is low. Further, in the means for sending hydrogen by the pump, since the pump is operated continuously, the power consumption is high, and there is a problem that the amount of power that can be used with respect to the output power amount of the fuel cell decreases.

上記問題点に対し、燃料電池のアノード出口を封鎖したデッドエンド系燃料電池を運転した報告例がある(例えば非特許文献1参照。)。これによると、未反応水素を処理する必要がなくなるため、水素利用率の向上や、未反応水素処理機構が不要になった事による体積低減、電力低減により、エネルギー効率が向上する効果が生じている。またこのようなデッドエンド系燃料電池では、水素を高圧ボンベ内に保持し、減圧弁により所望の圧力に低下する事により、燃料電池で必要な水素量を絶えず供給する事が可能となる。つまり、電力を消費することなく燃料電池への水素供給を行えるため、この点でもエネルギー密度を向上する事ができ、また、燃料電池の出力電力量に対して外部機器が利用できる有効電力量が減ずる問題も解消された。   In response to the above problem, there is a report example of operating a dead-end fuel cell in which the anode outlet of the fuel cell is blocked (see, for example, Non-Patent Document 1). According to this, there is no need to treat unreacted hydrogen. Therefore, an increase in hydrogen utilization rate, volume reduction due to the need for an unreacted hydrogen treatment mechanism, and power reduction have the effect of improving energy efficiency. Yes. Further, in such a dead-end fuel cell, it is possible to constantly supply a hydrogen amount necessary for the fuel cell by holding hydrogen in a high-pressure cylinder and lowering it to a desired pressure by a pressure reducing valve. In other words, since hydrogen can be supplied to the fuel cell without consuming electric power, the energy density can be improved in this respect as well, and the effective electric energy that can be used by external devices with respect to the output electric energy of the fuel cell is reduced. The problem of decreasing was also solved.

本参考文献によれば、デッドエンド系にすることにより、加湿や燃料電池反応で生成した水蒸気が水素流路や電極触媒層で凝縮して水素移動の妨げとなり、出力電圧を低下させる問題があるが、エンドプレート形状や加湿条件の最適化により、電圧低下をある程度抑える事が可能となっている。
引田覚,山根公高,中島泰夫,自動車技術会学術講演会前刷集,28−01,P.9−14(2001)
According to this reference, there is a problem that by using a dead-end system, water vapor generated by humidification or a fuel cell reaction is condensed in the hydrogen flow path or the electrode catalyst layer, hindering hydrogen movement and lowering the output voltage. However, the voltage drop can be suppressed to some extent by optimizing the end plate shape and humidification conditions.
S. Hikida, Kimiko Yamane, Yasuo Nakajima, Automobile Society of Japan Academic Lecture Preprints, 28-01, p. 9-14 (2001)

しかしながら、デッドエンド系燃料電池に関する筆者らによる検討において、エンドプレート形状の最適化を行っても、発電効率が低くなる現象が確認された。これには、水素の加湿制御が困難で最適湿度での運転が困難であることが原因として挙げられる。しかし、加湿制御には湿度センサ、温度センサ、ヒータや冷却器、制御回路などの複雑な機構が必要であり、システム体積を大きくならざるを得ない。従って、発電部以外の部位である補器での消費電力の低減や、小型化が要求される燃料電池システムにおいては、加湿制御装置を組み込むのは不適当である。つまり加湿制御を行わないで燃料電池を運転することが望ましい。この方法として、燃料電池での相対湿度を一定にして運転するフロー系燃料電池と同様の水素フローを行うことが挙げられる。   However, in the study by the authors regarding the dead-end fuel cell, it was confirmed that the power generation efficiency was lowered even when the end plate shape was optimized. This is because the humidification control of hydrogen is difficult and the operation at the optimum humidity is difficult. However, humidification control requires complicated mechanisms such as a humidity sensor, a temperature sensor, a heater, a cooler, and a control circuit, and the system volume must be increased. Therefore, it is inappropriate to incorporate a humidification control device in a fuel cell system that requires reduction in power consumption or miniaturization in auxiliary devices other than the power generation unit. That is, it is desirable to operate the fuel cell without performing humidification control. As this method, a hydrogen flow similar to that of a flow fuel cell that operates with a constant relative humidity in the fuel cell may be performed.

更に、発電効率が低下した理由として、水素量が電極面内で不均一に分布していることが原因であることが挙げられる。つまり、発電部のアノードに水素を供給するために設けた水素供給口に近い部位では水素量が多くなったが、水素の流れの末端部における電極触媒層近傍では水素量が少なくなった。その結果、電極面内で電流分布が生じ、高電流密度領域で水の発生、凝縮が多く発生することとなった。そこで、水素の触媒層への拡散に抵抗が生じ、電圧が低下すると考えられる。従って電極面内において水素量に偏りを生じさせないという観点からも、フロー系燃料電池と同様の水素フローが望ましい。   Furthermore, the reason why the power generation efficiency is reduced is that the amount of hydrogen is unevenly distributed in the electrode surface. That is, the amount of hydrogen increased near the hydrogen supply port provided to supply hydrogen to the anode of the power generation unit, but decreased near the electrode catalyst layer at the end of the hydrogen flow. As a result, current distribution occurred in the electrode surface, and much water generation and condensation occurred in the high current density region. Therefore, it is considered that resistance is generated in the diffusion of hydrogen into the catalyst layer and the voltage is lowered. Accordingly, the hydrogen flow similar to that of the flow fuel cell is desirable also from the viewpoint of not causing a bias in the amount of hydrogen in the electrode plane.

従って以上説明した通り、デッドエンド系燃料電池のように外部空間と水素が存在する空間が断絶された構造となっている閉鎖系燃料電池においても、フロー系燃料電池と同様に過剰量の水素を供給し、燃料電池外部に未反応水素を排出する水素フローを行うことが望ましい。しかし、閉鎖系燃料電池では未反応水素を外部に排出しない事で水素利用率を向上し、未反応水素処理機構の無くすことで体積低減や無駄な電力消費を省くといった利点があったはずであるが、現状の技術ではこれらの利点が失われることとなる。   Therefore, as described above, even in a closed fuel cell having a structure in which the external space and the space where hydrogen exists are cut off as in the dead-end fuel cell, an excessive amount of hydrogen is discharged as in the flow fuel cell. It is desirable to perform a hydrogen flow that supplies and discharges unreacted hydrogen to the outside of the fuel cell. However, closed-system fuel cells should have the advantage of improving hydrogen utilization by not discharging unreacted hydrogen to the outside and eliminating unreacted hydrogen treatment mechanism to reduce volume and wasteful power consumption. However, the current technology loses these advantages.

本発明は、閉鎖系燃料電池システムにおいて、水素利用率、有効出力、エネルギー密度を向上させた燃料電池システムを提供することを目的とする。   An object of the present invention is to provide a fuel cell system in which hydrogen utilization, effective output, and energy density are improved in a closed fuel cell system.

上記課題を解決するために、本発明においては、水素及び酸化剤を反応して発電し、水素が存在する空間である負極室を有する固体高分子形燃料電池の発電部と、水素を貯蔵する部位、もしくは、水素源となる反応物質を貯蔵し水素化反応を発生させる部位であり、前記発電部で用いる水素を供給する水素供給部と、前記負極室と前記水素供給部とを連結し、水素が流通する連結管と、前記負極室と第一の接続部にて接続され、前記負極室から水素が流入する事が可能な管状構造物とから成る燃料電池システムであり、前記燃料電池システムは内部と外部とが遮断されていて、システム内部から外部への水素の流通がない閉空間になっており、前記燃料電池システムの内圧が増加、減少を繰り返して起こす水素圧変動手段を有することを特徴としている。   In order to solve the above problems, in the present invention, hydrogen and an oxidant are reacted to generate power, and a power generation unit of a polymer electrolyte fuel cell having a negative electrode chamber that is a space where hydrogen is present, and hydrogen is stored. A part, or a part that stores a reactant serving as a hydrogen source and generates a hydrogenation reaction, and connects a hydrogen supply part that supplies hydrogen used in the power generation part, the negative electrode chamber, and the hydrogen supply part, A fuel cell system comprising a connecting pipe through which hydrogen flows, and a tubular structure connected to the negative electrode chamber at a first connection portion and capable of flowing hydrogen from the negative electrode chamber, Has a closed space where the inside and outside are shut off, and there is no hydrogen flow from the inside of the system to the outside, and it has hydrogen pressure fluctuation means that repeatedly increases and decreases the internal pressure of the fuel cell system. Features It is.

これにより、内圧が高い時は、水素供給部から連結管を伝って負極室に流入した水素は、管状構造物内に流入する。つまりこの場合水素はフロー系燃料電池の水素フローと同様に、発電部の負極室を通過して、負極室外部に達する。但し、燃料電池システム内部は閉空間となっているため、水素が燃料電池システムから排出される事はない。内圧は増加、減少を繰り返して起こすため、擬似的なフロー系燃料電池の水素フローを間欠して行う事が可能となる。   As a result, when the internal pressure is high, the hydrogen that has flowed from the hydrogen supply section through the connecting pipe into the negative electrode chamber flows into the tubular structure. That is, in this case, hydrogen passes through the negative electrode chamber of the power generation unit and reaches the outside of the negative electrode chamber, similarly to the hydrogen flow of the flow fuel cell. However, since the inside of the fuel cell system is a closed space, hydrogen is not discharged from the fuel cell system. Since the internal pressure repeatedly increases and decreases, it is possible to intermittently perform the hydrogen flow of the pseudo flow fuel cell.

更に、前記管状構造物は、一端が前記負極室と接続する第一の接続部と、他端が前記負極室、前記水素供給部、前記連結管のいずれかと接続する第二の接続部とを有し、前記管状構造物の前記第一の接続部側に第一の逆止弁、前記第二の接続部側に第二の逆止弁を設置し、前記第一の逆止弁及び前記第二の逆止弁の開弁圧は、0kPa以上、前記水素圧変動手段による水素圧の上限値未満であり、前記第二の接続部から前記第一の接続部への物質の流れを遮断することを特徴としている。   Further, the tubular structure has a first connection portion having one end connected to the negative electrode chamber, and a second connection portion having the other end connected to any of the negative electrode chamber, the hydrogen supply portion, and the connecting pipe. A first check valve on the first connection portion side of the tubular structure, and a second check valve on the second connection portion side, the first check valve and the The valve opening pressure of the second check valve is 0 kPa or more and less than the upper limit value of the hydrogen pressure by the hydrogen pressure fluctuation means, and shuts off the material flow from the second connection part to the first connection part. It is characterized by doing.

これによる水素の流れを以下に記す。内圧上昇時は連結管から負極室に流入した水素は、発電による消費に用いられなかった量が第一の接続部、第一の逆止弁を通って、第二の逆止弁に至る。圧力が上昇してから微小時間経過後など、圧力に発電による水素消費の影響が見られない間は、第二の逆止弁の前後での圧力が等しいため、弁は閉鎖したままである。しかし、発電部の発電による水素消費のために、内圧が低下すると、管状構造物中の第一の逆止弁と第二の逆止弁に挟まれた部位の圧力は、負極室や水素供給部、連結管の圧力より相対的に高くなる。従って、第二の逆止弁を開弁する圧力が高くなり、管状構造物中の水素は、管状構造物から負極室、水素供給部、連結管のいずれかに流れ出ることとなる。内圧は増加、減少を繰り返して起こすため、擬似的なフロー系燃料電池の水素フローを間欠して行う事が可能となる。   The resulting hydrogen flow is described below. When the internal pressure rises, the amount of hydrogen that has flown into the negative electrode chamber from the connecting pipe passes through the first connection portion and the first check valve to reach the second check valve. While there is no effect of hydrogen consumption due to power generation, such as after a lapse of a minute after the pressure rises, the pressure remains before and after the second check valve because the pressure before and after the second check valve is equal. However, when the internal pressure decreases due to hydrogen consumption due to power generation by the power generation unit, the pressure in the portion sandwiched between the first check valve and the second check valve in the tubular structure is reduced in the negative electrode chamber and the hydrogen supply. It becomes relatively higher than the pressure of the part and the connecting pipe. Accordingly, the pressure for opening the second check valve is increased, and hydrogen in the tubular structure flows out from the tubular structure to any one of the negative electrode chamber, the hydrogen supply unit, and the connecting pipe. Since the internal pressure repeatedly increases and decreases, it is possible to intermittently perform the hydrogen flow of the pseudo flow fuel cell.

また、前記水素圧変動手段が、水素発生量を変動させる反応量変動手段であることを特徴としている。これにより、燃料電池システム内部が外界に対して閉じている構造のため、圧力を変動させる事が出来るようになる。   Further, the hydrogen pressure fluctuation means is a reaction quantity fluctuation means for changing the hydrogen generation amount. As a result, the pressure can be varied due to the structure in which the inside of the fuel cell system is closed to the outside.

以下に反応量変動手段の具体的な手段を示す。まず、前記水素供給部が加熱部を有し、前記水素源を加熱することにより水素化反応を発生させ、前記反応量変動手段が、前記加熱部を断続的に加熱させる手段であることを特徴としている。これにより、加熱により水素発生量を増加できる反応において、水素量を加熱の程度に応じて変動させ、圧力を変動させる事が可能となる。
具体的には、前記水素供給部における水素発生反応が、アルコール、エーテル、ケトンの改質反応であることを特徴としている。
Specific means for the reaction amount varying means will be shown below. First, the hydrogen supply unit includes a heating unit, the hydrogen source is heated to generate a hydrogenation reaction, and the reaction amount variation unit is a unit that intermittently heats the heating unit. It is said. Thereby, in the reaction in which the amount of hydrogen generated can be increased by heating, the amount of hydrogen can be changed according to the degree of heating, and the pressure can be changed.
Specifically, the hydrogen generation reaction in the hydrogen supply unit is a reforming reaction of alcohol, ether, or ketone.

これらの反応には、反応温度として200℃〜300℃といった温度が不可欠であり、温度が低い場合は、水素を有効に発生させる事が困難である。従って、加熱の有無により水素の発生量を制御でき、圧力を制御する事が可能となる。
また、別の反応として、前記水素供給部における水素発生反応が、水素化物の熱分解反応であることを特徴としている。
In these reactions, a temperature of 200 ° C. to 300 ° C. is indispensable as a reaction temperature. When the temperature is low, it is difficult to effectively generate hydrogen. Therefore, the amount of hydrogen generated can be controlled by the presence or absence of heating, and the pressure can be controlled.
As another reaction, the hydrogen generation reaction in the hydrogen supply unit is a thermal decomposition reaction of a hydride.

水素化物には、水素吸蔵合金や錯体水素化物といった無機化合物、環式飽和炭化水素やアルコール類といった有機化合物が挙げられる。以上の水素化物は、加熱により水素を脱離する事が可能であり、また温度が高くなると水素発生量や水素発生速度が増加する。従って、加熱の有無や温度制御により水素発生量を制御でき、圧力を制御する事が可能となる。   Examples of the hydride include inorganic compounds such as hydrogen storage alloys and complex hydrides, and organic compounds such as cyclic saturated hydrocarbons and alcohols. The above hydride can desorb hydrogen by heating, and the amount of hydrogen generation and the rate of hydrogen generation increase as the temperature rises. Therefore, the amount of hydrogen generation can be controlled by the presence / absence of heating and temperature control, and the pressure can be controlled.

またその他の反応量変動手段として、前記水素供給部が、水素化反応を発生させる水素反応部と、水素化反応に関係する液体の供給手段を有し、水素発生量が前記水素反応部への前記液体の供給量によって決定され、前記反応量変動手段が前記液体の供給量を変動させる手段であることを特徴としている。これにより、水素発生に水を含む液体が関与する反応において、液体の供給量に応じて水素の発生量を制御でき、圧力を制御する事が可能となる。
具体的には、前記水素供給部における水素発生反応が、無機水素化物に水を供給して起きる加水分解反応である。
As another reaction amount fluctuation means, the hydrogen supply section has a hydrogen reaction section for generating a hydrogenation reaction and a supply means for a liquid related to the hydrogenation reaction, and the hydrogen generation amount is supplied to the hydrogen reaction section. It is determined by the supply amount of the liquid, and the reaction amount changing means is means for changing the supply amount of the liquid. As a result, in a reaction involving a liquid containing water in hydrogen generation, the amount of hydrogen generated can be controlled according to the amount of liquid supplied, and the pressure can be controlled.
Specifically, the hydrogen generation reaction in the hydrogen supply unit is a hydrolysis reaction that occurs by supplying water to the inorganic hydride.

また、前記水素供給部における水素発生反応が、金属に酸性、もしくは、アルカリ性水溶液を供給する金属溶解反応である。
また、前記水素供給部における水素発生反応が、アルコール、エーテル、ケトンの改質反応である。
Further, the hydrogen generation reaction in the hydrogen supply unit is a metal dissolution reaction for supplying an acidic or alkaline aqueous solution to the metal.
The hydrogen generation reaction in the hydrogen supply unit is a reforming reaction of alcohol, ether, or ketone.

以上の加水分解反応、金属溶解反応、改質反応では、水溶液量が水素発生反応に関係しており、水溶液の供給、供給停止により、水素発生反応の進行、停止を制御できる。従って、水素圧力を制御する事が可能である。   In the above hydrolysis reaction, metal dissolution reaction, and reforming reaction, the amount of the aqueous solution is related to the hydrogen generation reaction, and the progress and stop of the hydrogen generation reaction can be controlled by supplying and stopping the supply of the aqueous solution. Therefore, it is possible to control the hydrogen pressure.

またその他の反応量変動手段として、前記水素供給部は、水素化反応に関係する液体を保有する水素反応部を有し、前記液体に接触することにより水素化反応が起きる固体を有し、前記固体と前記液体との接触量を制御する接触制御手段を有し、水素発生量が前記液体と前記固体の接触量によって決定され、前記反応量変動手段が前記液体と前記固体の接触量を変動させることによることを特徴としている。   As another reaction amount fluctuation means, the hydrogen supply part has a hydrogen reaction part that holds a liquid related to a hydrogenation reaction, and has a solid that causes a hydrogenation reaction by contacting the liquid, A contact control unit that controls a contact amount between a solid and the liquid; a hydrogen generation amount is determined by a contact amount between the liquid and the solid; and the reaction amount variation unit varies a contact amount between the liquid and the solid. It is characterized by making it.

これにより、水素発生量を変動する事が出来、圧力を制御する事が可能となる。上記手段に用いられる反応として、前記加水分解反応や金属溶解反応が有効な反応として挙げられる。以下に反応物質の組合せを挙げる。   As a result, the amount of hydrogen generation can be varied, and the pressure can be controlled. Examples of the reaction used in the above means include the hydrolysis reaction and metal dissolution reaction as effective reactions. Listed below are combinations of reactants.

前記液体が、無機水素化物の水溶液であり、前記固体が金属、もしくは、金属酸化物の触媒である。詳しくは、無機水素化物として、水素化ホウ素化合物や水素化アルミニウム化合物が挙げられる。これらは、加水分解反応により水素を発生させる事が可能である。また、固体として、白金、金、銅、ニッケル、鉄、チタン、ジルコニウム、ルテニウムから成る群に含まれる一種の金属やその塩、酸化物が挙げられる。これらは、加水分解反応における触媒として機能し、水素発生反応を促進する事が出来る固体である。   The liquid is an aqueous solution of an inorganic hydride, and the solid is a metal or metal oxide catalyst. Specifically, examples of the inorganic hydride include a borohydride compound and an aluminum hydride compound. These can generate hydrogen by a hydrolysis reaction. Examples of the solid include a kind of metal, a salt thereof, and an oxide included in the group consisting of platinum, gold, copper, nickel, iron, titanium, zirconium, and ruthenium. These are solids that function as a catalyst in the hydrolysis reaction and can accelerate the hydrogen generation reaction.

前記液体が水を含み、前記固体が無機水素化物である。無機水素化物には、水素化ホウ素化合物や水素化アルミニウム化合物、アルカリ金属水素化物が挙げられる。また液体は水であるが、反応速度を速めるために、クエン酸やリンゴ酸などの有機酸、硫酸のような無機酸、塩化鉄、塩化コバルト、塩化ニッケルといった金属塩化物を水中に溶解させておく事も可能である。   The liquid contains water and the solid is an inorganic hydride. Inorganic hydrides include borohydride compounds, aluminum hydride compounds, and alkali metal hydrides. The liquid is water, but in order to increase the reaction rate, organic acids such as citric acid and malic acid, inorganic acids such as sulfuric acid, and metal chlorides such as iron chloride, cobalt chloride and nickel chloride are dissolved in water. It is also possible to leave.

前記液体が酸性、もしくは、アルカリ性水溶液であり、前記固体が金属である。金属の溶解反応に伴い、水素を発生させることが可能である。   The liquid is an acidic or alkaline aqueous solution, and the solid is a metal. Hydrogen can be generated along with the metal dissolution reaction.

一方、前記管状構造物は、一端が前記負極室と接続する第一の接続部と、他端が前記負極室、前記連結管のいずれかと接続する第二の接続部とを有し、前記管状構造物の前記第一の接続部側に第一の逆止弁、前記第二の接続部側に第二の逆止弁を設置し、前記第一の逆止弁及び前記第二の逆止弁の開弁圧は、0kPa以上、前記水素圧変動手段による水素圧の上限値未満であり、前記第二の接続部から前記第一の接続部への物質の流れを遮断することを特徴としている。   On the other hand, the tubular structure has a first connection portion whose one end is connected to the negative electrode chamber, and a second connection portion whose other end is connected to either the negative electrode chamber or the connecting pipe, A first check valve is installed on the first connection portion side of the structure, a second check valve is installed on the second connection portion side, and the first check valve and the second check valve are installed. The valve opening pressure is 0 kPa or more and less than the upper limit value of the hydrogen pressure by the hydrogen pressure changing means, and the material flow from the second connection part to the first connection part is blocked. Yes.

これによる水素の流れを以下に記す。内圧上昇時は連結管から負極室に流入した水素は、発電による消費に用いられなかった量が第一の接続部、第一の逆止弁を通って、第二の逆止弁に至る。圧力が上昇してから微小時間経過後など、圧力に発電による水素消費の影響が見られない間は、第二の逆止弁の前後での圧力が等しいため、弁は閉鎖したままである。しかし、発電部での水素消費のために、内圧が低下すると、管状構造物中の第一の逆止弁と第二の逆止弁に挟まれた部位の圧力は、負極室や水素供給部、連結管の圧力より相対的に高くなる。従って、第二の逆止弁を開弁する圧力が高くなり、管状構造物中の水素は、管状構造物から負極室、水素供給部、連結管のいずれかに流れ出ることとなる。内圧は増加、減少を繰り返して起こすため、擬似的なフロー系燃料電池の水素フローを間欠して行う事が可能となる。   The resulting hydrogen flow is described below. When the internal pressure rises, the amount of hydrogen that has flown into the negative electrode chamber from the connecting pipe passes through the first connection portion and the first check valve to reach the second check valve. While there is no effect of hydrogen consumption due to power generation, such as after a lapse of a minute after the pressure rises, the pressure remains before and after the second check valve because the pressure before and after the second check valve is equal. However, when the internal pressure decreases due to hydrogen consumption in the power generation unit, the pressure in the portion sandwiched between the first check valve and the second check valve in the tubular structure is reduced in the negative electrode chamber and the hydrogen supply unit. The pressure of the connecting pipe is relatively higher. Accordingly, the pressure for opening the second check valve is increased, and hydrogen in the tubular structure flows out from the tubular structure to any one of the negative electrode chamber, the hydrogen supply unit, and the connecting pipe. Since the internal pressure repeatedly increases and decreases, it is possible to intermittently perform the hydrogen flow of the pseudo flow fuel cell.

更に、前記水素供給部に圧力調整弁を有し、前記水素供給部内の水素は前記圧力調整弁を通って前記連結管に至る構成であり、前記水素圧変動手段が前記圧力調整弁の開弁圧と閉弁圧を異なるものとする手段であり、前記圧力調整弁の開弁圧と閉弁圧とが異なる事により燃料電池システムの内圧が脈動することを特徴としている。   Further, the hydrogen supply unit has a pressure regulating valve, and the hydrogen in the hydrogen supplying unit passes through the pressure regulating valve and reaches the connecting pipe, and the hydrogen pressure fluctuation means opens the pressure regulating valve. The valve pressure is different from the valve closing pressure, and the internal pressure of the fuel cell system pulsates due to the difference between the valve opening pressure and the valve closing pressure of the pressure regulating valve.

これにより、発電部での水素消費に伴い、発電部内の水素圧が低下すると、水素供給部と発電部との差圧が大きくなり、これが圧力調整弁の開弁圧を超えると、圧力調整弁が開弁する。すると水素供給部から発電部に水素が流入し、水素供給部と発電部の差圧が小さくなる。ここで圧力調整弁の閉弁圧は、開弁圧より小さい。つまり、水素供給部と発電部の水素圧を比較すると、発電部の水素圧は、下限が水素供給部内圧と開弁圧の差、上限が水素供給部内圧と閉弁圧の差となる。   As a result, when the hydrogen pressure in the power generation unit decreases due to the consumption of hydrogen in the power generation unit, the differential pressure between the hydrogen supply unit and the power generation unit increases, and if this exceeds the valve opening pressure of the pressure adjustment valve, the pressure adjustment valve Opens. Then, hydrogen flows into the power generation unit from the hydrogen supply unit, and the differential pressure between the hydrogen supply unit and the power generation unit is reduced. Here, the valve closing pressure of the pressure regulating valve is smaller than the valve opening pressure. That is, when comparing the hydrogen pressure of the hydrogen supply unit and the power generation unit, the lower limit of the hydrogen pressure of the power generation unit is the difference between the hydrogen supply unit internal pressure and the valve opening pressure, and the upper limit is the difference between the hydrogen supply unit internal pressure and the valve closing pressure.

この場合水素供給部には、高圧水素ボンベ、水素吸蔵合金や有機もしくは無機の水素化物などから水素を発生させる材料を貯蔵した容器など用いる事が出来る。これらの水素供給部の内圧は発電部の内圧よりも高く、上記圧力調整弁の作用により、圧力調整弁の開閉に伴って発電部内圧を、自動的に変動させる事ができるようになる。   In this case, the hydrogen supply unit can be a high-pressure hydrogen cylinder, a hydrogen storage alloy, a container storing a material that generates hydrogen from an organic or inorganic hydride, or the like. The internal pressure of these hydrogen supply units is higher than the internal pressure of the power generation unit, and the power generation unit internal pressure can be automatically changed as the pressure control valve opens and closes by the action of the pressure control valve.

前記水素供給部、もしくは、前記連結管にポンプを有し、前記水素圧変動手段が前記ポンプが一定時間間隔で運転、運転停止が繰り返される手段であることを特徴としている。   The hydrogen supply unit or the connecting pipe has a pump, and the hydrogen pressure fluctuation unit is a unit in which the pump is repeatedly operated and stopped at regular time intervals.

ポンプでは電力を消費するため、フロー系燃料電池と類似した水素フローを行うためにあえて制御回路やセンサを設ける事、また、ポンプを連続運転させることは、よりいっそう電力を消費することとなり、不利である。本発明の運転方法によれば複雑な運転や制御をすることなく、断続的にポンプを作動させるため、フロー系燃料電池より低電力量で簡便に、目的の水素フローを達成する事ができるようになる。   Since the pump consumes electric power, it is disadvantageous to install a control circuit and a sensor in order to perform hydrogen flow similar to that of a flow fuel cell, and to operate the pump continuously. It is. According to the operation method of the present invention, the pump is operated intermittently without complicated operation and control, so that the target hydrogen flow can be achieved more easily and with a lower electric energy than the flow fuel cell. become.

また、前記管状構造物に吸水性材料を設置することを特徴としている。   Further, a water-absorbing material is installed in the tubular structure.

これにより、高圧時に管状構造物に流入した発電部内の物質の内、水分を吸水性材料に固定する事が出来るようになる。発電部内の物質には、未反応水素以外に、水素発生時に含まれる水蒸気、発電部での発電に伴って発生した水が高分子電解質膜を逆拡散してアノード側に到達した水などがある。発電部内では水蒸気が飽和蒸気圧に到達し液化するが、水蒸気が発電部内に発生し続けるため、液水が増加し続ける。その結果液水は、燃料電池システムの種々の箇所を閉塞したり、発電部の電極を浸潤したりして、システム運転に問題を生じさせる。しかし本発明によれば、発電部内圧が低くなると、管状構造物内の物質が第二の接続部を通過して管状構造物から出て行くため、管状構造物を通った水素は乾燥している。従って、水蒸気の発生と吸水性材料による水分の固定とが起こり、燃料電池システム内の水素に適度な湿度をもたらす事ができ、また、液水によるシステム内の閉塞や電極の過度な浸潤を抑制する事が可能となる。   Thereby, it becomes possible to fix moisture to the water-absorbing material among the substances in the power generation section that have flowed into the tubular structure at high pressure. Substances in the power generation section include unreacted hydrogen, water vapor generated during the generation of hydrogen, water generated by power generation in the power generation section, and reverse diffusion of the polymer electrolyte membrane to reach the anode side. . In the power generation unit, water vapor reaches a saturated vapor pressure and liquefies, but since water vapor continues to be generated in the power generation unit, liquid water continues to increase. As a result, the liquid water causes various problems in the system operation by blocking various parts of the fuel cell system or infiltrating the electrodes of the power generation unit. However, according to the present invention, when the internal pressure of the power generation unit is lowered, the substance in the tubular structure passes through the second connection portion and exits from the tubular structure, so that the hydrogen passing through the tubular structure is dried. Yes. Therefore, water vapor is generated and water is fixed by the water-absorbing material, so that the moisture in the fuel cell system can be brought to an appropriate humidity level, and the clogging in the system due to liquid water and excessive infiltration of the electrodes are suppressed. It becomes possible to do.

更に前記管状構造物を、0℃以上、且つ、前記発電部より低い温度に冷却することを特徴としている。   Furthermore, the tubular structure is cooled to 0 ° C. or higher and lower than the temperature of the power generation unit.

これにより、燃料電池内に存在する水蒸気を、管状構造物内で液化する事が可能となる。上述した通り、燃料電池内は飽和水蒸気圧に達し、システム内各所で液化し、システムを閉塞、電極を過度に浸潤する現象が起きる。しかし、管状構造物の冷却により液化が管状構造物内で特異的におき、水素は乾燥されて管状構造物から排出されるため、燃料電池内の水蒸気圧が低下し、液水によるシステム内の閉塞や電極の過度な浸潤を抑制する事が可能となる。また、水素供給部に加水分解型水素発生反応を行う無機水素化物を用い、管状構造物で液化した液水を無機水素化物に供給できるようにすると、反応に必要な量の水を燃料電池システム内に持つ必要がなくなる。全体体積の低減が可能となる。   This makes it possible to liquefy the water vapor present in the fuel cell within the tubular structure. As described above, the fuel cell reaches a saturated water vapor pressure and liquefies at various points in the system, causing a phenomenon that the system is blocked and the electrodes are excessively infiltrated. However, cooling of the tubular structure causes liquefaction to occur specifically in the tubular structure, and hydrogen is dried and discharged from the tubular structure, so that the water vapor pressure in the fuel cell decreases, and the liquid water in the system Occlusion and excessive infiltration of the electrode can be suppressed. In addition, when an inorganic hydride that performs a hydrolysis-type hydrogen generation reaction is used in the hydrogen supply unit and liquid water liquefied by the tubular structure can be supplied to the inorganic hydride, the fuel cell system supplies a necessary amount of water for the reaction. No need to have in. The total volume can be reduced.

以上説明したように、本発明において、水素及び酸化剤を反応して発電し、水素が存在する空間である負極室を有する固体高分子形燃料電池の発電部と、水素を貯蔵する部位、もしくは、水素源となる反応物質を貯蔵し水素化反応を発生させる部位であり、前記発電部で用いる水素を供給する水素供給部と、前記負極室と前記水素供給部とを連結し、水素が流通する連結管と、前記負極室と第一の接続部にて接続され、前記負極室から水素が流入する事が可能な管状構造物とから成る燃料電池システムであり、前記燃料電池システムは内部と外部とが遮断されていて、システム内部から外部への水素の流通がない閉空間になっており、前記燃料電池システムの内圧が増加、減少を繰り返して起こす水素圧変動手段を有する構造とした。   As described above, in the present invention, hydrogen and an oxidant react to generate electric power, and a power generation unit of a polymer electrolyte fuel cell having a negative electrode chamber that is a space in which hydrogen exists, and a part for storing hydrogen, or , Which stores a reactant serving as a hydrogen source and generates a hydrogenation reaction, and connects a hydrogen supply unit that supplies hydrogen used in the power generation unit, the negative electrode chamber, and the hydrogen supply unit, and hydrogen flows. And a tubular structure connected to the negative electrode chamber at the first connecting portion and capable of allowing hydrogen to flow in from the negative electrode chamber, and the fuel cell system includes: The structure is a closed space that is shut off from the outside and has no hydrogen flow from the inside of the system to the outside, and has a hydrogen pressure fluctuation means that repeatedly increases and decreases the internal pressure of the fuel cell system.

これにより、内圧が高い時は、水素供給部から連結管を伝って負極室に流入した水素は、管状構造物内に流入した。つまりこの場合水素はフロー系燃料電池の水素フローと同様に、発電部の負極室を通過して、負極室外部に達した。但し、燃料電池システム内部は閉空間となっているため、水素が燃料電池システムから排出される事はなかった。内圧は増加、減少を繰り返して起こすため、擬似的なフロー系燃料電池の水素フローを間欠して行う事が可能となった。   Thereby, when the internal pressure was high, the hydrogen that flowed into the negative electrode chamber from the hydrogen supply section through the connecting pipe flowed into the tubular structure. That is, in this case, hydrogen passed through the negative electrode chamber of the power generation unit and reached the outside of the negative electrode chamber, similarly to the hydrogen flow of the flow fuel cell. However, since the inside of the fuel cell system is a closed space, hydrogen was not discharged from the fuel cell system. Since the internal pressure repeatedly increases and decreases, it is possible to intermittently perform the hydrogen flow of the pseudo flow fuel cell.

これにより、閉鎖系燃料電池システムであるにもかかわらずフロー系燃料電池と類似の水素フロー構造を提供し、また複雑な制御をせず、電力を抑制して水素フローを行ったためいん、水素利用率、有効出力、エネルギー密度を向上させた燃料電池システムを提供することが可能となった。   This provides a hydrogen flow structure similar to that of a flow fuel cell, despite the fact that it is a closed fuel cell system, and does not require complicated control and suppresses electric power to perform hydrogen flow. It has become possible to provide a fuel cell system with improved rate, effective output, and energy density.

以下に本発明の実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明による燃料電池システムの構成図である。燃料電池で消費する水素を蓄え、燃料電池の発電部に水素を送る水素供給部1と、水素が電気化学反応する負極20、酸素が電気化学反応する正極21、両電極に挟持されて接合された高分子電解質膜22、及び、水素を滞留させるために負極20に接する部位に具備された負極室23から成る発電部と、発電部で未反応の水素、及び、それに含まれる物質が流入する管状構造物40とから構成されている。   FIG. 1 is a configuration diagram of a fuel cell system according to the present invention. The hydrogen supply unit 1 that stores hydrogen consumed by the fuel cell and sends the hydrogen to the power generation unit of the fuel cell, the negative electrode 20 in which hydrogen undergoes an electrochemical reaction, the positive electrode 21 in which oxygen undergoes an electrochemical reaction, and the both electrodes are sandwiched and joined. The polymer electrolyte membrane 22 and a power generation unit composed of a negative electrode chamber 23 provided in a portion in contact with the negative electrode 20 for retaining hydrogen, unreacted hydrogen and a substance contained in the power generation unit flow into the power generation unit. It is comprised from the tubular structure 40. FIG.

水素供給部1は負極室23と水素導管7にて連結され、水素の流通が可能となっている。また、管状構造物40は負極室23と第一の接続部31にて接続されており、第一の接続部31の近くに逆止弁33を設けた。逆止弁33の物質移動方向は、負極室23から管状構造物40の方向である。更に、管状構造物40は第二の接続部32にて、水素導管7と接続し、第二の接続部32の近くに逆止弁34を設けた。逆止弁34の物質移動方向は、管状構造物40から水素導管7の方向である。以上から、水素供給部1から水素導管7に流入した水素は、負極室23、管状構造物40を通った後、再び水素導管7を通り、負極室23に戻ることとなっている。尚、図1では第二の接続部32を水素導管7上に設けたが、その限りで無く、例えば、負極室23や水素供給部1としても良い。また燃料電池システムは、水素が燃料電池システムの内部にのみ存在し、外部には流出しない構成となっており、閉鎖系で構成されている。   The hydrogen supply unit 1 is connected to the negative electrode chamber 23 by a hydrogen conduit 7 so that hydrogen can be circulated. The tubular structure 40 is connected to the negative electrode chamber 23 at the first connection portion 31, and a check valve 33 is provided near the first connection portion 31. The mass transfer direction of the check valve 33 is the direction from the negative electrode chamber 23 to the tubular structure 40. Further, the tubular structure 40 is connected to the hydrogen conduit 7 at the second connection portion 32, and a check valve 34 is provided near the second connection portion 32. The direction of mass transfer of the check valve 34 is the direction from the tubular structure 40 to the hydrogen conduit 7. From the above, the hydrogen flowing into the hydrogen conduit 7 from the hydrogen supply unit 1 passes through the negative electrode chamber 23 and the tubular structure 40 and then returns to the negative electrode chamber 23 through the hydrogen conduit 7 again. In FIG. 1, the second connection portion 32 is provided on the hydrogen conduit 7. However, the present invention is not limited thereto, and may be, for example, the negative electrode chamber 23 or the hydrogen supply portion 1. Further, the fuel cell system is configured in a closed system in which hydrogen exists only inside the fuel cell system and does not flow out to the outside.

図2は、本発明による図1と異なる燃料電池システムの接続構成図である。図2では、管状構造物40は第一の接続部31で負極室23とのみ接続しており、図1と異なる点は、第2の接続部32、逆止弁34を具備しない点、及び、管状構造物40の末端が閉じられて点である。従って、水素は水素導管7から負極室23を通り管状構造物40に至った後、再び負極室23に戻る構成になっている。図2においても燃料電池システムは、水素が外部に流出しない閉鎖系で構成されている。   FIG. 2 is a connection configuration diagram of a fuel cell system different from FIG. 1 according to the present invention. In FIG. 2, the tubular structure 40 is connected only to the negative electrode chamber 23 at the first connection portion 31. The difference from FIG. 1 is that the second connection portion 32 and the check valve 34 are not provided. The end of the tubular structure 40 is the point that is closed. Accordingly, hydrogen is configured to return from the hydrogen conduit 7 to the tubular structure 40 through the negative electrode chamber 23 and then return to the negative electrode chamber 23 again. Also in FIG. 2, the fuel cell system is configured as a closed system in which hydrogen does not flow out.

図1、図2に示す閉鎖系燃料電池システムにおいて、水素を負極室23に供給した後、未反応水素を負極室23から排出し、再度負極室23に戻す水素フロー方法として、例えば管状構造物40にポンプをつけて、負極室23の水素を強制的に管状構造物40に送り込む方法がある。これによると、系内に水素フロー専用のポンプが必要であり、体積や電力量の観点から不利である。   In the closed system fuel cell system shown in FIGS. 1 and 2, as a hydrogen flow method for supplying unreacted hydrogen from the negative electrode chamber 23 after supplying hydrogen to the negative electrode chamber 23 and returning it to the negative electrode chamber 23 again, for example, a tubular structure There is a method in which a pump is attached to 40 and hydrogen in the negative electrode chamber 23 is forcibly fed into the tubular structure 40. According to this, a pump dedicated to hydrogen flow is necessary in the system, which is disadvantageous from the viewpoint of volume and electric energy.

そこで本発明では、系内に圧力の変動を生じさせることにより、断続的に水素を負極室23から排出した後に、再度戻す方法とした。詳しくは、負極室23を高圧にすることにより負極室内23の水素を管状構造物40に移動させ、負極20での水素消費に伴い系内が減圧すると、それに伴い管状構造物40から負極室23に、あるいは、管状構造物40から水素導管7や水素供給部1を通って負極室23に水素が移動し、電気化学反応に供せられることとなっている。   Therefore, in the present invention, the pressure is changed in the system so that hydrogen is intermittently discharged from the negative electrode chamber 23 and then returned again. Specifically, by making the negative electrode chamber 23 high in pressure, the hydrogen in the negative electrode chamber 23 is moved to the tubular structure 40, and when the system is depressurized as the hydrogen is consumed in the negative electrode 20, the tubular structure 40 moves from the negative electrode chamber 23 accordingly. Alternatively, hydrogen moves from the tubular structure 40 through the hydrogen conduit 7 and the hydrogen supply unit 1 to the negative electrode chamber 23 to be subjected to an electrochemical reaction.

このような圧力変動を生じせしめるために、図1の水素供給部1を図3〜図7に示す構成にして、燃料電池システムを構築した。尚、図3〜図7は図1を基としたが、図2の接続構成の燃料電池システムにも適用可能である。   In order to cause such pressure fluctuations, a fuel cell system was constructed with the hydrogen supply unit 1 of FIG. 1 configured as shown in FIGS. 3 to 7 are based on FIG. 1, but can be applied to the fuel cell system having the connection configuration shown in FIG.

図3は液体を水素発生反応物とする場合の燃料電池システムの構成図である。無機水素化物に水を供給して加水分解し、水素を発生させる。水素供給部1を、無機水素化物を貯蔵し、水素発生反応を起こす水素反応部2、反応のための水及び反応を活性化する触媒を混合した触媒水溶液を貯蔵する液体貯蔵部3で構成し、水素反応部2と液体貯蔵部3とは液導管8で接続して触媒水溶液が水素反応部2に移動することを可能とした。液体貯蔵部3には外気取込口5を設け、液体貯蔵部3内圧が外気圧で一定になるようにした。更に、液導管8に逆止弁4を設け、触媒水溶液の液体貯蔵部3への逆流を防止した。   FIG. 3 is a configuration diagram of a fuel cell system when a liquid is a hydrogen generation reactant. Hydrolysis is performed by supplying water to the inorganic hydride to generate hydrogen. The hydrogen supply unit 1 is composed of a hydrogen reaction unit 2 that stores inorganic hydrides and causes a hydrogen generation reaction, and a liquid storage unit 3 that stores an aqueous catalyst solution in which water for reaction and a catalyst for activating the reaction are mixed. The hydrogen reaction unit 2 and the liquid storage unit 3 are connected by a liquid conduit 8 to allow the aqueous catalyst solution to move to the hydrogen reaction unit 2. The liquid storage unit 3 is provided with an outside air intake port 5 so that the internal pressure of the liquid storage unit 3 is constant at the external pressure. Further, a check valve 4 is provided in the liquid conduit 8 to prevent the back flow of the aqueous catalyst solution to the liquid storage unit 3.

水素反応部2、水素導管7、負極室23、管状構造物40で構成される水素存在部位が閉鎖系になっている。この水素存在部位は、負極20での水素消費に伴い減圧する。内圧が液体貯蔵部3内圧より低くなると触媒水溶液が水素反応部2に移動し、水素反応部2中の無機水素化物と接触すると水素が発生し、水素存在部位の内圧が上昇する。水素存在部位の内圧が液体貯蔵部3内圧より高くなると、逆止弁4が働き、触媒水溶液の移動が停止し水素発生が停止する。発電部が運転し続けると、以上の水素発生、停止を繰り返すため、水素存在部位の内圧が一定幅で上下を繰り返しながら運転し続けることとなる。   The hydrogen existence part comprised by the hydrogen reaction part 2, the hydrogen conduit | pipe 7, the negative electrode chamber 23, and the tubular structure 40 is a closed system. This hydrogen existing site is depressurized as the hydrogen is consumed in the negative electrode 20. When the internal pressure becomes lower than the internal pressure of the liquid storage unit 3, the aqueous catalyst solution moves to the hydrogen reaction unit 2, and when it comes into contact with the inorganic hydride in the hydrogen reaction unit 2, hydrogen is generated and the internal pressure of the hydrogen existing site increases. When the internal pressure of the hydrogen existing site becomes higher than the internal pressure of the liquid storage unit 3, the check valve 4 works, the movement of the catalyst aqueous solution stops, and the hydrogen generation stops. If the power generation unit continues to operate, the above-described generation and stop of hydrogen are repeated, so that the operation continues while the internal pressure of the hydrogen-existing site repeats up and down with a constant width.

本実施例では、無機水素化物に水素化ホウ素ナトリウムの粉末を、触媒水溶液に20wt%リンゴ酸水溶液を用いた。これらの反応物を接触させると即座に水素を発生させる事が可能となる。本発明では、水素発生や水素フローのために電力を消費する事が無いため、燃料電池システムで発生した電力を全て外部装置で用いる事が出来、また、ポンプを設けない事によりシステム体積を小さくする事が可能となったため、有効出力やエネルギー密度を飛躍的に向上する事が可能となった。   In this example, sodium borohydride powder was used as the inorganic hydride, and a 20 wt% malic acid aqueous solution was used as the catalyst aqueous solution. When these reactants are brought into contact with each other, hydrogen can be generated immediately. In the present invention, since power is not consumed for hydrogen generation or hydrogen flow, all the power generated by the fuel cell system can be used by an external device, and the system volume can be reduced by not providing a pump. As a result, effective output and energy density can be dramatically improved.

図4は液体を水素発生反応物とする場合の燃料電池システムの構成図である。水素発生方法は、具体的には、アルコール水溶液を水素発生触媒に供給して改質し、水素を発生させる。水素供給部1を、水素発生触媒を担持し、水素発生反応を起こす改質器6、アルコール水溶液を貯蔵する液体貯蔵部3で構成し、改質器6と液体貯蔵部3とは液導管8で接続してアルコール水溶液が改質器6に移動することを可能とした。   FIG. 4 is a configuration diagram of a fuel cell system when a liquid is a hydrogen generation reactant. Specifically, in the hydrogen generation method, an alcohol aqueous solution is supplied to a hydrogen generation catalyst to be reformed to generate hydrogen. The hydrogen supply unit 1 includes a reformer 6 that carries a hydrogen generation catalyst and causes a hydrogen generation reaction, and a liquid storage unit 3 that stores an aqueous alcohol solution. The reformer 6 and the liquid storage unit 3 are connected to a liquid conduit 8. And the alcohol aqueous solution can be moved to the reformer 6.

液体貯蔵部3には外気取込口5を設け、液体貯蔵部3内圧が外気圧で一定になるようにした。更に、液導管8に送液ポンプ15を設け、アルコール水溶液の移動を可能とし、液体貯蔵部3への逆流を防止した。本発明では送液ポンプ15を動かす電力が必要であるため、発電部で発電した電力を昇圧する回路部55を設け、回路部55と送液ポンプ15とをスイッチ50を通して信号線9で電気接続した。スイッチ50は負極室23内圧変動に伴ってON/OFFし、低圧時にスイッチ50がON、高圧時にスイッチ50がOFFになるようにした。従って、低圧時のみ送液ポンプ15が作動する事となった。尚、回路部55の出力電力は外部装置に供給されるものであるが、電力の一部を送液ポンプ15に供給するようにした。   The liquid storage unit 3 is provided with an outside air intake port 5 so that the internal pressure of the liquid storage unit 3 is constant at the external pressure. Further, a liquid feed pump 15 is provided in the liquid conduit 8 to enable the movement of the aqueous alcohol solution and to prevent back flow to the liquid storage unit 3. In the present invention, since electric power for moving the liquid feeding pump 15 is required, a circuit unit 55 for boosting the electric power generated by the power generation unit is provided, and the circuit unit 55 and the liquid feeding pump 15 are electrically connected through the switch 50 through the signal line 9. did. The switch 50 is turned on / off in accordance with the internal pressure fluctuation of the negative electrode chamber 23, so that the switch 50 is turned on when the pressure is low and the switch 50 is turned off when the pressure is high. Therefore, the liquid feed pump 15 is operated only at a low pressure. The output power of the circuit unit 55 is supplied to an external device, but a part of the power is supplied to the liquid feeding pump 15.

改質器6、水素導管7、負極室23、管状構造物40で構成される水素存在部位が閉鎖系になっている。この水素存在部位は、負極20での水素消費に伴い減圧する。内圧が低下するとスイッチ50がON状態になり、アルコール水溶液が改質器6に移動し、改質器6中の水素発生触媒と接触すると水素が発生し、水素存在部位の内圧が上昇する。水素存在部位の内圧上昇により、スイッチ50がOFF状態となり、アルコール水溶液の移動が停止し水素発生が停止する。発電部が運転し続けると、以上の水素発生、停止を繰り返すため、水素存在部位の内圧が一定幅で上下を繰り返しながら運転し続けることとなる。この時、送液ポンプ15は断続的な運転を行うため消費電力量が小さく、更に、水素フロー専用のポンプや制御装置を設けないため、小体積化、低電力化に効果的であった。   A hydrogen existence site constituted by the reformer 6, the hydrogen conduit 7, the negative electrode chamber 23, and the tubular structure 40 is a closed system. This hydrogen existing site is depressurized as the hydrogen is consumed in the negative electrode 20. When the internal pressure decreases, the switch 50 is turned on, the alcohol aqueous solution moves to the reformer 6, and when it comes into contact with the hydrogen generating catalyst in the reformer 6, hydrogen is generated, and the internal pressure of the hydrogen existence site increases. Due to the increase in the internal pressure of the hydrogen existing site, the switch 50 is turned off, the movement of the aqueous alcohol solution stops, and the hydrogen generation stops. If the power generation unit continues to operate, the above-described generation and stop of hydrogen are repeated, so that the operation continues while the internal pressure of the hydrogen-existing site repeats up and down with a constant width. At this time, since the liquid feed pump 15 performs intermittent operation, the amount of power consumption is small, and furthermore, since a pump and a control device dedicated to hydrogen flow are not provided, it is effective for reducing the volume and reducing the power.

図5は液体を水素発生反応物とする場合の燃料電池システムの構成図である。アルコール水溶液を水素発生触媒に供給して改質し、水素を発生させる。水素供給部1を、水素発生触媒を担持し、水素発生反応を起こす改質器6、アルコール水溶液を貯蔵する液体貯蔵部3で構成し、改質器6と液体貯蔵部3とは液導管8で接続してアルコール水溶液が改質器6に移動することを可能とした。液体貯蔵部3には外気取込口5を設け、液体貯蔵部3内圧が外気圧で一定になるようにした。更に、液導管8に送液ポンプ15を設け、アルコール水溶液の移動を可能とし、液体貯蔵部3への逆流を防止した。本発明では水素発生反応のために改質器6に具備されたヒータ12への電力供給を断続的に行うため、発電部で発電した電力を昇圧する回路部55を設け、回路部55とヒータ12とをスイッチ50を通して信号線9で電気接続した。スイッチ50は負極室23内圧変動に伴ってON/OFFし、低圧時にスイッチ50がON、高圧時にスイッチ50がOFFになるようにした。従って、低圧時のみヒータ12が作動する事となった。尚、回路部55の出力電力は外部装置に供給されるものであるが、電力の一部をヒータ12に供給するようにしたものである。   FIG. 5 is a configuration diagram of a fuel cell system when a liquid is a hydrogen generation reactant. An aqueous alcohol solution is supplied to the hydrogen generation catalyst for reforming to generate hydrogen. The hydrogen supply unit 1 includes a reformer 6 that carries a hydrogen generation catalyst and causes a hydrogen generation reaction, and a liquid storage unit 3 that stores an aqueous alcohol solution. The reformer 6 and the liquid storage unit 3 are connected to a liquid conduit 8. And the alcohol aqueous solution can be moved to the reformer 6. The liquid storage unit 3 is provided with an outside air intake port 5 so that the internal pressure of the liquid storage unit 3 is constant at the external pressure. Further, a liquid feed pump 15 is provided in the liquid conduit 8 to enable the movement of the aqueous alcohol solution and to prevent back flow to the liquid storage unit 3. In the present invention, in order to intermittently supply power to the heater 12 provided in the reformer 6 for the hydrogen generation reaction, a circuit unit 55 that boosts the power generated by the power generation unit is provided, and the circuit unit 55 and the heater are provided. 12 is electrically connected to the signal line 9 through the switch 50. The switch 50 is turned on / off in accordance with the internal pressure fluctuation of the negative electrode chamber 23, so that the switch 50 is turned on when the pressure is low and the switch 50 is turned off when the pressure is high. Therefore, the heater 12 is operated only at a low pressure. The output power of the circuit unit 55 is supplied to an external device, but a part of the power is supplied to the heater 12.

改質器6、水素導管7、負極室23、管状構造物40で構成される水素存在部位が閉鎖系になっている。この水素存在部位は、負極20での水素消費に伴い減圧する。内圧が低下するとスイッチ50がON状態になりヒータ12が作動して水素発生触媒が加熱される。するとアルコール水溶液が揮発し、水素発生触媒と接触して水素が発生し、水素存在部位の内圧が上昇する。水素存在部位の内圧上昇により、スイッチ50がOFF状態となり、ヒータ12の加熱が停止してアルコール水溶液が揮発しなくなるため、水素発生が停止する。発電部が運転し続けると、以上の水素発生、停止を繰り返すため、水素存在部位の内圧が一定幅で上下を繰り返しながら運転し続けることとなる。これにより、ヒータ12での電力消費が断続的に行われるため消費電力量が小さく、更に、水素フロー専用のポンプや制御装置を設けないため、小体積化、低電力化に効果的であった。   A hydrogen existence site constituted by the reformer 6, the hydrogen conduit 7, the negative electrode chamber 23, and the tubular structure 40 is a closed system. This hydrogen existing site is depressurized as the hydrogen is consumed in the negative electrode 20. When the internal pressure decreases, the switch 50 is turned on and the heater 12 operates to heat the hydrogen generating catalyst. As a result, the alcohol aqueous solution volatilizes and comes into contact with the hydrogen generating catalyst to generate hydrogen, thereby increasing the internal pressure of the hydrogen existing site. Due to the increase in the internal pressure of the hydrogen existing site, the switch 50 is turned off, and the heating of the heater 12 stops and the aqueous alcohol solution does not volatilize, so the hydrogen generation stops. If the power generation unit continues to operate, the above-described generation and stop of hydrogen are repeated, so that the operation continues while the internal pressure of the hydrogen-existing site repeats up and down with a constant width. As a result, the power consumption in the heater 12 is intermittently performed, so that the amount of power consumption is small, and further, since a pump and a control device dedicated to hydrogen flow are not provided, it is effective in reducing the volume and reducing the power consumption. .

図6は加熱して水素を発生させる方法を用いた場合の燃料電池システムの接続構成図である。有機水素化物や金属水素化物の熱分解や、カーボンのような水素吸着物質の加熱脱離により水素を発生させる。ここでは金属水素化物の内、水素吸蔵合金を用いた。水素供給部1に接してヒータ12を具備し、ヒータ12への電力供給を断続的に行うため、発電部で発電した電力を昇圧する回路部55を設け、回路部55とヒータ12とをスイッチ50を通して信号線9で電気接続した。スイッチ50は負極室23内圧変動に伴ってON/OFFし、低圧時にスイッチ50がON、高圧時にスイッチ50がOFFになるようにした。従って、低圧時のみヒータ12が作動する事となった。尚、回路部55の出力電力は外部装置に供給されるものであるが、電力の一部をヒータ12に供給するようにしたものである。   FIG. 6 is a connection configuration diagram of the fuel cell system when a method of generating hydrogen by heating is used. Hydrogen is generated by thermal decomposition of organic hydrides and metal hydrides, and by heat desorption of hydrogen-adsorbing substances such as carbon. Here, a hydrogen storage alloy was used among the metal hydrides. In order to intermittently supply power to the heater 12 in contact with the hydrogen supply unit 1, a circuit unit 55 that boosts the power generated by the power generation unit is provided, and the circuit unit 55 and the heater 12 are switched. The signal line 9 was electrically connected through 50. The switch 50 is turned on / off in accordance with the internal pressure fluctuation of the negative electrode chamber 23, so that the switch 50 is turned on when the pressure is low and the switch 50 is turned off when the pressure is high. Therefore, the heater 12 is operated only at a low pressure. The output power of the circuit unit 55 is supplied to an external device, but a part of the power is supplied to the heater 12.

水素供給部1、水素導管7、負極室23、管状構造物40で構成される水素存在部位が閉鎖系になっている。この水素存在部位は、負極20での水素消費に伴い減圧する。内圧が低下するとスイッチ50がON状態になりヒータ12が作動して水素吸蔵合金が加熱される。すると水素が発生し、水素存在部位の内圧が上昇する。水素存在部位の内圧上昇により、スイッチ50がOFF状態となり、ヒータ12の加熱が停止する。その結果、水素供給部1から外気への熱の放出と水素発生による吸熱により水素吸蔵合金の温度が低下し、いずれ水素発生が停止する。発電部が運転し続けると、以上の水素発生、停止を繰り返すため、水素存在部位の内圧が一定幅で上下を繰り返しながら運転し続けることとなる。これにより、ヒータ12での電力消費が断続的に行われるため消費電力量が小さく、更に、ポンプや制御装置を設けないため、小体積化、低電力化に効果的であった。   The hydrogen existence part comprised by the hydrogen supply part 1, the hydrogen conduit | pipe 7, the negative electrode chamber 23, and the tubular structure 40 is a closed system. This hydrogen existing site is depressurized as the hydrogen is consumed in the negative electrode 20. When the internal pressure decreases, the switch 50 is turned on and the heater 12 operates to heat the hydrogen storage alloy. Then, hydrogen is generated and the internal pressure of the hydrogen existing site increases. The switch 50 is turned off due to the increase in the internal pressure of the hydrogen existence site, and the heating of the heater 12 is stopped. As a result, the temperature of the hydrogen storage alloy decreases due to the release of heat from the hydrogen supply unit 1 to the outside air and the endothermic heat generated by the hydrogen generation, and the hydrogen generation stops. If the power generation unit continues to operate, the above-described generation and stop of hydrogen are repeated, so that the operation continues while the internal pressure of the hydrogen-existing site repeats up and down with a constant width. As a result, the power consumption in the heater 12 is intermittently performed, so that the amount of power consumption is small. Further, since no pump or control device is provided, it is effective for reducing the volume and reducing the power consumption.

図7は液体を水素発生反応物とする場合の燃料電池システムの構成図である。無機水素化物水溶液中に水素発生触媒を浸漬して、水素を発生させる。水素供給部1は底部に無機水素化物水溶液を貯蔵し、また、内部に接触制御手段11に接続された水素発生触媒24を設置した。また、接触制御手段11への電力供給を断続的に行うため、発電部で発電した電力を昇圧する回路部55、接触制御手段への電力供給を制御する制御回路56を設け、制御回路56とスイッチ50とを、また、回路部55と制御回路56と接触制御手段11とを電気接続した。スイッチ50は負極室23内圧変動に伴ってON/OFFし、低圧時にスイッチ50がON、高圧時にスイッチ50がOFFになるようにした。そしてスイッチ50のON/OFFの切り替わり時に電力が接触制御手段11に供給されるようにした。尚、回路部55の出力電力は外部装置に供給されるものであるが、電力の一部を接触制御手段11に供給するようにしたものである。   FIG. 7 is a configuration diagram of a fuel cell system when a liquid is a hydrogen generation reactant. Hydrogen is generated by immersing the hydrogen generating catalyst in an inorganic hydride aqueous solution. The hydrogen supply unit 1 stored an aqueous solution of an inorganic hydride at the bottom, and a hydrogen generation catalyst 24 connected to the contact control means 11 was installed inside. In addition, in order to intermittently supply power to the contact control unit 11, a circuit unit 55 that boosts the power generated by the power generation unit and a control circuit 56 that controls power supply to the contact control unit are provided. The switch 50 was electrically connected to the circuit unit 55, the control circuit 56, and the contact control means 11. The switch 50 is turned on / off in accordance with the internal pressure fluctuation of the negative electrode chamber 23, so that the switch 50 is turned on when the pressure is low and the switch 50 is turned off when the pressure is high. Electric power is supplied to the contact control means 11 when the switch 50 is switched ON / OFF. The output power of the circuit unit 55 is supplied to an external device, but a part of the power is supplied to the contact control means 11.

接触制御手段11は、モータに水素発生触媒24を接続したカムまたは偏心板を取りつけ、モータの回転に伴い水素発生触媒24が上下するようにした。スイッチ50のON/OFF切り替わり時の電力供給により、モータは半回転し、スイッチ50がONに切り替わる時水素発生触媒24が無機水素化物水溶液に浸漬され、スイッチ50がOFFに切り替わる時水素発生触媒24が無機水素化物水溶液から取り出されるようにした。   The contact control means 11 is provided with a cam or an eccentric plate in which the hydrogen generating catalyst 24 is connected to the motor so that the hydrogen generating catalyst 24 moves up and down as the motor rotates. When the switch 50 is turned ON / OFF, the motor is rotated halfway. When the switch 50 is turned ON, the hydrogen generating catalyst 24 is immersed in the inorganic hydride aqueous solution. When the switch 50 is turned OFF, the hydrogen generating catalyst 24 is turned ON. Was removed from the aqueous inorganic hydride solution.

水素供給部1、水素導管7、負極室23、管状構造物40で構成される水素存在部位が閉鎖系になっている。この水素存在部位は、負極20での水素消費に伴い減圧する。内圧が低下すると無機水素化物水溶液と水素発生触媒24が接触して水素が発生する。それに伴って水素存在部位の内圧が上昇すると、水素発生触媒24と無機水素化物水溶液が離れ、水素発生が停止する。発電部が運転し続けると、以上の水素発生、停止を繰り返すため、水素存在部位の内圧が一定幅で上下を繰り返しながら運転し続けることとなる。   The hydrogen existence part comprised by the hydrogen supply part 1, the hydrogen conduit | pipe 7, the negative electrode chamber 23, and the tubular structure 40 is a closed system. This hydrogen existing site is depressurized as the hydrogen is consumed in the negative electrode 20. When the internal pressure decreases, the aqueous inorganic hydride solution and the hydrogen generation catalyst 24 come into contact with each other to generate hydrogen. Accordingly, when the internal pressure of the hydrogen existence site increases, the hydrogen generation catalyst 24 and the inorganic hydride aqueous solution are separated from each other, and the hydrogen generation is stopped. If the power generation unit continues to operate, the above-described generation and stop of hydrogen are repeated, so that the operation continues while the internal pressure of the hydrogen-existing site repeats up and down with a constant width.

本実施例では、無機水素化物水溶液に5wt%水素化ホウ素ナトリウム水溶液を、触媒に白金微粒子を担持したカーボンを用いた。これらの反応物を接触させると即座に水素を発生させる事が可能となる。本発明では、接触制御手段11での電力消費が断続的に行われるため消費電力量が小さく、更に、ポンプを設けないため、小体積化、低電力化に効果的であった。   In this example, a 5 wt% sodium borohydride aqueous solution was used as the inorganic hydride aqueous solution, and carbon carrying platinum fine particles as the catalyst was used. When these reactants are brought into contact with each other, hydrogen can be generated immediately. In the present invention, since the power consumption in the contact control means 11 is intermittently performed, the amount of power consumption is small, and further, since no pump is provided, it is effective in reducing the volume and reducing the power.

図8は本発明で用いるスイッチの概略断面図である。筐体54に貫通孔を設け、貫通孔を覆うようにして金属性の導通部52を配置する。導通部52と筐体54とはベローズ53にて接続しており、筐体52内部の物質が貫通孔から外部に流出することを防いでいる。筐体54外部には固定リード51を配しており、固定リード51は貫通孔により断絶されている。しかし導通部52が筐体54に密着すると導通部52は固定リード51と接触し、電気伝導が可能となる。導通部52は、筐体54内圧と外圧の差により動き、筐体54内圧が低い時は固定リード51が導通部52により電気接続され、筐体54内圧が高い時は導通部52が固定リード51と離されて電気的に断絶される。従って、上記方法により水素圧が変動すると、それに伴って自動的にスイッチがON/OFFされることとなる。本構造によると、圧力センサや制御回路が不要であり、電力を消費することなく作動させることが可能である。   FIG. 8 is a schematic sectional view of a switch used in the present invention. A through hole is provided in the housing 54, and the metallic conductive portion 52 is disposed so as to cover the through hole. The conducting portion 52 and the housing 54 are connected by a bellows 53, and the substance inside the housing 52 is prevented from flowing out from the through hole. A fixed lead 51 is disposed outside the housing 54, and the fixed lead 51 is disconnected by a through hole. However, when the conducting portion 52 is in close contact with the housing 54, the conducting portion 52 comes into contact with the fixed lead 51, and electrical conduction is possible. The conducting portion 52 moves due to the difference between the internal pressure and the external pressure of the housing 54. When the internal pressure of the housing 54 is low, the fixed lead 51 is electrically connected by the conductive portion 52. When the internal pressure of the housing 54 is high, the conductive portion 52 is fixed. Separated from 51, it is electrically disconnected. Therefore, when the hydrogen pressure is changed by the above method, the switch is automatically turned ON / OFF accordingly. According to this structure, a pressure sensor and a control circuit are unnecessary, and it can be operated without consuming electric power.

図9は、本発明による燃料電池システムの接続構成図である。燃料電池で消費する水素を蓄え、燃料電池の発電部に水素を送る水素供給部1と、水素が電気化学反応する負極20、酸素が電気化学反応する正極21、両電極に挟持されて接合された高分子電解質膜22、及び、水素を滞留させるために負極20に接する部位に具備された負極室23から成る発電部と、発電部で未反応の水素、及び、それに含まれる物質が流入する管状構造物40とから構成されている。水素供給部1は負極室23と水素導管7にて連結され、水素の流通が可能となっている。   FIG. 9 is a connection configuration diagram of the fuel cell system according to the present invention. The hydrogen supply unit 1 that stores hydrogen consumed by the fuel cell and sends the hydrogen to the power generation unit of the fuel cell, the negative electrode 20 in which hydrogen undergoes an electrochemical reaction, the positive electrode 21 in which oxygen undergoes an electrochemical reaction, and both electrodes are sandwiched and joined. The polymer electrolyte membrane 22 and the power generation unit composed of the negative electrode chamber 23 provided at the portion in contact with the negative electrode 20 for retaining hydrogen, unreacted hydrogen and substances contained therein flow into the power generation unit. It is comprised from the tubular structure 40. FIG. The hydrogen supply unit 1 is connected to the negative electrode chamber 23 by a hydrogen conduit 7 so that hydrogen can be circulated.

管状構造物40は負極室23と第一の接続部31にて接続されており、第一の接続部31の近くに逆止弁33を設けた。逆止弁33の物質移動方向は、負極室23から管状構造物40の方向である。更に、管状構造物40は第二の接続部32にて、水素導管7と接続し、第二の接続部32の近くに逆止弁34を設けた。逆止弁34の物質移動方向は、管状構造物40から水素導管7の方向である。以上から、水素供給部1から水素導管7に流入した水素は、負極室23、管状構造物40を通った後、再び水素導管7を通り、負極室23に戻ることとなっている。更に水素導管7上の水素供給部1から第二の接続部32の間に圧力調整弁13を設置した。尚、図9では第二の接続部32を水素導管7上に設けたが、その限りで無く、例えば、負極室23としても良い。また燃料電池システムは、水素が燃料電池システムの内部にのみ存在し、外部には流出しない構成となっており、閉鎖系で構成されている。   The tubular structure 40 is connected to the negative electrode chamber 23 at the first connection portion 31, and a check valve 33 is provided near the first connection portion 31. The mass transfer direction of the check valve 33 is the direction from the negative electrode chamber 23 to the tubular structure 40. Further, the tubular structure 40 is connected to the hydrogen conduit 7 at the second connection portion 32, and a check valve 34 is provided near the second connection portion 32. The direction of mass transfer of the check valve 34 is the direction from the tubular structure 40 to the hydrogen conduit 7. From the above, the hydrogen flowing into the hydrogen conduit 7 from the hydrogen supply unit 1 passes through the negative electrode chamber 23 and the tubular structure 40 and then returns to the negative electrode chamber 23 through the hydrogen conduit 7 again. Further, the pressure regulating valve 13 was installed between the hydrogen supply unit 1 on the hydrogen conduit 7 and the second connection unit 32. In FIG. 9, the second connection portion 32 is provided on the hydrogen conduit 7. However, the present invention is not limited thereto, and may be, for example, the negative electrode chamber 23. Further, the fuel cell system is configured in a closed system in which hydrogen exists only inside the fuel cell system and does not flow out to the outside.

系内に圧力の変動を生じさせることにより、断続的に水素を負極室23から排出した後に、再度戻す方法とした。詳しくは、負極室23を高圧にすることにより負極室内23の水素を管状構造物40に移動させ、負極20での水素消費に伴い系内が減圧すると、それに伴い管状構造物40から負極室23に、あるいは、管状構造物40から水素導管7や水素供給部1を通って負極室23に水素が移動し、電気化学反応に供せられることとなっている。   By causing pressure fluctuation in the system, hydrogen was intermittently discharged from the negative electrode chamber 23 and then returned again. Specifically, by making the negative electrode chamber 23 high in pressure, the hydrogen in the negative electrode chamber 23 is moved to the tubular structure 40, and when the system is depressurized as the hydrogen is consumed in the negative electrode 20, the tubular structure 40 moves from the negative electrode chamber 23 accordingly. Alternatively, hydrogen moves from the tubular structure 40 through the hydrogen conduit 7 and the hydrogen supply unit 1 to the negative electrode chamber 23 to be subjected to an electrochemical reaction.

圧力変動を生じせしめるために、まず、水素導管7、負極室23、管状構造物40で構成される水素存在部位が閉鎖系とした。更に圧力調整弁13の開弁圧を閉弁圧より高くし、弁の開閉にヒステリシスを持たせた。つまり、発電部での水素消費により負極室23が減圧され、水素供給部1と負極室23の差圧が圧力調整弁13の開弁圧を超えると、圧力調整弁13が開弁し、水素が供給される。その結果負極室23の内圧が上昇し、水素供給部1と負極室23の差圧が開弁圧より小さくなる。しかし閉弁圧が開弁圧より小さいため、差圧が閉弁圧を下回るまで圧力調整弁13は開弁し続け、水素が供給され続ける事となる。その結果負極室23の内圧は、下限が水素供給部1と開弁圧の差と略同一の値となり、上限が水素供給部1と閉弁圧の差と略同一の値となる。発電部が運転し続けると、水素存在部位の内圧が一定幅で上下を繰り返しながら運転し続けることとなる。   In order to cause the pressure fluctuation, first, the hydrogen existence site constituted by the hydrogen conduit 7, the negative electrode chamber 23, and the tubular structure 40 was closed. Furthermore, the valve opening pressure of the pressure regulating valve 13 was made higher than the valve closing pressure, and hysteresis was given to the opening and closing of the valve. That is, when the negative electrode chamber 23 is depressurized due to the consumption of hydrogen in the power generation unit and the differential pressure between the hydrogen supply unit 1 and the negative electrode chamber 23 exceeds the valve opening pressure of the pressure adjustment valve 13, the pressure adjustment valve 13 opens and the hydrogen Is supplied. As a result, the internal pressure of the negative electrode chamber 23 increases, and the differential pressure between the hydrogen supply unit 1 and the negative electrode chamber 23 becomes smaller than the valve opening pressure. However, since the valve closing pressure is smaller than the valve opening pressure, the pressure regulating valve 13 continues to be opened and hydrogen is continuously supplied until the differential pressure falls below the valve closing pressure. As a result, the lower limit of the internal pressure of the negative electrode chamber 23 is approximately the same as the difference between the hydrogen supply unit 1 and the valve opening pressure, and the upper limit is approximately the same value as the difference between the hydrogen supply unit 1 and the valve closing pressure. When the power generation unit continues to operate, the operation continues while the internal pressure of the hydrogen existence site repeats up and down with a constant width.

水素供給方法は、水素吸蔵合金、高圧水素ボンベなどを用い、水素供給部1内圧は常に負極室23以上になるようにした。本実施例では、常温で水素を発生する事が可能な水素吸蔵合金であるLaNi5を用いた。 As a hydrogen supply method, a hydrogen storage alloy, a high-pressure hydrogen cylinder, or the like was used, and the internal pressure of the hydrogen supply unit 1 was always equal to or higher than the negative electrode chamber 23. In this example, LaNi 5 that is a hydrogen storage alloy capable of generating hydrogen at room temperature was used.

図10は本発明で用いる圧力調整弁の概略断面図である。第一の積層板66、第二の積層板67、第三の積層板68を三層に積層し、第一の積層板66と第二の積層板67の間に流入流路61を、第二の積層板67と第三の積層板68の間に流出流路62を構成した。また第一の積層板66下部と第三の積層板68上部に接してそれぞれシリコーンシート63、64を取り付けた。第一の積層板66、シリコーンシート63、第二の積層板67、シリコーンシート64、第三の積層板68から成る積層体を、流入流路61及び流出流路62を貫通するように孔を通した。また、流出流路62に弁70を、流入流路61にストッパー71を設置し、弁70及びストッパー71の中央部に支柱72を通して固定し、弁70とストッパー71が連動して動くようにした。支柱72は、前出した積層体を貫通する孔に設置し、弁70底面とシリコーンシート64を、ストッパー71上面とシリコーンシート63を接着固定した。これにより、弁70、ストッパー71及び支柱72がシリコーンシート63、64のたわみによる応力をうけつつ移動するようになる。そこで、弁70が第二の積層板67下部に密着した時、第二の積層板67に空いた孔を弁70が塞ぐ為、流入流路61と流出流路62は遮断される。一方、弁70が下に移動した時、ストッパー71が第二の積層板67上部と接触し、それ以上弁70が下がることを防止する。   FIG. 10 is a schematic sectional view of a pressure regulating valve used in the present invention. The first laminated plate 66, the second laminated plate 67, and the third laminated plate 68 are laminated in three layers, and the inflow channel 61 is provided between the first laminated plate 66 and the second laminated plate 67. An outflow channel 62 was formed between the second laminated plate 67 and the third laminated plate 68. Silicone sheets 63 and 64 were attached in contact with the lower part of the first laminated plate 66 and the upper part of the third laminated plate 68, respectively. The laminated body composed of the first laminated plate 66, the silicone sheet 63, the second laminated plate 67, the silicone sheet 64, and the third laminated plate 68 is provided with a hole so as to penetrate the inflow channel 61 and the outflow channel 62. I passed. Further, a valve 70 is installed in the outflow passage 62, and a stopper 71 is installed in the inflow passage 61. The valve 70 and the stopper 71 are fixed to each other through a column 72 so that the valve 70 and the stopper 71 move in conjunction with each other. . The support column 72 was installed in a hole penetrating the above laminated body, and the bottom surface of the valve 70 and the silicone sheet 64 were bonded and the upper surface of the stopper 71 and the silicone sheet 63 were bonded and fixed. Thereby, the valve 70, the stopper 71, and the support | pillar 72 come to receive the stress by the bending of the silicone sheets 63 and 64. Therefore, when the valve 70 comes into close contact with the lower portion of the second laminated plate 67, the valve 70 closes the hole formed in the second laminated plate 67, so that the inflow channel 61 and the outflow channel 62 are blocked. On the other hand, when the valve 70 moves downward, the stopper 71 comes into contact with the upper portion of the second laminated plate 67 and prevents the valve 70 from further dropping.

更に、第三の積層板68の孔にラッチ65を取り付け、支柱72下部に突起73を設置し、弁70が上下移動する際ラッチ65と突起73とが干渉するようにした。ここで、弁70が移動する時の力が、上への移動時と比較して下への移動時の方が大きくなるように、ラッチ65を取り付けた。また、ばね74を第三の積層板68下部に設置し、ばね74が支柱72を上に押し上げる方向に力が加わるようにした。   Further, a latch 65 is attached to the hole of the third laminated plate 68, and a projection 73 is installed below the support column 72 so that the latch 65 and the projection 73 interfere when the valve 70 moves up and down. Here, the latch 65 is attached so that the force when the valve 70 moves is larger when the valve 70 is moved downward than when the valve 70 is moved upward. Moreover, the spring 74 was installed in the lower part of the 3rd laminated board 68, and the force was added to the direction where the spring 74 pushes up the support | pillar 72 upward.

積層体の上部空間が燃料電池システム外部、下部空間が負極室23に連結された水素導管7と接続されており、下部空間は流出流路62と連結されている。流入流路61は水素供給部1と接続されている。従って、シリコーンシート63上部からは大気圧が、シリコーンシート64下部からは水素導管7内の水素圧を受けており、更に支柱72下部からばね74の力が加わり、これらの力の合成で、弁70が上下することとなる。つまり、水素導管7内圧が大気圧よりばね力相当の圧力低下し、さらにラッチ65の干渉を超えるほどの圧力差が水素導管7内圧と大気圧とで生じると、弁70は下に移動して開弁し、水素供給部1から流入流路61を通って流出流路62に水素が移動する。しかし、水素の移動により水素導管7内圧が増加して大気圧に近くなると、ラッチ65の干渉を超える力が生じるため、弁70が上に移動し閉弁する。ラッチ65により、弁70が開弁する場合と閉弁する場合とで、水素導管7内圧と大気圧の差がことなるため、水素導管7内圧は変動を繰り返すこととなる。このような圧力調整弁13の構造により、水素吸蔵合金を内部に格納した水素供給部1はほぼ一定の圧力で水素を発生させるにも拘らず、燃料電池システム内圧を変動させる事が可能となった。   The upper space of the stacked body is connected to the outside of the fuel cell system, the lower space is connected to the hydrogen conduit 7 connected to the negative electrode chamber 23, and the lower space is connected to the outflow channel 62. The inflow channel 61 is connected to the hydrogen supply unit 1. Therefore, the atmospheric pressure is received from the upper part of the silicone sheet 63, and the hydrogen pressure in the hydrogen conduit 7 is received from the lower part of the silicone sheet 64. Further, the force of the spring 74 is applied from the lower part of the support column 72. 70 goes up and down. In other words, when the pressure inside the hydrogen conduit 7 is reduced by a pressure corresponding to the spring force from the atmospheric pressure, and the pressure difference that exceeds the interference of the latch 65 is generated between the internal pressure of the hydrogen conduit 7 and the atmospheric pressure, the valve 70 moves downward. The valve is opened, and hydrogen moves from the hydrogen supply unit 1 through the inflow channel 61 to the outflow channel 62. However, when the internal pressure of the hydrogen conduit 7 increases due to the movement of hydrogen and approaches the atmospheric pressure, a force exceeding the interference of the latch 65 is generated, so that the valve 70 moves upward and closes. Since the difference between the internal pressure of the hydrogen conduit 7 and the atmospheric pressure differs depending on whether the valve 70 is opened or closed by the latch 65, the internal pressure of the hydrogen conduit 7 repeatedly fluctuates. Such a structure of the pressure regulating valve 13 allows the internal pressure of the fuel cell system to be varied despite the fact that the hydrogen supply unit 1 in which the hydrogen storage alloy is stored generates hydrogen at a substantially constant pressure. It was.

図11は、本発明による燃料電池システムの接続構成図である。水素吸蔵合金の水素放出反応は吸熱反応であるため、水素供給部1は経時的に温度が低下する。また、管状構造物40に流入した水素中には、主に水蒸気が豊富に内包されている。従って、管状構造物40内の飽和水蒸気圧が低下し、水蒸気を凝縮させる事が可能となる。その結果、管状構造物40から水素導管7に流入する水素は相対湿度が低下するため適度な湿度での燃料電池運転が可能となり、負極20を水が閉塞して電圧が低下する現象を抑える効果があった。   FIG. 11 is a connection configuration diagram of the fuel cell system according to the present invention. Since the hydrogen release reaction of the hydrogen storage alloy is an endothermic reaction, the temperature of the hydrogen supply unit 1 decreases with time. In addition, the hydrogen flowing into the tubular structure 40 mainly contains abundant water vapor. Accordingly, the saturated water vapor pressure in the tubular structure 40 is reduced, and the water vapor can be condensed. As a result, the hydrogen flowing from the tubular structure 40 into the hydrogen conduit 7 has a lower relative humidity, so that the fuel cell can be operated at an appropriate humidity, and the negative electrode 20 is blocked by water and the voltage is reduced. was there.

更に管状構造物40内で凝縮した水を保持するために吸水性材料を管状構造物40内に配置することにより、燃料電池システムの姿勢を変化させても水の移動を停止する事が可能となった。   Further, by disposing a water-absorbing material in the tubular structure 40 in order to hold the water condensed in the tubular structure 40, it is possible to stop the movement of water even if the posture of the fuel cell system is changed. became.

本発明の実施例による燃料電池システムの構成図である。It is a block diagram of the fuel cell system by the Example of this invention. 本発明による他の燃料電池システムの構成図である。It is a block diagram of the other fuel cell system by this invention. 液体を水素発生反応物とする場合の燃料電池システムの構成図である。It is a block diagram of the fuel cell system in the case of using a liquid as a hydrogen generation reactant. 液体を水素発生反応物とする場合の燃料電池システムの構成図である。It is a block diagram of the fuel cell system in the case of using a liquid as a hydrogen generation reactant. 液体を水素発生反応物とする場合の燃料電池システムの接続構成図である。It is a connection block diagram of a fuel cell system when using a liquid as a hydrogen generation reactant. 加熱して水素を発生させる方法を用いた場合の燃料電池システムの接続構成図である。It is a connection block diagram of the fuel cell system at the time of using the method of heating and generating hydrogen. 液体を水素発生反応物とする場合の燃料電池システムの接続構成図である。It is a connection block diagram of a fuel cell system when using a liquid as a hydrogen generation reactant. 本発明の実施例のスイッチの断面図である。It is sectional drawing of the switch of the Example of this invention. 本発明の実施例の燃料電池システムの構成図である。It is a block diagram of the fuel cell system of the Example of this invention. 本発明の実施例の圧力調整弁の断面図である。It is sectional drawing of the pressure control valve of the Example of this invention. 本発明の実施例の燃料電池システムの構成図である。It is a block diagram of the fuel cell system of the Example of this invention.

符号の説明Explanation of symbols

1 水素供給部
2 水素反応部
3 液体貯蔵部
4 逆止弁
5 外気取込口
6 改質器
7 水素導管
8 液導管
9 信号線
11 接触制御手段
12 ヒータ
13 圧力調整弁
15 送液ポンプ
20 負極
21 正極
22 高分子電解質膜
23 負極室
24 水素発生触媒
31 第一の接続部
32 第二の接続部
33 第一の逆止弁
34 第二の逆止弁
40 管状構造物
50 スイッチ
51 固定リード
52 導通部
53 ベローズ
54 筐体
55 回路部
56 制御回路
61 流入流路
62 流出流路
63 シリコーンシート
64 シリコーンシート
65 ラッチ
66 第一の積層板
67 第二の積層板
68 第三の積層板
70 弁
71 ストッパー
72 支柱
73 突起
DESCRIPTION OF SYMBOLS 1 Hydrogen supply part 2 Hydrogen reaction part 3 Liquid storage part 4 Check valve 5 Outside air intake 6 Reformer 7 Hydrogen conduit 8 Liquid conduit 9 Signal line 11 Contact control means 12 Heater 13 Pressure adjustment valve 15 Liquid feed pump 20 Negative electrode DESCRIPTION OF SYMBOLS 21 Positive electrode 22 Polymer electrolyte membrane 23 Negative electrode chamber 24 Hydrogen generating catalyst 31 1st connection part 32 2nd connection part 33 1st check valve 34 2nd check valve 40 Tubular structure 50 Switch 51 Fixed lead 52 Conducting portion 53 Bellows 54 Housing 55 Circuit portion 56 Control circuit 61 Inflow passage 62 Outflow passage 63 Silicone sheet 64 Silicone sheet 65 Latch 66 First laminated plate 67 Second laminated plate 68 Third laminated plate 70 Valve 71 Stopper 72 Prop 73 Projection

Claims (19)

水素と酸化剤を反応して発電し、水素が存在する空間である負極室を有する固体高分子形燃料電池の発電部と、
水素を貯蔵、または水素源となる反応物質を貯蔵し水素化反応を発生させ、前記発電部で用いる水素を供給する水素供給部と、
前記負極室と前記水素供給部とを連結し、水素を流通する連結管と、
前記負極室と第一の接続部により接続され、前記負極室から水素が流入可能な管状構造物とから成る燃料電池システムであり、
前記燃料電池システムは内部と外部とが遮断され、前記燃料電池システム内部から外部への水素の流通がない閉空間であり、
前記燃料電池システムの内圧を増加、減少を繰り返して起こす水素圧変動手段を有する燃料電池システム。
A power generation unit of a polymer electrolyte fuel cell having a negative electrode chamber that is a space in which hydrogen is present by reacting hydrogen and an oxidant to generate power;
A hydrogen supply unit that stores hydrogen or stores a reactant serving as a hydrogen source to generate a hydrogenation reaction, and supplies hydrogen used in the power generation unit;
A connecting pipe that connects the negative electrode chamber and the hydrogen supply unit and circulates hydrogen;
A fuel cell system comprising a tubular structure connected to the negative electrode chamber by a first connecting portion and capable of flowing hydrogen from the negative electrode chamber;
The fuel cell system is a closed space where the inside and the outside are blocked, and there is no hydrogen flow from the inside to the outside of the fuel cell system,
A fuel cell system comprising hydrogen pressure fluctuation means for repeatedly increasing and decreasing the internal pressure of the fuel cell system.
前記管状構造物は、一端が前記負極室と接続する第一の接続部と、他端が前記負極室、前記水素供給部、前記連結管のいずれかと接続する第二の接続部とを有し、前記管状構造物の前記第一の接続部側に第一の逆止弁、前記第二の接続部側に第二の逆止弁を設置し、前記第一の逆止弁及び前記第二の逆止弁の開弁圧は、0kPa以上、前記水素圧変動手段による水素圧の上限値未満であり、前記第二の接続部から前記第一の接続部への物質の流れを遮断する請求項1記載の燃料電池システム。   The tubular structure has a first connection portion whose one end is connected to the negative electrode chamber, and a second connection portion whose other end is connected to any of the negative electrode chamber, the hydrogen supply portion, and the connecting pipe. A first check valve on the first connection portion side of the tubular structure, a second check valve on the second connection portion side, and the first check valve and the second check valve. The valve opening pressure of the check valve is 0 kPa or more and less than the upper limit value of the hydrogen pressure by the hydrogen pressure fluctuation means, and shuts off the material flow from the second connection portion to the first connection portion. Item 4. The fuel cell system according to Item 1. 前記水素圧変動手段が、水素発生量を変動させる反応量変動手段である請求項1もしくは2記載の燃料電池システム。   The fuel cell system according to claim 1 or 2, wherein the hydrogen pressure changing means is a reaction amount changing means for changing a hydrogen generation amount. 前記水素供給部が加熱部を有し、前記水素源を加熱することにより水素化反応を発生させ、
前記反応量変動手段が、前記加熱部を断続的に加熱させる手段である請求項3記載の燃料電池システム。
The hydrogen supply unit has a heating unit, and a hydrogenation reaction is generated by heating the hydrogen source,
The fuel cell system according to claim 3, wherein the reaction amount varying means is means for intermittently heating the heating unit.
前記水素供給部における水素発生反応が、アルコール、エーテル、ケトンの改質反応である請求項4記載の燃料電池システム。   The fuel cell system according to claim 4, wherein the hydrogen generation reaction in the hydrogen supply unit is a reforming reaction of alcohol, ether, or ketone. 前記水素供給部における水素発生反応が、水素化物の熱分解反応である請求項4記載の燃料電池システム。   The fuel cell system according to claim 4, wherein the hydrogen generation reaction in the hydrogen supply unit is a hydride pyrolysis reaction. 前記水素供給部が、水素化反応を発生させる水素反応部と、水素化反応に関係する液体の供給手段を有し、水素発生量が前記水素反応部への前記液体の供給量によって決定され、前記反応量変動手段が前記液体の供給量を変動させる手段である請求項3記載の燃料電池システム。   The hydrogen supply unit includes a hydrogen reaction unit for generating a hydrogenation reaction and a liquid supply unit related to the hydrogenation reaction, and a hydrogen generation amount is determined by a supply amount of the liquid to the hydrogen reaction unit; 4. The fuel cell system according to claim 3, wherein the reaction amount changing means is means for changing the supply amount of the liquid. 前記水素供給部における水素発生反応が、無機水素化物に水を供給して起きる加水分解反応である請求項7記載の燃料電池システム。   8. The fuel cell system according to claim 7, wherein the hydrogen generation reaction in the hydrogen supply unit is a hydrolysis reaction that occurs by supplying water to the inorganic hydride. 前記水素供給部における水素発生反応が、金属に酸性、もしくは、アルカリ性水溶液を供給する金属溶解反応である請求項7記載の燃料電池システム。   The fuel cell system according to claim 7, wherein the hydrogen generation reaction in the hydrogen supply unit is a metal dissolution reaction for supplying an acidic or alkaline aqueous solution to the metal. 前記水素供給部における水素発生反応が、アルコール、エーテル、ケトンの改質反応である請求項7記載の燃料電池システム。   8. The fuel cell system according to claim 7, wherein the hydrogen generation reaction in the hydrogen supply unit is a reforming reaction of alcohol, ether, or ketone. 前記水素供給部は、水素化反応に関係する液体を保有する水素反応部を有し、前記液体に接触することにより水素化反応が起きる固体を有し、前記固体と前記液体との接触量を制御する接触制御手段を有し、水素発生量が前記液体と前記固体の接触量によって決定され、前記反応量変動手段が前記液体と前記固体の接触量を変動させる請求項3記載の燃料電池システム。   The hydrogen supply unit includes a hydrogen reaction unit that holds a liquid related to a hydrogenation reaction, and includes a solid that causes a hydrogenation reaction by contact with the liquid, and determines a contact amount between the solid and the liquid. 4. The fuel cell system according to claim 3, further comprising contact control means for controlling, wherein a hydrogen generation amount is determined by a contact amount between the liquid and the solid, and the reaction amount varying means varies the contact amount between the liquid and the solid. . 前記液体が無機水素化物の水溶液であり、前記固体が金属、もしくは、金属酸化物の触媒である請求項11記載の燃料電池システム。   12. The fuel cell system according to claim 11, wherein the liquid is an aqueous solution of an inorganic hydride, and the solid is a metal or metal oxide catalyst. 前記液体が水を含み、前記固体が金属水素化物である請求項11記載の燃料電池システム。   The fuel cell system according to claim 11, wherein the liquid includes water and the solid is a metal hydride. 前記液体が酸性、もしくは、アルカリ性水溶液であり、前記固体が金属である請求項11記載の燃料電池システム。   The fuel cell system according to claim 11, wherein the liquid is an acidic or alkaline aqueous solution, and the solid is a metal. 前記管状構造物は、一端が前記負極室と接続する第一の接続部と、他端が前記負極室、前記連結管のいずれかと接続する第二の接続部とを有し、前記管状構造物の前記第一の接続部側に第一の逆止弁、前記第二の接続部側に第二の逆止弁を設置し、前記第一の逆止弁及び前記第二の逆止弁の開弁圧は、0kPa以上、前記水素圧変動手段による水素圧の上限値未満であり、前記第二の接続部から前記第一の接続部への物質の流れを遮断する請求項1記載の燃料電池システム。   The tubular structure has a first connection portion whose one end is connected to the negative electrode chamber, and a second connection portion whose other end is connected to either the negative electrode chamber or the connecting pipe. A first check valve on the first connection portion side and a second check valve on the second connection portion side of the first check valve and the second check valve. 2. The fuel according to claim 1, wherein a valve opening pressure is 0 kPa or more and less than an upper limit value of a hydrogen pressure by the hydrogen pressure fluctuation unit, and shuts off a material flow from the second connection portion to the first connection portion. Battery system. 前記水素供給部に圧力調整弁を有し、前記水素供給部内の水素は前記圧力調整弁を通って前記連結管に至る構成であり、前記水素圧変動手段が前記圧力調整弁の開弁圧と閉弁圧を異なるものとする手段であり、前記圧力調整弁の開弁圧と閉弁圧とが異なる事により燃料電池システムの内圧が脈動する請求項15記載の燃料電池システム。   The hydrogen supply unit has a pressure adjustment valve, and the hydrogen in the hydrogen supply unit passes through the pressure adjustment valve to reach the connecting pipe, and the hydrogen pressure fluctuation means has a valve opening pressure of the pressure adjustment valve. The fuel cell system according to claim 15, wherein the valve closing pressure is different, and the internal pressure of the fuel cell system pulsates when the valve opening pressure and the valve closing pressure of the pressure regulating valve are different. 前記水素供給部、もしくは、前記連結管にポンプを有し、前記水素圧変動手段が前記ポンプが一定時間間隔で運転、運転停止が繰り返される手段である請求項15記載の燃料電池システム。   The fuel cell system according to claim 15, wherein the hydrogen supply unit or the connecting pipe has a pump, and the hydrogen pressure fluctuation unit is a unit in which the pump is repeatedly operated and stopped at regular time intervals. 前記管状構造物に吸水性材料を設置することを特徴とする請求項1乃至17いずれか1項記載の燃料電池システム。   The fuel cell system according to any one of claims 1 to 17, wherein a water-absorbing material is installed in the tubular structure. 前記管状構造物を、0℃以上、且つ、前記発電部より低い温度に冷却することを特徴とする請求項1乃至18いずれか1項記載の燃料電池システム。   The fuel cell system according to any one of claims 1 to 18, wherein the tubular structure is cooled to a temperature of 0 ° C or higher and lower than the power generation unit.
JP2005225627A 2005-08-03 2005-08-03 Fuel cell system Expired - Fee Related JP5314828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005225627A JP5314828B2 (en) 2005-08-03 2005-08-03 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005225627A JP5314828B2 (en) 2005-08-03 2005-08-03 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2007042452A true JP2007042452A (en) 2007-02-15
JP5314828B2 JP5314828B2 (en) 2013-10-16

Family

ID=37800246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005225627A Expired - Fee Related JP5314828B2 (en) 2005-08-03 2005-08-03 Fuel cell system

Country Status (1)

Country Link
JP (1) JP5314828B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108536A (en) * 2006-10-25 2008-05-08 Toyota Motor Corp Fuel cell system, and its control method
JP2008262824A (en) * 2007-04-12 2008-10-30 Toyota Motor Corp Fuel cell system
JP2009032416A (en) * 2007-07-24 2009-02-12 Toyota Motor Corp Fuel cell system
JP2010073390A (en) * 2008-09-17 2010-04-02 Seiko Instruments Inc Fuel cell system
JP2010129479A (en) * 2008-11-28 2010-06-10 Nissan Motor Co Ltd Fuel cell system
JP2010232167A (en) * 2009-03-03 2010-10-14 Japan Aerospace Exploration Agency Fuel cell system
JP2011023279A (en) * 2009-07-17 2011-02-03 Nissan Motor Co Ltd Fuel cell system
JP2013004171A (en) * 2011-06-10 2013-01-07 Omega:Kk Fuel cell
JP2014505347A (en) * 2011-02-11 2014-02-27 ソシエテ ビック Fuel cell system
WO2014087739A1 (en) * 2012-12-07 2014-06-12 コニカミノルタ株式会社 Fuel generation device and fuel cell system provided with same
JP2015522400A (en) * 2012-05-04 2015-08-06 エンサイト・エルエルシーEncite Llc Automatic control gas generator and gas generation method
WO2015118161A1 (en) * 2014-02-10 2015-08-13 Symbiofcell Purge circuit of a fuel cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240220A (en) * 1994-02-28 1995-09-12 Mitsubishi Heavy Ind Ltd Fuel cell system
JPH0822834A (en) * 1994-07-07 1996-01-23 Toyota Motor Corp Fuel cell and its starting device
JPH11265723A (en) * 1998-03-18 1999-09-28 Matsushita Electric Works Ltd Fuel cell system
JP2004206948A (en) * 2002-12-24 2004-07-22 Honda Motor Co Ltd Reaction gas circulation fuel cell system
JP2005158557A (en) * 2003-11-27 2005-06-16 Nissan Motor Co Ltd Fuel cell system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07240220A (en) * 1994-02-28 1995-09-12 Mitsubishi Heavy Ind Ltd Fuel cell system
JPH0822834A (en) * 1994-07-07 1996-01-23 Toyota Motor Corp Fuel cell and its starting device
JPH11265723A (en) * 1998-03-18 1999-09-28 Matsushita Electric Works Ltd Fuel cell system
JP2004206948A (en) * 2002-12-24 2004-07-22 Honda Motor Co Ltd Reaction gas circulation fuel cell system
JP2005158557A (en) * 2003-11-27 2005-06-16 Nissan Motor Co Ltd Fuel cell system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008108536A (en) * 2006-10-25 2008-05-08 Toyota Motor Corp Fuel cell system, and its control method
JP2008262824A (en) * 2007-04-12 2008-10-30 Toyota Motor Corp Fuel cell system
US8790834B2 (en) 2007-04-12 2014-07-29 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method for controlling the fuel cell system
JP2009032416A (en) * 2007-07-24 2009-02-12 Toyota Motor Corp Fuel cell system
JP2010073390A (en) * 2008-09-17 2010-04-02 Seiko Instruments Inc Fuel cell system
JP2010129479A (en) * 2008-11-28 2010-06-10 Nissan Motor Co Ltd Fuel cell system
JP2010232167A (en) * 2009-03-03 2010-10-14 Japan Aerospace Exploration Agency Fuel cell system
JP2011023279A (en) * 2009-07-17 2011-02-03 Nissan Motor Co Ltd Fuel cell system
JP2014505347A (en) * 2011-02-11 2014-02-27 ソシエテ ビック Fuel cell system
JP2013004171A (en) * 2011-06-10 2013-01-07 Omega:Kk Fuel cell
JP2015522400A (en) * 2012-05-04 2015-08-06 エンサイト・エルエルシーEncite Llc Automatic control gas generator and gas generation method
WO2014087739A1 (en) * 2012-12-07 2014-06-12 コニカミノルタ株式会社 Fuel generation device and fuel cell system provided with same
WO2015118161A1 (en) * 2014-02-10 2015-08-13 Symbiofcell Purge circuit of a fuel cell
FR3017488A1 (en) * 2014-02-10 2015-08-14 Symbiofcell PURGE CIRCUIT OF A FUEL CELL
US10566635B2 (en) 2014-02-10 2020-02-18 Symbiofcell Purge circuit of a fuel cell
US11239477B2 (en) 2014-02-10 2022-02-01 Symbiofcell Purge circuit of a fuel cell

Also Published As

Publication number Publication date
JP5314828B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5314828B2 (en) Fuel cell system
EP1396471B1 (en) Hydrogen generating apparatus
KR101386444B1 (en) Hydrogen generating fuel cell cartridges
US8821834B2 (en) Hydrogen generator with aerogel catalyst
KR100976680B1 (en) Fuel cell system
EP2400587B1 (en) Cartridge with fuel supply and membrane electrode assembly stack
JP2004319490A (en) Regulating type hydrogen generation system
JP2007317496A (en) Fuel cell power generation system
JP2006216326A (en) Fuel cell apparatus
JP2005216847A (en) Fuel cell system and fuel supply device
JP2004281393A (en) Fuel cell power generation system
JP4882240B2 (en) Fuel cell
WO2005050763A1 (en) Microfluidic fuel cell system and method for portable energy applications
JP2008034319A (en) Solid methanol fuel cartridge for direct methanol type fuel cell, direct methanol type fuel cell system, and portable electronic apparatus
JP4714460B2 (en) Fuel cell system
JP5142176B2 (en) Polymer electrolyte fuel cell system
KR20060081605A (en) Fuel cell system and reformer
JP2010170732A (en) Fuel cell system, and electronic apparatus
JP2008121841A (en) Valve, valve manufacturing method, fuel cell equipped with valve, and fuel cell manufacturing method
JP2008218282A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080408

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130531

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130708

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5314828

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees