JP2007041117A - Layered optical element and method for manufacturing the same - Google Patents

Layered optical element and method for manufacturing the same Download PDF

Info

Publication number
JP2007041117A
JP2007041117A JP2005222719A JP2005222719A JP2007041117A JP 2007041117 A JP2007041117 A JP 2007041117A JP 2005222719 A JP2005222719 A JP 2005222719A JP 2005222719 A JP2005222719 A JP 2005222719A JP 2007041117 A JP2007041117 A JP 2007041117A
Authority
JP
Japan
Prior art keywords
optical
wafer
laminated optical
laminated
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005222719A
Other languages
Japanese (ja)
Inventor
Satoshi Umeki
三十四 梅木
Masaaki Arai
政昭 新井
Kazuya Takahashi
和也 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2005222719A priority Critical patent/JP2007041117A/en
Publication of JP2007041117A publication Critical patent/JP2007041117A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a layered optical element with favorable optical characteristics, less transmission loss and improved productivity, and to provide a method for manufacturing the element. <P>SOLUTION: The layered optical element comprises a plurality of laminated optical plates made of quartz or glass, wherein a silicon oxide film (SiO<SB>2</SB>film) is deposited on the joining face of the glass plate and the optical plates are directly joined by interatomic bonds. The method for manufacturing the layered optical element comprises laminating a plurality of optical wafers made of quartz or glass wafers to form a layered optical wafer, then cutting and dividing the optical wafer into individual layered optical elements, wherein a silicon oxide film (SiO<SB>2</SB>film) is deposited on the joining faces of the glass wafers to obtain optical wafers and these optical wafers are directly joined by interatomic bonds. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は積層光学素子例えば光学ローパスフィルタ(以下、積層光学フィルタとする)及びその製造方法を技術分野とし、特に光学板を直接接合によって貼り合わせた積層光学フィルタ及びその製造方法に関する。   The present invention relates to a laminated optical element, for example, an optical low-pass filter (hereinafter referred to as a laminated optical filter) and a manufacturing method thereof, and more particularly to a laminated optical filter in which an optical plate is bonded by direct bonding and a manufacturing method thereof.

(発明の背景)
積層光学フィルタはカメラ等の撮像素子の前方に配置され、擬似信号を抑止して色ボケ等を解消する素子として知られている。近年では、光学製品も増大して需要も多く、光学特性を確実に維持することは勿論として、生産性が求められる。
(Background of the Invention)
The laminated optical filter is disposed in front of an imaging element such as a camera, and is known as an element that suppresses a pseudo signal and eliminates color blur and the like. In recent years, the number of optical products has increased and there has been a great demand, and as a matter of course, productivity is demanded as well as maintaining optical characteristics reliably.

(従来技術の一例)
第4図は従来例を説明する光学フィルタの断面図、第5図は製造工程を説明する積層光学ウェハの断面図である。
(Example of conventional technology)
FIG. 4 is a cross-sectional view of an optical filter for explaining a conventional example, and FIG. 5 is a cross-sectional view of a laminated optical wafer for explaining a manufacturing process.

積層光学フィルタ1は例えば平板状とした水晶板やガラス板からなる複数例えば2枚の光学板1(ab)を貼り合わせてなる。光学板1(ab)は例えばアクリル系とした紫外線硬化型の接着剤2によって接合される。そして、積層光学フィルタ1の例えば両主面には赤外線カット用の光学薄膜3を有する。但し、光学薄膜3は必要に応じて一主面のみに設けられる。   The laminated optical filter 1 is formed by bonding a plurality of, for example, two optical plates 1 (ab) made of, for example, a flat crystal plate or glass plate. The optical plate 1 (ab) is bonded by, for example, an acrylic ultraviolet curing adhesive 2. The laminated optical filter 1 has, for example, optical thin films 3 for cutting infrared rays on both main surfaces. However, the optical thin film 3 is provided only on one main surface as needed.

通常では、先ず、平板状とした2枚の光学ウェハ4(ab)の両主面を鏡面研磨する。そして、各光学ウェハ4(ab)の特に両主面を強酸性や強アルカリ性の洗浄液によって洗浄する。これにより、光学特性を悪化させて不良の元となる例えば研磨時のゴミやシミ等の異物を光学ウェハ4(ab)の表面から除去する。   In general, first, both main surfaces of two flat optical wafers 4 (ab) are mirror-polished. Then, particularly both main surfaces of each optical wafer 4 (ab) are cleaned with a strongly acidic or strongly alkaline cleaning solution. As a result, the optical characteristics are deteriorated, and foreign matters such as dust and stains at the time of polishing, which cause defects, are removed from the surface of the optical wafer 4 (ab).

次に、各光学ウェハ4(ab)の一主面に、赤外線カット用の光学薄膜3を蒸着等によって形成する。これにより、光学フィルタ1の入出射面となる各光学ウェハ4(ab)の一主面のクリーン度が維持(確保)される。次に、光学ウェハ4(ab)の接合面となる他主面を対向して、アクリル系の接着剤2が塗布される。   Next, an optical thin film 3 for cutting infrared rays is formed on one main surface of each optical wafer 4 (ab) by vapor deposition or the like. As a result, the cleanliness of one main surface of each optical wafer 4 (ab) that becomes the entrance / exit surface of the optical filter 1 is maintained (secured). Next, the acrylic adhesive 2 is applied with the other main surface serving as the bonding surface of the optical wafer 4 (ab) facing each other.

そして、光学薄膜3の設けられた光学ウェハ4(ab)の一主面を図示しない冶具によって押圧しながら、紫外線を照射して接着剤2を硬化させ、2枚の光学フィルタ4(ab)を接合する。これにより、積層光学ウェハ4を形成する。   Then, while pressing one main surface of the optical wafer 4 (ab) on which the optical thin film 3 is provided with a jig (not shown), the adhesive 2 is cured by irradiating ultraviolet rays, and the two optical filters 4 (ab) are attached. Join. Thereby, the laminated optical wafer 4 is formed.

最後に、積層光学ウェハ4をA−A及びB−B線に沿って縦横に切断分割し、二枚の光学板1(ab)が接合した積層光学フィルタ1の多数を得る。この場合、一般には、ダイヤモンドの微粒子(粉体)を薄円板の外周に固着した回転刃(ダイヤモンドホイール)を有する所謂ダイシングソウによって切断する。そして、各積層光学フィルタ1を弱酸性や弱アルカリ性の洗浄液によって洗浄する。   Finally, the laminated optical wafer 4 is cut and divided in the vertical and horizontal directions along the lines AA and BB to obtain a large number of laminated optical filters 1 in which two optical plates 1 (ab) are joined. In this case, the cutting is generally performed by a so-called dicing saw having a rotary blade (diamond wheel) in which diamond fine particles (powder) are fixed to the outer periphery of a thin disk. Then, each laminated optical filter 1 is washed with a weakly acidic or weakly alkaline cleaning liquid.

特開平2005−49831号公報JP-A-2005-49831 特願2004−301269号Japanese Patent Application No. 2004-301269 特開2000−269106号公報JP 2000-269106 A 特開平6−120416号公報JP-A-6-120416

(従来技術の問題点)
しかしながら、上記構成の光学素子及びその製造方法では、2枚の光学ウェハ4(ab)を貼り合わせる接着剤2に起因して次の問題があった。すなわち、接着剤2(ここではアクリル系)は、耐酸性及び耐アルカリ性に劣ることから、強酸性や強アルカリ性の洗浄液で洗浄した光学フィルタ4(ab)の接合前に、光学薄膜3を形成して入出射面のクリーン度を確保する。
(Problems of conventional technology)
However, the optical element having the above configuration and the manufacturing method thereof have the following problems due to the adhesive 2 that bonds the two optical wafers 4 (ab). That is, since the adhesive 2 (here, acrylic) is inferior in acid resistance and alkali resistance, the optical thin film 3 is formed before joining the optical filter 4 (ab) cleaned with a strong acid or strong alkaline cleaning liquid. This ensures the cleanliness of the entrance / exit surface.

逆に言えば、光学ウェハ4(ab)の接合後に洗浄して光学薄膜3を形成すると、入出射面(両主面)のクリーン度は確保されても、洗浄液によって接着剤2が侵食される。なお、接着剤2による光学ウェハ4(ab)の接合後に弱酸性や弱アルカリ性の洗浄液による洗浄も考えられるが、積層光学ウェハ4における両主面の異物のうちの特にシミが落ちきれない。   In other words, if the optical thin film 3 is formed by cleaning after bonding the optical wafer 4 (ab), the adhesive 2 is eroded by the cleaning liquid even if the cleanliness of the incident / exit surfaces (both main surfaces) is ensured. . Although cleaning with a weakly acidic or weakly alkaline cleaning solution after bonding of the optical wafer 4 (ab) with the adhesive 2 is also conceivable, particularly stains on the main surfaces of the laminated optical wafer 4 cannot be completely removed.

これらのことから、前述したように、鏡面研磨された各光学ウェハ4(ab)を洗浄して光学薄膜3を設けた後、接着剤2によって接合する。しかし、この場合には、光学薄膜3の設けられた両主面を冶具によって押圧しながら接着剤2に紫外線を照射する。このため、光学薄膜3は冶具と当接して損傷やしわ(凹凸)等を生じさせる。   For these reasons, as described above, the optically polished optical wafers 4 (ab) are cleaned and provided with the optical thin film 3, and then bonded by the adhesive 2. However, in this case, the adhesive 2 is irradiated with ultraviolet rays while pressing both main surfaces provided with the optical thin film 3 with a jig. For this reason, the optical thin film 3 abuts on the jig and causes damage, wrinkles (unevenness), and the like.

また、光学ウェハ4(ab)の接合面に溶融した接着剤2を塗布しての作業工程中に、接合界面から空気が侵入し、接着剤2中に気泡を生じさせる。これらは、いずれも、不良の元になる光学特性を悪化させ、生産性に欠ける問題があった。さらには、接合面の接着剤2によって、光が熱に変換したり、分散したりして伝播損失を生じる問題もあった。   Further, air enters from the bonding interface during the operation process in which the molten adhesive 2 is applied to the bonding surface of the optical wafer 4 (ab), and bubbles are generated in the bonding agent 2. All of these have problems of deteriorating the optical characteristics that cause defects and lack of productivity. Furthermore, the adhesive 2 on the joint surface has a problem that light is converted into heat or dispersed to cause propagation loss.

また、上記の製造方法では、ダイシングソウによって積層光学ウェハ4を切断分割するため、ダイシングソウによる刃先の幅分が削り取られる。したがって、積層光学ウェハ4に切除分を生じて光学素子1の取り分が減って利用効率が悪い。そこで、液晶パネルの切断等に使用されるスクライブ切断法を採用することが考えられた。   In the above manufacturing method, since the laminated optical wafer 4 is cut and divided by the dicing saw, the width of the cutting edge by the dicing saw is scraped off. Therefore, a cut portion is generated in the laminated optical wafer 4 and the amount of the optical element 1 is reduced, so that the utilization efficiency is poor. Therefore, it has been considered to employ a scribe cutting method used for cutting a liquid crystal panel.

スクライブ切断法は、例えば第6図に示したように、光学ウェハ4aの表面上に分割線としての線状ひび(スクライブ溝、引っ掻き溝)5を設ける。例えばダイヤモンド刃先とした回転カッターを押し当て形成される。そして、図示しない分割装置(例えば三星ダイヤモンド社製のブレーカー)によって、線状ひび5上から圧力を加えて分割する。これにより、ダイシングソウのように刃先の幅分による切除分がないので、利用効率が約20%上昇する。   In the scribe cutting method, for example, as shown in FIG. 6, linear cracks (scribe grooves, scratch grooves) 5 as dividing lines are provided on the surface of the optical wafer 4a. For example, it is formed by pressing a rotary cutter with a diamond edge. Then, a dividing device (not shown) (for example, a breaker made by Samsung Diamond Co., Ltd.) is used to apply pressure from above the linear crack 5 to divide. As a result, there is no excision due to the width of the blade edge as in the dicing saw, so that the utilization efficiency is increased by about 20%.

しかし、積層光学ウェハ4にスクライブ切断法を適用した場合には、積層光学ウェハ4の接合面に介在した接着剤2の粘着性によって、線状ひび5が他方の光学ウェハに伝わらず、線状ひびに沿っての分割を困難にする問題があった。なお、第6図(a)は断面図、同図(b)は平面図、同図(c)は点線枠部の一部断面図である。   However, when the scribe cutting method is applied to the laminated optical wafer 4, the linear crack 5 is not transmitted to the other optical wafer due to the adhesiveness of the adhesive 2 interposed on the bonding surface of the laminated optical wafer 4. There was a problem that it was difficult to divide along the crack. 6 (a) is a sectional view, FIG. 6 (b) is a plan view, and FIG. 6 (c) is a partial sectional view of a dotted frame portion.

(発明の目的)
本発明は光学特性を良好にして伝播損失が少ない、生産性を向上した積層光学素子及びその製造方法を提供することを目的とする。
(Object of invention)
SUMMARY OF THE INVENTION An object of the present invention is to provide a laminated optical element with good optical characteristics, low propagation loss and improved productivity, and a method for manufacturing the same.

本発明(積層光学素子)は、特許文献1及び2で示される直接接合に着目し、特許請求の範囲の請求項1に示したように、水晶板又はガラス板からなる光学板の複数枚を貼り合わせてなる積層光学素子において、前記ガラス板の接合面には酸化珪素膜(SiO膜)が設けられ、前記光学板の接合面は原子間結合によって直接接合された構成とする。 The present invention (laminated optical element) pays attention to direct bonding shown in Patent Documents 1 and 2, and as shown in Claim 1 of the claims, a plurality of optical plates made of crystal plates or glass plates are used. In the laminated optical element formed by bonding, a silicon oxide film (SiO 2 film) is provided on the bonding surface of the glass plate, and the bonding surface of the optical plate is directly bonded by interatomic bonding.

また、本発明(積層光学素子の製造方法)は、同請求項4に示したように、水晶ウェハ又はガラスウェハからなる光学ウェハの複数枚を貼り合わせて積層光学ウェハを形成した後、前記積層光学ウェハを個々の積層光学素子に切断分割してなる積層光学素子の製造方法において、前記ガラスウェハの接合面には酸化珪素膜(SiO膜)を形成して光学ウェハとし、前記光学ウェハの複数を原子間結合によって直接接合してなる製造方法とする。 Further, according to the present invention (manufacturing method of a laminated optical element), a plurality of optical wafers made of crystal wafers or glass wafers are bonded together to form a laminated optical wafer, and then the laminated optical wafer is formed. In a method for manufacturing a laminated optical element obtained by cutting and dividing an optical wafer into individual laminated optical elements, a silicon oxide film (SiO 2 film) is formed on the bonding surface of the glass wafer to form an optical wafer, A manufacturing method in which a plurality is directly bonded by an interatomic bond.

(請求項1、積層光学素子)
本発明(請求項1)の構成であれば、光学板の接合面は原子間結合によって直接接合するので、接着剤を不要にする。したがって、従来の接着剤を用いることによる光学特性の悪化を防止して生産性を高められる。また、光がそのまま直進して透過するので、接着剤による伝播損失がない。なお、光学板としてガラス板を用いる場合は、接合面に酸化珪素膜が設けられるので、原子間接合による直接接合が可能になる。
(Claim 1, laminated optical element)
If it is the structure of this invention (Claim 1), since the joint surface of an optical plate is joined directly by an interatomic bond, an adhesive agent becomes unnecessary. Therefore, it is possible to prevent the deterioration of the optical characteristics due to the use of the conventional adhesive and increase the productivity. In addition, since the light travels straight as it is, there is no propagation loss due to the adhesive. In the case where a glass plate is used as the optical plate, since a silicon oxide film is provided on the bonding surface, direct bonding by atomic bonding becomes possible.

(請求項1の実施態様、請求項2、3)
請求項2では、請求項1において、前記原子間結合はSi−O−Si結合又はSi−Si結合とする。これらにより、接着剤を不要とした直接接合の結合形態をさらに明確にする。
(Embodiment of claim 1, claims 2, 3)
In Claim 2, in Claim 1, the interatomic bond is a Si-O-Si bond or a Si-Si bond. These further clarify the bonding form of direct bonding that does not require an adhesive.

同請求項3では、請求項1において、前記光学板の複数枚は、水晶板同士、ガラス板同士、又は水晶板とガラス板であるとする。これにより、積層光学素子の各光学板の組み合わせをさらに明確にする。   In Claim 3, in Claim 1, the plurality of optical plates are assumed to be quartz plates, glass plates, or a quartz plate and a glass plate. Thereby, the combination of the optical plates of the laminated optical element is further clarified.

(請求項4、積層光学素子の製造方法)
本発明(請求項4)の製造方法では、光学ウェハの複数枚を原子間結合によって直接接合する。したがって、光学ウェハを直接接合した後でも、接合面には接着剤がないので、強酸性や強アルカリ性の洗浄液で洗浄できる。これにより、洗浄後に、積層光学ウェハの両主面(入出射面)に光学薄膜を形成できる。
(Claim 4, method for producing laminated optical element)
In the manufacturing method of the present invention (Claim 4), a plurality of optical wafers are directly bonded by interatomic bonding. Therefore, even after the optical wafer is directly bonded, the bonded surface has no adhesive, and can be cleaned with a strong acid or strong alkaline cleaning liquid. Thereby, an optical thin film can be formed on both main surfaces (incident / exit surfaces) of the laminated optical wafer after cleaning.

したがって、直接接合時の押圧用の冶具が光学薄膜に当接することはない。このことから、積層光学ウェハの主面のクリーン度を維持して、光学薄膜に損傷やシワを与えることがない。そして、直接接合なので、気泡の発生も抑止する。したがって、光学特性を維持して生産性を高められる。   Therefore, the pressing jig for direct joining does not contact the optical thin film. For this reason, the cleanliness of the main surface of the laminated optical wafer is maintained, and the optical thin film is not damaged or wrinkled. And since it is direct bonding, the generation of bubbles is also suppressed. Therefore, productivity can be improved while maintaining optical characteristics.

(請求項4の実施態様、請求項5)
同請求項5の製造方法では、請求項4において、前記切断分割は、前記積層光学ウェハの一主面に線状ひびを設けた後、前記線状ひびに沿って圧力を加えてなるスクライバ分割法であるとする。これにより、ダイシングソウのように刃幅分が削り取られることなく、線状ひびに沿って分割されるので、積層光学ウェハからの積層光学素子の取り分が増加する。これは、直接接合して接着剤を使用しないために、スクライバ分割法が適用できる。
(Embodiment of claim 4, claim 5)
In the manufacturing method according to claim 5, in claim 4, the cutting and dividing is performed by providing a linear crack on one main surface of the laminated optical wafer and then applying pressure along the linear crack. Suppose it is a law. As a result, the blade width is not cut off as in the dicing saw, and is divided along the linear crack, so that the amount of laminated optical elements from the laminated optical wafer increases. In this case, the scriber division method can be applied because it is directly bonded and does not use an adhesive.

第1図は本発明の一実施形態である積層光学フィルタの断面図、第2図はその製造方法を説明する積層光学ウェハの断面図である。なお、前従来例と同一部分の説明は簡略又は省略する。   FIG. 1 is a cross-sectional view of a laminated optical filter according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a laminated optical wafer for explaining the manufacturing method thereof. In addition, description of the same part as a prior art example is simplified or abbreviate | omitted.

積層光学フィルタ1は、前述したようにガラス又は水晶からなる2枚の光学板1(ab)を貼り合わせてなり、例えば両主面に赤外線カット用の光学薄膜3を有する。ここでは、光学板1(ab)の一方はガラス板1aとし、他方は水晶板1bとする。そして、ガラス板1aの接合面にはSiOからなる酸化珪素膜6が設けられ、水晶板1bとは原子間結合によって直接接合される。ここでの原子間結合はSi−O−Si(シロキサン結合)とする。 The laminated optical filter 1 is formed by bonding two optical plates 1 (ab) made of glass or quartz as described above, and has, for example, an optical thin film 3 for cutting infrared rays on both main surfaces. Here, one of the optical plates 1 (ab) is a glass plate 1a, and the other is a quartz plate 1b. A silicon oxide film 6 made of SiO 2 is provided on the bonding surface of the glass plate 1a, and is directly bonded to the crystal plate 1b by interatomic bonding. The interatomic bond here is Si-O-Si (siloxane bond).

このようなものでは、例えば以下で示す第1〜第3工程によって積層光学フィルタ1を形成する。第1工程では、光学ウェハ4(ab)としてのガラスウェハ4aと水晶ウェハ4bとを鏡面研磨する。そして、ガラスウェハ4aの一主面上には酸化珪素膜(SiO膜)6を形成する「第2図(a)」。酸化珪素膜6は酸化珪素が混入した溶剤をガラスウェハ4a上に塗布する。そして、これを回転撹拌することによって所謂SPG(Spin On Glass)によって形成される。 In such a thing, the laminated optical filter 1 is formed by the 1st-3rd process shown below, for example. In the first step, the glass wafer 4a and the crystal wafer 4b as the optical wafer 4 (ab) are mirror-polished. Then, a silicon oxide film (SiO 2 film) 6 is formed on one main surface of the glass wafer 4a (FIG. 2 (a)). For the silicon oxide film 6, a solvent mixed with silicon oxide is applied onto the glass wafer 4a. And it forms by what is called SPG (Spin On Glass) by carrying out rotation stirring of this.

第2工程では、ガラスウェハ4aと水晶ウェハ4bの一主面(接合面)を超純水によって親水化(OH化)する「第2図(b)」。そして、親水化された一主面同士を当接してオプティカルコンタクトによって仮接合する。次に、両主面から押圧しながら、約500℃で加熱する。これにより、親水化された一主面間ではHOが生成されて蒸発する。そして、ガラスウェハ4aと水晶ウェハ4bの一主面間はSi−O−Siによる原子間結合によって直接接合される「第2図(c)」。 In the second step, one main surface (bonding surface) of the glass wafer 4a and the crystal wafer 4b is hydrophilized (OH) with ultrapure water (FIG. 2 (b)). Then, the hydrophilic main surfaces are brought into contact with each other and temporarily joined by optical contact. Next, it heats at about 500 degreeC, pressing from both main surfaces. As a result, H 2 O is generated and evaporated between the hydrophilic main surfaces. Then, one main surface of the glass wafer 4a and the crystal wafer 4b is directly joined by interatomic bonding by Si-O-Si (FIG. 2 (c)).

第3工程では、先ず、直接接合された積層光学ウェハ4の一主面に、前述したようにダイヤモンド刃先の回転カッター等によって線状ひび5を設ける「第2図(d)」。次に、積層光学ウェハ4を強酸や強アルカリの洗浄液によって洗浄し、特に両主面からゴミやシミを除去する。   In the third step, first, a linear crack 5 is provided on one main surface of the laminated optical wafer 4 directly bonded by a rotary cutter having a diamond edge as described above (FIG. 2 (d)). Next, the laminated optical wafer 4 is washed with a strong acid or strong alkali cleaning solution, and dust and stains are removed particularly from both main surfaces.

そして、積層光学ウェハ4の両主面に蒸着によって光学薄膜3を形成する「第2図(e)」。最後に、前述した分割装置によって積層光学ウェハ4を線状ひび5に沿って分割し、個々の積層光学フィルタ1を得る。そして、各積層光学フィルタ1を弱酸性や弱アルカリ性の洗浄液によって洗浄する。   Then, the optical thin film 3 is formed by vapor deposition on both principal surfaces of the laminated optical wafer 4 (FIG. 2 (e)). Finally, the laminated optical wafer 4 is divided along the linear cracks 5 by the dividing device described above, and individual laminated optical filters 1 are obtained. Then, each laminated optical filter 1 is washed with a weakly acidic or weakly alkaline cleaning liquid.

このような構成であれば、積層光学フィルタ1は接着剤2を用いることなく、Si−O−Siとした原子間結合によって直接接合される。したがって、従来の接着剤2による透過光の伝播損失がない。この場合、例えば受光素子による透過光の検出を確実にする。そして、接着剤2を用いることによる製造工程中での光学特性の悪化を防止して生産性を高められる。   With such a configuration, the laminated optical filter 1 is directly bonded by using an interatomic bond of Si—O—Si without using the adhesive 2. Therefore, there is no transmission loss of transmitted light due to the conventional adhesive 2. In this case, for example, detection of transmitted light by the light receiving element is ensured. And the deterioration of the optical characteristic in the manufacturing process by using the adhesive agent 2 is prevented, and productivity can be improved.

具体的には(このような製造方法では)、ガラスウェハ4aと水晶ウェハ4bとを原子間結合によって直接接合するので、その後に強酸性や強アルカリ性で洗浄できる。これは、従来のように接着剤2を使用しないので、接合面に悪影響を及ぼすことがないことから可能になる。   Specifically (in such a manufacturing method), since the glass wafer 4a and the crystal wafer 4b are directly joined by an interatomic bond, it can be washed with strong acidity or strong alkalinity thereafter. This is possible because the adhesive 2 is not used as in the prior art, and the bonding surface is not adversely affected.

そして、洗浄後に、積層光学ウェハ4の両主面に光学薄膜3を形成する。この場合、直接接合後なので、光学薄膜3には押圧用の冶具等が当接することはない。したがって、積層光学ウェハ4の主面のクリーン度を維持して、光学薄膜3に損傷やシワを与えることがない。そして、直接接合なので、接合面には気泡の発生も抑止する。したがって、光学特性を維持して生産性を高められる。   Then, after cleaning, the optical thin film 3 is formed on both main surfaces of the laminated optical wafer 4. In this case, since it is after direct bonding, a pressing jig or the like does not contact the optical thin film 3. Therefore, the cleanliness of the main surface of the laminated optical wafer 4 is maintained, and the optical thin film 3 is not damaged or wrinkled. And since it is direct joining, generation | occurrence | production of a bubble is also suppressed on a joining surface. Therefore, productivity can be improved while maintaining optical characteristics.

また、積層光学ウェハ4は直接接合であって接合面には接着剤2を要しないことから、積層光学ウェハの一主面に線状ひび5を設けた後、前記線状ひびに沿って圧力を加えて分割切断するスクライバ分割法を適用できる。したがって、ダイシングソウのように刃幅分が削り取られることなく、線状ひびに沿って分割されるので、積層光学ウェハ4からの積層光学素子1の取り分が増加する。これにより、さらに生産性が高まる。   Further, since the laminated optical wafer 4 is directly bonded and does not require the adhesive 2 on the bonding surface, a linear crack 5 is provided on one main surface of the laminated optical wafer, and then pressure is applied along the linear crack. It is possible to apply a scriber division method in which division cutting is applied. Therefore, since the blade width is not cut off like a dicing saw, it is divided along the linear cracks, so that the portion of the laminated optical element 1 from the laminated optical wafer 4 increases. This further increases productivity.

また、この実施形態では、積層光学ウェハ4に線状ひびを設けた後、光学薄膜3を形成する。したがって、洗浄ひびを形成する際には、光学薄膜3から微小ゴミが発生することがないので、光学特性を良好に維持する。なお、光学薄膜3からの微小ゴミは粘着性を有するので、洗浄しても除去しにくい。   In this embodiment, the optical thin film 3 is formed after providing a linear crack on the laminated optical wafer 4. Therefore, when forming the cleaning crack, since no fine dust is generated from the optical thin film 3, the optical characteristics are maintained well. Note that the fine dust from the optical thin film 3 has adhesiveness and is difficult to remove even after washing.

(他の事項)
上記実施形態では、ガラスウェハ1aと水晶ウェハ1bとの原子間結合はSi−O−Siとしたが、第3図(a)に示したようにSi−Siとしてもよい。この場合、例えばガラスウェハ4aの一主面は親水化(OH化)とし、水晶ウェハ4bの一主面は疎水化(H化)として「第3図(b)」、点移転温度573℃以下の温度で加熱する。これにより、接合面間でのHOが蒸発してSi−Si結合となる。
(Other matters)
In the above embodiment, the interatomic bond between the glass wafer 1a and the quartz wafer 1b is Si-O-Si, but it may be Si-Si as shown in FIG. In this case, for example, one main surface of the glass wafer 4a is hydrophilized (OH), and one main surface of the crystal wafer 4b is hydrophobized (H) as shown in FIG. 3 (b), a point transfer temperature of 573 ° C. or lower. Heat at a temperature of. As a result, H 2 O between the bonding surfaces evaporates to form Si—Si bonds.

また、光学板1(ab)はガラス板1aと水晶板1bとしたが、ガラス板同士又は水晶板同士であったとしてもよい。また、分割切断はスクライバ分割法としたが、ダイシングソウによる切断であってもよい。但し、スクライバ分割の方が前述のように取り分が多くて有利である。   Moreover, although the optical plate 1 (ab) is the glass plate 1a and the quartz plate 1b, it may be a glass plate or a quartz plate. Moreover, although the division | segmentation cutting | disconnection was made into the scriber division | segmentation method, the cutting | disconnection by a dicing saw may be sufficient. However, the scriber division is advantageous because it has a large share as described above.

また、光学フィルタは2枚のみならず、これ以上の複数枚であってもよく、さらに光学フィルタに限らず、例えば波長板を含めて他の光学素子であっても適用できる。   Further, the number of optical filters is not limited to two, and a plurality of optical filters may be used. The optical filter is not limited to the optical filter, and may be applied to other optical elements including a wavelength plate, for example.

本発明の実施形態を説明する積層光学フィルタの断面図である。It is sectional drawing of the laminated optical filter explaining embodiment of this invention. 本発明の積層光学ウェハの製造工程を説明する断面図である。It is sectional drawing explaining the manufacturing process of the laminated optical wafer of this invention. 本発明の他の実施形態を説明する積層光学ウェハの断面図である。It is sectional drawing of the laminated optical wafer explaining other embodiment of this invention. 従来例を説明する積層光学フィルタの断面図である。It is sectional drawing of the laminated optical filter explaining a prior art example. 従来例の製造方法を説明する積層光学ウェハの断面図である。It is sectional drawing of the lamination | stacking optical wafer explaining the manufacturing method of a prior art example. 従来例のスクライバ分割法を説明する図である。It is a figure explaining the scriber division | segmentation method of a prior art example.

符号の説明Explanation of symbols

1 積層光学フィルタ、2 接着剤、3 光学薄膜、4 積層光学ウェハ、5 線状ひび、6 酸化珪素膜。   1 laminated optical filter, 2 adhesive, 3 optical thin film, 4 laminated optical wafer, 5 linear crack, 6 silicon oxide film.

Claims (5)

水晶板又はガラス板からなる光学板の複数枚を貼り合わせてなる積層光学素子において、前記ガラス板の接合面には酸化珪素膜(SiO膜)が設けられ、前記光学板の接合面は原子間結合によって直接接合されたことを特徴とする積層光学素子。 In a laminated optical element formed by bonding a plurality of optical plates made of a quartz plate or a glass plate, a silicon oxide film (SiO 2 film) is provided on the bonding surface of the glass plate, and the bonding surface of the optical plate is an atom. A laminated optical element characterized by being directly joined by inter-bonding. 請求項1において、前記原子間結合はSi−O−Si結合又はSi−Si結合である積層光学素子。   2. The laminated optical element according to claim 1, wherein the interatomic bond is a Si—O—Si bond or a Si—Si bond. 請求項1において、前記光学板の複数枚は、水晶板同士、ガラス板同士、又は水晶板とガラス板である積層光学素子。   2. The laminated optical element according to claim 1, wherein the plurality of optical plates are quartz plates, glass plates, or a quartz plate and a glass plate. 水晶ウェハ又はガラスウェハからなる光学ウェハの複数枚を貼り合わせて積層光学ウェハを形成した後、前記積層光学ウェハを個々の積層光学素子に切断分割してなる積層光学素子の製造方法において、前記ガラスウェハの接合面には酸化珪素膜(SiO膜)を形成して光学ウェハとし、前記光学ウェハの複数を原子間結合によって直接接合してなる積層光学素子の製造方法。 In the method for manufacturing a laminated optical element, in which a plurality of optical wafers made of a crystal wafer or a glass wafer are bonded to form a laminated optical wafer, and then the laminated optical wafer is cut and divided into individual laminated optical elements. A method of manufacturing a laminated optical element, wherein a silicon oxide film (SiO 2 film) is formed on a bonding surface of a wafer to form an optical wafer, and a plurality of the optical wafers are directly bonded by interatomic bonding. 請求項4において、前記切断分割は、前記積層光学ウェハの一主面に線状ひびを設けた後、前記線状ひびに沿って圧力を加えてなるスクライバ分割法である積層光学素子の製造方法。   5. The method of manufacturing a laminated optical element according to claim 4, wherein the cutting and dividing is a scriber dividing method in which a linear crack is provided on one main surface of the laminated optical wafer and then pressure is applied along the linear crack. .
JP2005222719A 2005-08-01 2005-08-01 Layered optical element and method for manufacturing the same Pending JP2007041117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005222719A JP2007041117A (en) 2005-08-01 2005-08-01 Layered optical element and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005222719A JP2007041117A (en) 2005-08-01 2005-08-01 Layered optical element and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2007041117A true JP2007041117A (en) 2007-02-15

Family

ID=37799178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005222719A Pending JP2007041117A (en) 2005-08-01 2005-08-01 Layered optical element and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2007041117A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009258404A (en) * 2008-04-17 2009-11-05 Epson Toyocom Corp Optical article and manufacturing method of same
JP2010128477A (en) * 2008-12-01 2010-06-10 Nippon Dempa Kogyo Co Ltd Method of manufacturing optical component and optical component
JP2010128419A (en) * 2008-12-01 2010-06-10 Epson Toyocom Corp Optical element
JP2010276941A (en) * 2009-05-29 2010-12-09 Fujifilm Corp Method for manufacturing junction type optical element
JP2011113952A (en) * 2009-11-30 2011-06-09 Kyocera Kinseki Corp Light irradiation window
US10138162B2 (en) 2012-02-27 2018-11-27 Ushio Denki Kabushiki Kaisha Method and device for bonding workpieces each produced from glass substrate or quartz substrate
JP2018207105A (en) * 2007-05-18 2018-12-27 株式会社半導体エネルギー研究所 Semiconductor device
WO2019182690A1 (en) * 2018-03-20 2019-09-26 Invensas Bonding Technologies, Inc. Direct-bonded lamination for improved image clarity in optical devices
US11715730B2 (en) 2017-03-16 2023-08-01 Adeia Semiconductor Technologies Llc Direct-bonded LED arrays including optical elements configured to transmit optical signals from LED elements
US11762200B2 (en) 2019-12-17 2023-09-19 Adeia Semiconductor Bonding Technologies Inc. Bonded optical devices
US11860415B2 (en) 2018-02-26 2024-01-02 Adeia Semiconductor Bonding Technologies Inc. Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018207105A (en) * 2007-05-18 2018-12-27 株式会社半導体エネルギー研究所 Semiconductor device
JP2009258404A (en) * 2008-04-17 2009-11-05 Epson Toyocom Corp Optical article and manufacturing method of same
JP2010128477A (en) * 2008-12-01 2010-06-10 Nippon Dempa Kogyo Co Ltd Method of manufacturing optical component and optical component
JP2010128419A (en) * 2008-12-01 2010-06-10 Epson Toyocom Corp Optical element
US8424746B2 (en) 2008-12-01 2013-04-23 Nihon Dempa Kogyo Co., Ltd. Method of manufacturing optical component and optical component
JP2010276941A (en) * 2009-05-29 2010-12-09 Fujifilm Corp Method for manufacturing junction type optical element
JP2011113952A (en) * 2009-11-30 2011-06-09 Kyocera Kinseki Corp Light irradiation window
US10138162B2 (en) 2012-02-27 2018-11-27 Ushio Denki Kabushiki Kaisha Method and device for bonding workpieces each produced from glass substrate or quartz substrate
US11715730B2 (en) 2017-03-16 2023-08-01 Adeia Semiconductor Technologies Llc Direct-bonded LED arrays including optical elements configured to transmit optical signals from LED elements
US11860415B2 (en) 2018-02-26 2024-01-02 Adeia Semiconductor Bonding Technologies Inc. Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects
WO2019182690A1 (en) * 2018-03-20 2019-09-26 Invensas Bonding Technologies, Inc. Direct-bonded lamination for improved image clarity in optical devices
US11256004B2 (en) 2018-03-20 2022-02-22 Invensas Bonding Technologies, Inc. Direct-bonded lamination for improved image clarity in optical devices
US11762200B2 (en) 2019-12-17 2023-09-19 Adeia Semiconductor Bonding Technologies Inc. Bonded optical devices

Similar Documents

Publication Publication Date Title
JP2007041117A (en) Layered optical element and method for manufacturing the same
JP5439903B2 (en) Plate-shaped optical glass and end-face processing method for plate-shaped optical glass
JP5126111B2 (en) Near-infrared cut filter glass and manufacturing method thereof
JP5132534B2 (en) Manufacturing method of optical components
JP5407490B2 (en) Window glass for solid-state image sensor package
KR101645634B1 (en) Bonded wafer production method
JP2007277043A (en) Cutting method of glass substrate and optical filter
JP5363092B2 (en) Method of manufacturing composite substrate for surface acoustic wave filter and composite substrate for surface acoustic wave filter
JPH0917984A (en) Bonded soi substrate manufacturing method
JP2008058427A (en) Layered optical member and optical filter
CN1897225A (en) Chip thinning method
JP4018013B2 (en) Solid-state imaging device and method for manufacturing solid-state imaging device
JP2007214255A (en) Method of manufacturing laminated soi wafer
JPH0897111A (en) Method for manufacturing soi substrate
JP4578939B2 (en) Manufacturing method of small glass products
JP3425747B2 (en) Manufacturing method of liquid crystal display element
JP7271875B2 (en) Method for manufacturing oxide single crystal substrate
JP4776907B2 (en) Manufacturing method of optical filter
JP4741280B2 (en) Manufacturing method of optical low-pass filter
JP2011020905A (en) Method for manufacturing bonded member
JP4273945B2 (en) Manufacturing method of composite prism
KR100627671B1 (en) Mobile Phone camera module and method of manufacturing
JP2007001789A (en) Method for polishing glass surface
JP2003167327A (en) Pellicle
JPH09162087A (en) Production of laminated substrate