JP2007035572A - Conductive particulate and anisotropic conductive material - Google Patents

Conductive particulate and anisotropic conductive material Download PDF

Info

Publication number
JP2007035572A
JP2007035572A JP2005221024A JP2005221024A JP2007035572A JP 2007035572 A JP2007035572 A JP 2007035572A JP 2005221024 A JP2005221024 A JP 2005221024A JP 2005221024 A JP2005221024 A JP 2005221024A JP 2007035572 A JP2007035572 A JP 2007035572A
Authority
JP
Japan
Prior art keywords
fine particles
conductive
conductive fine
protrusions
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005221024A
Other languages
Japanese (ja)
Other versions
JP4598621B2 (en
Inventor
Hiroya Ishida
浩也 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2005221024A priority Critical patent/JP4598621B2/en
Publication of JP2007035572A publication Critical patent/JP2007035572A/en
Application granted granted Critical
Publication of JP4598621B2 publication Critical patent/JP4598621B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive particulate capable of preventing conduction failure and reduction of resistance value, and an anisotropic conductive material. <P>SOLUTION: This is a conductive particulate consisting of a base material particulate and a conductive layer formed on the surface of the base material particulate having projections 2, 3 on the surface. When the ratio of the area covered by the projections against the whole orthographic projection area is obtained of 100 pieces of the conductive particulates, the standard deviation of the ratio of the area covered by the projections is 3 to 7%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、導通不良防止とともに抵抗値の低減化が可能な導電性微粒子及び異方性導電材料に関する。 The present invention relates to a conductive fine particle and an anisotropic conductive material capable of preventing conduction failure and reducing a resistance value.

導電性微粒子は、バインダー樹脂や粘接着剤等と混合、混練することにより、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤、異方性導電フィルム、異方性導電シート等の異方性導電材料として広く用いられている。 The conductive fine particles are mixed and kneaded with a binder resin or an adhesive, for example, an anisotropic conductive paste, an anisotropic conductive ink, an anisotropic conductive adhesive, an anisotropic conductive film, Widely used as anisotropic conductive materials such as anisotropic conductive sheets.

これらの異方性導電材料は、例えば、液晶ディスプレイ、パーソナルコンピュータ、携帯電話等の電子機器において、回路基板同士を電気的に接続したり、半導体素子等の小型部品を回路基板に電気的に接続したりするために、相対向する回路基板や電極端子の間に挟み込んで使用されている。 These anisotropic conductive materials are used to electrically connect circuit boards to each other, for example, in electronic devices such as liquid crystal displays, personal computers, and mobile phones, and to electrically connect small components such as semiconductor elements to the circuit board. For this reason, it is used by being sandwiched between circuit boards and electrode terminals facing each other.

このような異方性導電材料に用いられる導電性微粒子としては、従来、粒子径が均一で、適度な強度を有する樹脂微粒子等の非導電性微粒子の表面に、導電層として金属メッキ層を形成させた導電性微粒子が用いられている。しかしながら、このような異方性導電材料を用いて回路基板同士を電気的に接続すると、導電性微粒子表面の導電層と回路基板等との間にバインダー樹脂等がはさまり、導電性微粒子と回路基板等との間の接続抵抗が高くなることがあった。特に近年の電子機器の急激な進歩や発展に伴って、導電性微粒子と回路基板等との間の接続抵抗の更なる低減が求められてきている。 As the conductive fine particles used for such anisotropic conductive materials, conventionally, a metal plating layer is formed as a conductive layer on the surface of non-conductive fine particles such as resin fine particles having a uniform particle size and appropriate strength. Conductive fine particles are used. However, when the circuit boards are electrically connected using such an anisotropic conductive material, a binder resin or the like is sandwiched between the conductive layer on the surface of the conductive fine particles and the circuit board. In some cases, the connection resistance between them and the like increases. In particular, with the rapid progress and development of electronic devices in recent years, there has been a demand for further reduction in connection resistance between conductive fine particles and circuit boards.

接続抵抗を低減する目的で、表面に突起を有する導電性微粒子が開示されている(例えば、特許文献1参照)。この導電性微粒子は、導電性微粒子表面の導電層と回路基板等との間に存在するバインダー樹脂等を突起が突き破ることで(樹脂排除性)、突起と回路基板等とを確実に接続させることで、導電性微粒子と回路基板等との間の接続抵抗の低減を図ったものではあるが、実際にはそれほどの効果は得られていなかった。
特開2000−243132号公報
For the purpose of reducing connection resistance, conductive fine particles having protrusions on the surface are disclosed (for example, see Patent Document 1). This conductive fine particle ensures that the protrusion and the circuit board are connected by the protrusion breaking through the binder resin or the like existing between the conductive layer on the surface of the conductive fine particle and the circuit board. Thus, although the connection resistance between the conductive fine particles and the circuit board or the like has been reduced, in practice, such an effect has not been obtained.
JP 2000-243132 A

本発明は、上記現状に鑑み、導通不良防止とともに抵抗値の低減化が可能な導電性微粒子及び異方性導電材料を提供することを目的とする。 An object of the present invention is to provide conductive fine particles and an anisotropic conductive material capable of preventing conduction failure and reducing the resistance value in view of the above-described present situation.

本発明は、基材微粒子と、前記基材微粒子の表面に形成された表面に突起を有する導電層とからなる導電性微粒子であって、100個の導電性微粒子について、正投影面積全体に対する前記突起により被覆された面積の割合を求めたときに、前記突起により被覆された面積の割合の標準偏差が3〜7%である導電性微粒子である。
以下に本発明を詳述する。
The present invention is a conductive fine particle comprising a base particle and a conductive layer having a protrusion formed on the surface of the substrate fine particle, the 100 conductive particles with respect to the whole orthographic projection area When the proportion of the area covered by the protrusion is obtained, the conductive fine particles have a standard deviation of 3 to 7% of the proportion of the area covered by the protrusion.
The present invention is described in detail below.

本発明者らは、鋭意検討の結果、特許文献1に記載された方法により製造された、表面に突起を有する導電性微粒子では、各導電性微粒子間で突起密度にばらつきがあるということを見出した。突起の形成が不均一な導電性微粒子を用いた場合には、充分な樹脂排除効果が得られなかったり、導電性微粒子全体の粒子径が不均一となり、接続に寄与しない導電性微粒子が増加したりして、かえって接続抵抗が増大してしまう等の問題が生じた。
そこで、本発明者らは、更に鋭意検討の結果、各導電性微粒子間の突起密度のばらつきを低くすることにより、該導電性微粒子を用いて回路基板等を導電接続しても接続不良を起こしにくく、確実に接続抵抗の低減化を図ることが可能となるということを見出し、本発明を完成させるに至った。
As a result of intensive studies, the present inventors have found that in the conductive fine particles having protrusions on the surface produced by the method described in Patent Document 1, the protrusion density varies among the respective conductive fine particles. It was. When conductive fine particles with uneven formation of protrusions are used, a sufficient resin exclusion effect cannot be obtained, or the particle diameter of the entire conductive fine particles becomes uneven, increasing the number of conductive fine particles that do not contribute to connection. As a result, problems such as increased connection resistance occurred.
Therefore, as a result of further diligent studies, the present inventors have reduced the variation in the protrusion density between the respective conductive fine particles, thereby causing a connection failure even when the circuit substrate or the like is conductively connected using the conductive fine particles. It has been found that it is difficult to reliably reduce the connection resistance, and the present invention has been completed.

本発明の導電性微粒子は、基材微粒子と、上記基材微粒子の表面に形成された表面に突起を有する導電層とからなる。 The conductive fine particles of the present invention comprise substrate fine particles and a conductive layer having protrusions on the surface formed on the surface of the substrate fine particles.

上記基材微粒子としては特に限定されず、適度な弾性率、弾性変形性及び復元性を有するものであれば無機材料を用いてなるものでも有機材料を用いてなるものでもよいが、弾性変形性及び復元性に優れていることから、樹脂を用いてなる樹脂微粒子であることが好ましい。 The substrate fine particles are not particularly limited, and may be made of an inorganic material or an organic material as long as it has an appropriate elastic modulus, elastic deformability, and resilience. And since it is excellent in the restoring property, it is preferably a resin fine particle using a resin.

上記樹脂微粒子を構成する樹脂としては特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリテトラフルオロエチレン、ポリイソブチレン、ポリブタジエン等のポリオレフィン;ポリメチルメタクリレート、ポリメチルアクリレート等のアクリル樹脂;アクリレートとジビニルベンゼンとの共重合樹脂、ポリアルキレンテレフタレート、ポリスルホン、ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラニンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂等が挙げられる。これらの樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。 The resin constituting the resin fine particles is not particularly limited. For example, polyolefin such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polytetrafluoroethylene, polyisobutylene, polybutadiene; polymethyl methacrylate, polymethyl acrylate Acrylic resin such as acrylate and divinylbenzene, polyalkylene terephthalate, polysulfone, polycarbonate, polyamide, phenol formaldehyde resin, melanin formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin and the like. These resins may be used alone or in combination of two or more.

上記基材微粒子の平均粒子径としては特に限定されないが、好ましい下限は1μm、好ましい上限は100μmである。1μm未満であると、例えば、無電解メッキをする際に凝集しやすく、単粒子としにくくなることがあり、100μmを超えると、異方性導電材料として微細な配線を有する基板等の電極端子間で用いられる範囲を超えてしまうことがある。
なお、上記基材微粒子の平均粒子径は、無作為に選んだ50個の基材微粒子について粒子径を測定し、これらを算術平均したものとする。
The average particle size of the substrate fine particles is not particularly limited, but a preferable lower limit is 1 μm and a preferable upper limit is 100 μm. If it is less than 1 μm, for example, it is likely to aggregate when electroless plating is performed, and it may be difficult to form single particles. If it exceeds 100 μm, between electrode terminals such as a substrate having fine wiring as an anisotropic conductive material May exceed the range used in
In addition, the average particle diameter of the said base material fine particle shall measure the particle diameter about 50 base material microparticles | fine-particles selected at random, and shall mean these arithmetically.

上記導電層としては特に限定されず、例えば、ニッケル、金、銀、銅、コバルト、及び、これらを主成分とする合金等が挙げられる。 The conductive layer is not particularly limited, and examples thereof include nickel, gold, silver, copper, cobalt, and alloys containing these as main components.

上記導電層の厚さとしては特に限定されないが、好ましい下限は10nm、好ましい上限は500nmである。10nm未満であると、所望の導電性が得られないことがあり、500nmを超えると、基材微粒子と導電層との熱膨張率の差から、上記導電層が剥離しやすくなることがある。
なお、上記導電層の厚さは、無作為に選んだ10個の粒子について測定し、これらを算術平均した厚さである。
Although it does not specifically limit as thickness of the said conductive layer, A preferable minimum is 10 nm and a preferable upper limit is 500 nm. If the thickness is less than 10 nm, desired conductivity may not be obtained. If the thickness exceeds 500 nm, the conductive layer may be easily peeled off due to the difference in thermal expansion coefficient between the substrate fine particles and the conductive layer.
Note that the thickness of the conductive layer is a thickness obtained by measuring ten randomly selected particles and arithmetically averaging them.

上記突起は、導電性物質を芯物質とすることが好ましい。上記導電性物質としては特に限定されず、例えば、ニッケル、銅、金、銀、亜鉛等が挙げられるが、表面が水酸化物になり分散性がよいため基材微粒子上に突起が均一に形成されやすいことから、ニッケルが好適である。 The protrusion preferably has a conductive substance as a core substance. The conductive material is not particularly limited, and examples thereof include nickel, copper, gold, silver, zinc, and the like. However, since the surface is hydroxide and the dispersibility is good, protrusions are uniformly formed on the substrate fine particles. Nickel is preferred because it is easily treated.

上記突起の高さとしては特に限定されないが、好ましい下限は上記基材微粒子の平均粒子径の2%、好ましい上限は上記基材微粒子の平均粒子径の10%である。上記基材微粒子の平均粒子径の2%未満であると、充分な樹脂排除性が得られないことがあり、上記基材微粒子の平均粒子径の10%を超えると、突起が回路基板等に深くめり込み、回路基板等を破損させるおそれがある。 The height of the protrusions is not particularly limited, but a preferred lower limit is 2% of the average particle diameter of the substrate fine particles, and a preferred upper limit is 10% of the average particle diameter of the substrate fine particles. If the average particle diameter of the base material particles is less than 2%, sufficient resin exclusion may not be obtained. If the average particle diameter of the base material particles exceeds 10%, protrusions may be formed on the circuit board or the like. There is a risk of digging deep and damaging the circuit board.

本発明の導電性微粒子1個あたりの上記突起の個数としては特に限定されないが、導電性微粒子の表面において好ましい下限は0.4個/μm、好ましい上限は1個/μmである。0.4個/μm未満であると、導電性微粒子の向きによっては突起と回路基板等とが接触しないことがあり、1個/μmを超えると、突起同士が重なり合い、導電接続時に導電性微粒子と回路基板等とを圧着した際に突起がつぶれにくいことがある。 The number of the protrusions per conductive fine particle of the present invention is not particularly limited, but a preferable lower limit is 0.4 / μm 2 and a preferable upper limit is 1 / μm 2 on the surface of the conductive fine particles. If it is less than 0.4 pieces / μm 2 , the projections and the circuit board may not contact depending on the direction of the conductive fine particles. If it exceeds 1 piece / μm 2 , the protrusions overlap each other and are electrically conductive during conductive connection. When the conductive fine particles are bonded to the circuit board or the like, the protrusions may not be easily crushed.

本発明の導電性微粒子は、更に、導電層の表面に金層が形成されていることが好ましい。導電層の表面に金層を施すことにより、導電層の酸化防止、接続抵抗の低減化、表面の安定化等を図ることができる。 The conductive fine particles of the present invention preferably further have a gold layer formed on the surface of the conductive layer. By applying a gold layer to the surface of the conductive layer, it is possible to prevent oxidation of the conductive layer, reduce connection resistance, stabilize the surface, and the like.

上記金層の形成方法としては特に限定されず、無電解メッキ、置換メッキ、電気メッキ、還元メッキ、スパッタリング等の従来公知の方法が挙げられる。 The method for forming the gold layer is not particularly limited, and examples thereof include conventionally known methods such as electroless plating, displacement plating, electroplating, reduction plating, and sputtering.

上記金層の厚さとしては特に限定されないが、好ましい下限は1nm、好ましい上限は100nmである。1nm未満であると、導電層の酸化を防止することが困難となることがあり、接続抵抗値が高くなることがあり、100nmを超えると、金層が導電層を侵食し、基材微粒子と導電層との密着性を悪くすることがある。 Although it does not specifically limit as thickness of the said gold layer, A preferable minimum is 1 nm and a preferable upper limit is 100 nm. If it is less than 1 nm, it may be difficult to prevent oxidation of the conductive layer, and the connection resistance value may be high. If it exceeds 100 nm, the gold layer erodes the conductive layer, Adhesion with the conductive layer may be deteriorated.

本発明の導電性微粒子の平均粒子径としては特に限定されないが、好ましい下限は1μm、好ましい上限は100μmである。1μm未満であると、凝集しやすく、単粒子としにくくなることがあり、100μmを超えると、異方性導電材料として微細な配線を有する基板等の電極端子間で用いられる範囲を超えてしまうことがある。より好ましい上限は15μmである。 Although it does not specifically limit as an average particle diameter of the electroconductive fine particles of this invention, A preferable minimum is 1 micrometer and a preferable upper limit is 100 micrometers. If it is less than 1 μm, it tends to agglomerate and difficult to form single particles, and if it exceeds 100 μm, it may exceed the range used between electrode terminals such as a substrate having fine wiring as an anisotropic conductive material. There is. A more preferred upper limit is 15 μm.

本発明の導電性微粒子は、任意に取り出した100個の導電性微粒子について、正投影面積全体に対する上記突起により被覆された面積の割合(以下、面積率ともいう)を求めたときに、上記突起により被覆された面積の割合の標準偏差が3〜7%である。
本発明においては、上記面積率の標準偏差が上記範囲であることにより、各導電性微粒子間で突起密度のばらつきが少なく、従来の問題点であった充分な樹脂排除効果が得られなかったり、接続に寄与しない導電性微粒子が増加したりして、かえって接続抵抗が増大してしまう等の問題が生じることが少ないため、接続抵抗の低減化が可能となる。
上記面積率を測定する方法としては、具体的には、例えば、導電性微粒子の正投影面図を走査型電子顕微鏡(SEM)で撮影し、平坦化等の画像処理を施した後、図1に示すように導電性微粒子1の面積と、突起2の面積とを求め、導電性微粒子1の面積に対する突起2の面積の割合を突起の面積率とする。100個の導電性微粒子についてこの面積率を求め、標準偏差を求める。ただし、正投影面図において、導電性微粒子1の外周円から外側に外れた突起3については突起2の面積には含まないものとする。
上記面積率の標準偏差が3%未満であるものは、技術的に製造が困難であり、上記面積率の標準偏差が7%を超えると、突起密度にばらつきが生じ、突起と回路基板とが接触しないことがあり、接続抵抗の低減化が困難となる。好ましい下限は3.1%、好ましい上限は5%である。
The conductive fine particles of the present invention are obtained when the ratio of the area covered by the protrusions with respect to the whole orthographic projection area (hereinafter also referred to as area ratio) is obtained for 100 conductive particles taken out arbitrarily. The standard deviation of the ratio of the area covered by is 3 to 7%.
In the present invention, because the standard deviation of the area ratio is in the above range, there is little variation in the density of protrusions between each conductive fine particle, the sufficient resin exclusion effect that has been a problem in the past cannot be obtained, Since there are few problems such as an increase in conductive fine particles that do not contribute to the connection and an increase in the connection resistance, the connection resistance can be reduced.
As a method for measuring the area ratio, specifically, for example, an orthographic plan view of conductive fine particles is photographed with a scanning electron microscope (SEM) and subjected to image processing such as flattening, and then FIG. The area of the conductive fine particles 1 and the area of the protrusions 2 are obtained, and the ratio of the area of the protrusions 2 to the area of the conductive fine particles 1 is defined as the area ratio of the protrusions. The area ratio is obtained for 100 conductive fine particles, and the standard deviation is obtained. However, in the orthographic plan view, the protrusion 3 that is outside the outer circumference circle of the conductive fine particle 1 is not included in the area of the protrusion 2.
If the standard deviation of the area ratio is less than 3%, it is technically difficult to manufacture. If the standard deviation of the area ratio exceeds 7%, the protrusion density varies, and the protrusion and the circuit board There may be no contact, and it becomes difficult to reduce the connection resistance. A preferred lower limit is 3.1% and a preferred upper limit is 5%.

本発明の導電性微粒子の製造方法としては、例えば、次のような方法により製造することができる。
まず、基材微粒子の表面に触媒付与を行い、ヘテロ凝集により該基材微粒子の表面に芯物質となる導電性物質を付着させるか、又は、該基材微粒子を脱イオン水に分散させ、導電性物質スラリーを添加し、該基材微粒子の表面に芯物質となる導電性物質を付着させ、その後、表面に触媒付与を行う。
次いで、メッキ安定剤を含有する水溶液に上記基材微粒子を分散させ、この水溶液にメッキ安定剤、次亜リン酸塩を含有する金属メッキ液を添加することで芯物質が導電層により被覆されてなる突起を有する導電性微粒子を製造することができる。更に、この導電性微粒子に対して錯化剤及び結晶調整剤を含有する金メッキ浴を用いて置換金メッキ法を行うことにより、導電層の表面に金層が形成された導電性微粒子を製造することができる。
特に本発明においては、芯物質としてニッケルを選択することにより、溶液中でニッケルが水酸化物となりやすく、芯物質が分散しやすくなる。その結果、溶液中で各基材微粒子の表面にほぼ均一に芯物質が存在することとなり、ほぼ均一に芯物質が各基材微粒子に接着するため、各導電性微粒子間の突起密度のばらつきが小さくなる。
また、芯物質となる導電性物質は分散剤とともに脱イオン水に分散させてスラリーとすることが好ましい。また、芯物質となる導電性物質は少量ずつゆっくりと基材微粒子を含む水分散液に添加することが好ましい。さらに、芯物質の分散性が高まるため芯物質を含有する水分散液はpHが4以下の酸性であることが好ましい。
これら条件によっても添加した芯物質が分散剤により非常に均一に分散するようになり、ほぼ均一に芯物質が各基材微粒子に付着しやすくさせることができる。
As a manufacturing method of the electroconductive fine particles of this invention, it can manufacture by the following methods, for example.
First, a catalyst is applied to the surface of the substrate fine particles, and a conductive substance serving as a core substance is adhered to the surface of the substrate fine particles by heteroaggregation, or the substrate fine particles are dispersed in deionized water to conduct electricity. A conductive material slurry is added, and a conductive material serving as a core material is adhered to the surface of the substrate fine particles, and then a catalyst is applied to the surface.
Next, the core material is coated with the conductive layer by dispersing the above-mentioned substrate fine particles in an aqueous solution containing a plating stabilizer and adding a metal plating solution containing a plating stabilizer and hypophosphite to this aqueous solution. Conductive fine particles having protrusions can be produced. Furthermore, the conductive fine particles having a gold layer formed on the surface of the conductive layer are produced by performing a substitution gold plating method on the conductive fine particles using a gold plating bath containing a complexing agent and a crystal modifier. Can do.
In particular, in the present invention, by selecting nickel as the core material, nickel is likely to be a hydroxide in the solution and the core material is easily dispersed. As a result, the core substance exists almost uniformly on the surface of each substrate fine particle in the solution, and the core substance adheres to each substrate fine particle almost uniformly. Get smaller.
Moreover, it is preferable to disperse | distribute the electroconductive substance used as a core substance to deionized water with a dispersing agent, and to make a slurry. Further, it is preferable that the conductive material as the core material is slowly added little by little to the aqueous dispersion containing the base particles. Furthermore, since the dispersibility of the core substance is enhanced, the aqueous dispersion containing the core substance is preferably acidic with a pH of 4 or less.
Even under these conditions, the added core substance is very uniformly dispersed by the dispersant, and the core substance can be made to adhere to each base particle almost uniformly.

ここで、上記触媒付与を行う方法としては、例えば、アルカリ溶液でエッチングされた基材粒子に酸中和、及び、二塩化スズ(SnCl)溶液におけるセンシタイジングを行い、二塩化パラジウム(PdCl)溶液におけるアクチベイジングを行う無電解メッキ前処理工程を行う方法等が挙げられる。
なお、センシタイジングとは、絶縁物質の表面にSn2+イオンを吸着させる工程であり、アクチベイチングとは、絶縁性物質表面にSn2++Pd2+→Sn4++Pdで示される反応を起こしてパラジウムを無電解メッキの触媒核とする工程である。
Here, as a method for applying the catalyst, for example, acid neutralization and sensitizing in a tin dichloride (SnCl 2 ) solution are performed on the substrate particles etched with an alkaline solution, and palladium dichloride (PdCl 2 ) A method of performing an electroless plating pretreatment step for activating in solution.
Sensitizing is a process in which Sn 2+ ions are adsorbed on the surface of an insulating material, and activating is a reaction represented by Sn 2+ + Pd 2+ → Sn 4+ + Pd 0 on the surface of an insulating material. In this process, palladium is used as a catalyst core for electroless plating.

本発明の導電性微粒子をバインダー樹脂に分散させることにより異方性導電材料を製造することができる。このような異方性導電材料もまた、本発明の1つである。 An anisotropic conductive material can be produced by dispersing the conductive fine particles of the present invention in a binder resin. Such an anisotropic conductive material is also one aspect of the present invention.

本発明の異方性導電材料の具体的な例としては、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘着剤層、異方性導電フィルム、異方性導電シート等が挙げられる。 Specific examples of the anisotropic conductive material of the present invention include, for example, anisotropic conductive paste, anisotropic conductive ink, anisotropic conductive adhesive layer, anisotropic conductive film, anisotropic conductive sheet and the like. Is mentioned.

上記樹脂バインダーとしては特に限定されないが、絶縁性の樹脂が用いられ、例えば、酢酸ビニル系樹脂、塩化ビニル系樹脂、アクリル系樹脂、スチレン系樹脂等のビニル系樹脂;ポリオレフィン系樹脂、エチレン−酢酸ビニル共重合体、ポリアミド系樹脂等の熱可塑性樹脂;エポキシ系樹脂、ウレタン系樹脂、ポリイミド系樹脂、不飽和ポリエステル系樹脂及びこれらの硬化剤からなる硬化性樹脂;スチレン−ブタジエン−スチレンブロック共重合体、スチレン−イソプレン−スチレンブロック共重合体、これらの水素添加物等の熱可塑性ブロック共重合体;スチレン−ブタジエン共重合ゴム、クロロプレンゴム、アクリロニトリル−スチレンブロック共重合ゴム等のエラストマー類(ゴム類)等が挙げられる。これらの樹脂は、単独で用いられてもよいし、2種以上が併用されてもよい。
また、上記硬化性樹脂は、常温硬化型、熱硬化型、光硬化型、湿気硬化型のいずれの硬化型であってもよい。
The resin binder is not particularly limited, and an insulating resin is used. For example, vinyl resins such as vinyl acetate resins, vinyl chloride resins, acrylic resins, styrene resins; polyolefin resins, ethylene-acetic acid Thermoplastic resins such as vinyl copolymers and polyamide resins; Epoxy resins, urethane resins, polyimide resins, unsaturated polyester resins, and curable resins composed of these curing agents; styrene-butadiene-styrene block copolymer Polymers, thermoplastic block copolymers such as styrene-isoprene-styrene block copolymers and hydrogenated products thereof; elastomers such as styrene-butadiene copolymer rubber, chloroprene rubber, acrylonitrile-styrene block copolymer rubber (rubbers) ) And the like. These resins may be used alone or in combination of two or more.
Further, the curable resin may be any curable type of room temperature curable type, heat curable type, photo curable type, and moisture curable type.

本発明の異方性導電材料には、本発明の導電性微粒子、及び、上記樹脂バインダーの他に、本発明の課題達成を阻害しない範囲で必要に応じて、例えば、増量剤、軟化剤(可塑剤)、粘接着性向上剤、酸化防止剤(老化防止剤)、熱安定剤、光安定剤、紫外線吸収剤、着色剤、難燃剤、有機溶媒等の各種添加剤を添加してもよい。 In addition to the conductive fine particles of the present invention and the resin binder described above, the anisotropic conductive material of the present invention includes, for example, a bulking agent and a softening agent (if necessary) within a range not impairing the achievement of the problems of the present invention. Additives such as plasticizers), adhesive improvers, antioxidants (anti-aging agents), heat stabilizers, light stabilizers, UV absorbers, colorants, flame retardants, organic solvents, etc. Good.

本発明の異方性導電材料の製造方法としては特に限定されず、例えば、絶縁性の樹脂バインダー中に本発明の導電性微粒子を添加し、均一に混合して分散させ、例えば、異方性導電ペースト、異方性導電インク、異方性導電粘接着剤等とする方法や、絶縁性の樹脂バインダー中に本発明の導電性微粒子を添加し、均一に溶解(分散)させるか、又は、加熱溶解させて、離型紙や離型フィルム等の離型材の離型処理面に所定のフィルム厚さとなる用に塗工し、必要に応じて乾燥や冷却等を行って、例えば、異方性導電フィルム、異方性導電シート等とする方法等が挙げられ、製造しようとする異方性導電材料の種類に対応して、適宜の製造方法をとればよい。
また、絶縁性の樹脂バインダーと、本発明の導電性微粒子とを混合することなく、別々に用いて異方性導電材料としてもよい。
The method for producing the anisotropic conductive material of the present invention is not particularly limited. For example, the conductive fine particles of the present invention are added to an insulating resin binder, and are mixed and dispersed uniformly. A method of using a conductive paste, anisotropic conductive ink, anisotropic conductive adhesive, etc., adding the conductive fine particles of the present invention in an insulating resin binder and uniformly dissolving (dispersing), or , Heat-dissolve, and apply to the release treatment surface of the release material such as release paper and release film to have a predetermined film thickness, and perform drying and cooling as necessary, for example, anisotropic For example, an appropriate manufacturing method may be employed in accordance with the type of anisotropic conductive material to be manufactured.
Moreover, it is good also as an anisotropic conductive material by using separately, without mixing an insulating resin binder and the electroconductive fine particles of this invention.

本発明の導電性微粒子は、各導電性微粒子間で突起密度のばらつきが低いことから、従来の問題点であった突起と回路基板とが接触しないということが少ないため、接続抵抗の低減化が可能となる。
本発明によれば、導通不良防止とともに抵抗値の低減化が可能な導電性微粒子及び異方性導電材料を提供することができる。
Since the conductive fine particles of the present invention have a low variation in the density of protrusions between the conductive fine particles, there is little contact between the protrusions and the circuit board, which has been a problem in the prior art. It becomes possible.
According to the present invention, it is possible to provide conductive fine particles and anisotropic conductive material capable of preventing conduction failure and reducing the resistance value.

以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1)
(1)無電解メッキ前処理工程
平均粒子径3μmのテトラメチロールメタンテトラアクリレートとジビニルベンゼンとの共重合樹脂からなる基材微粒子10gに、水酸化ナトリウム水溶液によるアルカリ脱脂、酸中和、二塩化スズ溶液によるセンシタイジングを行った。その後、二塩化パラジウム溶液によるアクチベイチングを行った。濾過洗浄後、粒子表面にパラジウムを付着させた基材微粒子を得た。
Example 1
(1) Electroless plating pretreatment step 10 g of substrate fine particles made of a copolymer resin of tetramethylolmethanetetraacrylate and divinylbenzene having an average particle size of 3 μm are subjected to alkali degreasing, acid neutralization, tin dichloride with aqueous sodium hydroxide solution Sensitization with solution was performed. Thereafter, activation with a palladium dichloride solution was performed. After filtration and washing, substrate fine particles having palladium attached to the particle surfaces were obtained.

(2)金属ニッケル粒子分散工程
金属ニッケル粒子(三井金属社製「2007SUS」、平均粒子径50nm)1gにクエン酸1g、分散剤1g、水1000mLを投入しpHを3.0以下に調整し、30分間超音波照射と攪拌を行い金属ニッケル粒子スラリーを得た。
(2) Metal Nickel Particle Dispersion Step 1 g of citric acid, 1 g of dispersant and 1000 mL of water are added to 1 g of metal nickel particles (“2007SUS” manufactured by Mitsui Kinzoku Co., Ltd., average particle diameter 50 nm), and the pH is adjusted to 3.0 or less. Ultrasonic irradiation and stirring were performed for 30 minutes to obtain a metal nickel particle slurry.

(3)芯物質複合化工程
得られた基材微粒子を脱イオン水500mLに加え10分間超音波照射と攪拌を行い脱イオン水に分散させた後、水分散液に金属ニッケル粒子スラリーをpHを4.0以下に保ちながら20分間かけて少しずつ添加し、芯物質が付着した基材微粒子を得た。
(3) Core material complexing step The obtained base material fine particles are added to 500 mL of deionized water and subjected to ultrasonic irradiation and stirring for 10 minutes to disperse in deionized water, and then the pH of the metal nickel particle slurry is adjusted to the aqueous dispersion. While maintaining at 4.0 or less, it was added little by little over 20 minutes to obtain substrate fine particles to which the core substance adhered.

(4)無電解ニッケルメッキ工程
得られた芯物質が付着した基材微粒子を含む水分散液にさらに水1200mLを加えて希釈し、メッキ安定剤4mLを添加後、この水溶液に硫酸ニッケル450g/L、次亜リン酸ナトリウム150g/L、クエン酸ナトリウム116g/L、メッキ安定剤6mLの混合溶液120mLを一定速度で添加した。その後、pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解メッキ前期工程を終了した。
次いで、更に硫酸ニッケル450g/L、次亜リン酸ナトリウム150g/L、クエン酸ナトリウム116g/L、メッキ安定剤35mLの混合溶液650mLを一定速度で添加した。その後、pHが安定するまで攪拌し、水素の発泡が停止するのを確認し、無電解メッキ後期工程を終了した。
次いで、濾過、洗浄、乾燥を行ってニッケルメッキされた導電性微粒子を得た。
(4) Electroless Nickel Plating Step 1200 mL of water is further added to the aqueous dispersion containing the fine particles of the substrate to which the core material is adhered, and diluted. After adding 4 mL of plating stabilizer, 450 g / L of nickel sulfate is added to this aqueous solution. Then, 120 mL of a mixed solution of sodium hypophosphite 150 g / L, sodium citrate 116 g / L, and plating stabilizer 6 mL was added at a constant rate. Then, it stirred until pH became stable, it confirmed that hydrogen foaming stopped, and the electroless-plating pre-process was completed.
Next, 650 mL of a mixed solution of 450 g / L nickel sulfate, 150 g / L sodium hypophosphite, 116 g / L sodium citrate, and 35 mL plating stabilizer was added at a constant rate. Then, it stirred until pH was stabilized, it confirmed that hydrogen foaming stopped, and the electroless-plating late process was complete | finished.
Next, filtration, washing and drying were performed to obtain nickel-plated conductive fine particles.

(5)金メッキ工程
置換メッキによりニッケルメッキされた導電性微粒子の表面に金メッキを施し導電性微粒子を得た。
(5) Gold plating step The surface of the conductive fine particles plated with nickel by displacement plating was plated with gold to obtain conductive fine particles.

(比較例1)
(1)基材微粒子の作製
実施例1と同様にして無電解メッキ前処理工程を行い粒子表面にパラジウムを付着させた基材微粒子を得た。
(Comparative Example 1)
(1) Preparation of substrate fine particles The same treatment as in Example 1 was carried out to obtain a substrate fine particle in which palladium was attached to the particle surface by performing an electroless plating pretreatment step.

(2)金属ニッケル粒子分散工程)
金属ニッケル粒子(三井金属社製「2007SUS」、平均粒子径50nm)1gに水500mLを投入し、pHを調整することなくほぼpH7の状態で3分間超音波照射と攪拌を行って金属ニッケル粒子スラリーを得た。
(2) Metal nickel particle dispersion process)
500 ml of water is added to 1 g of metallic nickel particles (“2007SUS” manufactured by Mitsui Kinzoku Co., Ltd., average particle diameter of 50 nm), and the mixture is subjected to ultrasonic irradiation and stirring for 3 minutes at approximately pH 7 without adjusting the pH. Got.

(3)芯物質複合化工程
得られた基材微粒子を脱イオン水500mLで10分間超音波照射と攪拌を行った後、水分散液に金属ニッケル粒子スラリーをpHを調整することなくほぼpH7の状態で一括添加し、芯物質を付着させた基材微粒子を得た。
続いて、実施例1と同様にニッケルメッキ工程を行いニッケルメッキされた導電性微粒子を得た。また、実施例1と同様に金メッキ工程を行って導電性微粒子を得た。
(3) Core material composite step After the obtained base material fine particles were subjected to ultrasonic irradiation and stirring with 500 mL of deionized water for 10 minutes, the metal nickel particle slurry was adjusted to a pH of about 7 without adjusting the pH in the aqueous dispersion. The substrate fine particles were added in a lump in a state to obtain core particles to which the core substance was adhered.
Then, the nickel plating process was performed similarly to Example 1, and the electroconductive fine particle by which nickel plating was carried out was obtained. Moreover, the gold-plating process was performed similarly to Example 1, and the electroconductive fine particles were obtained.

<評価>
実施例1及び比較例1で得られた導電性微粒子について以下の評価を行った。結果を表1に示した。
<Evaluation>
The following evaluation was performed on the conductive fine particles obtained in Example 1 and Comparative Example 1. The results are shown in Table 1.

(1)膜厚の測定
得られた導電性微粒子について、日本電子データム社製透過型電子顕微鏡(TEM)により、倍率10万倍で断面観察を行い、ニッケル膜厚及び金膜厚を測定した。
(1) Measurement of film thickness The obtained conductive fine particles were subjected to cross-sectional observation at a magnification of 100,000 times by a transmission electron microscope (TEM) manufactured by JEOL Datum, and the nickel film thickness and the gold film thickness were measured.

(2)面積率の測定及び標準偏差の測定
面積率の測定:SEMで撮影した6000倍の写真を市販の画像解析ソフトにより解析した。1個の導電性微粒子の観察面積に占める突起部分の面積を解析した解析結果から面積率(%)を求めた。それを100個の導電性微粒子に対して行って得られた面積率の平均値を平均面積率とした。
また、100個の導電性微粒子を解析した解析結果から面積率の標準偏差を求めた。
(2) Measurement of area ratio and measurement of standard deviation measurement area ratio: 6000 times of photographs taken with SEM were analyzed with commercially available image analysis software. The area ratio (%) was obtained from the analysis result obtained by analyzing the area of the protruding portion in the observation area of one conductive fine particle. The average value of the area ratio obtained by performing it on 100 conductive fine particles was defined as the average area ratio.
Moreover, the standard deviation of the area ratio was calculated | required from the analysis result which analyzed 100 electroconductive fine particles.

(3)接続抵抗値の測定
得られた導電性微粒子を用いて以下の方法により異方性導電材料を作製し、電極間の接続抵抗値の測定を行った。
樹脂バインダーの樹脂としてエポキシ樹脂(油化シェルエポキシ社製、「エピコート828」)100重量部、トリスジメチルアミノエチルフェノール2重量部、及び、トルエン100重量部を、遊星式攪拌機を用いて充分に混合した後、離型フィルム上に乾燥後の厚さが10μmとなるように塗布し、トルエンを蒸発させて接着性フィルムを得た。
次いで、樹脂バインダーの樹脂としてエポキシ樹脂(油化シェルエポキシ社製、「エピコート828」)100重量部、トリスジメチルアミノエチルフェノール2重量部、及び、トルエン100重量部に、得られたそれぞれの導電性微粒子を添加し、遊星式攪拌機を用いて充分に混合した後、離型フィルム上に乾燥後の厚さが7μmとなるように塗布し、トルエンを蒸発させて導電性微粒子を含有する接着性フィルムを得た。なお、導電性微粒子の配合量は、フィルム中の含有量が5万個/cmとなるようにした。
得られた接着性フィルムと導電性微粒子を含有する接着性フィルムとを常温でラミネートすることにより、2層構造を有する厚さ17μmの異方性導電フィルムを得た。
得られた異方性導電フィルムを5×5mmの大きさに切断した。これを、一方に抵抗測定用の引き回し線を有した幅200μm、長さ1mm、高さ0.2μm、L/S20μmのアルミニウム電極のほぼ中央に貼り付けた後、ITO電極を有するガラス基板を、電極同士が重なるように位置あわせをしてから貼り合わせた。
このガラス基板の接合部を、10N、100℃の圧着条件で熱圧着した後、電極間の接続抵抗値を測定した。
また、作製した試験片に対して信頼性試験(80℃、95%RHの高温高湿環境下で1000時間保持)を行った後、電極間の接続抵抗値を測定した。
(3) Measurement of connection resistance value An anisotropic conductive material was produced by the following method using the obtained conductive fine particles, and the connection resistance value between the electrodes was measured.
100 parts by weight of an epoxy resin (“Epicoat 828” manufactured by Yuka Shell Epoxy Co., Ltd.), 2 parts by weight of trisdimethylaminoethylphenol, and 100 parts by weight of toluene as a resin binder resin are sufficiently mixed using a planetary stirrer. Then, it was applied on the release film so that the thickness after drying was 10 μm, and toluene was evaporated to obtain an adhesive film.
Subsequently, 100 parts by weight of an epoxy resin (“Epicoat 828” manufactured by Yuka Shell Epoxy Co., Ltd.), 2 parts by weight of trisdimethylaminoethylphenol, and 100 parts by weight of toluene as a resin binder resin were obtained. After adding fine particles and mixing well using a planetary stirrer, it is coated on a release film so that the thickness after drying is 7 μm, and toluene is evaporated to form an adhesive film containing conductive fine particles Got. In addition, the compounding quantity of electroconductive fine particles was made for the content in a film to be 50,000 piece / cm < 2 >.
By laminating the obtained adhesive film and an adhesive film containing conductive fine particles at room temperature, an anisotropic conductive film having a two-layer structure and a thickness of 17 μm was obtained.
The obtained anisotropic conductive film was cut into a size of 5 × 5 mm. After affixing this to approximately the center of an aluminum electrode having a width of 200 μm, a length of 1 mm, a height of 0.2 μm, and an L / S of 20 μm having a lead wire for resistance measurement, a glass substrate having an ITO electrode is obtained. After aligning the electrodes so that they overlap each other, they were bonded together.
The bonded portion of this glass substrate was thermocompression bonded under pressure bonding conditions of 10N and 100 ° C., and then the connection resistance value between the electrodes was measured.
In addition, a reliability test (held at 80 ° C. in a high-temperature and high-humidity environment of 95% RH for 1000 hours) was performed on the prepared test piece, and then the connection resistance value between the electrodes was measured.

Figure 2007035572
Figure 2007035572

本発明によれば、導通不良防止とともに抵抗値の低減化が可能な導電性微粒子及び異方性導電材料を提供することができる。 According to the present invention, it is possible to provide conductive fine particles and anisotropic conductive material capable of preventing conduction failure and reducing the resistance value.

本発明の導電性微粒子の正投影面図である。It is an orthographic view of the conductive fine particles of the present invention.

符号の説明Explanation of symbols

1 導電性微粒子
2、3 突起
1 Conductive fine particles 2, 3 Protrusions

Claims (7)

基材微粒子と、前記基材微粒子の表面に形成された表面に突起を有する導電層とからなる導電性微粒子であって、
100個の導電性微粒子について、正投影面積全体に対する前記突起により被覆された面積の割合を求めたときに、前記突起により被覆された面積の割合の標準偏差が3〜7%である
ことを特徴とする導電性微粒子。
Conductive fine particles comprising substrate fine particles and a conductive layer having protrusions on the surface formed on the surface of the substrate fine particles,
For 100 conductive fine particles, the standard deviation of the ratio of the area covered with the protrusions is 3 to 7% when the ratio of the area covered with the protrusions to the whole orthographic projection area is obtained. Conductive fine particles.
突起の平均高さが、基材微粒子の平均粒子径の2〜10%であることを特徴とする請求項1記載の導電性微粒子。 2. The conductive fine particles according to claim 1, wherein the average height of the protrusions is 2 to 10% of the average particle diameter of the base fine particles. 突起は、導電性物質を芯物質とすることを特徴とする請求項1又は2記載の導電性微粒子。 3. The conductive fine particle according to claim 1, wherein the protrusion has a conductive substance as a core substance. 芯物質は、ニッケルであることを特徴とする請求項3記載の導電性微粒子。 The conductive fine particles according to claim 3, wherein the core substance is nickel. 基材微粒子は、樹脂微粒子であることを特徴とする請求項1、2、3又は4記載の導電性微粒子。 5. The conductive fine particles according to claim 1, wherein the base fine particles are resin fine particles. 更に、導電層の表面に金層が形成されていることを特徴とする請求項1、2、3、4又は5記載の導電性微粒子。 6. The conductive fine particles according to claim 1, wherein a gold layer is formed on the surface of the conductive layer. 請求項1、2、3、4、5又は6記載の導電性微粒子が樹脂バインダーに分散されてなることを特徴とする異方性導電材料。 An anisotropic conductive material, wherein the conductive fine particles according to claim 1 are dispersed in a resin binder.
JP2005221024A 2005-07-29 2005-07-29 Conductive fine particles and anisotropic conductive material Active JP4598621B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005221024A JP4598621B2 (en) 2005-07-29 2005-07-29 Conductive fine particles and anisotropic conductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005221024A JP4598621B2 (en) 2005-07-29 2005-07-29 Conductive fine particles and anisotropic conductive material

Publications (2)

Publication Number Publication Date
JP2007035572A true JP2007035572A (en) 2007-02-08
JP4598621B2 JP4598621B2 (en) 2010-12-15

Family

ID=37794554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005221024A Active JP4598621B2 (en) 2005-07-29 2005-07-29 Conductive fine particles and anisotropic conductive material

Country Status (1)

Country Link
JP (1) JP4598621B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058159A1 (en) * 2005-11-18 2007-05-24 Hitachi Chemical Company, Ltd. Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method
JP2016062879A (en) * 2014-09-22 2016-04-25 デクセリアルズ株式会社 Anisotropic conductive material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243132A (en) * 1999-02-22 2000-09-08 Nippon Chem Ind Co Ltd Conductive electroless plating powder, manufacture thereof, and conductive material made thereof
JP2003086020A (en) * 2001-09-10 2003-03-20 Natoko Kk Conductive particle, conductive material, antistatic film, anisotropic conductive film, and method for manufacturing conductive particle
JP2003234020A (en) * 2002-02-06 2003-08-22 Sekisui Chem Co Ltd Conductive minute particle
JP2004146261A (en) * 2002-10-25 2004-05-20 Sekisui Chem Co Ltd Insulating coating conductive particulate and conductive connection structure
JP2004296322A (en) * 2003-03-27 2004-10-21 Sekisui Chem Co Ltd Conductive particulate and liquid crystal display element
JP2005171096A (en) * 2003-12-11 2005-06-30 Sekisui Chem Co Ltd Method for manufacturing protruded particle, protruded particle, protruded conductive particle and anisotropic conductive material
JP2006228474A (en) * 2005-02-15 2006-08-31 Sekisui Chem Co Ltd Conductive fine particles and anisotropic conductive material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000243132A (en) * 1999-02-22 2000-09-08 Nippon Chem Ind Co Ltd Conductive electroless plating powder, manufacture thereof, and conductive material made thereof
JP2003086020A (en) * 2001-09-10 2003-03-20 Natoko Kk Conductive particle, conductive material, antistatic film, anisotropic conductive film, and method for manufacturing conductive particle
JP2003234020A (en) * 2002-02-06 2003-08-22 Sekisui Chem Co Ltd Conductive minute particle
JP2004146261A (en) * 2002-10-25 2004-05-20 Sekisui Chem Co Ltd Insulating coating conductive particulate and conductive connection structure
JP2004296322A (en) * 2003-03-27 2004-10-21 Sekisui Chem Co Ltd Conductive particulate and liquid crystal display element
JP2005171096A (en) * 2003-12-11 2005-06-30 Sekisui Chem Co Ltd Method for manufacturing protruded particle, protruded particle, protruded conductive particle and anisotropic conductive material
JP2006228474A (en) * 2005-02-15 2006-08-31 Sekisui Chem Co Ltd Conductive fine particles and anisotropic conductive material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007058159A1 (en) * 2005-11-18 2007-05-24 Hitachi Chemical Company, Ltd. Adhesive composition, circuit connecting material, connecting structure and circuit member connecting method
JP4877230B2 (en) * 2005-11-18 2012-02-15 日立化成工業株式会社 Adhesive composition, circuit connection material, connection structure, and circuit member connection method
JP2016062879A (en) * 2014-09-22 2016-04-25 デクセリアルズ株式会社 Anisotropic conductive material

Also Published As

Publication number Publication date
JP4598621B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
JP4235227B2 (en) Conductive fine particles and anisotropic conductive materials
JP4957838B2 (en) Conductive fine particles and anisotropic conductive materials
JP4936678B2 (en) Conductive particles and anisotropic conductive materials
JP4243279B2 (en) Conductive fine particles and anisotropic conductive materials
JP4638341B2 (en) Conductive fine particles and anisotropic conductive materials
JP4674096B2 (en) Conductive fine particles and anisotropic conductive materials
JP4860163B2 (en) Method for producing conductive fine particles
JP4718926B2 (en) Conductive fine particles and anisotropic conductive material
JP4950451B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP4922916B2 (en) Conductive fine particles, anisotropic conductive material, and conductive connection method
JP2007242307A (en) Conductive particulate and anisotropic conductive material
WO2006018995A1 (en) Conductive fine particle, method for producing conductive fine particle and electroless silver plating liquid
JP2014063743A (en) Electro-conductive fine particle
JP2006216388A (en) Conductive fine particle and anisotropic conductive material
JP5091416B2 (en) Conductive fine particles, method for producing conductive fine particles, and anisotropic conductive material
JP4772490B2 (en) Method for producing conductive particles
JP2006331714A (en) Conductive fine particle and anisotropic conductive material
JP2007035574A (en) Conductive particulates, anisotropic conductive material, and connection structural body
JP2007324138A (en) Conductive particulate and anisotropic conductive material
JP2009032397A (en) Conductive fine particle
JP5529901B2 (en) Conductive particles and anisotropic conductive materials
JP4598621B2 (en) Conductive fine particles and anisotropic conductive material
JP4589810B2 (en) Conductive fine particles and anisotropic conductive materials
JP2007194210A (en) Conductive fine particle and anisotropic conductive material
JP3914206B2 (en) Conductive fine particles and anisotropic conductive materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100924

R151 Written notification of patent or utility model registration

Ref document number: 4598621

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3