JP2007033949A - Electrostatic charging controller, electrostatic charging control method, and charging voltage inspection method - Google Patents

Electrostatic charging controller, electrostatic charging control method, and charging voltage inspection method Download PDF

Info

Publication number
JP2007033949A
JP2007033949A JP2005218093A JP2005218093A JP2007033949A JP 2007033949 A JP2007033949 A JP 2007033949A JP 2005218093 A JP2005218093 A JP 2005218093A JP 2005218093 A JP2005218093 A JP 2005218093A JP 2007033949 A JP2007033949 A JP 2007033949A
Authority
JP
Japan
Prior art keywords
voltage
charged
current
image quality
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005218093A
Other languages
Japanese (ja)
Inventor
Kazuki Inami
かづき 井波
Hidehiko Yamaguchi
英彦 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2005218093A priority Critical patent/JP2007033949A/en
Publication of JP2007033949A publication Critical patent/JP2007033949A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Or Security For Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic charging controller which easily detects an image quality defect to control a voltage applied to a photoreceptor 2 to an optimal value. <P>SOLUTION: The electrostatic charging controller has an electrode 12 which is disposed in proximity to the photoreceptor 2 and covers the photoreceptor 2 in its axial direction throughout, and a voltage detection part 13 for detecting a surface potential of the photoreceptor 2 , which is induced in the electrode 12. Since the electrode 12 covering the photoreceptor 2 in its axial direction throughout is provided, the surface potential in the axial direction of the photoreceptor 2 and the image quality defect can be detected at once. Consequently, the optimal voltage to be applied to the photoreceptor can be quickly obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、被帯電体上の表面電位分布を測定し、測定した電位分布に基づき被帯電体の帯電電圧が最適な値となるように制御する帯電制御装置、帯電制御方法及び帯電電圧検査方法に関する。   The present invention relates to a charge control device, a charge control method, and a charge voltage inspection method for measuring a surface potential distribution on a member to be charged and controlling the charge voltage of the member to be an optimum value based on the measured potential distribution. About.

被帯電体の帯電電位を測定する方法として、特許文献1の開示技術が知られている。特許文献1では、小さな測定電極を被帯電体に近接して対向配置し、この電極に誘導される誘導電流や誘導電圧を測定する。被帯電体の回転によって電極を被帯電体に対して相対移動させると、電極で検知する電荷が時間的に変化し、その際の誘導電流や誘導電圧を検出して被帯電体の表面電位を測定するものである。   As a method for measuring the charged potential of a member to be charged, the technology disclosed in Patent Document 1 is known. In Patent Document 1, a small measurement electrode is disposed in close proximity to an object to be charged, and an induced current and an induced voltage induced in this electrode are measured. When the electrode is moved relative to the body to be charged by the rotation of the body to be charged, the electric charge detected by the electrode changes with time. Measure.

特許第3009179号公報Japanese Patent No. 3009179

しかしながら、被帯電体に印加する電圧を最適な値に制御できていないと、白点などの画質欠陥が生じてしまう。小さな測定電極を用いて画質欠陥を検出するには、被帯電体の1周ごとに測定電極を被帯電体の軸方向に移動させ、画質欠陥が生じているか否かを判定しなければらならず、非常に時間がかかる。   However, if the voltage applied to the member to be charged cannot be controlled to an optimum value, image quality defects such as white spots will occur. In order to detect an image quality defect using a small measurement electrode, it is necessary to determine whether an image quality defect has occurred by moving the measurement electrode in the axial direction of the object to be charged for each turn of the object to be charged. Very time consuming.

さらに、環境変動によらず画質欠陥の生じない画像を形成するためには、被帯電体が飽和する時の印加電圧Vppにマージンを持たせた電圧を印加しなければならない。上述した小さな測定電極を用いた表面電位の測定方法では、被帯電体の1周ごとに測定電極を被帯電体の軸方向に移動させて画質欠陥が生じているか否かを判定する作業を、印加電圧Vppを変えながら行わなければならず手間のかかる作業となる。また、被帯電体の飽和電圧に対して経験的に決められた値を設定する場合は、マージンは経験的に決められた値であって、その妥当性を一概には評価することはできない。最終的に得られる出力画像を見て、そのVppが適切であったかどうかを判定しなければならない。   Furthermore, in order to form an image free from image quality defects regardless of environmental changes, a voltage with a margin must be applied to the applied voltage Vpp when the charged body is saturated. In the method for measuring the surface potential using the small measurement electrode described above, the operation of determining whether or not an image quality defect has occurred by moving the measurement electrode in the axial direction of the charged body for each turn of the charged body, This must be done while changing the applied voltage Vpp, which is a laborious operation. Further, when a value empirically determined for the saturation voltage of the member to be charged is set, the margin is a value empirically determined, and its validity cannot be evaluated unconditionally. It is necessary to look at the finally obtained output image to determine whether or not the Vpp is appropriate.

本発明は上記事情に鑑みてなされたものであり、画質欠陥を簡単に検出して、被帯電体に印加する電圧を最適値に制御することができる帯電制御装置、帯電制御方法及び帯電電圧検査方法を提供することを目的とする。   The present invention has been made in view of the above circumstances. A charge control device, a charge control method, and a charge voltage inspection capable of easily detecting an image quality defect and controlling a voltage applied to a charged object to an optimum value. It aims to provide a method.

かかる目的を達成するために本発明の帯電制御装置は、被帯電体に近接して配置され、該被帯電体の軸方向全体をカバーする測定電極と、前記測定電極に誘導される前記被帯電体の表面電位を検出する検出部と、を有する構成としている。このように本発明は、被帯電体の軸方向全体をカバーする測定電極を設けたことで、感光体の軸方向の表面電位や、画質欠陥を一度に検出することができる。従って、被帯電体に印加する最適な電圧を手早く求めることができる。   In order to achieve such an object, the charge control device of the present invention is arranged in the vicinity of a member to be charged and covers the entire axial direction of the member to be charged, and the member to be charged guided to the measuring electrode. And a detection unit for detecting the surface potential of the body. As described above, according to the present invention, by providing the measurement electrode that covers the entire axial direction of the member to be charged, the surface potential in the axial direction of the photosensitive member and image quality defects can be detected at a time. Therefore, the optimum voltage to be applied to the member to be charged can be quickly obtained.

上記構成の帯電制御装置において、前記測定電極は、測定電極を複数個並べることで前記被帯電体の軸方向全体をカバーしているとよい。各々の測定電極ごとに表面電位を検出することができるので測定精度を高めることができる。   In the charging control device having the above configuration, the measurement electrode may cover the entire axial direction of the object to be charged by arranging a plurality of measurement electrodes. Since the surface potential can be detected for each measurement electrode, the measurement accuracy can be increased.

上記構成の帯電制御装置において、前記測定電極は、前記被帯電体の軸方向に、複数本の前記測定電極が配置されているとよい。上記構成の帯電制御装置において、測定電極間での測定値の差を取ることで、画質欠陥部分の特定が容易になる。   In the charging control device having the above configuration, the measurement electrode may include a plurality of the measurement electrodes arranged in the axial direction of the object to be charged. In the charge control device having the above-described configuration, the image quality defect portion can be easily identified by taking the difference in the measurement values between the measurement electrodes.

上記構成の帯電制御装置において、前記検出部の出力信号からノイズを除去する高域通過フィルタを有するとよい。従って、低周波のノイズ成分をカットすることができ、画質欠陥の検出感度を高めることができる。   The charging control device having the above configuration may include a high-pass filter that removes noise from the output signal of the detection unit. Therefore, low frequency noise components can be cut, and the detection sensitivity of image quality defects can be increased.

上記構成の帯電制御装置において、隣接する前記測定電極によって測定された出力信号の差を取って、ノイズを除去する制御手段を有するとよい。従って、ノイズ成分をカットすることができ、画質欠陥の検出感度を高めることができる。   The charging control device having the above configuration may include a control unit that removes noise by taking a difference between output signals measured by the adjacent measurement electrodes. Therefore, noise components can be cut, and the detection sensitivity of image quality defects can be increased.

上記構成の帯電制御装置において、前記被帯電体に印加するAC電圧又はAC電流をステップ状に変化させ、前記検出部の出力信号から前記被帯電体に印加するAC電圧又はAC電流を設定する制御手段を有するとよい。被帯電体に印加するAC電圧又はAC電流を画質欠陥の生じない最適値に制御することができる。   In the charging control device having the above configuration, the AC voltage or AC current applied to the object to be charged is changed stepwise, and the AC voltage or AC current applied to the object to be charged is set from the output signal of the detection unit. It is good to have a means. The AC voltage or AC current applied to the member to be charged can be controlled to an optimum value that does not cause image quality defects.

上記構成の帯電制御装置において、前記制御手段は、前記AC電圧又はAC電流をステップ状に小さくしていき、前記検出部の出力信号から画質欠陥が含まれるか否かを判定し、該画質欠陥が含まれると判定する1ステップ前の前記AC電圧又は前記AC電流を前記被帯電体に印加する電圧又は電流に設定するとよい。従って、簡単に最適なAC電圧又はAC電流を検出することができ、被帯電体に印加するAC電圧又はAC電流を最適値に制御することができる。   In the charging control device having the above configuration, the control unit decreases the AC voltage or the AC current stepwise, determines whether or not an image quality defect is included from the output signal of the detection unit, and the image quality defect It is preferable to set the AC voltage or the AC current one step before that it is determined to include a voltage or current to be applied to the object to be charged. Therefore, the optimum AC voltage or AC current can be easily detected, and the AC voltage or AC current applied to the member to be charged can be controlled to the optimum value.

本発明の帯電制御方法は、被帯電体に印加するAC電圧又はAC電流をステップ状に小さくしていくステップと、前記被帯電体に近接して配置され、該被帯電体の軸方向全体をカバーする測定電極に誘導される前記被帯電体の表面電位を表す検出信号を出力するステップと、前記検出信号から画質欠陥が含まれているか否かを判定するステップとを有し、前記画質欠陥を検出する1ステップ前の前記AC電圧又は前記AC電流を前記被帯電体に印加する電圧又は電流に設定するとよい。従って、簡単に最適なAC電圧又はAC電流を検出することができ、被帯電体に印加するAC電圧又はAC電流を最適値に制御することができる。   In the charge control method of the present invention, the step of reducing the AC voltage or AC current applied to the object to be charged in a stepwise manner and the proximity of the object to be charged are arranged, and the entire axial direction of the object to be charged is Outputting a detection signal representing a surface potential of the charged body guided to the measurement electrode to be covered; and determining whether or not an image quality defect is included from the detection signal, the image quality defect It is preferable to set the AC voltage or the AC current one step before detecting the voltage to the voltage or current to be applied to the member to be charged. Therefore, the optimum AC voltage or AC current can be easily detected, and the AC voltage or AC current applied to the member to be charged can be controlled to the optimum value.

本発明の帯電電圧検査方法は、被帯電体に所定のAC電圧又はAC電流を印加するステップと、前記被帯電体に近接して配置され、該被帯電体の軸方向全体をカバーする測定電極に誘導される前記被帯電体の表面電位を表す検出信号を出力するステップと、前記検出信号から画質欠陥が生じるか否かを判定するステップと、を有している。従って、印加したAC電圧またはAC電流で、画質欠陥が生じるか否かを判定することができる。   The charged voltage inspection method of the present invention includes a step of applying a predetermined AC voltage or AC current to a member to be charged, and a measurement electrode that is disposed close to the member to be charged and covers the entire axial direction of the member to be charged. And outputting a detection signal indicating the surface potential of the charged body induced by the step, and determining whether or not an image quality defect occurs from the detection signal. Therefore, it can be determined whether an image quality defect is caused by the applied AC voltage or AC current.

本発明は、画質欠陥を簡単に検出して、被帯電体に印加する電圧を最適値に制御することができる。   According to the present invention, it is possible to easily detect an image quality defect and control the voltage applied to the member to be charged to an optimum value.

添付図面を参照しながら本発明の好適な実施例を説明する。   Preferred embodiments of the present invention will be described with reference to the accompanying drawings.

まず、図1を参照しながら本発明の帯電制御装置を搭載した画像形成装置1の構成を説明する。像担持体としての感光体2は、円筒状OPC感光体であり、紙面に垂直方向の中心軸線を中心に矢示の時計方向に所定のプロセススピード(周速度)で回転駆動される。   First, the configuration of the image forming apparatus 1 equipped with the charge control device of the present invention will be described with reference to FIG. The photoconductor 2 as an image carrier is a cylindrical OPC photoconductor, and is driven to rotate at a predetermined process speed (circumferential speed) in the clockwise direction indicated by an arrow about a central axis perpendicular to the paper surface.

感光体2の周囲には、帯電部材としての帯電ロール3が接触するように配置されている。この帯電ロール3は感光体2の回転に従動して回転し、またAC電源10、DC電源11から所定の電圧が印加され、回転する感光体2の周面が所定の極性・電位に一様に帯電(本例では負帯電)される。   A charging roll 3 serving as a charging member is disposed around the photoreceptor 2. The charging roll 3 is rotated by the rotation of the photosensitive member 2, and a predetermined voltage is applied from the AC power source 10 and the DC power source 11, and the peripheral surface of the rotating photosensitive member 2 is uniformly set to a predetermined polarity and potential. Is charged (negatively charged in this example).

次いで回転感光体2の帯電処理面に、露光器4から出力される、画像変調されたレーザビームが照射(走査露光)され、露光部分の電位が減衰して静電潜像が形成される。   Next, the image-modulated laser beam output from the exposure device 4 is irradiated (scanning exposure) to the charging processing surface of the rotating photoconductor 2, and the potential of the exposed portion is attenuated to form an electrostatic latent image.

感光体2の回転にともなって該潜像が現像器5に対向する現像部位に到来すると、現像器5から負帯電されたトナーが供給されて反転現像によってトナー像が形成される。   When the latent image arrives at the developing portion facing the developing device 5 as the photosensitive member 2 rotates, negatively charged toner is supplied from the developing device 5 and a toner image is formed by reversal development.

感光体2の回転方向に見て現像器5の下流側には導電性の転写ロール6が感光体2に圧接配置してあって、感光体2と転写ロール6とのニップ部が転写部位を形成している。   An electroconductive transfer roll 6 is disposed in pressure contact with the photoconductor 2 on the downstream side of the developing device 5 when viewed in the rotation direction of the photoconductor 2, and a nip portion between the photoconductor 2 and the transfer roll 6 serves as a transfer site. Forming.

感光体2の表面に形成されたトナー像が感光体2の回転につれて上記転写部位に到達すると、これとタイミングをあわせて、用紙が転写位置に供給され、これとともに所定の電圧が転写ロール6に印加されて、トナー像が感光体2の表面から用紙に転写される。   When the toner image formed on the surface of the photoconductor 2 reaches the transfer site as the photoconductor 2 rotates, the paper is supplied to the transfer position at the same time, and a predetermined voltage is applied to the transfer roll 6 at the same time. As a result, the toner image is transferred from the surface of the photoreceptor 2 to the paper.

転写位置でトナー像の転写を受けた用紙は定着器7へ搬送されてトナー像の定着を受け機外へ排出される。   The sheet on which the toner image has been transferred at the transfer position is conveyed to the fixing device 7 where the toner image is fixed and discharged outside the apparatus.

一方、感光体2の表面に残った転写残りトナーはクリーニングブレード8によってかき落されることで、感光体2はその表面が清掃されて、次の画像形成に備える。さらに、除電ランプ9によって、感光体2表面の電位は除電される。   On the other hand, the untransferred toner remaining on the surface of the photoconductor 2 is scraped off by the cleaning blade 8, whereby the surface of the photoconductor 2 is cleaned and prepared for the next image formation. Further, the surface of the photoreceptor 2 is neutralized by the neutralizing lamp 9.

ここで、帯電ロール3を感光体2に接触させてAC電圧にDC電圧を重畳した電圧を印加し、感光体2を帯電させる接触帯電方式について説明する。一般的に、DC電圧の印加だけでは、感光体2上の抵抗の低いところにだけ電流が流れるため均一に帯電させることができない。そこで、AC電圧にDC電圧を重畳した電圧を印加し、感光体2の表面電位を均一に帯電させる。   Here, a contact charging method in which the charging roll 3 is brought into contact with the photoreceptor 2 and a voltage obtained by superimposing a DC voltage on the AC voltage is applied to charge the photoreceptor 2 will be described. In general, when only a DC voltage is applied, a current flows only where the resistance on the photosensitive member 2 is low, so that it cannot be uniformly charged. Therefore, a voltage obtained by superimposing a DC voltage on an AC voltage is applied to uniformly charge the surface potential of the photoreceptor 2.

しかしながら、AC電圧は大きすぎると感光体2が磨耗するという不具合が生じる。逆に小さすぎると、帯電の均一性が保てなくなり、プリントしたときにむらができる。そのため、AC電圧を必要最低限の最適な値に設定する必要がある。そこで、帯電ロール3に印加するAC電圧を変更して、電位センサでそのときの感光体の帯電電位を検知し、感光体が飽和したところのAC電圧(図2に示すVa)に基づいてAC電圧又はAC電流を最適な値に設定する(例えば、図2に示すVbのように、感光体2が飽和したときの電圧よりも所定値だけ大きい電圧の所に設定する)。AC電圧をこのような値Vbに設定することで、局所的にも感光体2の表面電位が安定している帯電電位であって、しかも最小となる値に設定することができる。これによって、画質や信頼性を向上させることができる。なお、感光体2が飽和すると、感光体2の表面電位は印加しているDC電圧に一致することが知られている。   However, if the AC voltage is too high, there is a problem that the photoreceptor 2 is worn. On the other hand, if it is too small, the uniformity of charging cannot be maintained, and unevenness occurs when printed. For this reason, it is necessary to set the AC voltage to the minimum necessary optimum value. Therefore, the AC voltage applied to the charging roll 3 is changed, the charged potential of the photosensitive member at that time is detected by a potential sensor, and the AC voltage based on the AC voltage (Va shown in FIG. 2) when the photosensitive member is saturated is detected. The voltage or the AC current is set to an optimum value (for example, set to a voltage that is larger by a predetermined value than the voltage when the photosensitive member 2 is saturated, such as Vb shown in FIG. 2). By setting the AC voltage to such a value Vb, the charging potential at which the surface potential of the photoreceptor 2 is stable even locally can be set to a minimum value. As a result, image quality and reliability can be improved. It is known that when the photosensitive member 2 is saturated, the surface potential of the photosensitive member 2 matches the applied DC voltage.

さらに、画像形成装置1には、感光体2の近傍で、感光体2に対向配置した電極12と、この電極12に誘導される誘導電圧又は誘導電流を測定する電圧検出回路13と、制御部17とを帯電制御装置として備えている。   Further, the image forming apparatus 1 includes an electrode 12 disposed opposite to the photoconductor 2 in the vicinity of the photoconductor 2, a voltage detection circuit 13 for measuring an induced voltage or an induced current induced in the electrode 12, and a control unit. 17 as a charge control device.

電極12は、図1に示すように帯電ロール3による帯電後であって、露光器4による露光前に配置されている。電極12は、図3に示すように感光体軸方向の長さを長くして、感光体軸方向の全体をカバーするように設けられている。このような電極12を感光体2に近接して配置し、電極12に誘導される誘導電流又は誘導電圧を測定することで、感光体2の表面電位を測定することができる。また感光体2を一回転させ、感光体2の一周に渡って表面電位を測定することで、画質欠陥の有無も検出することができる。   As shown in FIG. 1, the electrode 12 is disposed after charging by the charging roll 3 and before exposure by the exposure device 4. As shown in FIG. 3, the electrode 12 is provided so as to cover the entire photosensitive member axial direction by increasing the length in the photosensitive member axial direction. The surface potential of the photoconductor 2 can be measured by arranging such an electrode 12 close to the photoconductor 2 and measuring the induced current or induced voltage induced in the electrode 12. Further, the presence or absence of an image quality defect can also be detected by rotating the photoconductor 2 and measuring the surface potential over one rotation of the photoconductor 2.

再度、図1を参照して電圧検出回路13の構成について説明する。電圧検出回路13は、図1に示すように演算増幅器14と、検出用コンデンサ15と、リセットスイッチ16とを有している。このように電圧検出回路13は、高圧回路を必要とせず、簡単な回路で構成することができるので、低コストで実現することができる。   The configuration of the voltage detection circuit 13 will be described again with reference to FIG. As shown in FIG. 1, the voltage detection circuit 13 has an operational amplifier 14, a detection capacitor 15, and a reset switch 16. As described above, the voltage detection circuit 13 does not require a high voltage circuit and can be configured with a simple circuit, and thus can be realized at low cost.

演算増幅器14と検出用コンデンサ15とは積分器を構成している。感光体2と、これに近接させた電極12との間にはコンデンサが形成されており、帯電ロール3の印加電圧を変化させたときの感光体2の表面電位の変化を誘導電位として検出している。電極12に流れる電流を演算増幅器14と検出用コンデンサ15とから構成される積分器で積分することで、感光体2の表面電位を測定することができる。リセットスイッチ16は、検出用コンデンサ15に蓄積された電荷を放電し、リセットする。   The operational amplifier 14 and the detection capacitor 15 constitute an integrator. A capacitor is formed between the photosensitive member 2 and the electrode 12 adjacent to the photosensitive member 2, and a change in the surface potential of the photosensitive member 2 when the applied voltage of the charging roll 3 is changed is detected as an induced potential. ing. The surface potential of the photosensitive member 2 can be measured by integrating the current flowing through the electrode 12 with an integrator composed of the operational amplifier 14 and the detection capacitor 15. The reset switch 16 discharges the charge accumulated in the detection capacitor 15 and resets it.

制御部8は、上述した各部を制御すると共に、電圧検出回路12で検出した感光体表面電位を元に、帯電ロール3に印加するAC+DC電圧を最適な値に制御する。   The control unit 8 controls each unit described above, and controls the AC + DC voltage applied to the charging roll 3 to an optimum value based on the photoreceptor surface potential detected by the voltage detection circuit 12.

図4に示す印加電圧Vpp1のように、振幅が十分高く、感光体2の帯電状態が安定している場合、電圧検出回路13から出力される感光体一周分の信号波形はほぼ一定になる。ところが、印加AC電圧Vppを徐々に下げていくと、ある印加電圧Vppのところから帯電ムラが生じる。例えば、図4に示すVpp3のAC電圧を印加すると、図5に示すように信号波形が一様でなくなり、画質欠陥が発生していると判定することができる。   When the amplitude is sufficiently high and the charged state of the photosensitive member 2 is stable as in the applied voltage Vpp1 shown in FIG. 4, the signal waveform for one rotation of the photosensitive member output from the voltage detection circuit 13 is substantially constant. However, when the applied AC voltage Vpp is gradually lowered, charging unevenness occurs from a certain applied voltage Vpp. For example, when the AC voltage Vpp3 shown in FIG. 4 is applied, the signal waveform is not uniform as shown in FIG. 5, and it can be determined that an image quality defect has occurred.

従って、印加電圧Vppを飽和電圧よりも十分大きな値からステップ状に下げていき、感光体2の一周分の電荷量をモニタしていくことで、帯電ムラを生じる印加AC電圧Vppを検出することができる。すなわち、感光体2が飽和するときの印加電圧Vpp(図4に示すVppth)と、妥当なマージンを知り得なくても、適切な印加AC電圧Vpp(図4に示すVpp2)を設定することができる。   Accordingly, the applied voltage Vpp is lowered from a value sufficiently larger than the saturation voltage in a stepwise manner, and the applied AC voltage Vpp causing charging unevenness is detected by monitoring the amount of charge for one rotation of the photoreceptor 2. Can do. That is, it is possible to set an appropriate applied AC voltage Vpp (Vpp2 shown in FIG. 4) without knowing an appropriate voltage and an applied voltage Vpp (Vppth shown in FIG. 4) when the photosensitive member 2 is saturated. it can.

図6に示すフローチャートを参照しながら、感光体2に印加するAC電圧の値を最適値に制御する手順を説明する。
制御部17は、DC電圧にAC電圧を重畳した電圧であって、AC電圧の振幅が画質欠陥の生じない十分に高い電圧を感光体2に印加する(ステップS1)。そして、感光体2を1周させ、このとき電極12に誘導される電圧を電圧検出部14で検出する。電圧検出回路13の出力信号により制御部17は、画質欠損が生じているか否かを判定する(ステップS2)。
A procedure for controlling the value of the AC voltage applied to the photosensitive member 2 to the optimum value will be described with reference to the flowchart shown in FIG.
The control unit 17 applies a voltage, which is a voltage obtained by superimposing the AC voltage on the DC voltage and has a sufficiently high amplitude without causing image quality defects (step S1). Then, the photoreceptor 2 is rotated once, and the voltage induced in the electrode 12 at this time is detected by the voltage detector 14. Based on the output signal of the voltage detection circuit 13, the control unit 17 determines whether or not image quality loss has occurred (step S2).

電圧検出回路13の出力信号が、感光体2の一周に渡って均一であった場合には、画質欠損はないと判定し(ステップS2/NO)、AC電圧を1ステップ飽和電圧よりに小さく設定する(ステップS3)。1ステップ分小さくしたAC電圧Vppを感光体2に印加して、感光体2を一周させ、電圧検出回路13で電極12に誘導される電圧を検出する。同様にして画質欠陥が生じているか否かを判定する。制御部17は、電圧検出回路13の出力信号が所定の範囲内で均一ではなかった場合には、画質欠陥ありと判定して(ステップS2/YES)、画質欠陥ありと判定する1ステップ前のAC電圧を最適なAC電圧に設定する(ステップS4)。   If the output signal of the voltage detection circuit 13 is uniform over the entire circumference of the photosensitive member 2, it is determined that there is no image quality loss (step S2 / NO), and the AC voltage is set smaller than the one-step saturation voltage. (Step S3). The AC voltage Vpp reduced by one step is applied to the photosensitive member 2 to make one rotation of the photosensitive member 2, and the voltage induced in the electrode 12 is detected by the voltage detection circuit 13. Similarly, it is determined whether an image quality defect has occurred. When the output signal of the voltage detection circuit 13 is not uniform within a predetermined range, the control unit 17 determines that there is an image quality defect (step S2 / YES), and one step before determining that there is an image quality defect. The AC voltage is set to an optimum AC voltage (step S4).

なお、図6に示すフローチャートの手順に従って、電圧検出回路13の出力信号を判定することで、感光体2に印加するAC電圧又はAC電流で、画質欠陥が生じるか否かを判定することも可能となる。   Note that it is also possible to determine whether an image quality defect is caused by the AC voltage or the AC current applied to the photosensitive member 2 by determining the output signal of the voltage detection circuit 13 according to the procedure of the flowchart shown in FIG. It becomes.

また、画質欠陥の検出精度を上げる方法として、電圧検出回路13の出力信号にフィルタ処理を施す方法や、電極サイズの縦横比を最適化する方法が挙げられる。図7に示すように電圧検出回路13の検出信号を、ノイズ成分を除去する高域通過フィルタ18に通すことで、斑点状の微少な画像欠陥を信号変化として検出することができるようになる。   Further, as a method for improving the detection accuracy of the image quality defect, there are a method for filtering the output signal of the voltage detection circuit 13 and a method for optimizing the aspect ratio of the electrode size. As shown in FIG. 7, when the detection signal of the voltage detection circuit 13 is passed through a high-pass filter 18 that removes noise components, minute spot-like image defects can be detected as signal changes.

また、画質欠陥の検出精度を上げる別の方法として、図8に示すように、電極12の感光体軸方向長さを小さくして、それを複数個並べる方法がある。小さな電極12を感光体軸方向全体をカバーするように配置すれば、各々の電極毎に電荷量の変化が検知できるので検出感度を上げることができる。従って、微少な信号変化や、帯電ムラの出現する軸方向位置を検出できるようになる。   As another method for improving the detection accuracy of image quality defects, as shown in FIG. 8, there is a method in which the length of the electrode 12 in the photosensitive member axial direction is reduced and a plurality of them are arranged. If the small electrodes 12 are arranged so as to cover the entire photosensitive body axial direction, a change in charge amount can be detected for each electrode, so that the detection sensitivity can be increased. Accordingly, it is possible to detect an axial position where a slight signal change or charging unevenness appears.

複数個並んだ電極間で、隣接する電極からの信号の差を取れば、感光体の偏心等による緩やかな変動の影響を受けることなく斑点状の画像欠陥の検出が可能となる。従って、高域通過フィルタ18を使用する必要がなくなる。また、高域通過フィルタ18を使っていないので外乱によるノイズの影響を受け難いというメリットもある。隣接電極間の差を取ることによるノイズ除去の様子を図9に示す。   If a signal difference between adjacent electrodes is taken between a plurality of electrodes, a spot-like image defect can be detected without being affected by a gradual fluctuation due to the eccentricity of the photoreceptor. Therefore, it is not necessary to use the high-pass filter 18. Further, since the high-pass filter 18 is not used, there is an advantage that it is difficult to be affected by noise due to disturbance. FIG. 9 shows how noise is removed by taking the difference between adjacent electrodes.

また、図10に示すように、感光体2の軸方向全体をカバーする電極12を周方向に複数本並べ、その間で逐次検出信号の差を取ると、画像欠陥部が十分に小さければ、画像欠陥による波形変化を強調して検出することができ、同様の効果が得られる。図10には、2本の電極12を周方向に2本並べた例を示す。このような電極12によって画質欠陥のある箇所を測定すると、図11(A)に示すように時刻T=t1でbの電極12で測定された電位の変動(−X)が、時刻T=t2でaの電極12で測定される。従って、これらの差を求めると、時刻T=t1で(―X)が検出され、時刻T=t2で(X)が検出されることになる。従って、図11(B)に示すような波形が観測され、画質欠陥をさらに容易に検出することができる。   Further, as shown in FIG. 10, when a plurality of electrodes 12 covering the entire axial direction of the photosensitive member 2 are arranged in the circumferential direction and the difference between the detection signals is sequentially determined between them, if the image defect portion is sufficiently small, the image Waveform changes due to defects can be emphasized and detected, and similar effects can be obtained. FIG. 10 shows an example in which two electrodes 12 are arranged in the circumferential direction. When a portion having an image quality defect is measured with such an electrode 12, as shown in FIG. 11A, the potential variation (−X) measured at the electrode 12 at time T = t1 is time T = t2. Measured at electrode 12 of a. Therefore, when these differences are obtained, (−X) is detected at time T = t1, and (X) is detected at time T = t2. Therefore, a waveform as shown in FIG. 11B is observed, and an image quality defect can be detected more easily.

上述した実施例は本発明の好適な実施例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。   The embodiment described above is a preferred embodiment of the present invention. However, the present invention is not limited to this, and various modifications can be made without departing from the scope of the present invention.

画像形成装置の構成を示す図である。1 is a diagram illustrating a configuration of an image forming apparatus. 感光体の飽和電圧を説明するための図である。It is a figure for demonstrating the saturation voltage of a photoreceptor. 電極の構成を示す図である。It is a figure which shows the structure of an electrode. 制御部の制御手順を示す図である。It is a figure which shows the control procedure of a control part. 画質欠陥が生じた時の表面電荷量を示す図である。It is a figure which shows the surface charge amount when an image quality defect arises. 制御部の制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of a control part. 高域通過フィルタをさらに設けた構成を示す図である。It is a figure which shows the structure which further provided the high-pass filter. 電極の別の構成を示す図である。It is a figure which shows another structure of an electrode. 電極が1つの場合と、隣接電極で差を取った場合の検出信号を示す図である。It is a figure which shows the detection signal at the time of taking the difference in the case of one electrode and an adjacent electrode. 電極の別の構成を示す図である。It is a figure which shows another structure of an electrode. 図10に示す電極の検出信号を示す図である。It is a figure which shows the detection signal of the electrode shown in FIG.

符号の説明Explanation of symbols

1 画像形成装置 2 感光体
3 帯電ロール 4 露光器
5 現像器 6 転写ロール
7 定着器 8 クリーニングブレード
9 除電ランプ 10 AC電源
11 DC電極 12 電極
13 電圧検出回路部 14 演算増幅器
15 検出用コンデンサ 16 リセットスイッチ
17 制御部 18 高域通過フィルタ
DESCRIPTION OF SYMBOLS 1 Image forming apparatus 2 Photoconductor 3 Charging roll 4 Exposure device 5 Developing device 6 Transfer roll 7 Fixing device 8 Cleaning blade 9 Static elimination lamp 10 AC power source 11 DC electrode 12 Electrode 13 Voltage detection circuit unit 14 Operational amplifier 15 Capacitor for detection 16 Reset Switch 17 Control unit 18 High-pass filter

Claims (9)

被帯電体に近接して配置され、該被帯電体の軸方向全体をカバーする測定電極と、
前記測定電極に誘導される前記被帯電体の表面電位を検出する検出部と、
を有することを特徴とする帯電制御装置。
A measurement electrode that is disposed in the vicinity of the member to be charged and covers the entire axial direction of the member to be charged;
A detection unit for detecting a surface potential of the charged body guided to the measurement electrode;
A charge control device comprising:
前記測定電極は、測定電極を複数個並べることで前記被帯電体の軸方向全体をカバーしていることを特徴とする請求項1記載の帯電制御装置。   The charging control device according to claim 1, wherein the measurement electrode covers the entire axial direction of the member to be charged by arranging a plurality of measurement electrodes. 前記測定電極は、前記被帯電体の軸方向に、複数本の前記測定電極が配置されていることを特徴とする請求項1記載の帯電制御装置。   The charging control device according to claim 1, wherein a plurality of the measurement electrodes are arranged in the axial direction of the member to be charged. 前記検出部の出力信号からノイズを除去する高域通過フィルタを有することを特徴とする請求項1から3のいずれか1項記載の帯電制御装置。   4. The charging control device according to claim 1, further comprising a high-pass filter that removes noise from an output signal of the detection unit. 5. 隣接する前記測定電極によって測定された出力信号の差を取って、ノイズを除去する制御手段を有することを特徴とする請求項1から3のいずれか1項記載の帯電制御装置。   4. The charge control device according to claim 1, further comprising a control unit that removes noise by taking a difference between output signals measured by the adjacent measurement electrodes. 5. 前記被帯電体に印加するAC電圧又はAC電流をステップ状に変化させ、前記検出部の出力信号から前記被帯電体に印加するAC電圧又はAC電流を設定する制御手段を有することを特徴とする請求項1から5のいずれか1項記載の帯電制御装置。   And a control unit configured to change an AC voltage or an AC current to be applied to the object to be charged in a stepped manner and to set an AC voltage or an AC current to be applied to the object to be charged from an output signal of the detection unit. The charge control device according to claim 1. 前記制御手段は、前記AC電圧又はAC電流をステップ状に小さくしていき、前記検出部の出力信号から画質欠陥が含まれるか否かを判定し、該画質欠陥が含まれると判定する1ステップ前の前記AC電圧又は前記AC電流を前記被帯電体に印加する電圧又は電流に設定することを特徴とする請求項6記載の帯電制御装置。   The control means reduces the AC voltage or the AC current stepwise, determines whether or not an image quality defect is included from the output signal of the detection unit, and determines that the image quality defect is included The charging control apparatus according to claim 6, wherein the previous AC voltage or AC current is set to a voltage or current applied to the member to be charged. 被帯電体に印加するAC電圧又はAC電流をステップ状に小さくしていくステップと、
前記被帯電体に近接して配置され、該被帯電体の軸方向全体をカバーする測定電極に誘導される前記被帯電体の表面電位を表す検出信号を出力するステップと、
前記検出信号から画質欠陥が含まれているか否かを判定するステップとを有し、
前記画質欠陥を検出する1ステップ前の前記AC電圧又は前記AC電流を前記被帯電体に印加する電圧又は電流に設定することを特徴とする帯電制御方法。
Reducing the AC voltage or AC current applied to the member to be charged stepwise;
Outputting a detection signal representing a surface potential of the charged body, which is disposed in proximity to the charged body and is guided to a measurement electrode covering the entire axial direction of the charged body;
Determining whether an image quality defect is included from the detection signal,
A charging control method, wherein the AC voltage or the AC current one step before detecting the image quality defect is set to a voltage or a current to be applied to the object to be charged.
被帯電体に所定のAC電圧又はAC電流を印加するステップと、
前記被帯電体に近接して配置され、該被帯電体の軸方向全体をカバーする測定電極に誘導される前記被帯電体の表面電位を表す検出信号を出力するステップと、
前記検出信号から画質欠陥が生じるか否かを判定するステップと、を有することを特徴とする帯電電圧検査方法。
Applying a predetermined AC voltage or AC current to the member to be charged;
Outputting a detection signal representing a surface potential of the charged body, which is disposed in proximity to the charged body and is guided to a measurement electrode covering the entire axial direction of the charged body;
And a step of determining whether an image quality defect is generated from the detection signal.
JP2005218093A 2005-07-27 2005-07-27 Electrostatic charging controller, electrostatic charging control method, and charging voltage inspection method Pending JP2007033949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005218093A JP2007033949A (en) 2005-07-27 2005-07-27 Electrostatic charging controller, electrostatic charging control method, and charging voltage inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005218093A JP2007033949A (en) 2005-07-27 2005-07-27 Electrostatic charging controller, electrostatic charging control method, and charging voltage inspection method

Publications (1)

Publication Number Publication Date
JP2007033949A true JP2007033949A (en) 2007-02-08

Family

ID=37793273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005218093A Pending JP2007033949A (en) 2005-07-27 2005-07-27 Electrostatic charging controller, electrostatic charging control method, and charging voltage inspection method

Country Status (1)

Country Link
JP (1) JP2007033949A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008310144A (en) * 2007-06-15 2008-12-25 Fuji Xerox Co Ltd Image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008310144A (en) * 2007-06-15 2008-12-25 Fuji Xerox Co Ltd Image forming apparatus

Similar Documents

Publication Publication Date Title
JP2006309144A (en) Image forming apparatus
JP2007171462A (en) Image forming apparatus
US7907854B2 (en) Image forming apparatus and image forming method
JP2010231188A (en) Image forming apparatus
JP5087990B2 (en) Image forming apparatus
US8099011B2 (en) Image forming apparatus
JP4692125B2 (en) Charge control device and charge control method
EP3232273A1 (en) Image formation device
JP2008170948A (en) Image forming apparatus
JP2006276471A (en) Image forming apparatus and application voltage control method
JP2006276054A (en) Image forming apparatus and application voltage control method
JP2007187930A (en) Image forming apparatus and film thickness measuring method
JP2007033949A (en) Electrostatic charging controller, electrostatic charging control method, and charging voltage inspection method
JP2007033835A (en) Electrostatic charge controller and electrostatic charge control method
JP5821224B2 (en) Electrophotographic photosensitive member characteristic evaluation apparatus and characteristic evaluation method
JP2007052125A (en) Potential measuring device
JP2006267169A (en) Image forming apparatus and method for controlling applied voltage
JPH08334956A (en) Image forming device
JP2007187933A (en) Charging controller and inflection point detecting method
US10663879B2 (en) Image forming apparatus with plural corona chargers
JP2007033948A (en) Electrifying control apparatus and electrifying control method
CN108279554B (en) Image forming apparatus with a toner supply device
JP2007171469A (en) Image forming apparatus
JP2006276053A (en) Image forming apparatus
JP2007057988A (en) Charging controller, image forming apparatus, charging control method, and program