JP2007033207A - Fluorescence x-ray three-dimensional analyzer - Google Patents

Fluorescence x-ray three-dimensional analyzer Download PDF

Info

Publication number
JP2007033207A
JP2007033207A JP2005216204A JP2005216204A JP2007033207A JP 2007033207 A JP2007033207 A JP 2007033207A JP 2005216204 A JP2005216204 A JP 2005216204A JP 2005216204 A JP2005216204 A JP 2005216204A JP 2007033207 A JP2007033207 A JP 2007033207A
Authority
JP
Japan
Prior art keywords
detection
ray
condensing optical
sample
optical unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005216204A
Other languages
Japanese (ja)
Other versions
JP4694296B2 (en
Inventor
Tomoyasu Nakano
知康 中野
Akira Oba
昌 大庭
Shinobu Onoda
忍 小野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2005216204A priority Critical patent/JP4694296B2/en
Publication of JP2007033207A publication Critical patent/JP2007033207A/en
Application granted granted Critical
Publication of JP4694296B2 publication Critical patent/JP4694296B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorescence X-ray three-dimensional analyzer capable of highly-accurate fluorescence X-ray three-dimensional analysis with high three-dimensional position resolution. <P>SOLUTION: This analyzer is equipped with an X-ray irradiation condensing means having a moving stage for placing a sample thereon, an X-ray source, and an irradiation side condensing optical part for condensing X-rays irradiated from the X-ray source onto a condensing point inside the sample; a fluorescence X-ray detection means having a detection side condensing optical part for condensing fluorescence X-rays generated from the sample placed on the moving stage, and a detector for receiving and detecting the fluorescence X-rays condensed by the detection side condensing optical part; a driving means for moving the moving stage three-dimensionally; and an adjusting means for allowing a focal point of the detection side condensing optical part to agree inside the sample with the condensing point of the irradiation side condensing optical part. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、X線を試料に照射し、そこから発生する蛍光X線のエネルギーを分析することで試料の分析を行う装置であって、特に三次元での試料の分析を行うことのできる蛍光X線三次元分析装置に関するものである。   The present invention is an apparatus for analyzing a sample by irradiating the sample with X-rays and analyzing the energy of the fluorescent X-rays generated from the sample, and is particularly capable of analyzing the sample in three dimensions. The present invention relates to an X-ray three-dimensional analyzer.

従来から試料の分析に蛍光X線分析装置が広く使用されており、その検出限界や検出効率を向上させる改良がなされてきた。特許文献1に記載の発明においては、試料に対してX線を全反射の臨界角近傍の非常に浅い角度で照射するとともに、その照射面積を30μm以下とし、かつ、X線照射によって試料から発生する蛍光X線をヨハン型湾曲結晶やヨハンソン型湾曲結晶によって分光することで、分解能と検出効率を高めている。
特開2004−61129号公報
Conventionally, X-ray fluorescence analyzers have been widely used for analyzing samples, and improvements have been made to improve the detection limit and detection efficiency. In the invention described in Patent Document 1, the sample is irradiated with X-rays at a very shallow angle near the critical angle of total reflection, the irradiation area is set to 30 μm or less, and the sample is generated by X-ray irradiation. The resolution and detection efficiency are enhanced by spectroscopically diffusing fluorescent X-rays with Johann curved crystals and Johansson curved crystals.
JP 2004-61129 A

一方、半導体等の材料の分析においては、表面のみならず試料の深さ方向の分析を非破壊で簡便に行うことが望まれるようになってきている。しかし、上記の装置においては、試料表面においてX線を全反射させる必要があることから、試料の深さ方向の分析を行うことはできなかった。そこで、本発明は、上記問題を解決するためになされたものであり、試料の深さ方向での高い位置分解能を備え、半導体等の試料の深さ方向を含む三次元での蛍光X線分析を非破壊で行うことのできる装置を提供することを目的とする。   On the other hand, in the analysis of materials such as semiconductors, it has become desirable to simply perform non-destructive analysis not only on the surface but also in the depth direction of the sample. However, in the above apparatus, since it is necessary to totally reflect the X-rays on the sample surface, the analysis in the depth direction of the sample could not be performed. Therefore, the present invention has been made to solve the above-described problem, and has a high position resolution in the depth direction of the sample, and three-dimensional X-ray fluorescence analysis including the depth direction of the sample such as a semiconductor. An object of the present invention is to provide a device that can perform the operation in a non-destructive manner.

このような目的を達成するために、本発明の蛍光X線三次元分析装置は、試料を載置するための移動ステージと、X線源及び前記X線源から照射されるX線を試料内部において集光点に集光する照射側集光光学部とを有するX線照射集光手段と、移動ステージに載置される試料から発生する蛍光X線を集光する検出側集光光学部及び検出側集光光学部により集光される蛍光X線を受けてその検出を行う検出器とを有する蛍光X線検出手段と、移動ステージを三次元に移動させる駆動手段と、検出側集光光学部の焦点と、照射側集光光学部の集光点とを試料内部において一致させる調整手段とを備えるものである。   In order to achieve such an object, the X-ray fluorescence three-dimensional analyzer of the present invention includes a moving stage for placing a sample, an X-ray source and X-rays emitted from the X-ray source inside the sample. X-ray irradiation condensing means having an irradiation side condensing optical part for condensing at a condensing point, a detection side condensing optical part for condensing fluorescent X-rays generated from a sample placed on the moving stage, and Fluorescent X-ray detection means having a detector that receives and detects fluorescent X-rays collected by the detection-side condensing optical unit, driving means for moving the moving stage in three dimensions, and detection-side condensing optics And an adjusting means for matching the focal point of the portion and the condensing point of the irradiation side condensing optical unit inside the sample.

この装置によれば、検出側集光光学部の焦点と照射側集光光学部の集光点とが試料内部で一致する箇所において、検出側集光光学部の集光範囲と、照射側集光光学部のX線ビーム照射領域とが、交差する限定された微小領域が分析領域となることから高い位置分解能を発揮する。また、照射側集光光学部の集光点と検出側集光光学部の焦点とが一致する位置に対して、移動ステージを三次元移動させることにより、試料の三次元分析が可能となる。   According to this apparatus, at the position where the focal point of the detection-side condensing optical unit and the condensing point of the irradiation-side condensing optical unit coincide inside the sample, the condensing range of the detection-side condensing optical unit and the irradiation-side condensing unit Since a limited micro area where the X-ray beam irradiation area of the optical optical section intersects becomes an analysis area, high position resolution is exhibited. In addition, the three-dimensional analysis of the sample can be performed by moving the moving stage three-dimensionally to a position where the condensing point of the irradiation-side condensing optical unit coincides with the focal point of the detection-side condensing optical unit.

また、検出側集光光学部をウォルターミラーとした場合は、ウォルターミラーには波長選択性がないことから、各元素から放射される波長の異なった蛍光X線を同一距離の検出面に集光させることができる。そのため、検出面の走査が必要なく、いっそう簡便な機構と操作によって、試料の三次元分析が可能である。   When the detection-side condensing optical unit is a Walter mirror, since the Walter mirror does not have wavelength selectivity, fluorescent X-rays having different wavelengths emitted from each element are condensed on the detection surface at the same distance. Can be made. Therefore, it is not necessary to scan the detection surface, and a three-dimensional analysis of the sample can be performed with a simpler mechanism and operation.

本発明によれば、高い三次元位置分解能で高精度の蛍光X線三次元分析を可能とする蛍光X線三次元分析装置を提供することができる。   According to the present invention, it is possible to provide a fluorescent X-ray three-dimensional analyzer that enables high-precision X-ray fluorescence three-dimensional analysis with high three-dimensional position resolution.

以下、図1〜図3に基づいて、本発明による蛍光X線三次元分析装置の好適な実施形態について詳細に説明する。図1は、本発明による実施形態の蛍光X線三次元分析装置1の構成を示す構成図である。分析対象となるシリコンなどの半導体試料Mが載置される移動ステージ2は、水平面内での直交するX軸Y軸方向、及び上下方向であるZ軸方向、すなわち三次元に駆動装置(図示せず)によって移動可能であり、かつ所定位置において位置決めして停止できるように構成されている。移動ステージ2の駆動手段としては、ねじ送り機構等、3次元に移動させることができるものであれば、特に限定されるものでない。   Hereinafter, a preferred embodiment of a fluorescent X-ray three-dimensional analyzer according to the present invention will be described in detail with reference to FIGS. FIG. 1 is a configuration diagram showing a configuration of a fluorescent X-ray three-dimensional analyzer 1 according to an embodiment of the present invention. The moving stage 2 on which a semiconductor sample M such as silicon to be analyzed is placed has a driving device (not shown) in the X-axis and Y-axis directions orthogonal to each other in the horizontal plane and the Z-axis direction that is the vertical direction, that is, three-dimensionally. And can be positioned and stopped at a predetermined position. The driving means of the moving stage 2 is not particularly limited as long as it can be moved in three dimensions, such as a screw feed mechanism.

X線照射集光手段3は、X線を発生するX線源31と、その前方に配置され、ピンホール32aが形成される照射領域制限板32と、さらにその前方に配置され、ウォルターミラーから構成される照射側集光光学部33とを有している。蛍光X線検出手段4は、検出器41と、その前方に配置され、ピンホール42aが形成される検出領域制限板42と、さらにその前方に配置され、ウォルターミラーから構成される検出側集光光学部43とを有している。検出器41にはX線エネルギー分析器が用いられ、解析装置5との間で信号の授受ができるように接続されている。X線照射集光手段3と蛍光X線検出手段4とは、そのなす角度を相対的に変更可能に設置されることにより、その中に配置される照射側集光光学部33と検出側集光光学部43との中心軸の成す角度αを調整可能にされている。そして、照射側集光光学部33の集光点と検出側集光光学部43の焦点とは、照射側集光光学部の集光点と検出側集光光学部の焦点の一方又は両方を移動させることのできる適宜の調整手段(図示せず)により三次元空間位置において一致するようにされている。   The X-ray irradiation condensing means 3 includes an X-ray source 31 that generates X-rays, an irradiation region limiting plate 32 that is disposed in front of the X-ray source 31 and has a pinhole 32a, and is further disposed in front of the X-ray irradiation condensing unit The irradiation side condensing optical part 33 is configured. The fluorescent X-ray detection means 4 includes a detector 41, a detection region limiting plate 42 that is disposed in front of the detector 41 and has a pinhole 42a, and is further disposed in front of the detector 41 and includes a detection mirror. And an optical unit 43. An X-ray energy analyzer is used as the detector 41 and is connected so that signals can be exchanged with the analysis device 5. The X-ray irradiation condensing means 3 and the fluorescent X-ray detection means 4 are installed such that the angle formed by the X-ray irradiation condensing means 3 and the fluorescent X-ray detecting means 4 can be changed relatively, so The angle α formed by the central axis with the optical optical unit 43 can be adjusted. And the condensing point of the irradiation side condensing optical part 33 and the focal point of the detection side condensing optical part 43 are either or both of the condensing point of the irradiation side condensing optical part and the focal point of the detection side condensing optical part. It is made to correspond in a three-dimensional space position by the appropriate adjustment means (not shown) which can be moved.

ここで、照射側集光光学部33と検出側集光光学部43、特に検出側集光光学部43に使用されているウォルターミラー(斜入射ミラー)について、その原理を示す図3によって説明する。ウォルターミラーは、内面が鏡面とされる回転双曲面43aと回転楕円面43bとから形成され、両曲面の焦点の1つF1が共有されている。双曲面11の焦点F2に物を置いて物点Cとすると、F2を透過したX線は、双曲面11と楕円面12で反射して楕円面12の焦点F3に集光して、結像する。ウォルターミラーの特徴として、結像条件が波長によらないことが挙げられる。図3においては、原理を説明するために、実際に検出側集光光学部43や照射側集光光学部33に使用するものよりも、焦点が互いに接近したものとして作図している。図3に示すウォルターミラーを図1の検出側集光光学部43として使用する場合、焦点F2を測定部Pに合わせる。一方、照射側集光光学部33として使用するウォルターミラーについても、焦点F2を測定部Pに合わせる。こうして、照射側集光光学部33側のウォルターミラーの焦点F2が集光点となり、この集光点と検出側集光光学部43側のウォルターミラーの焦点F2が、測定部において一致することになる。   Here, the Walter mirror (oblique incidence mirror) used in the irradiation side condensing optical unit 33 and the detection side condensing optical unit 43, particularly the detection side condensing optical unit 43 will be described with reference to FIG. . The Walter mirror is formed by a rotating hyperboloid 43a and a rotating ellipsoid 43b whose inner surface is a mirror surface, and one of the focal points F1 of both curved surfaces is shared. Assuming that an object is placed at the focal point F2 of the hyperboloid 11 and the object point is C, the X-rays transmitted through F2 are reflected by the hyperboloid 11 and the ellipsoid 12 and condensed at the focal point F3 of the ellipsoid 12 to form an image. To do. A characteristic of the Walter mirror is that the imaging condition does not depend on the wavelength. In FIG. 3, in order to explain the principle, the drawing is performed on the assumption that the focal points are closer to each other than those actually used for the detection-side condensing optical unit 43 and the irradiation-side condensing optical unit 33. When the Walter mirror shown in FIG. 3 is used as the detection-side condensing optical unit 43 shown in FIG. On the other hand, the focal point F <b> 2 is adjusted to the measurement unit P for the Walter mirror used as the irradiation side condensing optical unit 33. Thus, the focal point F2 of the Walter mirror on the irradiation side condensing optical unit 33 side becomes a condensing point, and the condensing point and the focal point F2 of the Walter mirror on the detection side condensing optical unit 43 side coincide with each other in the measurement unit. Become.

次に、本実施形態の蛍光X線三次元分析装置1の作動について説明する。図1において、X線源31から放射されるX線Aは、照射領域制限板32に形成されたピンホール32aを通過したものが、照射側集光光学部33によって集光され、移動ステージ2に載置された試料Mに照射される。このX線照射によって試料Mから発生した蛍光X線は、検出側集光光学部43によって集光される。集光された蛍光X線Bは、検出領域制限板42に形成されたピンホール42aを通過して、検出器41によってエネルギー分析され、その信号が解析装置5に送られて解析される。ここで、試料Mの内部における測定部Pについて、概念図である図2によって説明する。X線源31から照射されるX線は、照射側集光光学部33によって集光されて、試料Mに照射される。試料Mの内部においては、X線Aが通過した領域Cから全方向に蛍光X線を発生する。照射されるX線Aの集光点(測定部Pとして図示する箇所と同じ位置)における領域の大きさは、照射領域制限板32のピンホール32aの大きさから照射側集光光学部33によって集光され縮小されたものとなっている。   Next, the operation of the fluorescent X-ray three-dimensional analyzer 1 of this embodiment will be described. In FIG. 1, the X-ray A emitted from the X-ray source 31 passes through the pinhole 32 a formed in the irradiation region limiting plate 32 and is condensed by the irradiation side condensing optical unit 33, and the moving stage 2. The sample M placed on is irradiated on the sample M. The fluorescent X-rays generated from the sample M by this X-ray irradiation are condensed by the detection-side condensing optical unit 43. The condensed fluorescent X-rays B pass through the pinhole 42a formed in the detection region limiting plate 42, are analyzed for energy by the detector 41, and the signal is sent to the analysis device 5 for analysis. Here, the measurement part P inside the sample M will be described with reference to FIG. X-rays irradiated from the X-ray source 31 are condensed by the irradiation side condensing optical unit 33 and irradiated to the sample M. Inside the sample M, fluorescent X-rays are generated in all directions from the region C through which the X-rays A have passed. The size of the region at the condensing point of the irradiated X-ray A (the same position as that shown as the measurement unit P) is determined by the irradiation side condensing optical unit 33 from the size of the pinhole 32a of the irradiation region limiting plate 32. It is condensed and reduced.

一方、検出側集光光学部43が集光することができる蛍光X線は、検出側集光光学部43から検出器41に送出される蛍光X線Bが検出領域制限板42のピンホール42aを通過する範囲内のものに限定される。その範囲は、試料M側においてはDで図示する範囲であり、試料Mの内部から検出側集光光学部43に向けてDの範囲内に含まれる方向を持った蛍光X線Bのみが、集光され検出される。この集光範囲は、検出側集光光学部43の焦点においては、検出領域制限板42のピンホール42aの大きさに対応する大きさ(ピンホールの大きさに検出側集光光学部43の倍率の逆数を掛けたもの)となる。   On the other hand, the fluorescent X-rays that can be collected by the detection-side condensing optical unit 43 are the fluorescent X-rays B that are sent from the detection-side condensing optical unit 43 to the detector 41, and the pinhole 42 a of the detection region limiting plate 42. It is limited to the thing in the range which passes. The range is a range illustrated by D on the sample M side, and only the fluorescent X-rays B having a direction included in the range of D from the inside of the sample M toward the detection-side condensing optical unit 43, Collected and detected. This condensing range has a size corresponding to the size of the pinhole 42a of the detection area limiting plate 42 at the focal point of the detection side condensing optical unit 43 (the size of the pinhole is determined by the size of the detection side condensing optical unit 43). Multiplied by the reciprocal of the magnification).

この検出側集光光学部43の焦点と、照射側集光光学部33の集光点とを、試料Mの内部において一致させており、この一致点が測定部Pとなる。すなわち、この測定部Pにおいて、X線照射領域Cの範囲内から発生した蛍光X線であって、検出側集光光学部43の集光範囲Dに含まれる蛍光X線だけが検出対象となる。このように、照射側集光光学部33によるX線の照射領域Cと、検出側集光光学部43による集光範囲Dとが、それぞれ、最も狭められた箇所である測定部Pにおいて交差する限定された微小領域が構成元素の分析領域となる。これによって、高い位置分解能が達成される。したがって、この装置の三次元位置分解能は、照射側集光光学部33の集光率、検出側集光光学部43の倍率、照射側集光光学部33と検出側集光光学部43の中心軸の成す角度α、各ピンホール32a,42aの直径から決定される上記交差部分の大きさにより定まる。例えば、照射側集光光学部33と検出側集光光学部43の成す角度αが45度、ピンホール32a,42aの直径が10μm、照射側集光光学部33の縮小率が1/10,検出側集光光学部43の倍率が10倍とすれば、空間分解能は、水平方向が約1μm、深さ方向が約2μm程度となる。この交差部分の大きさは、照射側集光光学部33と検出側集光光学部43の成す角度αが90度のときに最小となり、位置分解能が最も高くなる。   The focal point of the detection-side condensing optical unit 43 and the condensing point of the irradiation-side condensing optical unit 33 are matched in the sample M, and this coincidence point becomes the measurement unit P. That is, in this measurement unit P, only the fluorescent X-rays generated from within the X-ray irradiation region C and included in the condensing range D of the detection-side condensing optical unit 43 are to be detected. . In this way, the X-ray irradiation region C by the irradiation side condensing optical unit 33 and the condensing range D by the detection side condensing optical unit 43 intersect each other at the measurement unit P which is the narrowest part. The limited minute region becomes the analysis region of the constituent elements. Thereby, a high position resolution is achieved. Therefore, the three-dimensional position resolution of this apparatus is the condensing rate of the irradiation side condensing optical unit 33, the magnification of the detection side condensing optical unit 43, and the center of the irradiation side condensing optical unit 33 and the detection side condensing optical unit 43. It is determined by the size of the intersection determined by the angle α formed by the axis and the diameter of each pinhole 32a, 42a. For example, the angle α formed by the irradiation side condensing optical unit 33 and the detection side condensing optical unit 43 is 45 degrees, the diameters of the pinholes 32a and 42a are 10 μm, and the reduction ratio of the irradiation side condensing optical unit 33 is 1/10, If the magnification of the detection-side condensing optical unit 43 is 10, the spatial resolution is about 1 μm in the horizontal direction and about 2 μm in the depth direction. The size of this intersection is minimum when the angle α formed by the irradiation side condensing optical unit 33 and the detection side condensing optical unit 43 is 90 degrees, and the position resolution is the highest.

この装置においては、試料Mの深さ方向を含めた三次元の分析を行うものであることから、照射されるX線は、試料Mの内部にまで照射されることが必要である。そのため、照射側集光光学部33の試料Mの上面に対する設置角度は、入射されるX線の全反射の臨界角度以上の角度とされ、入射X線が試料表面で全反射することを防止している。以上のようにして試料Mの内部の所定位置でのエネルギー分析データが得られると、移動ステージ2を上下方向又は水平方向に移動させて、順次、三次元での構成元素の分析データを得ることができる。   In this apparatus, since three-dimensional analysis including the depth direction of the sample M is performed, it is necessary that the irradiated X-rays are irradiated to the inside of the sample M. Therefore, the installation angle of the irradiation side condensing optical unit 33 with respect to the upper surface of the sample M is set to an angle that is equal to or greater than the critical angle of total reflection of incident X-rays, and prevents incident X-rays from being totally reflected on the sample surface. ing. When energy analysis data at a predetermined position inside the sample M is obtained as described above, the analysis data of the constituent elements in three dimensions can be obtained sequentially by moving the moving stage 2 in the vertical direction or the horizontal direction. Can do.

以上のように本実施形態にあっては、照射側集光光学部33の集光点における照射領域Cと、検出側集光光学部43の焦点における集光範囲Dとが、試料内部において交差する限定された微小領域が分析領域となることから、三次元分析における高い位置分解能を発揮する。また、装置の操作に際しては、照射側集光光学部33の集光点と、検出側集光光学部43の焦点とが一致する位置を固定したまま、移動ステージ2のみを上下方向に順次移動させながら分析を行うと、試料の深さ方向の元素分布を解析でき、移動ステージ2を水平方向での移動をさせながら分析を行うと水平面での元素分布を解析することができる。したがって、移動ステージ2を移動させるだけの簡易な操作によって、試料の三次元分析が可能となる。さらに、照射されるX線を照射側集光光学部33によって集光することで照射効率を高めることができるとともに、検出光学装置10においても、発生した蛍光X線を集光して検出器8に入射させているために検出効率を高めている。   As described above, in the present embodiment, the irradiation region C at the condensing point of the irradiation side condensing optical unit 33 and the condensing range D at the focal point of the detection side condensing optical unit 43 intersect in the sample. Since the limited micro area to be an analysis area, high position resolution in three-dimensional analysis is exhibited. Further, when operating the apparatus, only the moving stage 2 is sequentially moved in the vertical direction while the position where the condensing point of the irradiation side condensing optical unit 33 coincides with the focus of the detection side condensing optical unit 43 is fixed. When the analysis is performed, the element distribution in the depth direction of the sample can be analyzed, and when the analysis is performed while moving the moving stage 2 in the horizontal direction, the element distribution on the horizontal plane can be analyzed. Therefore, the sample can be three-dimensionally analyzed by a simple operation by simply moving the moving stage 2. Further, the irradiation efficiency can be increased by condensing the irradiated X-rays by the irradiation-side condensing optical unit 33, and the generated fluorescent X-rays are condensed in the detection optical device 10 to detect the detector 8. Detection efficiency is increased.

また、検出側集光光学部43として、ウォルターミラーを使用しており、ウォルターミラーには波長選択性がないことによって、各元素から放射される波長の異なった蛍光X線を同一距離の検出面に集光させることができる。これによって、検出面の走査が必要ないこととなり、いっそう簡便な機構と操作によって、試料Mの三次元分析が可能となる。さらに、照射側集光光学部33と検出側集光光学部43の成す角度αが調整可能とされていることから、例えば、位置分解能が最も高くなる90度やその他の条件に合わせた角度に設定可能である。   In addition, a Walter mirror is used as the detection-side condensing optical unit 43, and since the Walter mirror does not have wavelength selectivity, fluorescent X-rays having different wavelengths emitted from each element can be detected at the same distance. Can be condensed. This eliminates the need to scan the detection surface, and enables a three-dimensional analysis of the sample M with a simpler mechanism and operation. Furthermore, since the angle α formed by the irradiation side condensing optical unit 33 and the detection side condensing optical unit 43 can be adjusted, for example, the angle is set to 90 degrees at which the position resolution is the highest or other angles. It can be set.

本発明の蛍光X線三次元装置は、上記実施形態に限定されるものではない。例えば、照射側集光光学部33には、ウォルターミラーだけでなく、ゾーンプレート等の他のX線集光素子を用いることもできる。検出器41には、エネルギー分散型や波長分散型のX線エネルギー分析器を用いることができる。また、これらとピンホールによる組み合わせに替えて、CCD素子やSiフォトダイオードアレイ等を用いてもよく、その場合、ピンホールによって検出領域を限定する替わりに、これらの素子によって蛍光X線を検出する領域を電気的に選択し、可変的に限定することができる。また、移動ステージ2の移動方向は、Z軸を上下方向としたが、Z軸方向を水平面内での1方向としてもよく、他の斜め等の方向としてもよい。分析の対象とする試料Mについても、シリコン等の半導体に限らず、表面から内部にまでX線を照射でき、そこで発生した蛍光X線が表面から出て検出側集光光学部43に入射できるものであればよい。   The fluorescent X-ray three-dimensional apparatus of the present invention is not limited to the above embodiment. For example, not only a Walter mirror but also other X-ray condensing elements such as a zone plate can be used for the irradiation side condensing optical unit 33. As the detector 41, an energy dispersive or wavelength dispersive X-ray energy analyzer can be used. In addition, instead of using a combination of these and a pinhole, a CCD element, a Si photodiode array, or the like may be used. In this case, instead of limiting the detection region by a pinhole, fluorescent X-rays are detected by these elements. The region can be electrically selected and variably limited. Further, the moving direction of the moving stage 2 is the vertical direction of the Z-axis, but the Z-axis direction may be one direction in the horizontal plane or another oblique direction. The sample M to be analyzed is not limited to a semiconductor such as silicon, but can be irradiated with X-rays from the surface to the inside, and the fluorescent X-rays generated there can enter the detection-side condensing optical unit 43 from the surface. Anything is acceptable.

本発明の実施形態の蛍光X線三次元分析装置の構成を示す構成図である。It is a block diagram which shows the structure of the fluorescent X-ray three-dimensional analyzer of embodiment of this invention. 本発明の実施形態における試料Mの内部での照射X線と検出される蛍光X線の交差部を示す概念図である。It is a conceptual diagram which shows the cross | intersection part of the X-rays and the X-rays detected inside the sample M in the embodiment of the present invention. 本発明の実施形態におけるウォルターミラーの原理を示す説明図である。It is explanatory drawing which shows the principle of the Walter mirror in embodiment of this invention.

符号の説明Explanation of symbols

1‥蛍光X線三次元分析装置、2‥移動ステージ、3‥X線照射集光手段、4‥蛍光X線検出手段、5‥解析装置、31‥X線源、32‥照射領域制限板、33‥照射側集光光学部、41‥検出器、42‥検出領域制限板、43‥検出側集光光学部
DESCRIPTION OF SYMBOLS 1 ... X-ray fluorescence three-dimensional analyzer, 2 ... Moving stage, 3 ... X-ray irradiation condensing means, 4 ... Fluorescence X-ray detection means, 5 ... Analysis apparatus, 31 ... X-ray source, 32 ... Irradiation area limit plate, 33 ... Irradiation side condensing optical part, 41 ... Detector, 42 ... Detection area limiting plate, 43 ... Detection side condensing optical part

Claims (2)

試料を載置するための移動ステージと、
X線源及び前記X線源から照射されるX線を前記試料内部において集光点に集光する照射側集光光学部とを有するX線照射集光手段と、
前記移動ステージに載置される前記試料から発生する蛍光X線を集光する検出側集光光学部及び前記検出側集光光学部により集光される蛍光X線を受けてその検出を行う検出器とを有する蛍光X線検出手段と、
前記移動ステージを三次元に移動させる駆動手段と、
前記検出側集光光学部の焦点と、前記照射側集光光学部の前記集光点とを前記試料内部において一致させる調整手段とを備える蛍光X線三次元分析装置。
A moving stage for placing the sample;
X-ray irradiation condensing means having an X-ray source and an irradiation side condensing optical part for condensing X-rays irradiated from the X-ray source at a condensing point inside the sample;
A detection-side condensing optical unit that condenses the fluorescent X-rays generated from the sample placed on the moving stage and a detection that receives and detects the fluorescent X-rays collected by the detection-side condensing optical unit A fluorescent X-ray detection means having a vessel;
Driving means for moving the moving stage in three dimensions;
An X-ray fluorescence three-dimensional analysis apparatus comprising: an adjusting unit that matches the focal point of the detection-side condensing optical unit and the condensing point of the irradiation-side condensing optical unit inside the sample.
前記検出側集光光学部をウォルターミラーとしたことを特徴とする蛍光X線三次元分析装置。

An X-ray fluorescence three-dimensional analyzer characterized in that the detection-side condensing optical unit is a Walter mirror.

JP2005216204A 2005-07-26 2005-07-26 X-ray fluorescence three-dimensional analyzer Expired - Fee Related JP4694296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005216204A JP4694296B2 (en) 2005-07-26 2005-07-26 X-ray fluorescence three-dimensional analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005216204A JP4694296B2 (en) 2005-07-26 2005-07-26 X-ray fluorescence three-dimensional analyzer

Publications (2)

Publication Number Publication Date
JP2007033207A true JP2007033207A (en) 2007-02-08
JP4694296B2 JP4694296B2 (en) 2011-06-08

Family

ID=37792657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005216204A Expired - Fee Related JP4694296B2 (en) 2005-07-26 2005-07-26 X-ray fluorescence three-dimensional analyzer

Country Status (1)

Country Link
JP (1) JP4694296B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247882A (en) * 2010-04-30 2011-12-08 Osaka City Univ Fluorescent x-ray detector and fluorescent x-ray detection method
JP2016511440A (en) * 2013-03-14 2016-04-14 カール・ツァイス・エスエムティー・ゲーエムベーハー Illumination optical unit for mask inspection system and mask inspection system having such an illumination optical unit
JP2017083333A (en) * 2015-10-29 2017-05-18 株式会社日産アーク Confocal X-ray analysis method
JP2020532744A (en) * 2017-09-06 2020-11-12 ディ.テク.ター エス.アール.エル. A device for selecting a product based on the composition of the product by X-ray fluorescence spectroscopy, and a corresponding selection method.
US11867645B2 (en) 2018-10-18 2024-01-09 Security Matters Ltd. System and method for detection and identification of foreign elements in a substance by X-ray or Gamma-ray detection and emission

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560702A (en) * 1991-09-04 1993-03-12 Hitachi Ltd Method and device for picking up sectional image using x rays
JP2003522947A (en) * 2000-02-11 2003-07-29 ムラジン アブベキロビッチ クマホフ, Method for obtaining an image of the internal structure of a subject using X-ray irradiation and an apparatus for performing the same
JP2003344318A (en) * 2002-05-29 2003-12-03 Shimadzu Corp Fluorescent x-ray analyzer
JP2004003959A (en) * 2002-01-16 2004-01-08 Seiko Instruments Inc Measuring method of fluorescent x-ray measuring method and apparatus, working method, and working apparatus
JP2005003440A (en) * 2003-06-10 2005-01-06 Sony Corp Method of and apparatus for analyzing resin material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560702A (en) * 1991-09-04 1993-03-12 Hitachi Ltd Method and device for picking up sectional image using x rays
JP2003522947A (en) * 2000-02-11 2003-07-29 ムラジン アブベキロビッチ クマホフ, Method for obtaining an image of the internal structure of a subject using X-ray irradiation and an apparatus for performing the same
JP2004003959A (en) * 2002-01-16 2004-01-08 Seiko Instruments Inc Measuring method of fluorescent x-ray measuring method and apparatus, working method, and working apparatus
JP2003344318A (en) * 2002-05-29 2003-12-03 Shimadzu Corp Fluorescent x-ray analyzer
JP2005003440A (en) * 2003-06-10 2005-01-06 Sony Corp Method of and apparatus for analyzing resin material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011247882A (en) * 2010-04-30 2011-12-08 Osaka City Univ Fluorescent x-ray detector and fluorescent x-ray detection method
JP2016511440A (en) * 2013-03-14 2016-04-14 カール・ツァイス・エスエムティー・ゲーエムベーハー Illumination optical unit for mask inspection system and mask inspection system having such an illumination optical unit
JP2017083333A (en) * 2015-10-29 2017-05-18 株式会社日産アーク Confocal X-ray analysis method
JP2020532744A (en) * 2017-09-06 2020-11-12 ディ.テク.ター エス.アール.エル. A device for selecting a product based on the composition of the product by X-ray fluorescence spectroscopy, and a corresponding selection method.
JP7392252B2 (en) 2017-09-06 2023-12-06 ディ.テク.ター エス.アール.エル. Apparatus for selecting products based on their composition by X-ray fluorescence spectroscopy, and corresponding selection methods
US11867645B2 (en) 2018-10-18 2024-01-09 Security Matters Ltd. System and method for detection and identification of foreign elements in a substance by X-ray or Gamma-ray detection and emission

Also Published As

Publication number Publication date
JP4694296B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
US10295486B2 (en) Detector for X-rays with high spatial and high spectral resolution
KR102104067B1 (en) X-ray scatterometry apparatus
JP4515927B2 (en) Total reflection measuring device
US7023954B2 (en) Optical alignment of X-ray microanalyzers
JP2003297891A (en) X-ray fluorescence analyzer for semiconductors
JP2017519235A (en) Apparatus and method for optical beam scanning microscopy
JP5116014B2 (en) Small-angle wide-angle X-ray measurement system
JP2002530671A (en) X-ray analyzer including parabolic X-ray mirror and quartz monochromator
JP2004184314A (en) X-ray fluorescence analytical device
JP4694296B2 (en) X-ray fluorescence three-dimensional analyzer
WO2015146287A1 (en) Beam generation unit and small-angle x-ray scattering device
JP4246599B2 (en) Mapping measuring device
JP2004294168A (en) X-ray spectroscope for micro-portion analysis
JP5332801B2 (en) Sample analyzer and sample analysis method
JP5504502B2 (en) X-ray and neutron beam reflectivity curve measuring method and measuring apparatus
JP4604242B2 (en) X-ray diffraction analyzer and X-ray diffraction analysis method
WO2003081605A1 (en) X-ray image magnifying device
JP3197104B2 (en) X-ray analyzer
JP5646147B2 (en) Method and apparatus for measuring a two-dimensional distribution
JP2002525626A (en) X-ray analyzer under glazing emission conditions
JP2995361B2 (en) X-ray irradiator with irradiation area monitor
JP5589555B2 (en) X-ray analyzer
JP3823146B2 (en) X-ray fluorescence analyzer
JPH0560702A (en) Method and device for picking up sectional image using x rays
JP2024007885A (en) Measurement device and measurement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110124

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4694296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees