JP2007032345A - Valve device for vehicular air conditioner - Google Patents

Valve device for vehicular air conditioner Download PDF

Info

Publication number
JP2007032345A
JP2007032345A JP2005214208A JP2005214208A JP2007032345A JP 2007032345 A JP2007032345 A JP 2007032345A JP 2005214208 A JP2005214208 A JP 2005214208A JP 2005214208 A JP2005214208 A JP 2005214208A JP 2007032345 A JP2007032345 A JP 2007032345A
Authority
JP
Japan
Prior art keywords
valve
pressure
chamber
discharge
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005214208A
Other languages
Japanese (ja)
Inventor
Toshiyuki Kawai
俊行 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2005214208A priority Critical patent/JP2007032345A/en
Priority to PCT/JP2006/312502 priority patent/WO2007013244A1/en
Publication of JP2007032345A publication Critical patent/JP2007032345A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/1863Controlled by crankcase pressure with an auxiliary valve, controlled by
    • F04B2027/1872Discharge pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Compressor (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a valve device for an vehicular air conditioner preventing sudden rise of delivery pressure with a simple structure even if CO<SB>2</SB>refrigerant is used to protect a refrigeration cycle. <P>SOLUTION: This device is provided with a pressure sensitive valve 48 provided in a first passage 2 communicating with a delivery chamber 18 of a compressor 4 and operating upon sensing rise of delivery pressure of CO<SB>2</SB>refrigerant and a shut-off valve 40 provided in an second passage 20 communicating with a suction chamber 16 and moved to a position throttling the second passage with mechanically interlocking with operation of the pressure sensitive valve when pressure in the first passage gets high. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、CO冷媒を使用した車両用空調機の弁装置に関する。 The present invention relates to a valve device for a vehicle air conditioner using a CO 2 refrigerant.

近年、オゾン層保護・地球温暖化防止の観点から、自然界に存在する物質を冷媒として利用する車両用空調機の研究開発が進められている。その中でもCO冷媒は、他の自然系冷媒に比べて可燃性や毒性を持たず、フロン冷媒に比べて環境に優しい特性があり、又、工業製品の製造過程等で大気に放出されていたCOを再利用できることから、省エネの観点からも注目されている。 In recent years, research and development of air conditioners for vehicles using natural substances as refrigerants have been promoted from the viewpoint of protecting the ozone layer and preventing global warming. Among them, the CO 2 refrigerant has no flammability and toxicity compared to other natural refrigerants, has an environment-friendly characteristic compared to the chlorofluorocarbon refrigerant, and has been released to the atmosphere during the manufacturing process of industrial products. Since CO 2 can be reused, it is attracting attention from the viewpoint of energy saving.

しかしながら、CO冷媒は臨界温度が31℃と低く、外気温度が高い場合は凝縮されないので、フロン冷媒と比較して冷凍サイクルの作動圧力が高圧となる。
そのため、CO冷媒を使用した車両用空調機では、圧縮機及びその吐出室に連通する通路の破損という安全上の問題がある。
そこで、圧縮機の吐出圧力が過大となるのを防止するために、ベローズのような感圧部材を用いて圧力を検知し、そのベローズの変位を電磁コイルの電気信号に変換して吐出容量を制御する弁装置が知られている(特許文献1)。又、上記の感圧手段により吐出容量が制御される制御弁において、圧力検知センサやエンジン回転速度センサ等を用いて開度が設定される弁装置が知られている(特許文献2)。
特開2001-329951号公報 特開2004-197679号公報
However, CO 2 refrigerant has a critical temperature as low as 31 ° C. and is not condensed when the outside air temperature is high, so that the operating pressure of the refrigeration cycle is higher than that of Freon refrigerant.
Therefore, in the vehicle air conditioner using the CO 2 refrigerant, there is a safety problem that the passage communicating with the compressor and its discharge chamber is damaged.
Therefore, in order to prevent the discharge pressure of the compressor from becoming excessive, the pressure is detected using a pressure-sensitive member such as a bellows, and the displacement of the bellows is converted into an electric signal of an electromagnetic coil to thereby reduce the discharge capacity. A valve device to be controlled is known (Patent Document 1). Further, there is known a valve device in which an opening degree is set using a pressure detection sensor, an engine speed sensor, or the like in a control valve whose discharge capacity is controlled by the pressure-sensitive means (Patent Document 2).
JP 2001-329951 A JP 2004-197679 A

ところで、上述の弁装置では、感圧部材の変位や電気信号を介して吐出容量の制御が行われているため、圧縮機に動力を伝達するエンジンの回転速度や、外気温度の上昇或いはブロア風量の増大に伴う冷凍サイクルの熱負荷の上昇に伴って吐出室内の吐出圧力が急激に上昇した場合には、所望の吐出圧力に変更されるまでに遅れが生じ、吐出圧力が急上昇する。   By the way, in the above-mentioned valve device, since the discharge capacity is controlled through the displacement of the pressure-sensitive member and the electric signal, the rotational speed of the engine that transmits power to the compressor, the rise in the outside air temperature, or the blower air volume When the discharge pressure in the discharge chamber suddenly rises as the heat load of the refrigeration cycle increases due to the increase in the refrigeration cycle, a delay occurs before the discharge pressure is changed to the desired discharge pressure, and the discharge pressure rises rapidly.

つまり、上述の弁装置では、冷凍サイクルの保護の点では依然として課題が残されている。又、電気回路を設け、様々なセンサの信号にて弁を作動させると、その構造が複雑化し、コスト高となるとの問題もある。
本発明はこのような課題に鑑みてなされたもので、その目的とするところは、CO冷媒を使用しても、吐出圧力の急上昇を簡単な構成のみで防ぎ、冷凍サイクルを保護する車両用空調機の弁装置を提供することにある。
That is, the above-described valve device still has a problem in terms of protecting the refrigeration cycle. Further, when an electric circuit is provided and the valve is operated by signals from various sensors, there is a problem that the structure becomes complicated and the cost becomes high.
The present invention has been made in view of such problems, and the object of the present invention is for a vehicle that protects a refrigeration cycle by preventing a sudden increase in discharge pressure with a simple configuration even when a CO 2 refrigerant is used. The object is to provide a valve device for an air conditioner.

上記の目的を達成するため、本発明のCO冷媒を使用した車両用空調機の弁装置は、CO冷媒の循環経路に圧縮機が配置された車両用空調機において、圧縮機に設けられた冷媒の吸入室及び吐出室と、吐出室に連通する第1の通路内に設けられ、冷媒の吐出圧力の上昇を感知して作動する感圧弁と、吸入室に連通する第2の通路内に設けられ、第1の通路の圧力が大きくなったときには、感圧弁の作動に機械的に連動して第2の通路を絞る位置まで移動される遮断弁とを備えていることを特徴としている(請求項1)。具体的には、感圧弁と遮断弁とを収容する弁収容部と、弁収容部内に設けられ、感圧弁と遮断弁とを連結する連結部材と、連結部材を間隙を存して囲繞し、弁収容部内を隔てる隔壁とを備え、隔壁近傍の圧力が吐出室内の圧力と吸入室内の圧力との中間圧力にされていることを特徴とし(請求項2)、又、感圧弁が作動しないときは、遮断弁は第2の通路を絞らないことを特徴とし(請求項3)、更には、感圧弁と遮断弁とは、圧縮機の内部に設けられていることを特徴としている(請求項4)。 In order to achieve the above object, the valve device for a vehicle air conditioner using the CO 2 refrigerant of the present invention is provided in the compressor in the vehicle air conditioner in which the compressor is disposed in the circulation path of the CO 2 refrigerant. A suction chamber and a discharge chamber for the refrigerant, a pressure-sensitive valve that is provided in a first passage communicating with the discharge chamber and that operates by detecting an increase in the discharge pressure of the refrigerant, and a second passage that communicates with the suction chamber. And a shut-off valve that is moved to a position where the second passage is throttled mechanically in conjunction with the operation of the pressure-sensitive valve when the pressure in the first passage increases. (Claim 1). Specifically, a valve housing portion that houses the pressure-sensitive valve and the shut-off valve, a connecting member that is provided in the valve housing portion and connects the pressure-sensitive valve and the shut-off valve, and surrounds the connecting member with a gap therebetween, And a partition wall separating the inside of the valve housing portion, wherein the pressure in the vicinity of the partition wall is an intermediate pressure between the pressure in the discharge chamber and the pressure in the suction chamber (Claim 2), and when the pressure sensitive valve does not operate Is characterized in that the shutoff valve does not restrict the second passage (Claim 3), and further, the pressure sensitive valve and the shutoff valve are provided inside the compressor (Claim). 4).

請求項1によれば、CO冷媒を使用する車両用空調機の圧縮機において、例えばエンジンの回転速度や冷凍サイクルの熱負荷の上昇が生じた場合には、CO冷媒による吐出圧力の上昇を感知して感圧弁が作動する。同時に、遮断弁が感圧弁の作動に機械的に連動し、吸入室に連通する第2の通路を絞る位置まで移動することから、吸入室に吸入される冷媒量が減少して、吐出室から吐出される冷媒量も減少する。従って、吐出圧力の急上昇が確実に回避される。これらの結果、冷凍回路中の機器や配管が保護される。 According to claim 1, in the compressor of a vehicle air conditioner that uses CO 2 refrigerant, for example, when an increase in engine speed or thermal load of the refrigeration cycle occurs, an increase in discharge pressure due to the CO 2 refrigerant. The pressure sensitive valve is activated by detecting this. At the same time, the shutoff valve is mechanically interlocked with the operation of the pressure sensitive valve and moves to a position where the second passage communicating with the suction chamber is throttled, so that the amount of refrigerant sucked into the suction chamber decreases, and the discharge chamber The amount of refrigerant discharged is also reduced. Therefore, a sudden increase in the discharge pressure is reliably avoided. As a result, equipment and piping in the refrigeration circuit are protected.

請求項2によれば、弁装置の弁収容部内において、感圧弁と遮断弁とが隔壁を介して連結部材により連結され、その連結部材は隔壁に間隙を有して挿通される。これにより、吐出室と吸入室との間には微量のCO冷媒の流れが許容され、隔壁近傍の圧力が吐出室内の圧力と吸入室内の圧力との中間圧力にされるので、吐出圧力の穏やかな増大のときには弁装置は作動しない。これにより、圧縮機の運転効率の低下が防止される。 According to the second aspect, in the valve housing portion of the valve device, the pressure sensitive valve and the shutoff valve are connected by the connecting member via the partition wall, and the connecting member is inserted into the partition wall with a gap. As a result, a small amount of CO 2 refrigerant is allowed to flow between the discharge chamber and the suction chamber, and the pressure in the vicinity of the partition wall is set to an intermediate pressure between the pressure in the discharge chamber and the pressure in the suction chamber. The valve device does not operate during a moderate increase. This prevents a reduction in the operating efficiency of the compressor.

請求項3によれば、感圧弁が作動しないときは、遮断弁は第2の通路を絞らないことにより、第2の通路の冷媒の流れが阻害されないので、圧力損失による圧縮機の運転効率の低下が回避される。
請求項4によれば、各弁が圧縮機の内部に設けられることにより、吐出圧力の上昇が迅速に検知され、冷凍回路中の機器や配管が確実に保護される。
According to claim 3, when the pressure sensitive valve does not operate, the shutoff valve does not restrict the second passage so that the refrigerant flow in the second passage is not obstructed. Reduction is avoided.
According to the fourth aspect, by providing each valve inside the compressor, an increase in the discharge pressure is detected quickly, and equipment and piping in the refrigeration circuit are reliably protected.

図1は、車両用空調機を概略的に示す。
車両用空調機は、CO冷媒の循環経路2を備え、この循環経路2には、圧縮機4、ガスクーラ6、膨張弁8及び蒸発器10が順次配置されている。圧縮機4、ガスクーラ6及び膨張弁8は車両のエンジンルーム内に配置され、圧縮機4は車両のエンジン12により駆動される。これに対し、蒸発器10は車両のインパネボックス内に収容されている。
FIG. 1 schematically shows a vehicle air conditioner.
The vehicle air conditioner includes a CO 2 refrigerant circulation path 2, and a compressor 4, a gas cooler 6, an expansion valve 8, and an evaporator 10 are sequentially arranged in the circulation path 2. The compressor 4, the gas cooler 6 and the expansion valve 8 are disposed in the engine room of the vehicle, and the compressor 4 is driven by the engine 12 of the vehicle. On the other hand, the evaporator 10 is accommodated in the instrument panel box of the vehicle.

図2は圧縮機4の一部、具体的には、そのシリンダヘッド14を示している。このシリンダヘッド14はその内部に吸入室16及び吐出室18を有し、吸入室16は吐出室18の外側を囲む環状をなしている。
シリンダヘッド14には吸入室16に連通する吸入ポート(第2の通路)20が形成されているとともに、吐出室18に連通する吐出ポート(第1の通路)22が形成されている。これら吸入ポート20及び吐出ポート22は互いに隣接し且つ平行に延びている。なお、吸入ポート20は循環経路2を介して蒸発器10に接続され、吐出ポート22は循環経路2を介してガスクーラ6に接続されている。
FIG. 2 shows a part of the compressor 4, specifically, its cylinder head 14. The cylinder head 14 has a suction chamber 16 and a discharge chamber 18 therein, and the suction chamber 16 has an annular shape surrounding the outside of the discharge chamber 18.
The cylinder head 14 is formed with a suction port (second passage) 20 that communicates with the suction chamber 16 and a discharge port (first passage) 22 that communicates with the discharge chamber 18. The suction port 20 and the discharge port 22 are adjacent to each other and extend in parallel. The suction port 20 is connected to the evaporator 10 via the circulation path 2, and the discharge port 22 is connected to the gas cooler 6 via the circulation path 2.

従って、圧縮機4は、蒸発器10から流出したCO冷媒を循環経路2及び吸入ポート20を通じて吸入室16に受け取ることができる。そして、吸入室16内のCO冷媒は、図示しないシリンダブロック内のピストンの往復運動に伴い、各圧縮室にてCO冷媒の吸入、圧縮及び吐出行程が順次実行され、CO冷媒は各圧縮室から吐出室18に吐出される。この後、吐出室18内のCO冷媒は吐出ポート22及び循環経路2を通じてガスクーラ6に供給される。 Therefore, the compressor 4 can receive the CO 2 refrigerant flowing out of the evaporator 10 into the suction chamber 16 through the circulation path 2 and the suction port 20. Then, CO 2 refrigerant in the suction chamber 16, with the reciprocating motion of the piston in the cylinder block (not shown), inhalation of CO 2 refrigerant at the compression chambers, compression is performed and the discharge stroke are sequentially, CO 2 refrigerant each It is discharged from the compression chamber to the discharge chamber 18. Thereafter, the CO 2 refrigerant in the discharge chamber 18 is supplied to the gas cooler 6 through the discharge port 22 and the circulation path 2.

図3に詳図されているように、シリンダヘッド14内には弁収容部24が形成されており、この弁収容部24は吸入ポート20及び吐出ポート22をそれぞれ分断すべく、これら吸入及び吐出ポート20,22間に亘って延びている。弁収容部24内には隔壁26が配置され、この隔壁26は弁収容部24内を吸入ポート20側の低圧室28と、吐出ポート22側の高圧室30とに区画する。より詳しくは、低圧室28は、吸入ポート20の一部に屈曲部を付与し、そして、低圧室28は更に仕切部32により、蒸発器10側の入口室34と、吸入室16側の出口室36とに仕切られている。   As shown in detail in FIG. 3, a valve accommodating portion 24 is formed in the cylinder head 14, and the valve accommodating portion 24 separates the intake port 20 and the discharge port 22 from each other. It extends between the ports 20 and 22. A partition wall 26 is disposed in the valve housing part 24, and the partition wall 26 divides the valve housing part 24 into a low pressure chamber 28 on the suction port 20 side and a high pressure chamber 30 on the discharge port 22 side. More specifically, the low-pressure chamber 28 provides a bent portion to a part of the suction port 20, and the low-pressure chamber 28 is further divided by the partition portion 32 into an inlet chamber 34 on the evaporator 10 side and an outlet on the suction chamber 16 side. The room 36 is partitioned.

仕切部32には入口室34と出口室36とを連通させる弁孔38が形成されており、この弁孔38は吸入ポート20の流路断面積と略同一の開口面積を有する。そして、入口室34内には遮断弁40が配置されており、この遮断弁40は弁孔38側とは逆向きに開口したカップ形状をなし、その開口端部が弁収容部24内の遮断弁ガイド42内に摺動自在に嵌合されている。又、遮断弁40には連結部材46が一体に取付けられている。この連結部材46は遮断弁ガイド42と仕切部26と感圧弁ガイド50とを合わせた長さ、換言すれば、仕切部32の右他端部分から仕切部26の右他端部分までの長さに略等しく、遮断弁40から隔壁26を若干の間隙を存して貫通し、高圧室30内に延びている。   A valve hole 38 that allows the inlet chamber 34 and the outlet chamber 36 to communicate with each other is formed in the partition portion 32, and the valve hole 38 has an opening area that is substantially the same as the flow path cross-sectional area of the suction port 20. A shut-off valve 40 is disposed in the inlet chamber 34. The shut-off valve 40 has a cup shape opened in the direction opposite to the valve hole 38 side, and the open end of the shut-off valve 40 is shut off in the valve housing 24. The valve guide 42 is slidably fitted. A connecting member 46 is integrally attached to the shutoff valve 40. The connecting member 46 has a combined length of the cutoff valve guide 42, the partition portion 26, and the pressure sensitive valve guide 50, in other words, a length from the right other end portion of the partition portion 32 to the right other end portion of the partition portion 26. Is substantially equal to the valve 26 and extends through the partition wall 26 with a slight gap and extends into the high-pressure chamber 30.

一方、高圧室30内には感圧弁48が配置されている。この感圧弁48は高圧室30側とは逆向きに開口したカップ形状をなし、その開口端部が弁収容部24内の感圧弁ガイド50内に摺動自在に嵌合されている。又、感圧弁48には連結部材46の高圧室30側の他端が一体に取付けられている。そして、感圧弁48内には弁ばね52が収容され、この弁ばね52は感圧弁48の底と隔壁26の高圧室30側の端壁との間に配置され、吐出ポート22を閉じる方向に感圧弁48を押圧付勢している。   On the other hand, a pressure sensitive valve 48 is disposed in the high pressure chamber 30. The pressure-sensitive valve 48 has a cup shape that opens in the direction opposite to the high-pressure chamber 30 side, and an opening end of the pressure-sensitive valve 48 is slidably fitted in a pressure-sensitive valve guide 50 in the valve housing portion 24. The other end of the connecting member 46 on the high pressure chamber 30 side is integrally attached to the pressure sensitive valve 48. A valve spring 52 is accommodated in the pressure sensitive valve 48. The valve spring 52 is disposed between the bottom of the pressure sensitive valve 48 and the end wall on the high pressure chamber 30 side of the partition wall 26 in the direction of closing the discharge port 22. The pressure sensitive valve 48 is pressed and urged.

上述の如く、本実施例の弁装置によれば、図3に示す状態にあるとき、つまり、圧縮機4が通常の作動状態にあるとき、感圧弁48は作動せず、吐出ポート22の流路断面積が均一となる位置にあり、遮断弁40も吸入ポート20の流路断面積が均一となる位置にあり、吸入ポート20の弁孔38は全開状態にある。
ここで、CO冷媒が吐出室18から吐出ポート22を通じて高圧室30に流入しても、吐出圧力が穏やかに上昇したときには、この高圧室30内の冷媒は連結部材46と仕切部26との間の間隙から低圧室28に向けて流れる。つまり、弁収容部24内において、隔壁26を挟んだ両側は吐出圧力と吸入圧力との中間圧力になり、この場合にも、感圧弁48は作動せず、高圧室30の容量が最小となる位置にあり、遮断弁40は低圧室28を全開状態にする。
As described above, according to the valve device of this embodiment, when the compressor 4 is in the state shown in FIG. 3, that is, when the compressor 4 is in a normal operating state, the pressure sensitive valve 48 does not operate and the flow of the discharge port 22 The shut-off valve 40 is also at a position where the flow passage cross-sectional area of the suction port 20 is uniform, and the valve hole 38 of the suction port 20 is fully open.
Here, even if the CO 2 refrigerant flows into the high pressure chamber 30 from the discharge chamber 18 through the discharge port 22, when the discharge pressure rises gently, the refrigerant in the high pressure chamber 30 flows between the connecting member 46 and the partition portion 26. It flows toward the low pressure chamber 28 from the gap therebetween. That is, both sides of the partition wall 26 in the valve accommodating portion 24 are intermediate pressures between the discharge pressure and the suction pressure. In this case, the pressure sensitive valve 48 does not operate and the capacity of the high pressure chamber 30 is minimized. In the position, the shutoff valve 40 opens the low pressure chamber 28 fully.

又、吐出圧力が急激に上昇し得るときには、感圧弁48は弁ばね52の付勢力に抗して隔壁26に向けて、高圧室30の容量を大きくさせる方向に移動する。同時に、遮断弁40は連結部材46に押されて吸入ポート20の弁孔38を絞る方向へ移動する。そして、図4に示されるように、感圧弁48が弁ばね52の付勢力に抗して高圧室30の容量が最も大きくなる方向、即ち感圧弁48が隔壁26に当接したとき、遮断弁40は仕切部32に最も近づき、若干の間隙を存して弁孔38を絞る。   When the discharge pressure can rise rapidly, the pressure sensitive valve 48 moves in the direction of increasing the capacity of the high pressure chamber 30 toward the partition wall 26 against the biasing force of the valve spring 52. At the same time, the shut-off valve 40 is pushed by the connecting member 46 and moves in a direction to throttle the valve hole 38 of the suction port 20. Then, as shown in FIG. 4, when the pressure sensitive valve 48 is in the direction in which the capacity of the high pressure chamber 30 is maximized against the urging force of the valve spring 52, that is, when the pressure sensitive valve 48 contacts the partition wall 26, 40 approaches the partition part 32 most, and narrows the valve hole 38 with a slight gap.

なお、この後、圧縮機4が通常の作動状態又は停止状態になれば、感圧弁48及び遮断弁40はその弁ばね52の付勢によって、図3に示される状態に復帰する。
以上のように、車両の急加速から生じるエンジン12の回転速度の急上昇や、外気温度の上昇やブロワ風量の増大に伴う冷凍サイクルの熱負荷の急上昇等により、高圧室30に流入するCO冷媒の吐出圧力が大きくなるときには、高圧室30と低圧室28との差圧が過大となり、この過大な吐出圧力や差圧から生じる衝撃力により圧縮機4及び吐出ポート22を含めた吐出室28に連通する第2の通路の破損が懸念される。
After that, when the compressor 4 is in a normal operating state or stopped state, the pressure sensitive valve 48 and the shutoff valve 40 are returned to the state shown in FIG.
As described above, the CO 2 refrigerant flowing into the high-pressure chamber 30 due to a sudden increase in the rotational speed of the engine 12 resulting from the sudden acceleration of the vehicle, a sudden increase in the heat load of the refrigeration cycle accompanying an increase in the outside air temperature or an increase in the blower air volume, and the like. When the discharge pressure increases, the differential pressure between the high pressure chamber 30 and the low pressure chamber 28 becomes excessive, and the discharge force including the compressor 4 and the discharge port 22 is generated in the discharge chamber 28 including the excessive discharge pressure and the differential pressure. There is a concern about breakage of the communicating second passage.

しかし、本実施例の感圧弁48が、高圧室30の圧力上昇を感知して作動し、同時に、遮断弁40は低圧室28の通路を絞る方向へ作動するので、吸入室16へのCO冷媒の吸入量が減少し、吐出室18からの吐出量も減少する。よって、吐出圧力の低下が促進され、圧縮機4及びその吐出室28に連通する第2の通路の破損が防止される。
又、遮断弁40は感圧弁48の動作と機械的に連動することから、弁装置の構造が簡素化される。つまり、コスト高となる電気回路やセンサを必要としない。又、電気回路やセンサを介することによる吐出圧力の制御の遅れも発生しない。よって、吐出圧力の上昇を迅速に防止できることから、エンジン12に過大な負荷が発生しないため、所望の車両の加速性能が確保される。
However, since the pressure sensitive valve 48 of this embodiment senses a rise in pressure in the high pressure chamber 30 and operates, and simultaneously, the shutoff valve 40 operates in a direction to narrow the passage of the low pressure chamber 28, the CO 2 to the suction chamber 16. The refrigerant suction amount decreases, and the discharge amount from the discharge chamber 18 also decreases. Accordingly, the discharge pressure is reduced and the second passage communicating with the compressor 4 and its discharge chamber 28 is prevented from being damaged.
Further, since the shutoff valve 40 is mechanically interlocked with the operation of the pressure sensitive valve 48, the structure of the valve device is simplified. In other words, an expensive electric circuit or sensor is not required. In addition, there is no delay in controlling the discharge pressure due to the electrical circuit or sensor. Therefore, since an increase in the discharge pressure can be prevented quickly, an excessive load is not generated on the engine 12, and a desired vehicle acceleration performance is ensured.

更に、高圧室30から低圧室28へ微量のCO冷媒の流れが許容されていることから、高圧室30の圧力が緩やかに上昇するときには弁装置は作動しない。よって、吸入室16へのCO冷媒の吸入量が不必要に絞られず、圧縮機4の効率の悪化が避けられる。
又、感圧弁48が作動しないときは、遮断弁40は第2の通路を絞らないので、吸入ポート20の冷媒の流れが阻害されず、圧力損失による圧縮機4の効率低下が回避される。
Further, since a small amount of CO 2 refrigerant is allowed to flow from the high pressure chamber 30 to the low pressure chamber 28, the valve device does not operate when the pressure in the high pressure chamber 30 rises gently. Thus, inhalation of CO 2 refrigerant to the suction chamber 16 is not narrowed unnecessarily, deterioration in efficiency of the compressor 4 is avoided.
Further, when the pressure sensitive valve 48 does not operate, the shutoff valve 40 does not restrict the second passage, so that the flow of the refrigerant in the suction port 20 is not hindered and a reduction in efficiency of the compressor 4 due to pressure loss is avoided.

更にまた、遮断弁40と感圧弁48とが圧縮機4の内部に設けられることにより、吐出圧力の上昇が迅速に検知され、冷凍回路中の機器や配管が確実に保護される。
本発明は、上述の一実施例に制約されるものではなく種々の変形が可能である。
例えば、遮断弁40及び感圧弁48も図示の形態に限らず、種々の弁を使用可能であることは勿論である。
Furthermore, since the shutoff valve 40 and the pressure sensitive valve 48 are provided inside the compressor 4, an increase in the discharge pressure is detected quickly, and the equipment and piping in the refrigeration circuit are reliably protected.
The present invention is not limited to the above-described embodiment, and various modifications can be made.
For example, the shutoff valve 40 and the pressure sensitive valve 48 are not limited to the illustrated form, and various valves can be used.

更にまた、遮断弁40と感圧弁48とが圧縮機4内部の吐出ポート22と吸入ポート20との間に配置されることにより、吐出圧力の上昇が迅速に検知され冷凍回路中の機器や配管が確実に保護されるが、圧縮機4の外部、例えば、蒸発器10に接続される循環経路2と、ガスクーラ6に接続される循環経路2とを跨いで設けられていても良く、この場合にも吐出圧力の急上昇が回避可能である。   Furthermore, since the shut-off valve 40 and the pressure sensitive valve 48 are disposed between the discharge port 22 and the suction port 20 inside the compressor 4, an increase in the discharge pressure is detected quickly, and equipment and piping in the refrigeration circuit. However, it may be provided outside the compressor 4, for example, across the circulation path 2 connected to the evaporator 10 and the circulation path 2 connected to the gas cooler 6. In addition, a sudden rise in discharge pressure can be avoided.

本発明の実施例における車両用空調機の概略構成図である。It is a schematic block diagram of the vehicle air conditioner in the Example of this invention. 図1の空調機に組み込まれた圧縮機のシリンダヘッドを一部破断して示した図である。FIG. 2 is a partially cutaway view of a cylinder head of a compressor incorporated in the air conditioner of FIG. 1. 図2のシリンダヘッドの破断部を拡大し、遮断弁が開弁した状態を示した図である。It is the figure which expanded the fracture | rupture part of the cylinder head of FIG. 2, and showed the state which the shut-off valve opened. 図3に示す状態から遮断弁が閉弁した状態を示す図である。It is a figure which shows the state which the shut-off valve closed from the state shown in FIG.

符号の説明Explanation of symbols

2 循環経路
4 圧縮機
16 吸入室
18 吐出室
20 吸入ポート(第2の通路)
22 吐出ポート(第1の通路)
24 弁収容部
26 隔壁
40 遮断弁
46 連結部材
48 感圧弁
2 Circulation route 4 Compressor 16 Suction chamber 18 Discharge chamber 20 Suction port (second passage)
22 Discharge port (first passage)
24 Valve housing part 26 Bulkhead 40 Shut-off valve
46 Connecting member 48 Pressure sensitive valve

Claims (4)

CO冷媒の循環経路に圧縮機が配置された車両用空調機において、
前記圧縮機に設けられた前記冷媒の吸入室及び吐出室と、
前記吐出室に連通する第1の通路内に設けられ、前記冷媒の吐出圧力の上昇を感知して作動する感圧弁と、
前記吸入室に連通する第2の通路内に設けられ、前記第1の通路の圧力が大きくなったときには、前記感圧弁の作動に機械的に連動して前記第2の通路を絞る位置まで移動される遮断弁と
を備えていることを特徴とする車両用空調機の弁装置。
In a vehicle air conditioner in which a compressor is arranged in the circulation path of the CO 2 refrigerant,
A suction chamber and a discharge chamber for the refrigerant provided in the compressor;
A pressure-sensitive valve provided in a first passage communicating with the discharge chamber and operating by sensing an increase in the discharge pressure of the refrigerant;
Provided in a second passage communicating with the suction chamber, and when the pressure in the first passage increases, moves to a position where the second passage is throttled mechanically in conjunction with the operation of the pressure sensitive valve The valve apparatus of the air conditioner for vehicles provided with the cutoff valve by which it is carried out.
前記感圧弁と前記遮断弁とを収容する弁収容部と、
前記弁収容部内に設けられ、前記感圧弁と前記遮断弁とを連結する連結部材と、
前記連結部材を間隙を存して囲繞し、前記弁収容部内を隔てる隔壁と
を備え、
前記隔壁近傍の圧力が前記吐出室内の圧力と前記吸入室内の圧力との中間圧力にされていることを特徴とする請求項1に記載の車両用空調機の弁装置。
A valve housing for housing the pressure-sensitive valve and the shutoff valve;
A connecting member that is provided in the valve housing portion and connects the pressure sensitive valve and the shutoff valve;
A partition wall surrounding the connecting member with a gap, and separating the inside of the valve housing portion,
The valve device for a vehicle air conditioner according to claim 1, wherein the pressure in the vicinity of the partition wall is an intermediate pressure between the pressure in the discharge chamber and the pressure in the suction chamber.
前記感圧弁が作動しないときは、前記遮断弁は前記第2の通路を絞らないことを特徴とする請求項1又は請求項2に記載の車両用空調機の弁装置。   The valve device for a vehicle air conditioner according to claim 1 or 2, wherein the shut-off valve does not restrict the second passage when the pressure sensitive valve does not operate. 前記感圧弁と前記遮断弁とは、前記圧縮機の内部に設けられていることを特徴とする請求項1から請求項3のいずれか一項に記載の車両用空調機の弁装置。   The valve device for a vehicle air conditioner according to any one of claims 1 to 3, wherein the pressure-sensitive valve and the shut-off valve are provided inside the compressor.
JP2005214208A 2005-07-25 2005-07-25 Valve device for vehicular air conditioner Pending JP2007032345A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005214208A JP2007032345A (en) 2005-07-25 2005-07-25 Valve device for vehicular air conditioner
PCT/JP2006/312502 WO2007013244A1 (en) 2005-07-25 2006-06-22 Valve device for vehicle air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005214208A JP2007032345A (en) 2005-07-25 2005-07-25 Valve device for vehicular air conditioner

Publications (1)

Publication Number Publication Date
JP2007032345A true JP2007032345A (en) 2007-02-08

Family

ID=37683147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005214208A Pending JP2007032345A (en) 2005-07-25 2005-07-25 Valve device for vehicular air conditioner

Country Status (2)

Country Link
JP (1) JP2007032345A (en)
WO (1) WO2007013244A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8277200B2 (en) * 2008-06-17 2012-10-02 Delphi Technologies, Inc. Variable displacement compressor with a discharge pressure compensated suction shutoff valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086311U (en) * 1973-12-12 1975-07-23
JPH10325393A (en) * 1997-05-26 1998-12-08 Zexel Corp Variable displacement swash plate type clutchless compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5671970U (en) * 1979-11-08 1981-06-13
JPH10196548A (en) * 1996-12-29 1998-07-31 Tokyo Gas Co Ltd Compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086311U (en) * 1973-12-12 1975-07-23
JPH10325393A (en) * 1997-05-26 1998-12-08 Zexel Corp Variable displacement swash plate type clutchless compressor

Also Published As

Publication number Publication date
WO2007013244A1 (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP2007163074A (en) Refrigeration cycle
JP2006177632A (en) Refrigerating cycle
JPH09264622A (en) Pressure control valve and vapor-compression refrigeration cycle
EP1530013B1 (en) Expansion valve having solenoid relief valve
JP2007155229A (en) Vapor compression type refrigerating cycle
JP2005291679A (en) Refrigerating system
JP4042481B2 (en) Air conditioner
WO2000031479A1 (en) Expansion device
JP3555592B2 (en) Refrigeration cycle device and valve device used therefor
KR101212642B1 (en) Mechanism for controlling and operating compressor capacity and air conditioner having the same
WO2006006560A1 (en) Capacity control valve for clutchless variable displacement swash plate-type compressor
JP5817623B2 (en) Scroll compressor
JP2007032345A (en) Valve device for vehicular air conditioner
JP2017053591A (en) Integrated valve
JP4338539B2 (en) Air conditioner for vehicles
JP2007071430A (en) Refrigeration cycle and compression auxiliary device
JP5538061B2 (en) Refrigeration equipment
WO2020175546A1 (en) Refrigeration cycle device, and evaporation pressure adjustment valve
WO2020230376A1 (en) Unit for refrigeration devices, heat source unit, utilization unit, and refrigeration device
JP2007126990A (en) Muffler for compressor and refrigerating cycle device
JP2001324246A (en) Expansion valve and freezing cycle using it
JP2010043861A (en) Refrigerating cycle
CN106907322B (en) Screw compressor
JP2006138628A (en) Refrigerant condenser
JP2006177598A (en) Refrigerating cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080222

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20101222

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110215

A131 Notification of reasons for refusal

Effective date: 20110629

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111109