JP2007031748A - Method for recovering silver and method for recycling silver compound - Google Patents

Method for recovering silver and method for recycling silver compound Download PDF

Info

Publication number
JP2007031748A
JP2007031748A JP2005213762A JP2005213762A JP2007031748A JP 2007031748 A JP2007031748 A JP 2007031748A JP 2005213762 A JP2005213762 A JP 2005213762A JP 2005213762 A JP2005213762 A JP 2005213762A JP 2007031748 A JP2007031748 A JP 2007031748A
Authority
JP
Japan
Prior art keywords
silver
compound
hydrofluoric acid
hydrochloric acid
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005213762A
Other languages
Japanese (ja)
Other versions
JP5084116B2 (en
Inventor
Hirohisa Kikuyama
裕久 菊山
Masayuki Miyashita
雅之 宮下
Masahide Waki
雅秀 脇
Tomohiko Satonaga
知彦 里永
Yuko Murakami
祐子 村上
Kazuhiko Masakami
和彦 正神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stella Chemifa Corp
Original Assignee
Stella Chemifa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stella Chemifa Corp filed Critical Stella Chemifa Corp
Priority to JP2005213762A priority Critical patent/JP5084116B2/en
Publication of JP2007031748A publication Critical patent/JP2007031748A/en
Application granted granted Critical
Publication of JP5084116B2 publication Critical patent/JP5084116B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for recovering silver by which silver can be isolated in high purity from a by-product and also to provide a method for recycling a silver compound by which effective utilization of resources can be attained and an inexpensive silver compound can be provided by regenerating and recycling recovered silver in the form of a silver compound. <P>SOLUTION: In this silver recovery method, a by-product of organic synthetic reactions using a silver compound is treated with hydrofluoric acid, hydrochloric acid or a mixed solution of hydrofluoric acid and hydrochloric acid to isolate silver. Further, in the silver recovery method, the above silver compound is silver nitrate, silver perchlorate, silver hexafluoroantimonate, silver hexafluorophosphate, silver tetrafluoroborate, silver sulfonylimidate, silver chloride, silver carbonate or silver fluoride. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は銀化合物が酸化剤あるいは塩交換材料として使用された有機合成反応の副生成物から銀を回収し、銀化合物を低コストで再生する銀の回収方法及び銀化合物のリサイクル方法に関する。   The present invention relates to a silver recovery method and a silver compound recycling method in which silver is recovered from a by-product of an organic synthesis reaction in which the silver compound is used as an oxidizing agent or a salt exchange material, and the silver compound is regenerated at low cost.

特公昭43−25335号公報Japanese Examined Patent Publication No. 43-25335

銀化合物は、強力な酸化剤として有用である。有機合成反応における化学的酸化剤あるいは触媒として、例えば硝酸銀や過塩素酸銀などの各種酸の銀塩(銀化合物)が使用されている。
例えば、特許文献1には、各種酸の銀塩を使用してアミニウム化された化合物の酸残基塩とする方法が記載されている。
銀化合物の用途例として、例えば、光開始カチオン重合剤が挙げられる。
光開始カチオン重合剤は、プリント用インク、塗料、表面コート、接着剤、フォトレジスト技術などの種々の応用分野において使用されている。その光開始カチオン重合剤のアニオンとして、テトラフルオホウ酸イオン、六フッ化アンチモン酸イオン、六フッ化リン酸イオン、過塩素酸イオンなどを有するものが用いられるようになり、これらを用いた銀化合物が使用されている。
Silver compounds are useful as powerful oxidants. As chemical oxidizing agents or catalysts in organic synthesis reactions, silver salts (silver compounds) of various acids such as silver nitrate and silver perchlorate are used.
For example, Patent Document 1 describes a method of converting a silver salt of various acids into an acid residue salt of an aminated compound.
As an application example of the silver compound, for example, a photoinitiated cationic polymerization agent can be mentioned.
Photoinitiated cationic polymerizers are used in various fields of application such as printing inks, paints, surface coats, adhesives, photoresist technology and the like. As the anion of the photoinitiated cationic polymerization agent, those having tetrafluoroborate ion, hexafluoroantimonate ion, hexafluorophosphate ion, perchlorate ion, etc. are used, and silver using these A compound has been used.

更に機能性色素の分野においても、断熱フィルム、サングラス、光記録媒体などの用途の他、プラズマディスプレーパネルの近赤外線吸収フィルムなどの用途にも用いられている。また、その用途はさらに拡大している。
これら光開始重合材あるいは機能性色素は有機合成反応によって製造されている。そして、各種酸の銀化合物がこれらの製造工程において酸化剤あるいは塩交換材料の一つとして使用されている。
しかしながら、銀化合物は酸化剤として優れた性能をもつ反面、銀が高価で価格が安定しないため、産業的に使用し難い。そこで、銀の回収が考えられている。銀の回収を行うに際して副生成物から銀を単離する必要がある。しかし、現在のところ、副生成物から銀を安価でかつ高純度で単離する技術はない。
Further, in the field of functional dyes, in addition to uses such as heat insulating films, sunglasses, and optical recording media, they are also used for applications such as near-infrared absorbing films for plasma display panels. In addition, its use is expanding further.
These photoinitiated polymerization materials or functional dyes are produced by an organic synthesis reaction. And the silver compound of various acids is used as one of an oxidizing agent or a salt exchange material in these manufacturing processes.
However, silver compounds have excellent performance as an oxidizing agent, but silver is expensive and unstable in price, so it is difficult to use industrially. Therefore, silver recovery is considered. It is necessary to isolate the silver from the by-product when performing silver recovery. However, at present, there is no technique for isolating silver from by-products at low cost and high purity.

本発明は前記の問題点を解決するためになされたものである。
本発明の目的は、銀化合物による有機化合物の化学的酸化反応および塩交換反応により生じた副生成物から銀を安価にしかも高純度で単離することが可能な銀の回収方法を提供することにある。
The present invention has been made to solve the above problems.
An object of the present invention is to provide a method for recovering silver capable of isolating silver at low cost and in high purity from a by-product generated by a chemical oxidation reaction and a salt exchange reaction of an organic compound with a silver compound. It is in.

本発明の目的は、回収した銀を銀化合物として再生し、リサイクルすることにより、資源を有効活用するとともに安価な銀化合物を提供することが可能な銀化合物の再生方法を提供することにある。   An object of the present invention is to provide a method for regenerating a silver compound that can recycle the recovered silver as a silver compound and recycle it, thereby effectively utilizing resources and providing an inexpensive silver compound.

請求項1に係る発明は、銀化合物を使用した有機合成反応の副生成物を、フッ化水素酸、塩化水素酸又はフッ化水素酸と塩化水素酸との混合液(以下「処理液」という)により処理することにより銀を単離することを特徴とする銀の回収方法である。   According to the first aspect of the present invention, the by-product of the organic synthesis reaction using the silver compound is hydrofluoric acid, hydrochloric acid, or a mixed liquid of hydrofluoric acid and hydrochloric acid (hereinafter referred to as “treatment liquid”). The silver recovery method is characterized in that the silver is isolated by treating with the above.

請求項2に係る発明は、前記銀化合物は、硝酸銀、過塩素酸銀、六フッ化アンチモン酸銀、六フッ化リン酸銀、テトラフルオロホウ酸銀、スルホニルイミド酸銀、酸化銀、塩化銀、炭酸銀又はフッ化銀であることを特徴とする請求項1記載の銀の回収方法である。   In the invention according to claim 2, the silver compound is composed of silver nitrate, silver perchlorate, silver hexafluoroantimonate, silver hexafluorophosphate, silver tetrafluoroborate, silver sulfonylimide, silver oxide, silver chloride. The silver recovery method according to claim 1, wherein the silver recovery method is silver carbonate or silver fluoride.

請求項3に係る発明は、前記処理液がフッ化水素酸と塩化水素酸との混合液であり、フッ化水素酸と塩化水素酸とを合計した濃度は10〜90%であることを特徴とする請求項1又は2記載の銀の回収方法である。   The invention according to claim 3 is characterized in that the treatment liquid is a mixed liquid of hydrofluoric acid and hydrochloric acid, and the total concentration of hydrofluoric acid and hydrochloric acid is 10 to 90%. The silver recovery method according to claim 1 or 2.

請求項4に係る発明は、前記処理液がフッ化水素酸であり、フッ化水素酸の濃度が10〜75%であることを特徴とする請求項1又は2記載の銀の回収方法である。   The invention according to claim 4 is the silver recovery method according to claim 1 or 2, wherein the treatment liquid is hydrofluoric acid, and the concentration of hydrofluoric acid is 10 to 75%. .

請求項5に係る発明は、前記処理を0〜100℃で行うことを特徴とする請求項1乃至4のいずれか1項記載の銀の回収方法である。   The invention according to claim 5 is the silver recovery method according to any one of claims 1 to 4, wherein the treatment is performed at 0 to 100 ° C.

請求項6に係る発明は、請求項1〜4記載の方法により回収した銀から銀化合物を再生することを特徴とする銀化合物のリサイクル方法である。   The invention according to claim 6 is a silver compound recycling method, wherein the silver compound is regenerated from the silver recovered by the method according to claims 1 to 4.

請求項7に係る発明は、前記銀化合物は、硝酸銀、過塩素酸銀、六フッ化アンチモン酸銀、六フッ化リン酸銀、テトラフルオロホウ酸銀、スルホニルイミド酸銀、酸化銀、塩化銀、炭酸銀、フッ化銀のいずれか1種であることを特徴とする請求項6記載の銀化合物のリサイクル方法である。
<作用>
The invention according to claim 7 is characterized in that the silver compound is silver nitrate, silver perchlorate, silver hexafluoroantimonate, silver hexafluorophosphate, silver tetrafluoroborate, silver sulfonylimide, silver oxide, silver chloride. The silver compound recycling method according to claim 6, wherein the silver compound is any one of silver carbonate and silver fluoride.
<Action>

本発明者らは前記したような課題を解決すべく鋭意検討した結果、銀化合物による有機化合物の化学的酸化反応あるいは塩交換反応により生じた有機化合物および無機化合物及び銀からなる副生成物に、フッ化水素酸、塩化水素酸、あるいはフッ化水素酸と塩化水素酸の混合液による処理を施すことによって、液側に不純物を溶出させて固液分離することにより高純度の銀を回収できることを見出した。また、この回収した銀をもとに公知の製法を用いて銀化合物に再生することが可能である。   As a result of intensive studies to solve the problems as described above, the present inventors have obtained a by-product composed of an organic compound, an inorganic compound, and silver generated by a chemical oxidation reaction or salt exchange reaction of an organic compound with a silver compound. By treating with hydrofluoric acid, hydrochloric acid, or a mixture of hydrofluoric acid and hydrochloric acid, impurities can be eluted to the liquid side and high purity silver can be recovered by solid-liquid separation. I found it. Moreover, it is possible to reproduce | regenerate to a silver compound using a well-known manufacturing method based on this collect | recovered silver.

本発明の銀の回収方法によれば、副生成物から銀を高純度で単離することが可能となる。
本発明の銀化合物のリサイクル方法によれば、回収した銀を銀化合物として再生し、リサイクルすることにより、資源を有効活用するとともに安価な銀化合物を提供することが可能となる。
According to the silver recovery method of the present invention, silver can be isolated from a by-product with high purity.
According to the silver compound recycling method of the present invention, it is possible to recycle the recovered silver as a silver compound and recycle it, thereby effectively utilizing resources and providing an inexpensive silver compound.

本発明は、銀化合物を使用した有機合成反応の副生成物を、フッ化水素酸、塩化水素酸又はフッ化水素酸と塩化水素酸との混合液により処理する。   In the present invention, a by-product of an organic synthesis reaction using a silver compound is treated with hydrofluoric acid, hydrochloric acid, or a mixture of hydrofluoric acid and hydrochloric acid.

(有機合成反応)
ここで、有機合成反応としては、化学的酸化反応あるいは塩交換反応を伴うものが主としてあげられる。
特に、機能性色素の合成反応に適用することが有効である。
(Organic synthesis reaction)
Here, the organic synthesis reaction mainly includes those accompanied by chemical oxidation reaction or salt exchange reaction.
In particular, it is effective to apply to the synthesis reaction of functional dyes.

機能性色素としては、ジイモニウム系色素、アミニウム系色素、シアニン系色素、アゾ系色素、フタロシアニン系色素、スクアリウム系色素、ジチオール系色素、金属錯体系色素、ピロール系色素などが挙げられるが、本発明の有機反応合成の例としては、ジイモニウム系色素、アミニウム系色素が挙げられる。   Examples of the functional dye include diimonium dyes, aminium dyes, cyanine dyes, azo dyes, phthalocyanine dyes, squalium dyes, dithiol dyes, metal complex dyes, and pyrrole dyes. Examples of organic reaction synthesis include diimonium dyes and aminium dyes.

その合成プロセスは、例えば、N,N,N',N'−テトラキス(P−ジアルキルアミノフェニル)−p−フェニレンジアミン、N,N,N',N'−テトラキス(p−ジブチルアミノフェニル)−p−フェニレンジアミン、N,N,N',N'−テトラキス(p−ジエチルアミノフェニル)−p−フェニレンジアミン、N,N,N',N'−テトラキス[ジ{p−ジ(iso−ブチル)アミノフェニル}アミノフェニル]−p−フェニレンジアミンなどの化合物(原料)を、所望のアニオンの銀塩で酸化反応を行うこと、または硝酸銀や過塩素酸銀などの銀塩で酸化し、所望のアニオンの酸または塩で塩交換を行うことである。このプロセスにおいて、ジイモニウム塩は2価の化合物であり、1価の場合はアミニウム化合物となる。一般的には銀塩や所望のアニオンの当量を変えることで2価と1価の化合物に分けられる。   The synthetic process is, for example, N, N, N ′, N′-tetrakis (P-dialkylaminophenyl) -p-phenylenediamine, N, N, N ′, N′-tetrakis (p-dibutylaminophenyl)- p-phenylenediamine, N, N, N ′, N′-tetrakis (p-diethylaminophenyl) -p-phenylenediamine, N, N, N ′, N′-tetrakis [di {p-di (iso-butyl) The compound (raw material) such as aminophenyl} aminophenyl] -p-phenylenediamine is oxidized with a silver salt of a desired anion, or oxidized with a silver salt such as silver nitrate or silver perchlorate to obtain a desired anion. Salt exchange with the acid or salt. In this process, the diimonium salt is a divalent compound, and when it is monovalent, it becomes an aminium compound. Generally, it can be divided into divalent and monovalent compounds by changing the equivalent of silver salt or desired anion.

(副生成物)
副生成物としては、例えば、酸化還元反応により生成した単体の銀、塩交換反応を行う場合は塩交換により副生する金属またはその金属の塩、有機合成における未反応の原料および中間生成物である。
(By-product)
By-products include, for example, simple silver produced by the oxidation-reduction reaction, a metal by-produced by salt exchange or a salt of the metal when performing a salt exchange reaction, unreacted raw materials and intermediate products in organic synthesis. is there.

前記機能性色素の合成の場合、例えばN,N,N',N'−テトラキス(P−ジアルキルアミノフェニル)−p−フェニレンジアミン、 N,N,N',N'−テトラキス(p−ジブチルアミノフェニル)−p−フェニレンジアミン、N,N,N',N'−テトラキス(p−ジエチルアミノフェニル)−p−フェニレンジアミン、N,N,N',N'−テトラキス[ジ{p−ジ(iso−ブチル)アミノフェニル}アミノフェニル]−p−フェニレンジアミンなどの化合物(原料)をDMFなどの有機溶媒に溶解させ、所望のアニオンの銀塩で酸化反応を行うこと、または硝酸銀や過塩素酸銀などの銀塩で酸化し、所望のアニオンの酸または塩で塩交換を行うときに生成析出する銀である。   In the case of the synthesis of the functional dye, for example, N, N, N ′, N′-tetrakis (P-dialkylaminophenyl) -p-phenylenediamine, N, N, N ′, N′-tetrakis (p-dibutylamino) Phenyl) -p-phenylenediamine, N, N, N ′, N′-tetrakis (p-diethylaminophenyl) -p-phenylenediamine, N, N, N ′, N′-tetrakis [di {p-di (iso -Butyl) aminophenyl} aminophenyl] -p-phenylenediamine and other compounds (raw materials) dissolved in an organic solvent such as DMF and oxidized with a silver salt of the desired anion, or silver nitrate or silver perchlorate It is silver that is formed and precipitated when oxidized with a silver salt such as, and salt exchange with the acid or salt of the desired anion.

(銀化合物)
銀化合物としては、硝酸銀、過塩素酸銀、六フッ化アンチモン酸銀、六フッ化リン酸銀、テトラフルオロホウ酸銀、スルホニルイミド酸銀、酸化銀、塩化銀、炭酸銀又はフッ化銀が好ましい。特に、六フッ化アンチモン酸銀、六フッ化リン酸銀、スルホニルイミド酸銀が、耐熱性、溶解性という理由から好ましい。
(Silver compound)
Examples of silver compounds include silver nitrate, silver perchlorate, silver hexafluoroantimonate, silver hexafluorophosphate, silver tetrafluoroborate, silver sulfonylimide, silver oxide, silver chloride, silver carbonate, or silver fluoride. preferable. In particular, silver hexafluoroantimonate, silver hexafluorophosphate, and silver sulfonylimide are preferable because of heat resistance and solubility.

(処理方法)
本発明では、副生成物を処理液で処理する。ここで、処理方法としては、例えば、副生成物を処理液中に懸濁させ、放置しておけばよい。一定時間経過後、固液分離が生じる。固体を乾燥すると分離された銀が得られる。
(Processing method)
In the present invention, the by-product is treated with the treatment liquid. Here, as a processing method, for example, the by-product may be suspended in the processing liquid and left as it is. Solid-liquid separation occurs after a certain period of time. Drying the solid gives isolated silver.

(処理液)
処理液がフッ化水素酸と塩化水素酸との混合液の場合は、フッ化水素酸と塩化水素酸とを合計した濃度は10〜90%が好ましい。20%〜75%がより好ましい。10%未満では、処理効率が低下すると共に洗浄液量が増加する。90%を超えると酸の揮発が激しくなり処理効率が低下する。
(Processing liquid)
When the treatment liquid is a mixed liquid of hydrofluoric acid and hydrochloric acid, the total concentration of hydrofluoric acid and hydrochloric acid is preferably 10 to 90%. 20% to 75% is more preferable. If it is less than 10%, the treatment efficiency decreases and the amount of the cleaning liquid increases. If it exceeds 90%, the volatilization of the acid becomes violent and the processing efficiency decreases.

処理液がフッ化水素酸と塩化水素酸の単体の場合は、10〜75%が好ましい。
20〜50% がより好ましい。10%未満では、処理効率が低下すると共に洗浄液量が増加する。75%を超えると酸の揮発が激しくなり処理効率が低下する。
When the treatment liquid is a simple substance of hydrofluoric acid and hydrochloric acid, 10 to 75% is preferable.
20 to 50% is more preferable. If it is less than 10%, the treatment efficiency decreases and the amount of the cleaning liquid increases. If it exceeds 75%, the volatilization of the acid becomes violent and the processing efficiency decreases.

(処理温度)
処理は、0〜100℃で行うことが好ましい。より好ましくは40〜80℃である。0℃未満では、有機化合物の溶出が進行し難くなり、回収銀の濃度が下がる。100℃を超えると 酸の揮発が激しくなり処理効率が低下する。
(Processing temperature)
It is preferable to perform a process at 0-100 degreeC. More preferably, it is 40-80 degreeC. Below 0 ° C., the elution of the organic compound is difficult to proceed, and the concentration of recovered silver decreases. If the temperature exceeds 100 ° C, the volatilization of the acid becomes violent and the processing efficiency decreases.

(銀化合物のリサイクル)
回収された銀は既存の工業的製法等を用いて硝酸銀、酸化銀、塩化銀、炭酸銀、フッ化銀、過塩素酸銀、テトラフルオロホウ酸銀、スルホニルイミド酸銀、六フッ化リン酸銀、六フッ化アンチモン酸銀など各種銀化合物を製造する原料となる。
さらに、これら銀化合物を有機化合物の酸化反応および塩交換反応として使用することにより、循環サイクルが達成され、銀資源の有効利用、また安価な銀化合物を供給することができる。
<実施例>
(Silver compound recycling)
The recovered silver is silver nitrate, silver oxide, silver chloride, silver carbonate, silver fluoride, silver perchlorate, silver tetrafluoroborate, silver sulfonylimidate, hexafluorophosphoric acid using existing industrial production methods, etc. It is a raw material for producing various silver compounds such as silver and silver hexafluoroantimonate.
Further, by using these silver compounds as an organic compound oxidation reaction and salt exchange reaction, a circulation cycle can be achieved, and silver resources can be effectively used and inexpensive silver compounds can be supplied.
<Example>

以下、本発明を実施例により更に具体的に説明するが、本発明は、これらの実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

六フッ化アンチモン酸銀が酸化剤として使用して有機合成を行った。本例における有機合成は、ジイモニウムのジヘキサフルオロアンチモン酸塩である。
合成は次にように行った。
DMF10g中にN,N,N',N'−テトラキス[ジ{p−ジ(iso−ブチル)アミノフェニル}アミノフェニル]−p−フェニレンジアミン100gを加え、60℃に加熱溶解した後、DMF1kg中に溶解した六フッ化アンチモン酸銀78gを加え、反応させた。冷却後析出した銀を濾別した。この反応液(濾液)に水1Lをゆっくりと滴下し、撹拌した。生成した結晶を濾過、水洗して得られたケーキを乾燥し、ジイモニウムのジヘキサフルオロアンチモン酸塩50gを得た。
副生物として銀及び有機物が生成された。
この副生物の分析を行ったところ、有機成分が10%(重量%、以下同じ)含まれており銀含量は63.5%であった。
また、金属不純物としてケイ素11%、アルミニウム3%、カリウム0.9%、鉄0.2%が含まれており、アニオン成分は酸素17%、フッ素0.7%であった。
Organic synthesis was performed using silver hexafluoroantimonate as an oxidizing agent. The organic synthesis in this example is diimonium dihexafluoroantimonate.
The synthesis was performed as follows.
In 10 g of DMF, 100 g of N, N, N ′, N′-tetrakis [di {p-di (iso-butyl) aminophenyl} aminophenyl] -p-phenylenediamine was added and dissolved by heating at 60 ° C. In 1 kg of DMF 78 g of silver hexafluoroantimonate dissolved in was added and reacted. After cooling, the precipitated silver was filtered off. 1 L of water was slowly added dropwise to the reaction solution (filtrate) and stirred. The resulting crystals were filtered and washed with water, and the resulting cake was dried to obtain 50 g of diimonium dihexafluoroantimonate.
Silver and organic matter were produced as by-products.
When this by-product was analyzed, the organic component was contained 10% (% by weight, the same applies hereinafter), and the silver content was 63.5%.
Moreover, 11% of silicon, 3% of aluminum, 0.9% of potassium, and 0.2% of iron were contained as metal impurities, and anion components were 17% oxygen and 0.7% fluorine.

このようにして得られた副生成物10.0gを50%のフッ化水素酸300mlに添加し、この懸濁液を攪拌しながら50℃で30分保持した後、固液分離した。
得られたケーキ状の固体を、十分に液を切って乾燥し、灰褐色の粉末6.4gを得た。分析結果より含量98%以上の銀が回収できていた。この回収銀より六フッ化アンチモン酸銀を再生した。
10.0 g of the by-product thus obtained was added to 300 ml of 50% hydrofluoric acid, and the suspension was kept at 50 ° C. for 30 minutes with stirring, followed by solid-liquid separation.
The obtained cake-like solid was sufficiently drained and dried to obtain 6.4 g of a grayish brown powder. From the analysis results, silver having a content of 98% or more was recovered. Silver hexafluoroantimonate was regenerated from the recovered silver.

六フッ化リン酸銀を酸化剤として使用してジイモニウムのジヘキサフルオロリン酸塩の合成を行った。
合成は、次にようにして行った。
前記合成例1の反応で六フッ化アンチモン酸銀の代わりに六フッ化リン酸銀58gに代えた以外は合成例1と同様に合成し、ジイモニウム化合物50gを得た。
上記有機合成後の副生物の分析を行ったところ、有機成分が10%含まれており銀含量は41.5%であった。また、金属不純物としてケイ素21.2%、アルミニウム 3.5%、カリウム1.5%、鉄0.3%が含まれており、アニオン成分は酸素25%、フッ素0.3%であった。
Diimonium dihexafluorophosphate was synthesized using silver hexafluorophosphate as an oxidizing agent.
The synthesis was performed as follows.
Synthesis was performed in the same manner as in Synthesis Example 1 except that 58 g of silver hexafluorophosphate was used instead of silver hexafluoroantimonate in the reaction of Synthesis Example 1, thereby obtaining 50 g of a diimonium compound.
When the by-product after the organic synthesis was analyzed, the organic component was contained 10% and the silver content was 41.5%. Moreover, 21.2% of silicon, 3.5% of aluminum, 1.5% of potassium, and 0.3% of iron were contained as metal impurities, and anion components were oxygen 25% and fluorine 0.3%.

このようにして得られた副生成物24.7gを50%のフッ化水素酸250Lに添加し、この懸濁液を攪拌しながら50℃に加温して30分ほど保持したのちろ過して固液分離した。この操作を2度繰り返した後、得られたケーキ状の固体を十分に液を切って乾燥し、灰褐色の粉末10.8gを得た。
分析結果より含量98%以上の銀が回収できていた。この回収銀より六フッ化リン酸銀を再生した。
24.7 g of the by-product thus obtained was added to 250 L of 50% hydrofluoric acid, and this suspension was heated to 50 ° C. with stirring and held for about 30 minutes, followed by filtration. Solid-liquid separation. After repeating this operation twice, the obtained cake-like solid was sufficiently drained and dried to obtain 10.8 g of a grayish brown powder.
From the analysis results, silver having a content of 98% or more was recovered. Silver hexafluorophosphate was regenerated from the recovered silver.

硝酸銀が酸化剤として使用してジイモニウムのジヘキサフルオロアンチモン酸塩の合成を行った。合成は次のようにして行った。
ジイモニウム化合物の塩の製造N,N,N',N'−テトラキス(p−ジブチルアミノフェニル)−p−フェニレンジアミン138gを酢酸エチル1.8Lに溶解した。この溶液に硝酸銀51gを水100mlに溶解した水溶液を加えて撹拌し、析出した銀を濾別した。更に、この反応液(濾液)に六フッ化アンチモン酸ナトリウム77gをアセトニトリル600mlに溶解した溶液を加え、攪拌した。この反応混合物を、水洗、減圧濃縮した後、酢酸エチルを加え、析出した結晶を濾別、乾燥して、粉末162gを得た。生成物は、ジイモニウムのジヘキサフルオロアンチモン酸塩であった。
有機合成後の副生成物の分析を行ったところ、有機成分が10%含まれており銀含量は56.1%であった。また、金属不純物としてケイ素13.3%、アルミニウム 3.1%、カリウム0.9%が含まれており、アニオン成分は酸素21%であった。
Diimonium dihexafluoroantimonate was synthesized using silver nitrate as the oxidizing agent. The synthesis was performed as follows.
Preparation of salt of diimonium compound 138 g of N, N, N ′, N′-tetrakis (p-dibutylaminophenyl) -p-phenylenediamine was dissolved in 1.8 L of ethyl acetate. An aqueous solution in which 51 g of silver nitrate was dissolved in 100 ml of water was added to this solution and stirred, and the precipitated silver was separated by filtration. Further, a solution prepared by dissolving 77 g of sodium hexafluoroantimonate in 600 ml of acetonitrile was added to this reaction solution (filtrate) and stirred. The reaction mixture was washed with water and concentrated under reduced pressure, ethyl acetate was added, and the precipitated crystals were separated by filtration and dried to obtain 162 g of powder. The product was diimonium dihexafluoroantimonate.
Analysis of the by-products after organic synthesis revealed that 10% of the organic components were contained and the silver content was 56.1%. Further, as metal impurities, silicon 13.3%, aluminum 3.1%, potassium 0.9% were contained, and the anion component was oxygen 21%.

このようにして得られた副生成物10.0gを実施例1と同じ処理をした後、ろ過して固液分離した。得られたケーキ状の固体を十分に液を切って乾燥し、灰褐色の粉末5.8gを得た。
分析結果より含量98%以上の銀が回収できていた。この回収銀より六フッ化アンチモン酸銀を再生した。
After 10.0 g of the by-product thus obtained was treated in the same manner as in Example 1, it was filtered and solid-liquid separated. The obtained cake-like solid was sufficiently drained and dried to obtain 5.8 g of a grayish brown powder.
From the analysis results, silver having a content of 98% or more was recovered. Silver hexafluoroantimonate was regenerated from the recovered silver.

ホウフッ化銀が酸化剤として使用してアミニウムのモノ4フッ化ホウ素酸塩の有機合成を行った、有機合成は次のように行った。
DMF10g中にN,N,N',N'−テトラキス(p−ジブチルアミノフェニル)−p−フェニレンジアミン138gを加え、60℃に加熱溶解した後、DMF1kg中に溶解したホウフッ化銀28gを加え、30分反応させた。冷却後析出した銀を濾別した。この反応液(濾液)に水1Lをゆっくりと滴下し、撹拌した。生成した結晶を濾過、水洗して得られたケーキを乾燥し、粉末26gを得た。生成物は、アミニウムのモノ4フッ化ホウ素酸塩であった。
上記有機合成の後の副生成物10.0gを実施例1と同じ条件で処理をした後、ろ過して固液分離した。得られたケーキ状の固体を十分に液を切って乾燥し、灰褐色の粉末3.9gを得た。分析結果より含量98%以上の銀が回収できていた。この回収銀よりホウフッ化銀を再生した。
The organic synthesis of aminium monotetrafluoroborate was carried out using silver borofluoride as the oxidizing agent. The organic synthesis was carried out as follows.
138 g of N, N, N ′, N′-tetrakis (p-dibutylaminophenyl) -p-phenylenediamine was added to 10 g of DMF, heated and dissolved at 60 ° C., and then 28 g of silver borofluoride dissolved in 1 kg of DMF was added. The reaction was performed for 30 minutes. After cooling, the precipitated silver was filtered off. 1 L of water was slowly added dropwise to the reaction solution (filtrate) and stirred. The produced crystal was filtered and washed with water, and the resulting cake was dried to obtain 26 g of powder. The product was aminium monotetrafluoroborate.
10.0 g of the by-product after the organic synthesis was treated under the same conditions as in Example 1 and then filtered to separate the solid and liquid. The obtained cake-like solid was sufficiently drained and dried to obtain 3.9 g of a grey-brown powder. From the analysis results, silver having a content of 98% or more was recovered. Silver borofluoride was regenerated from this recovered silver.

本例では、処理液中における濃度の影響を調べた。実施例1と同じ六フッ化アンチモン酸銀が酸化剤として使用された有機合成の副生物11.2gを、5%のフッ化水素酸300mlに添加し、この懸濁液を攪拌しながら50℃で30分保持した後、固液分離した。
得られたケーキ状の固体を十分に液を切って乾燥し、灰褐色の粉末7.9gを得たが、分析結果より銀の含量は88.9%であった。
また、フッ化水素酸の濃度を90%に変更し、上記同様に処理したところ、分析結果より銀の含量は91・3%であった。
同様にしてフッ化水素酸の濃度を以下のように変えて実験を行った。その結果を示す。

濃度 純度
5% 88.9%
10% 94 %
20% 97 %
40% 98 %
50% 98 %
60% 96 %
75% 94 %
90% 91.3%
In this example, the influence of the concentration in the treatment liquid was examined. 11.2 g of organic synthesis by-product in which the same silver hexafluoroantimonate as in Example 1 was used as an oxidizing agent was added to 300 ml of 5% hydrofluoric acid, and the suspension was stirred at 50 ° C. For 30 minutes, followed by solid-liquid separation.
The obtained cake-like solid was sufficiently drained and dried to obtain 7.9 g of a grey-brown powder. As a result of analysis, the silver content was 88.9%.
Further, when the concentration of hydrofluoric acid was changed to 90% and the same treatment was performed as described above, the silver content was 91.3% from the analysis results.
Similarly, the experiment was conducted by changing the concentration of hydrofluoric acid as follows. The result is shown.

Concentration Purity 5% 88.9%
10% 94%
20% 97%
40% 98%
50% 98%
60% 96%
75% 94%
90% 91.3%

本例では、処理液による処理の処理温度の影響を調べた。
実施例1と同じ六フッ化アンチモン酸銀が酸化剤として使用された有機合成の副生物10.0gを、50%のフッ化水素酸300mlに添加し、この懸濁液を攪拌しながら−5℃で30分保持した後、固液分離した。
得られたケーキ状の固体を十分に液を切って乾燥し、灰褐色の粉末6.6gを得た。分析結果より銀の含量は95.8%であった。
また、温度を110℃に変更し、上記同様に処理したところ、分析結果より銀の含量は90.3%であった。
また、温度を以下のとおり変化させて実験を行った。

温度 純度
−5℃ 95.8%
0℃ 97 %
20℃ 97.8%
40℃ 98 %
60℃ 98 %
80℃ 98 %
100℃ 97.4%
110℃ 90.3%
In this example, the influence of the treatment temperature of the treatment with the treatment liquid was examined.
10.0 g of organic synthesis by-product in which the same silver hexafluoroantimonate as in Example 1 was used as an oxidizing agent was added to 300 ml of 50% hydrofluoric acid, and this suspension was stirred at -5. After maintaining at 30 ° C. for 30 minutes, solid-liquid separation was performed.
The obtained cake-like solid was sufficiently drained and dried to obtain 6.6 g of a grayish brown powder. As a result of analysis, the silver content was 95.8%.
Moreover, when the temperature was changed to 110 ° C. and the same treatment was performed as described above, the silver content was 90.3% from the analysis results.
In addition, the experiment was performed by changing the temperature as follows.

Temperature Purity -5 ° C 95.8%
0 ° C 97%
97.8% at 20 ° C
40 ° C 98%
60 ° C 98%
80 ° C 98%
100 ° C 97.4%
110 ° C 90.3%

Claims (7)

銀化合物を使用した有機合成反応の副生成物を、フッ化水素酸、塩化水素酸又はフッ化水素酸と塩化水素酸との混合液(以下「処理液」という)により処理することにより銀を単離することを特徴とする銀の回収方法。 By treating the by-product of the organic synthesis reaction using the silver compound with hydrofluoric acid, hydrochloric acid, or a mixture of hydrofluoric acid and hydrochloric acid (hereinafter referred to as “treatment liquid”), silver is treated. A method for recovering silver, characterized by being isolated. 前記銀化合物は、硝酸銀、過塩素酸銀、六フッ化アンチモン酸銀、六フッ化リン酸銀、テトラフルオロホウ酸銀、スルホニルイミド酸銀、酸化銀、塩化銀、炭酸銀又はフッ化銀であることを特徴とする請求項1記載の銀の回収方法。 The silver compound is silver nitrate, silver perchlorate, silver hexafluoroantimonate, silver hexafluorophosphate, silver tetrafluoroborate, silver sulfonylimidate, silver oxide, silver chloride, silver carbonate or silver fluoride. The silver recovery method according to claim 1, wherein: 前記処理液がフッ化水素酸と塩化水素酸との混合液であり、フッ化水素酸と塩化水素酸とを合計した濃度は10〜90%(重量%:以下同じ)であることを特徴とする請求項1又は2記載の銀の回収方法。 The treatment liquid is a mixed liquid of hydrofluoric acid and hydrochloric acid, and the total concentration of hydrofluoric acid and hydrochloric acid is 10 to 90% (weight%: the same applies hereinafter). The silver recovery method according to claim 1 or 2. 前記処理液がフッ化水素酸であり、フッ化水素酸の濃度が10〜75%であることを特徴とする請求項1又は2記載の銀の回収方法。 The method for recovering silver according to claim 1 or 2, wherein the treatment liquid is hydrofluoric acid, and the concentration of hydrofluoric acid is 10 to 75%. 前記処理を0〜100℃で行うことを特徴とする請求項1乃至4のいずれか1項記載の銀の回収方法。 The silver recovery method according to any one of claims 1 to 4, wherein the treatment is performed at 0 to 100 ° C. 請求項1〜4記載の方法により回収した銀から銀化合物を再生することを特徴とする銀化合物のリサイクル方法。 A silver compound recycling method comprising regenerating a silver compound from silver recovered by the method according to claim 1. 前記銀化合物は、硝酸銀、過塩素酸銀、六フッ化アンチモン酸銀、六フッ化リン酸銀、テトラフルオロホウ酸銀、スルホニルイミド酸銀、酸化銀、塩化銀、炭酸銀、フッ化銀のあることを特徴とする請求項6記載の銀化合物のリサイクル方法。
The silver compound is composed of silver nitrate, silver perchlorate, silver hexafluoroantimonate, silver hexafluorophosphate, silver tetrafluoroborate, silver sulfonylimidate, silver oxide, silver chloride, silver carbonate, silver fluoride. The silver compound recycling method according to claim 6, wherein the silver compound is recycled.
JP2005213762A 2005-07-25 2005-07-25 Silver recovery method and silver compound recycling method Expired - Fee Related JP5084116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005213762A JP5084116B2 (en) 2005-07-25 2005-07-25 Silver recovery method and silver compound recycling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005213762A JP5084116B2 (en) 2005-07-25 2005-07-25 Silver recovery method and silver compound recycling method

Publications (2)

Publication Number Publication Date
JP2007031748A true JP2007031748A (en) 2007-02-08
JP5084116B2 JP5084116B2 (en) 2012-11-28

Family

ID=37791359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005213762A Expired - Fee Related JP5084116B2 (en) 2005-07-25 2005-07-25 Silver recovery method and silver compound recycling method

Country Status (1)

Country Link
JP (1) JP5084116B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101812596A (en) * 2010-04-23 2010-08-25 四川长虹电器股份有限公司 Comprehensive recycling method of waste plasma display screen
CN102978407A (en) * 2012-12-17 2013-03-20 四会市鸿明贵金属有限公司 Method for recovering platinum from silver electrolyte
US9834825B2 (en) 2014-09-12 2017-12-05 Samsung Display Co., Ltd. Method for collecting silver ions and phosphoric acid in waste fluid
CN110270693A (en) * 2019-07-12 2019-09-24 刘松青 A kind of silver nanowires continuous producing method that solvent recovery cycle utilizes
JPWO2020031724A1 (en) * 2018-08-10 2021-08-26 フィガロ技研株式会社 Gas detector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137936A (en) * 2004-10-13 2006-06-01 Toyo Ink Mfg Co Ltd Near infrared ray-absorbing coating agent and near infrared ray-absorbing laminate given by using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137936A (en) * 2004-10-13 2006-06-01 Toyo Ink Mfg Co Ltd Near infrared ray-absorbing coating agent and near infrared ray-absorbing laminate given by using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101812596A (en) * 2010-04-23 2010-08-25 四川长虹电器股份有限公司 Comprehensive recycling method of waste plasma display screen
CN102978407A (en) * 2012-12-17 2013-03-20 四会市鸿明贵金属有限公司 Method for recovering platinum from silver electrolyte
CN102978407B (en) * 2012-12-17 2014-09-03 四会市鸿明贵金属有限公司 Method for recovering platinum from silver electrolyte
US9834825B2 (en) 2014-09-12 2017-12-05 Samsung Display Co., Ltd. Method for collecting silver ions and phosphoric acid in waste fluid
JPWO2020031724A1 (en) * 2018-08-10 2021-08-26 フィガロ技研株式会社 Gas detector
CN110270693A (en) * 2019-07-12 2019-09-24 刘松青 A kind of silver nanowires continuous producing method that solvent recovery cycle utilizes

Also Published As

Publication number Publication date
JP5084116B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5084116B2 (en) Silver recovery method and silver compound recycling method
Filimonov et al. Sulfonic acid based cation-exchange resin: a novel proton source for one-pot diazotization-iodination of aromatic amines in water
CN104220417A (en) Method for synthesising aminobiphenyls using aryl hydrazines
Zarchi Polymer‐Supported Thiocyanate as New, Versatile and Efficient Polymeric Reagent for Conversion of Alkyl Halides to Corresponding Alkyl Thiocyanates under Mild Conditions
JP4796776B2 (en) Method for producing 4,4&#39;-dicarboxy-2,2&#39;-bipyridine
JP4079234B2 (en) Method for producing metal phthalocyanines
JP4158060B2 (en) Method for producing salt of aminium compound
JP3116625B2 (en) Production method of metal phthalocyanine pigment
JP4647366B2 (en) Method for producing a dye compound having a sulfo group
CN109734645B (en) Synthetic process of isatin
JP4183435B2 (en) Method for producing 4,4&#39;-di (2-benzothiazolyl) azobenzene derivative
JPS5850263B2 (en) Doufthalocyaninno Seizouhou
JP2812027B2 (en) Method for producing copper phthalocyanine pigment
JP2004189651A (en) Method for producing 2,3-pyridinedicarboxylic acid
CN109836376B (en) Method for preparing 2-chloronicotinic acid by using 2, 3-dipicolinic acid as raw material
RU2164233C1 (en) Method of preparing chloroaluminium phthalocyanine
JP2010202638A (en) Method for producing n,n,n&#39;,n&#39;-tetraarylbenzidine derivative
JP2002205993A (en) Method for producing ellagic acid
JP3575704B2 (en) Method for producing dioxazine compound
JP2664761B2 (en) Method for producing aminobenzanthrones
JPH03246250A (en) Method for chlorinating 1,4-naphthoquinones
JPWO2005037754A1 (en) Process for producing 2,3,6,7,10,11-hexahydroxytriphenylene
JP2000191646A (en) Production of anthrapyridone-based compound
JP4372242B2 (en) Method for producing isochromanone derivative
CN113461542A (en) Synthesis process of 6-chloro-2, 4-dinitroaniline

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees