JP2007028735A - 分散電源システム及び方法 - Google Patents

分散電源システム及び方法 Download PDF

Info

Publication number
JP2007028735A
JP2007028735A JP2005204675A JP2005204675A JP2007028735A JP 2007028735 A JP2007028735 A JP 2007028735A JP 2005204675 A JP2005204675 A JP 2005204675A JP 2005204675 A JP2005204675 A JP 2005204675A JP 2007028735 A JP2007028735 A JP 2007028735A
Authority
JP
Japan
Prior art keywords
power
power supply
distributed
distributed power
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005204675A
Other languages
English (en)
Inventor
Kenichi Tanomura
顕一 田能村
Masaichi Kato
政一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005204675A priority Critical patent/JP2007028735A/ja
Publication of JP2007028735A publication Critical patent/JP2007028735A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】急峻な需要変動や分散電源の出力変動による逆潮流を防止し、かつ、分散電源が有する単独運転防止機能を阻害することなく、電力系統と分散電源との連系を実現する分散電源システムを提供することにある。
【解決手段】分散電源装置1を利用する分散電源システムにおいて、分散電源装置1と電力ネットワーク3との連系を行なう分散電源連系装置4を有する。分散電源連系装置4は、電力需要部2に対する有効電力に基づいて、電気エネルギー蓄積部44の充放電を制御する。
【選択図】 図1

Description

本発明は、電力ネットワーク及び分散電源による電力供給の調整を実現するための分散電源システムに関する。
近年、太陽光発電装置や小規模燃料電池(家庭用燃料電池)などの個別的な電源装置の開発により、従来の電力ネットワーク(電力会社による電力系統)からの電力供給以外に、太陽光発電装置や小規模燃料電池を使用する分散電源が注目されている。
ところで、分散電源は、それを保有する需要家(例えば一般家庭)の電力エネルギー調達コストを最小にする目的で設置される。この場合、電力系統側の運用を阻害することがない様に、分散電源を含む需要家の連系点(電力系統と分散電源との接続点)から電力系統側へ電力が出力されること(逆潮流と呼ばれる)がないように運用する必要がある。また、分散電源の出力変動や起動・停止に伴う電力系統への影響を極力小さくするために、分散電源と電力系統を接続して連系させる場合に、分散電源連系装置が用いられる。
分散電源連系装置には、分散電源と電力系統の間に直列に接続される装置(直列型連系装置)や、分散電源と電力系統との連系点に並列に接続される装置(並列型連系装置)がある。
一般的に、直列型連系装置は、分散電源の電気的な影響が直接電力系統側に伝わらないようにするため、交直変換器と直流回路で構成される装置が使用される。また、電力変動を緩和するために、電気エネルギーを蓄積あるいは放出する装置が直流回路に接続された装置もある(例えば、特許文献1〜4を参照)。一方、並列型連系装置は、分散電源の出力変動や起動時の電圧低下を防止するため、交流側で有効電力や無効電力の放出・吸収を行い、電力系統側へ伝わる影響を最小化する装置である。この装置は主として交直変換器と2次電池やコンデンサから構成される(例えば、特許文献5,6を参照)。
特開平11−127546号公報 特開2002−17044号公報 特開2002−218654号公報 特開2004−369406号公報 特開2001−327080号公報 特開2004−180467号公報
前述したように、分散電源としては、太陽光発電や小規模燃料電池等が注目されている。しかし、太陽光発電は、太陽光という自然エネルギーを利用するため、出力の調整が容易でない問題がある。また、小規模燃料電池は、性能上、急峻な需要変動には追従できない問題がある。
このような分散電源を多量に電力系統に接続しようとすると、前者の分散電源では、逆潮の発生によって電力供給の電流の向きが不確実となるための保護上の問題や、電圧を基準値に維持することが困難となるなどの問題がある。後者の場合には、負荷追従できない分は電力系統から供給されることになり、負荷電流の相対的変化(常時流れている負荷電流に対する過渡的変化量の割合)が増大し、同様に電圧を基準値に維持することが困難となる。このような問題があるため、分散電源の導入は容易ではない。
前述の分散電源連系装置は、主として長周期の電力変動に対応したものであり、急峻な需要変動による逆潮流を防止できないことや、既設の分散電源の直流回路に電気エネルギーの蓄積装置を後から取り付けることは設計上対応していないことが多く、技術的に困難な場合や多大な費用がかかる場合がある。
また、分散電源に関しては、一部の需給エリアが電力供給ネットワークから切り離された際に、感電や火災等の二次被害を防止する保安上の理由で、分散電源が切り離された需給エリア内で配電線を介して負荷に電力を供給し続けること(単独運転と呼ばれる)なく速やかに停止できるよう単独運転防止装置の設置が義務付けられているが、新たな分散電源連系装置の付加により、これら機能が阻害されることは絶対に避けなければならない。
そこで、本発明の目的は、急峻な需要変動や分散電源の出力変動による逆潮流を防止し、かつ、分散電源が有する単独運転防止機能を阻害することなく、電力系統と分散電源との連系(電力供給の調整)を実現する分散電源システムを提供することにある。
本発明の観点に従った分散電源システムは、電力系統または分散電源装置からの電力を蓄積し、充放電可能な電力蓄積手段と、前記電力系統と前記分散電源装置の接続点と電力需要側との間に配置された電気量検出手段と、前記電気量検出手段による前記接続点での有効電力の検出結果に基づいて、前記電力蓄積手段の充放電を制御する電力変換制御手段とを備えた構成である。
本発明によれば、急峻な需要変動や分散電源の出力変動による逆潮流を防止し、かつ、分散電源が有する単独運転防止機能を阻害することなく、電力系統と分散電源との連系(電力供給の調整)を実現する分散電源システムを提供することができる。
以下図面を参照して、本発明の実施形態を説明する。
[第1の実施形態]
(システムの構成)
図1は、本実施形態に関する分散電源システムの構成を示すブロック図である。
図1に示すように、分散電源システムは大別して、分散電源装置1と、電力需要部2と、電力ネットワーク3と、分散電源連系装置4とから構成されている。
分散電源装置1は、太陽光発電を行なう太陽光電池パネル10、交直変換器11、交直変換器制御装置12、交流電圧・電流検出器13、及び連系用遮断器14を有する。交直変換器11は、太陽光電池パネル10により発電される直流電力を交流電力に変換する。交直変換器制御装置12は、交流電圧・電流検出器13により計測された交直変換器11の出力端の交流電圧及び交流電流を入力信号として、交直変換器11の出力電圧の大きさと位相を決定し、半導体素子のゲート信号を出力して交直変換器11を制御する。
このような構成により、分散電源装置1は、太陽光電池パネル10により発生された直流電力を交直変換器11で交流電力(P1)に変換し、連系用遮断器14を介して出力する。なお、本実施形態は、分散電源として太陽光電池を想定しているが、これ以外の小規模燃料電池や、風力発電装置などの電源でもよい。
電力需要部2は、例えば一般住宅などの需要家負荷であり、具体的には家電器類20、電灯・照明21、調理器類22および冷・暖房23などを含む。電力需要部2は、電力ネットワーク3または分散電源装置1からの電力(P2)を消費する。
分散電源連系装置4は、分散電源装置1と電力ネットワーク3との連系(電力供給の調整又は調和)を行なう装置である。分散電源連系装置4は、電力ネットワーク3の電力系統に接続された連系用開閉器40、電気量検出部41、電力変換部42、電力変換制御部43、及び電気エネルギー蓄積部44を有する。
電気量検出部41は、連系用遮断器14と連系用開閉器40との間に接続されて、交流電圧及び交流電流を検出する。電力変換部42は、交流電圧/交流電流検出器420、及び交直変換器421を有する。交流電圧/交流電流検出器420は、交直変換器421の出力端の交流電圧及び交流電流を検出する。交直変換器421は、電気エネルギー蓄積部44から出力される直流電力を交流電力に変換する。
電気エネルギー蓄積部44は、電圧/電流検出器440、及び充放電可能な2次電池441を有する。電圧/電流検出器440は、2次電池441の出力端の直流電圧及び直流電流を検出する。
(電力変換制御部43の要部)
図2は、電力変換制御部43の要部を示すブロック図である。
電力変換制御部43は、図2に示すように、潮流方向判定部430、電圧レベル判定部431、充放電動作判断部432、充放電指令生成部433、交直変換器制御部434、及びゲート信号生成部435を有する。ここで、潮流方向判定部430、電圧レベル判定部431、充放電動作判断部432、及び充放電指令生成部433は、マイクロコンピュータ及びソフトウェアにより実現される。
潮流方向判定部430は、電気量検出部41からの交流電圧及び交流電流の検出結果(電圧・電流情報)に基づいて、有効電力と無効電力を算出し、有効電力Pbの方向を判定する。ここで、有効電力Pbの方向として、電力ネットワーク3から分散電源装置1及び電力需要部2への方向を正方向とし、その逆を負方向と定義する。
電圧レベル判定部431は、2次電池441の直流電圧と予め設定された基準電圧レベルとを比較し、当該比較結果を充放電動作判断部432に出力する。充放電動作判断部432は、潮流方向判定部430による有効電力Pbの方向及び電圧レベル判定部431の判定結果に基づいて、2次電池441に対する充電動作または放電動作を決定する。
充放電指令生成部433は、充電動作または放電動作の動作決定信号に応じた充電指令信号または放電指令信号を生成して交直変換器制御部434に出力する。交直変換器制御部434は、交流電圧/交流電流検出器420からの検出値及び充放電指令信号に基づいて、交直変換器421の出力電圧の大きさと位相を決定し、ゲート信号生成部435に送る。ゲート信号生成部435は、交直変換器421の半導体素子へのゲート信号を生成し、交直変換器421へ送る。
(第1の実施形態の作用効果)
以下、図3から図5を参照して、本実施形態の作用効果を説明する。
分散電源装置1は、太陽光電池パネル10から太陽光の照射量に応じて直流電力を発生する。交直変換器11は、直流電力を交流電力に変換し、連系用遮断器14を介して電力ネットワーク3及び電力需要部2に電力P1を供給する。ここで、交直変換器制御装置12は、前述したように、交直変換器11の出力電圧の大きさと位相を決定し、半導体素子のゲート信号を出力して交直変換器11を制御する。
このような分散電源装置1により、電力ネットワーク3からの電力供給の調整を行なうことができる。しかしながら、太陽光発電を利用した分散電源装置1では、太陽光の照射量に応じて交流電力の出力が変動する。例えば、雲により太陽光の一部が遮られて、太陽光電池パネル10に影ができると、その部分の直流電力の発生量が減少し、交流電力の出力が低下する。逆に、雲がなくなり太陽光の照射量が増大すると、太陽光電池パネル10の直流電力の電圧発生量が増大するため、交流電力の出力も増加する。
図3は、太陽光発電を利用した分散電源装置1において、1日の電力出力状態の一例を示したものである。図3に示すように、日の出とともに電力出力が上昇し、日中は雲による影の状態に応じて電力出力の低下が発生し、日没までに電力出力が徐々に低下する。
図4は、一般住宅での1日の電力需要状況の一例を示す図である。即ち、一般住宅では、使用する電気機器類などにより、図4に示すように、電力需要の変動がある。例えば、調理器類22の負荷は、朝、昼、夜の食事準備時間帯に電力消費する。また、例えば冷暖房23は、住宅に人がいる時間帯で、気温の増減に応じて電力消費量が増減する。さらに、電灯・照明21においては、昼間の電力消費が天気に応じて増減し、夜間は照明器具の使用状況に応じた電力消費となる。これ以外の家電器類20は、住人のライフスタイルや電気用品の使い方により電力消費量が増減する。
図4に示す具体例では、夜間は冷暖房と一部の照明のみ、朝昼晩の食事準備では消費電力が増加している。日中の照明は最小限であり、家族の殆どは出かけているため電力消費は低めである。また、夕方の買物等で住宅に1人もいない午後15〜16時帯は待機電力のみまで低下し、夜18時以降は家族全員が揃い、住宅全ての部屋で電力消費があるので最大需要となる傾向がある。
(分散電源連系装置4の動作)
以下主として図1、図2及び図5のフローチャートを参照して、分散電源連系装置4の動作を説明する。
分散電源連系装置4は、分散電源(太陽光発電)装置1による有効電力出力P1と、電力需要部2の消費電力P2との差「P1−P2」が負の場合は、電力ネットワーク3から電力需要の不足分の電力P3の供給を受ける。
一方、差「P1−P2」が正の場合は、電力ネットワーク3へ電力が送られる状態(逆潮流)となる。逆潮流の状態では、電力ネットワーク3の電圧が上昇することになり、電力ネットワーク3の電圧状態管理に影響を及ぼす。また、太陽光発電の性質上、太陽光の照射量により、分散電源装置1の有効電力出力が増減する。このため、電力需要部2での消費電力との関係で、電力ネットワーク3から電力を受けたり、逆に電力を送るといった電力変動が発生し、それに起因した電圧変動が発生する。極端な場合には、電圧フリッカ現象が発生して、近隣の電力需要部(近隣の一般住宅など)の照明のちらつきなどの悪影響が生ずることがある。
ここで、分散電源装置1の交直変換器制御装置12は、電力ネットワーク3に障害が発生して安定レベルの電力供給が不可能になった場合に、電力ネットワーク3からの電源周波数の低下を検知する。分散電源連系装置4は、分散電源装置1からの電力供給により、電力ネットワークに障害が発生した場合の単独運転防止機能を実現する。
分散電源連系装置4では、電気量検出手段41は、交流電圧と交流電流を検出し、それらの交流電圧・電流情報を電力変換制御部43に送る。また、電圧/電流検出器440は、2次電池441の出力端の直流電圧及び直流電流を検出し、それらの直流電圧・電流情報を電力変換制御部43に送る。さらに、交流電圧/交流電流検出器420は、交直変換器421の出力端の交流電圧及び交流電流を検出し、それらの交流電圧・電流情報を電力変換制御部43に送る。
これらの情報を受けて、電力変換制御部43は、図5のフローチャートに示すような手順の処理を実行する。
即ち、潮流方向判定部430は、電気量検出手段41からの交流電圧・電流情報に基づいて有効電力・無効電力を算出し、有効電力Pbの方向を判定する(ステップS1)。有効電力Pbの方向として、電力ネットワーク3から分散電源装置1及び電力需要部2の方向を正方向とし、その逆を負方向と定義する。潮流方向判定部430は、算出した有効電力Pbの値に正方向又負方向を示す符号を付加して、充放電動作判断部432に送る。
また、電圧レベル判定部431は、電圧/電流検出器440からの直流電圧・電流情報に基づいて2次電池441の直流電圧(直流出力電圧)Edc を算出し、予め設定された基準電圧レベルEdLVと比較する(ステップS2)。
電圧レベル判定部431は、比較結果が「Edc≧EdLV」ならば信号1を充放電動作判断部432に送り、比較結果が「Edc<EdLV」ならば信号−1を充放電動作判断部432に送る。
充放電動作判断部432は、2次電池441の直流電圧Edcが基準電圧レベルEdLV以上の場合(Edc≧EdLV)、有効電力Pbの方向が正方向であれば放電動作と決定し、それを指示する動作決定信号及び有効電力Pbの値を充放電指令生成部433に出力する(ステップS3のYES、S4の正、S5のNO、S6)。ここで、有効電力Pbの方向が正方向でも、その有効電力Pbの値が予め設定された最小値Pbmin以下である場合には、充放電動作判断部432は、充放電動作不要の信号を充放電指令生成部433に送る(ステップS5のYES、S7)。
なお、充放電動作判断部432は、有効電力Pbの方向が負方向であれば充電動作と決定し、それを指示する動作決定信号及び有効電力Pbの値を充放電指令生成部433に出力する(ステップS4の負、S11)。
一方、充放電動作判断部432は、2次電池441の直流電圧Edcが基準電圧レベルEdLV未満の場合(Edc<EdLV)、有効電力Pbの方向が負方向であれば充電動作と決定し、それを指示する動作決定信号及び有効電力Pbの値を充放電指令生成部433に出力する(ステップS3のNO、S8の負、S9)。また、2次電池441の直流電圧Edcが基準電圧レベルEdLV未満の場合で、有効電力Pbの方向が正方向の場合には、充放電動作判断部432は、充放電動作不要の信号を充放電指令生成部433に送る(ステップS8の正、S10)。
充放電指令生成部433は、動作決定信号が放電動作である場合は、有効電力Pbの値以下の放電指令信号を生成し、交直変換器制御部434に出力する。また、充放電指令生成部433は、動作決定信号が充電動作である場合は、有効電力Pbの値以上の充電指令信号を生成し、交直変換器制御部434に出力する。さらに、充放電指令生成部433は、動作決定信号が充放電動作不要の信号の場合には、充放電指令信号を0として交直変換器制御部434に出力する。
交直変換器制御部434は、充放電指令信号に応じて、交直変換器421の出力電圧の大きさと位相を決定し、ゲート信号生成部435に送る。ゲート信号生成部435は、交直変換器421の半導体素子へのゲート信号を生成して出力する。これにより、電気エネルギー蓄積部44での2次電池441の充放電を制御することができる。
ここで、交流電圧/交流電流検出器420は、交直変換器421の出力端の交流電圧及び交流電流を検出し、それらの交流電圧・電流情報を交直変換器制御部434に出力している。交直変換器制御部434は、当該交流電圧・電流情報及び充放電指令信号に従って、放電動作の場合には、2次電池441の電気エネルギーを交流電力として放電するように制御する。逆に充電動作の場合には、交直変換器制御部434は、電力需要部2から電力ネットワーク3へ流れる有効電力Pbを2次電池441の電気エネルギーとして充電するように制御する。また、充放電指令信号が0の場合には、交直変換器制御部434は、交直変換器421の出力電力が0となるように制御する。
以上のように本実施形態によれば、有効電力Pbの方向が正方向、即ち電力ネットワーク3から分散電源装置1及び電力需要部2の方向の場合には、2次電池441から電力を放電させて、電力需要部2への電力供給を増大させることができる。但し、この場合、2次電池441の直流電圧Edcが基準電圧レベルEdLV以上であることが望ましい。
一方、有効電力Pbの方向が負方向、即ち電力ネットワーク3へ電力が送られる場合(逆潮流)には、当該有効電力Pbを2次電池441の電気エネルギーとして充電させて、逆潮流を抑制することができる。従って、逆潮流により電力ネットワーク3に発生する悪影響を、未然に回避することができる。
以上要するに、本実施形態の分散電源連系装置4によれば、電力ネットワーク3から電力需要部2に供給される有効電力の方向と値に基づいて、電気エネルギー蓄積部44の2次電池441の充放電を制御することにより、電力ネットワーク3からの電力供給の調整及び逆潮流の抑制を実現することができる。従って、電力ネットワーク3の運用、保護、制御に対して悪影響を及ぼさないようにすることが可能となる。
[第2の実施形態]
図6は、第2の実施形態に関する電力変換制御部43の要部を示すブロック図である。
本実施形態の電力変換制御部43は、図6に示すように、潮流方向判定部430、充電動作判断部436、充電指令生成部437、交直変換器制御部434、及びゲート信号生成部435を有する。なお、分散電源システムの構成については、図1に示す第1の実施形態と同様であるため、その説明を省略する。また、図2に示す第1の実施形態に関する電力変換制御部43における同一構成要素については、同一符号を付して詳細な説明を省略する。
本実施形態の電力変換制御部43では、充電動作判断部436は、前述したように、潮流方向判定部430から有効電力Pbの方向が負方向であることを示す符号及び値を受け取ると、充電動作を決定する。充電動作判断部436は、放電動作を指示する動作決定信号及び有効電力Pbの値を充電指令生成部437に出力する。ここで、有効電力Pbの方向が正方向の場合には、充電動作判断部436は、放電動作不要の信号を充電指令生成部437に出力する。
充電指令生成部437は、動作決定信号が充電動作である場合は、有効電力Pbの値以上の充電指令信号を生成し、交直変換器制御部434に出力する。さらに、充電指令生成部437は、動作決定信号が充電動作不要の信号の場合には、充放電指令信号を0として交直変換器制御部434に出力する。
交直変換器制御部434は、充電動作(充電指令信号が0より大きい数値)の場合は、電力需要部2から電力ネットワーク3へ流れる有効電力Pbを2次電池441の電気エネルギーとして充電するように制御する。また、充電指令信号が0の場合には、交直変換器制御部434は、交直変換器421の出力電力が0となるように制御する。
以上のようして、有効電力Pbの方向が負方向、即ち電力ネットワーク3へ電力が送られる場合(逆潮流)には、当該有効電力Pbを2次電池441の電気エネルギーとして充電させて、逆潮流を抑制することができる。従って、逆潮流により電力ネットワーク3に発生する悪影響を、未然に回避することができる。特に、交直変換器421としてインバータを使用すると、その制御は10ms程度と非常に高速に実施できるので、電力ネットワーク3における配電線の潮流反転(潮流、即ち電流の流れる向きが反転する)や配電線の電圧変動も抑制することができる。
[第3の実施形態]
図7は、第3の実施形態に関する電力変換制御部43の要部を示すブロック図である。
本実施形態の電力変換制御部43は、図7に示すように、潮流方向判定部430、充電動作判断部436、充電指令生成部437、交直変換器制御部434、ゲート信号生成部435、及び受電電力設定部438を有する。なお、分散電源システムの構成については、図1に示す第1の実施形態と同様であるため、その説明を省略する。また、図6に示す第2の実施形態に関する電力変換制御部43における同一構成要素については、同一符号を付して詳細な説明を省略する。
本実施形態の電力変換制御部43では、受電電力設定部438は、電力ネットワーク3から受電する電力値(P3ref)をダイヤル設定やスイッチ切換あるいは数値入力、または、外部からの信号によって設定されると、その電力値を充電動作判断部436に送る。
充電動作判断部436は、下記式(1)により、分散電源連系装置4の有効電力Paを算出する。
Pa=−Pb+P3ref…(1)
充電動作判断部436は、有効電力Paの方向が正方向である場合には充電動作と決定し、動作決定信号と有効電力Paの値を充電指令生成部437に送る。また、充電動作判断部436は、有効電力Paの方向が負方向である場合には充電動作不要と決定し、当該充電動作不要の信号を充電指令生成部437に送る。
充電指令生成部437は、動作決定信号が充電動作である場合には、有効電力Paの充電指令信号を生成し、交直変換器制御部434に出力する。また、充電指令生成部437は、動作決定信号が充電動作でない場合には、充電指令信号を0にして、交直変換器制御部434に送る。
以上のように、前述の第2の実施形態と同様に、有効電力Paの方向が正方向、即ち電力ネットワーク3へ電力が送られる場合(逆潮流)には、当該有効電力Paを2次電池441の電気エネルギーとして充電させて、逆潮流を抑制することができる。また、分散電源連系装置4を含む分散電源装置1と電力需要部2の全体は、電力ネットワーク3からの一定量以上の電力供給(P3)を受けるように制御されている。従って、分散電源連系装置4を含む分散電源装置1と電力需要部2の全体は、配電線が上位系統から遮断された場合、電力ネットワーク3からの電力供給がなくなり、電力需要部2の消費電力と分散電源1の電力出力とがアンバランスとなるため、周波数が低下して分散電源が直ちに停止させることができる単独運転防止機能を実現できる。
[第4の実施形態]
図8は、第4の実施形態に関する電力変換制御部43の要部を示すブロック図である。
本実施形態の電力変換制御部43は、図8に示すように、潮流方向判定部430、充放電動作判断部432、充放電指令生成部433、交直変換器制御部434、ゲート信号生成部435、及び受電電力設定部438を有する。なお、分散電源システムの構成については、図1に示す第1の実施形態と同様であるため、その説明を省略する。また、図2に示す第1の実施形態に関する電力変換制御部43における同一構成要素については、同一符号を付して詳細な説明を省略する。
前述の第3の実施形態と同様に、本実施形態の電力変換制御部43では、受電電力設定部438は、電力ネットワーク3から受電する電力値(P3ref)をダイヤル設定やスイッチ切換あるいは数値入力、または、外部からの信号によって設定されると、その電力値を充放電動作判断部432に送る。一方、前述の第1の実施形態と同様に、潮流方向判定部430は、有効電力Pbの方向を判定し、電力ネットワーク3から分散電源1及び電力需要部2の方向を正方向とし、その逆を負方向として、充放電動作判断部432に送る。
充放電動作判断部432は、前記式(1)により、分散電源連系装置4の有効電力Paを算出し、有効電力Paの方向が正方向である場合には充電動作と決定し、動作決定信号と有効電力Paの値を充放電指令生成部433に送る。また、充電動作判断部432は、有効電力Paの方向が負方向である場合には放電動作と決定し、動作決定信号と有効電力Paの値を充放電指令生成部433に送る。ここで、充電動作判断部432は、有効電力Paの方向が負方向で、その絶対値が予め設定された最小値Pamin以下である場合には、充放電動作不要の信号を充放電指令生成部433に送る。
充放電指令生成部433は、動作決定信号が充電動作である場合には、有効電力Paの充電指令信号を生成し、交直変換器制御部434に出力する。また、充放電指令生成部433は、動作決定信号が放電動作である場合には、有効電力Paの放電指令信号を生成し、交直変換器制御部434に出力する。さらに、充放電指令生成部433は、動作決定信号が充放電動作不要の場合には、充放電指令信号を0にして、交直変換器制御部434に送る。
以上のようにして、本実施形態の分散電源連系装置4を含む分散電源装置1と電力需要部2の全体によれば、電力ネットワーク3から電力需要部2に供給される有効電力の方向と値に基づいて、電気エネルギー蓄積部44の2次電池441の充放電を制御することにより、電力ネットワーク3からの電力供給の調整及び逆潮流の抑制を実現することができる。従って、電力ネットワーク3の運用、保護、制御に対して悪影響を及ぼさないようにすることが可能となる。
また、分散電源連系装置4を含む分散電源装置1と電力需要部2の全体は、電力ネットワーク3からの一定量以上の電力供給(P3)を受けるように制御されている。従って、分散電源連系装置4は、配電線が上位系統から遮断された場合、電力ネットワーク3からの電力供給がなくなり、電力需要部2の消費電力と分散電源1の電力出力とがアンバランスとなるため、周波数が低下して分散電源が直ちに停止させることができる単独運転防止機能を実現できる。
[第5の実施形態]
図9は、第5の実施形態に関する電力変換制御部43の要部を示すブロック図である。
本実施形態の電力変換制御部43は、図9に示すように、潮流方向判定部430、充電動作判断部436、充電指令生成部437、受電電力設定部438、放電動作判断部439、放電指令生成部500、充放電指令切換部510、放電時間帯確認部520、放電時間帯設定部530、及び時刻カウンタ540を有する。さらに、電力変換制御部43は、交直変換器制御部434及びゲート信号生成部435を有する。
なお、分散電源システムの構成については、図1に示す第1の実施形態と同様であるため、その説明を省略する。また、図2に示す第1の実施形態に関する電力変換制御部43における同一構成要素については、同一符号を付して詳細な説明を省略する。
本実施形態の電力変換制御部43では、充電動作判断部436及び放電動作判断部439はそれぞれ、潮流方向判定部430から有効電力Pbの正方向又は負方向を示す符号及び値を受け取る。また、充電動作判断部436及び放電動作判断部439はそれぞれ、受電電力設定部438から、電力ネットワーク3から受電する電力値(P3ref)をダイヤル設定やスイッチ切換あるいは数値入力、または、外部からの信号によって設定される。
充電動作判断部436は、前記式(1)により分散電源連系装置4の有効電力Paを算出し、有効電力Paの向きが正方向である場合には充電動作と決定し、動作決定信号と有効電力Paの値を充電指令生成部437に送る。また、充電動作判断部436は、有効電力Paの向きが負方向の場合には、充電動作不要の信号を充電指令生成部437に送る。
充電指令生成部437は、動作決定信号が充電動作である場合には、有効電力Paの充電指令信号を生成し、充放電指令切換部510に送る。充電指令生成部437は、動作決定信号が充電動作不要の場合には、充電指令信号を0にして、充放電指令切換部510に送る。
一方、放電動作判断部439は、前記式(1)により分散電源連系装置4の有効電力Paを算出し、有効電力Paの向きが負方向である場合には放電動作と決定し、動作決定信号と有効電力Paの値を放電指令生成部500に送る。また、放電動作判断部439は、有効電力Paの向きが正方向の場合には、放電動作不要の信号を放電指令生成部500に送る。
放電指令生成部500は、動作決定信号が放電動作である場合には、有効電力Paの放電指令信号を生成し、充放電指令切換部510に送る。放電指令生成部500は、動作決定信号が放電動作不要の場合には、放電指令信号を0にして、充放電指令切換部510に送る。
放電時間帯設定部530は、分散電源連系装置4が放電を開始する放電開始時刻、及び放電を終了する放電終了時刻を、ダイヤル設定やスイッチ切換あるいは数値入力、または、外部からの信号によってそれぞれ設定されると、それらを放電時間帯確認部520に送る。また、時刻カウンタ540は、地域の標準時刻と同期した時刻をカウントし、現在時刻を放電時間帯確認部520に送る。
放電時間帯確認部520は、現在時刻、放電開始時刻、放電終了時刻を確認し、現在時刻が放電開始時刻と放電終了時刻の時間帯の範囲内であれば、放電時間帯であると判断し、放電指令を優先する信号を充放電指令切換部510に送る。一方、現在時刻が放電開始時刻と放電終了時刻の時間帯の範囲外であれば、放電時間帯確認部520は、放電時間帯ではないと判断し、充電指令を優先する信号を充放電指令切換部510に送る。
充放電指令切換部510は、放電時間帯確認部520の優先信号に従って、優先信号が充電指令を優先する信号であれば、充電指令信号を交直変換器制御部434に送る。また、充放電指令切換部510は、優先信号が放電指令を優先する信号であれば、放電指令信号を交直変換制御部434に送る。
以上のようにして、交直変換器制御部434は、充放電指令切換部510から充電指令信号または放電指令の一方を優先して受け取る。これにより、交直変換器制御部434は、前述の第1の実施形態と同様に、放電動作の場合は、2次電池441の電気エネルギーを交流電力として放電するように制御する。逆に充電動作の場合は、交直変換器制御部434は、電力需要部2から電力ネットワーク3へ流れる有効電力を2次電池441の電気エネルギーとして充電するように制御する。
以上要するに本実施形態によれば、太陽光発電のように昼間のみ発電するような分散電源1では、昼間は一定量以上の供給を電力ネットワーク3から受けるように電力変換部42を制御して電気エネルギー蓄積部44に充電する。一方、分散電源1が停止する夜間に一定量以上の電力を電力ネットワーク3から供給されつつ、電気エネルギー蓄積部44からも電力需要部2に供給するので、充放電回数は大幅に削減され、電気エネルギー蓄積部44の寿命を改善することが可能となる。その他の方式の分散電源においても、停止あるいは出力を絞り込むような時間帯において電気エネルギー蓄積部44を放電して、電力需要部2に電力を供給すれば同様の効果が得られる。
[第6の実施形態]
図10は、第6の実施形態に関する分散電源システムの構成を示すブロック図である。
本実施形態の分散電源システムは、図10に示すように、電気エネルギー蓄積部44の蓄積状態監視部45及び分散電源並列・解列制御部(以下単に並列・解列制御部と表記する)46を含む分散電源連系装置4を備えた構成である。なお、他の構成については、前述の図1に示す第1の実施形態と同様のため、同一符号を付して説明を省略する。
なお、本実施形態の分散電源連系装置4に含まれる電力変換制御部43は、前述の図2、図6〜図9に示す第1の実施形態から第5の実施形態に関する電力変換制御部のいずれにも適用できる。
(作用効果)
本実施形態の分散電源連系装置4では、蓄積状態監視部45は、電気エネルギー蓄積部44の電圧・電流検出器440から、2次電池441の電圧および電流検出値を取り込み、それらの積算値から充放電用電力を算出する。さらに、蓄積状態監視部45は、当該時間積算値から電気エネルギー蓄積部44の充電エネルギー量を算出する。蓄積状態監視部45は、当該充電エネルギー量が予め設定された基準量の上限レベルを超えた場合には、充電エネルギー超過信号をオフからオンにして、電力変換制御部43及び並列・解列制御部46のそれぞれに送る。
並列・解列制御部46は、充電エネルギー超過信号がオフからオンになった場合に、分散電源1の交直変換器制御部12に停止信号を送る。あるいは、並列・解列制御部46は、連系用遮断器14の開放信号を出力する。一方、電力変換制御部43は、充電エネルギー超過信号がオフからオンになった場合に、充電動作を停止するためのゲート信号を電力変換部42の交直変換器421に送る。
この後に、電力変換制御部43は、分散電源1の停止あるいは連系用遮断器14の開放状態を示す信号を受信すると、電気エネルギー蓄積部44を放電させるための放電動作を行うためのゲート信号を交直変換器421に送る。
次に、蓄積状態監視部45は、電気エネルギー蓄積部44の充電エネルギーが放電されて、充電エネルギー量が予め設定した基準量の下限レベル以下になった場合には、充電エネルギー超過信号をオンからオフにして、電力変換制御部43及び並列・解列制御部46のそれぞれに送る。
並列・解列制御部46は、充電エネルギー超過信号がオンからオフになった場合に、分散電源1の交直変換器制御装置12に起動信号を送る。あるいは、並列・解列制御部46は、連系用遮断器14の投入信号を出力する。一方、電力変換制御部43は、充電エネルギー超過信号がオンからオフになった場合に、放電動作を停止するためのゲート信号を電力変換部42の交直変換器421に送る。この後に、電力変換制御部43は、分散電源1の起動あるいは連系用遮断器14の投入状態を示す信号を受信すると、充放電動作を行うためのゲート信号を交直変換器421に送る。
以上のように本実施形態によれば、電気エネルギー蓄積部44の充電量を監視することにより、一定レベル量以上の充電量になるとそれ以上の充電ができなくなるため、分散電源1へ解列信号を送ることにより、分散電源1を停止またはシステムから切り離す。これにより、電力ネットワーク3側への逆潮流を防止することができる。
また、分散電源1を停止またはシステムから切り離した後に、電力ネットワーク3からの供給と電気エネルギー蓄積部44の充電電力を利用して電力需要部2に供給して、電気エネルギー蓄積部44の充電量が一定レベル以下に達したところで、再度、分散電源1を起動またはシステムに接続する。これにより、分散電源1を再び有効活用することが可能となる。
なお、第1から第6の実施形態において、分散電源連系装置4に含まれる電力変換制御部43、蓄積状態監視部45、及び並列・解列制御部46は、コンピュータ及びプログラムにより実現される構成でもよい。プログラムは、コンピュータにより制御されるハードディスクドライブ、ICメモリ、CD−ROM、DVDなどの記録媒体に格納される。
さらに、分散電源装置1としては、太陽光発電や小規模燃料電池だけでなく、風力発電等の自然エネルギー発電装置にも適用できる。また、電力需要部2としては、一般住宅の需要家だけでなく、集合住宅、工場、ビル等の様々な電力需要家に対しても適用できるものである。
なお、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
本発明の第1の実施形態に関するシステムの構成を示すブロック図。 本実施形態に関する電力変換制御部の要部を示すブロック図。 本実施形態に関する分散電源装置1の電力出力状態の一例を示す図。 本実施形態の作用効果に関して、一般住宅での1日の電力需要状況の一例を説明するための図。 本実施形態に関する電力変換制御部の動作を説明するためのフローチャート。 第2の実施形態に関する電力変換制御部の要部を示すブロック図。 第3の実施形態に関する電力変換制御部の要部を示すブロック図。 第4の実施形態に関する電力変換制御部の要部を示すブロック図。 第5の実施形態に関する電力変換制御部の要部を示すブロック図。 第6の実施形態に関するシステムの構成を示すブロック図。
符号の説明
1…分散電源装置、2…電力需要部、3…電力ネットワーク、
4…分散電源連系装置、10…太陽光電池パネル、11…交直変換器、
12…交直変換器制御装置、13…交流電圧・電流検出器、14…連系用遮断器、
40…連系用開閉器、41…電気量検出部、42…電力変換部、
43…電力変換制御部、44…電気エネルギー蓄積部、45…蓄積状態監視部、
46…分散電源並列・解列制御部、430…潮流方向判定部、
431…電圧レベル判定部、432…充放電動作判断部、
433…充放電指令生成部、434…交直変換器制御部、435…ゲート信号生成部。

Claims (11)

  1. 電力ネットワークの電力系統と分散電源装置とに接続して、電力需要側に対する電力供給を調整する分散電源システムにおいて、
    前記電力系統または前記分散電源装置からの電力を蓄積し、充放電可能な電力蓄積手段と、
    前記電力系統と前記分散電源装置の接続点と、前記電力需要側との間に配置された電気量検出手段と、
    前記電気量検出手段による前記接続点での有効電力の検出結果に基づいて、前記電力蓄積手段の充放電を制御する電力変換制御手段と
    を具備したことを特徴とする分散電源システム。
  2. 前記電力変換制御手段は、
    前記電気量検出手段による前記接続点での有効電力の検出結果に基づいて、前記電力系統側に電力が送られる逆潮流状態の場合には、前記電力蓄積手段の充電動作を実行させるように制御することを特徴とする請求項1に記載の分散電源システム。
  3. 前記電力変換制御手段は、
    前記電気量検出手段による前記接続点での有効電力の検出結果に基づいて、当該有効電力の方向が前記電力系統から前記電力需要側の場合で、前記電力蓄積手段の出力電圧レベルが基準値以上の場合に、前記電力蓄積手段の放電動作を実行させるように制御することを特徴とする請求項1に記載の分散電源システム。
  4. 前記電力蓄積手段の出力電圧レベルを検出する検出手段を有し、
    前記電力変換制御手段は、前記電力蓄積手段の出力電圧レベルが予め設定された基準レベル未満の場合には放電動作を停止し、または前記電力蓄積手段の出力電圧レベルが前記基準レベルを超える場合には充電動作を停止するように制御することを特徴とする請求項1から請求項3のいずれか1項に記載の分散電源システム。
  5. 前記電力変換制御手段は、
    前記電気量検出手段による前記接続点での有効電力の検出結果に基づいて、当該有効電力の値が予め設定された最小値以下の場合には、前記電力蓄積手段の充放電動作を停止するように制御することを特徴とする請求項1から請求項4のいずれか1項に記載の分散電源システム。
  6. 前記電力変換制御手段は、
    前記電力系統から予め設定された一定量以上の電力供給を受けるように、前記電力蓄積手段の充電動作を実行させるように制御することを特徴とする請求項1または請求項2のいずれか1項に記載の分散電源システム。
  7. 前記電力蓄積手段の充電動作または放電動作の一方を、指定の時間帯に従って優先的に指示するための指示手段を有し、
    前記電力変換制御手段は、
    前記指示手段からの指示に応じて、指定の時間帯で前記電力蓄積手段の充電動作又放電動作を実行させるように制御することを特徴とする請求項1に記載の分散電源システム。
  8. 前記電力蓄積手段の充電状態を監視する監視手段と、
    前記分散電源装置からの電力出力を制御するための分散電源制御手段とを有し、
    前記分散電源制御手段は、前記監視手段からの監視結果に基づいて前記電力蓄積手段の充電量が予め設定された基準量を超えた場合には、前記分散電源装置からの電力出力を停止する制御を実行するように構成されたことを特徴とする請求項1に記載の分散電源システム。
  9. 前記電力変換制御手段は、前記分散電源制御手段により前記分散電源装置からの電力出力を停止された後に、前記電力蓄積手段から電力を放電させるように制御し、
    前記分散電源制御手段は、前記監視手段からの監視結果に基づいて前記電力蓄積手段の充電量が予め設定された基準量以下になった場合には、前記分散電源装置からの電力出力を有効にさせるように制御することを特徴とする請求項8に記載の分散電源システム。
  10. 電力ネットワークの電力系統と分散電源装置とに接続して、電力需要側に対する電力供給を調整する分散電源システムに適用する制御方法おいて、
    前記電力系統と前記分散電源装置の接続点での有効電力を検出するステップと、
    前記有効電力の検出結果に基づいて、前記電力系統または前記分散電源装置からの電力を蓄積する電力蓄積手段の充放電を制御するステップと
    を有する手順を実行することを特徴とする制御方法。
  11. コンピュータにより読取り可能な記録媒体であって、
    電力ネットワークの電力系統と分散電源装置とに接続して、電力需要側に対する電力供給を調整する分散電源システムにおいて、
    前記電力系統と前記分散電源装置の接続点での有効電力を検出するステップと、
    前記有効電力の検出結果に基づいて、前記電力系統または前記分散電源装置からの電力を蓄積する電力蓄積手段の充放電を制御するステップと
    を有する手順を実行するプログラムを格納した記録媒体。
JP2005204675A 2005-07-13 2005-07-13 分散電源システム及び方法 Pending JP2007028735A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005204675A JP2007028735A (ja) 2005-07-13 2005-07-13 分散電源システム及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005204675A JP2007028735A (ja) 2005-07-13 2005-07-13 分散電源システム及び方法

Publications (1)

Publication Number Publication Date
JP2007028735A true JP2007028735A (ja) 2007-02-01

Family

ID=37788775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005204675A Pending JP2007028735A (ja) 2005-07-13 2005-07-13 分散電源システム及び方法

Country Status (1)

Country Link
JP (1) JP2007028735A (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268247A (ja) * 2008-04-24 2009-11-12 Central Res Inst Of Electric Power Ind 電力需給制御プログラム、電力需給制御装置および電力需給制御システム
WO2009157342A1 (ja) * 2008-06-27 2009-12-30 シャープ株式会社 電力を電力需要施設に分配する電力制御システム
JP2011101538A (ja) * 2009-11-06 2011-05-19 Panasonic Electric Works Co Ltd 配電システム
CN102545392A (zh) * 2011-12-27 2012-07-04 上海瑞华(集团)有限公司 一种多用途的可控可调度的储能***及其方法
JP2013078190A (ja) * 2011-09-30 2013-04-25 Sanyo Electric Co Ltd 配電システム
JP2013078191A (ja) * 2011-09-30 2013-04-25 Sanyo Electric Co Ltd 配電システム
JP2014212655A (ja) * 2013-04-19 2014-11-13 京セラ株式会社 電力制御システム、電力制御装置、電力制御システムの制御方法
JP2015027237A (ja) * 2013-07-29 2015-02-05 京セラ株式会社 電力制御装置、電力制御方法、および電力制御システム
JP2015177573A (ja) * 2014-03-13 2015-10-05 株式会社Nttファシリティーズ 電力融通システム、及び電力融通方法
JP2016036213A (ja) * 2014-08-01 2016-03-17 株式会社デンソー 電力供給システム
WO2017163747A1 (ja) * 2016-03-23 2017-09-28 日本電気株式会社 蓄電システム、充放電制御装置、その制御方法、およびプログラム
CN113725892A (zh) * 2021-07-19 2021-11-30 国家石油天然气管网集团有限公司 一种基于分布式多母线接入储能自适应柔性控制方法
JP7443633B1 (ja) 2023-04-13 2024-03-05 東芝三菱電機産業システム株式会社 フリッカ抑制装置およびフリッカ抑制制御方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268247A (ja) * 2008-04-24 2009-11-12 Central Res Inst Of Electric Power Ind 電力需給制御プログラム、電力需給制御装置および電力需給制御システム
US8578184B2 (en) 2008-06-27 2013-11-05 Sharp Kabushiki Kaisha Power control system for distributing power to power demanding facility
WO2009157342A1 (ja) * 2008-06-27 2009-12-30 シャープ株式会社 電力を電力需要施設に分配する電力制御システム
JPWO2009157342A1 (ja) * 2008-06-27 2011-12-08 シャープ株式会社 電力を電力需要施設に分配する電力制御システム
JP5179582B2 (ja) * 2008-06-27 2013-04-10 シャープ株式会社 電力を電力需要施設に分配する電力制御システム
JP2011101538A (ja) * 2009-11-06 2011-05-19 Panasonic Electric Works Co Ltd 配電システム
JP2013078190A (ja) * 2011-09-30 2013-04-25 Sanyo Electric Co Ltd 配電システム
JP2013078191A (ja) * 2011-09-30 2013-04-25 Sanyo Electric Co Ltd 配電システム
CN102545392A (zh) * 2011-12-27 2012-07-04 上海瑞华(集团)有限公司 一种多用途的可控可调度的储能***及其方法
CN105144531B (zh) * 2013-04-19 2018-07-27 京瓷株式会社 电力控制***、电力控制装置和用于控制电力控制***的方法
US10250041B2 (en) 2013-04-19 2019-04-02 Kyocera Corporation Power control system, power control device, and method for controlling power control system
CN105144531A (zh) * 2013-04-19 2015-12-09 京瓷株式会社 电力控制***、电力控制装置和用于控制电力控制***的方法
EP2988387A4 (en) * 2013-04-19 2016-11-02 Kyocera Corp POWER CONTROL SYSTEM, POWER CONTROL DEVICE AND METHOD FOR CONTROLLING THE PERFORMANCE CONTROL SYSTEM
JP2014212655A (ja) * 2013-04-19 2014-11-13 京セラ株式会社 電力制御システム、電力制御装置、電力制御システムの制御方法
WO2015015798A1 (ja) * 2013-07-29 2015-02-05 京セラ株式会社 電力制御装置、電力制御方法、および電力制御システム
JP2015027237A (ja) * 2013-07-29 2015-02-05 京セラ株式会社 電力制御装置、電力制御方法、および電力制御システム
CN105379049A (zh) * 2013-07-29 2016-03-02 京瓷株式会社 电力控制器、电力控制方法以及电力控制***
US10511173B2 (en) 2013-07-29 2019-12-17 Kyocera Corporation Power controller, power control method, and power control system
JP2017175915A (ja) * 2013-07-29 2017-09-28 京セラ株式会社 電力制御装置、電力制御方法、および電力制御システム
JP2015177573A (ja) * 2014-03-13 2015-10-05 株式会社Nttファシリティーズ 電力融通システム、及び電力融通方法
JP2016036213A (ja) * 2014-08-01 2016-03-17 株式会社デンソー 電力供給システム
WO2017163747A1 (ja) * 2016-03-23 2017-09-28 日本電気株式会社 蓄電システム、充放電制御装置、その制御方法、およびプログラム
CN113725892A (zh) * 2021-07-19 2021-11-30 国家石油天然气管网集团有限公司 一种基于分布式多母线接入储能自适应柔性控制方法
CN113725892B (zh) * 2021-07-19 2023-10-27 国家石油天然气管网集团有限公司 一种基于分布式多母线接入储能自适应柔性控制方法
JP7443633B1 (ja) 2023-04-13 2024-03-05 東芝三菱電機産業システム株式会社 フリッカ抑制装置およびフリッカ抑制制御方法

Similar Documents

Publication Publication Date Title
JP2007028735A (ja) 分散電源システム及び方法
JP5076024B2 (ja) 再生可能エネルギーの利用を最大限にする貯蔵システム
JP6160481B2 (ja) 電源装置、電源システムおよび電源制御方法
JP5988078B2 (ja) 制御装置および配電システム
JP5988079B2 (ja) 制御装置、変換装置、制御方法、および配電システム
KR101264142B1 (ko) 가정과 마이크로그리드에 적용 가능한 신재생에너지시스템
JPWO2015186282A1 (ja) 電力供給装置および電力供給方法
JP2014155269A (ja) 保安電源システム、およびその制御方法
JP2002315197A (ja) ハイブリッド電源システム及びその運転方法
JP6190224B2 (ja) 電力貯蔵システム
JP2017121171A (ja) 蓄電池充放電システム及び系統連系システム
JP3469678B2 (ja) 直流電源システム
JP2007288932A (ja) 太陽光発電設備の充電制御装置
JP2012151977A (ja) 負荷平準化システム
JP2013183611A (ja) 制御装置、変換装置、制御方法、および配電システム
JP6656085B2 (ja) 蓄電装置、パワーコンディショナ及び分散電源システム
JPWO2013179345A1 (ja) 制御装置
TWI454017B (zh) 在線互動式電源控制系統
JP3149024U (ja) 商用電力注入型太陽電池直流連系利用システム
WO2022219872A1 (ja) 電力変換システム、電力変換装置
JP3242499U (ja) 電力制御装置
JP7334760B2 (ja) パワーコンディショナ
JP2002262460A (ja) 住居用電源設備
JP2017099183A (ja) 開閉切替ユニット、及びこれを備える充放電制御装置、並びにそれらの切替制御システム
JPH0946923A (ja) 太陽光発電装置