JP2007026683A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2007026683A
JP2007026683A JP2005202599A JP2005202599A JP2007026683A JP 2007026683 A JP2007026683 A JP 2007026683A JP 2005202599 A JP2005202599 A JP 2005202599A JP 2005202599 A JP2005202599 A JP 2005202599A JP 2007026683 A JP2007026683 A JP 2007026683A
Authority
JP
Japan
Prior art keywords
fuel cell
supply
storage alloy
heating
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005202599A
Other languages
English (en)
Inventor
Shinsaku Maehara
晋策 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Original Assignee
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd filed Critical Japan Steel Works Ltd
Priority to JP2005202599A priority Critical patent/JP2007026683A/ja
Publication of JP2007026683A publication Critical patent/JP2007026683A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】高度な制御によって複数の水素吸蔵合金タンクから燃料電池へと水素を供給する。
【解決手段】各水素吸蔵合金タンクMH1,…,MHn内の温度と水素圧力とを監視し、それらのデータに基いて供給弁V1,…,Vnと加熱弁H1,…,Hnを制御する。その制御は、コントローラ4に記憶している制御データを用いて行う。その制御データは、燃料電池システム100をモデル化したシミュレーション上の強化学習によって最適の状態遷移経路を見つけ出し、その状態遷移経路に記録された状態と行動とを基に作成しておく。
【効果】最適の状態遷移経路に沿って複数の水素吸蔵合金タンクから燃料電池へ水素を供給することが出来る。
【選択図】図1

Description

本発明は、燃料電池システムに関し、さらに詳しくは、高度な制御によって複数の水素吸蔵合金タンクから燃料電池へと水素を供給することが出来る燃料電池システムに関する。
従来、複数個の水素吸蔵合金タンクを具備し、一部のタンクから燃料電池へ水素を供給し、供給圧力が下がったら残りのタンクから燃料電池へ水素を供給するようにタンクを切り替える燃料電池システムが知られている(例えば特許文献1参照)。
他方、複雑な挙動を示すプラントのシミュレーションを強化学習法を適用して行う強化学習法を用したプラントシミュレーション方法が知られている(例えば特許文献2参照)。
特開2001−295996号公報 特開2004−178492号公報
上記従来の燃料電池システムでは、供給圧力のみに応じてタンクを切り替えているが、これでは最適の運転を行えない場合がある。例えば、次に水素を供給する予定のタンクが故障していても、該タンクからの供給を始めるまで故障が判らず、該タンクの加熱を無駄に続けてしまう、といった問題点がある。
そこで、本発明の目的は、高度な制御によって複数の水素吸蔵合金タンクから燃料電池へと水素を供給することが出来る燃料電池システムを提供することにある。
第1の観点では、本発明は、水素吸蔵合金に水素を吸蔵する複数個の水素吸蔵合金タンクと、燃料電池と、前記水素吸蔵合金タンクから前記燃料電池への水素の供給と停止とを行うための供給/停止手段と、前記各水素吸蔵合金タンクを加熱するための加熱手段と、前記各水素吸蔵合金タンク内の温度を検出する温度センサと、前記各水素吸蔵合金タンク内の水素圧力を検出する圧力センサと、前記供給/停止手段と前記加熱手段と前記温度センサと前記圧力センサとを監視しそれらの状態に応じて前記供給/停止手段と前記加熱手段とに指示する制御手段とを具備したことを特徴とする燃料電池システムを提供する。
上記第1の観点による燃料電池システムでは、各水素吸蔵合金タンク内の温度と水素圧力とを監視し、それらのデータに基いて供給/停止手段と加熱手段とを制御している。このため、高度な制御によって複数の水素吸蔵合金タンクから燃料電池へと水素を供給することが出来る。例えば、次に水素を供給する予定のタンクが故障したら、加熱しても水素圧力が速やかに上がらないので故障が判り、該タンクからの供給を始める前に該タンクの加熱を打ち切ることが出来る。
第2の観点では、本発明は、上記第1の観点による燃料電池システムにおいて、前記供給/停止手段と前記加熱手段と前記温度センサと前記圧力センサの状態に応じて前記供給/停止手段と前記加熱手段とに次に指示すべき行動をそれぞれ設定した制御データを記憶する記憶手段を具備し、前記制御データは、前記燃料電池システムをモデル化したシミュレーション上で前記供給/停止手段と前記加熱手段とに指示を与えてその結果の前記燃料電池と前記温度センサと前記圧力センサの状態を評価することを繰り返す強化学習によって状態遷移経路を見つけ出し、その状態遷移経路に記録された前記供給/停止手段と前記加熱手段と前記温度センサと前記圧力センサの状態と次に前記供給/停止手段と前記加熱手段とに与えた指示とを基に作成されたものであり、前記制御手段は、前記供給/停止手段と前記加熱手段と前記温度センサと前記圧力センサとを監視しそれらの状態に応じて前記供給/停止手段と前記加熱手段とに次に指示すべき行動を前記制御データから読み出し前記供給/停止手段と前記加熱手段とに指示することを特徴とする燃料電池システムを提供する。
燃料電池システムの挙動は複雑であり、状態に応じた最適の行動を人間が想定するのは困難である。さらに、水素吸蔵合金タンクの数が例えば100個とすると、温度センサの数も100個、圧力センサの数も100個となる。また、供給/停止手段が個々のタンクに設けた供給弁なら、供給弁の数も100個になる。さらに、加熱手段が個々のタンクに設けた加熱弁なら、加熱弁の数も100個になる。すなわち、状態数や行動数は膨大となり、状態に応じた最適の行動を人間が想定するのは全く困難になる。
そこで、上記第2の観点による燃料電池システムでは、燃料電池システムをモデル化したシミュレーション上の強化学習によって状態遷移経路を見つけ出し、その状態遷移経路に記録された状態と行動を基に制御データを作成し、その制御データを用いて制御を行う。これにより、状態に応じた最適の状態遷移経路に沿って複数の水素吸蔵合金タンクから燃料電池へ水素を供給することが出来る。
本発明の燃料電池システムによれば、高度な制御によって複数の水素吸蔵合金タンクから燃料電池へと水素を供給することが出来る。また、状態に応じた最適の状態遷移経路に沿って複数の水素吸蔵合金タンクから燃料電池へ水素を供給することが出来る。
以下、図に示す実施例により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。
図1は、実施例1に係る燃料電池システム100を示す構成説明図である。
この燃料電池システム100は、水素吸蔵合金に水素を吸蔵するn(≧2)個の水素吸蔵合金タンクMH1,…,MHnと、燃料電池1と、水素吸蔵合金タンクMH1〜MHnから燃料電池1への水素の供給と停止とを行うための水素配管2と、水素吸蔵合金タンクMH1,…,MHnと水素配管2の間に介設された供給弁V1,…,Vnと、燃料電池1の排熱を利用して水素吸蔵合金タンクMH1,…,MHnを加熱するための熱交換器3と、水素吸蔵合金タンクMH1,…,MHnと熱交換器3の間に介設された加熱弁H1,…,Hnと、水素吸蔵合金タンクMH1,…,MHn内の温度を検出する温度センサT1,…,Tnと、水素吸蔵合金タンクMH1,…,MHn内の水素圧力を検出する圧力センサP1,…,Pnと、供給弁V1,…,Vnと加熱弁H1,…,Hnと温度センサT1,…,Tnと圧力センサP1,…,Pnとを監視しそれらの現在の状態に応じて供給弁V1,…,Vnと加熱弁H1,…,Hnとに次の行動を指示するコントローラ4とを具備している。
熱交換器3は、燃料電池1の排熱を熱交換媒体(水など)によって受け取る。また、加熱弁H1,…,Hnは、水素吸蔵合金タンクMH1,…,MHnと熱交換器3の間で熱交換媒体を循環させたり、循環を停止したりする。
図2は、コントローラ4が記憶している制御データ5を示す概念図である。
この制御データ5は、供給弁V1,…,Vnと加熱弁H1,…,Hnと圧力センサP1,…,Pnと温度センサT1,…,Tnの現在値および圧力の変化速度P1’,…,Pn’と温度の変化速度T1’,…,Tn’からなる「現在の状態」と、それに応じた供給弁V1,…,Vnと加熱弁H1,…,Hnの「次の行動」のリストの複数のセットからなっている。各セットには優先順位が付けられている。
なお、(圧力の変化速度Px’)=(現在の圧力Px)−(1制御時刻前の圧力Px)、(温度の変化速度Tx’)=(現在の温度Tx)−(1制御時刻前の温度Tx)である。
図3は、コントローラ4が実行する水素供給制御処理の手順を示すフロー図である。
ステップS1では、供給弁V1,…,Vnおよび加熱弁H1,…,Hnを全て「閉」とする。すなわち、燃料電池1への水素の供給を停止し、水素吸蔵合金タンクMH1,…,MHnの加熱を停止する。
ステップS2では、コントローラ4が内蔵する異常検出タイマーを「0」からスタートする。
ステップS3では、圧力センサP1,…,Pnと温度センサT1,…,Tnの現在値を読み込むと共に圧力の変化速度P1’,…,Pn’と温度の変化速度T1’,…,Tn’を算出する。
ステップS4では、供給弁V1,…,Vnと加熱弁H1,…,Hnと圧力センサP1,…,Pnと温度センサT1,…,Tnの現在値および圧力の変化速度P1’,…,Pn’と温度の変化速度T1’,…,Tn’からなる「現在の状態」が制御データ5に存在するか検索する。
ステップS5では、「現在の状態」が制御データ5に存在したならステップS6へ進み、存在しなかったらステップS7へ進む。
ステップS6では、「現在の状態」に応じた供給弁V1,…,Vnと加熱弁H1,…,Hnの「次の行動」を制御データ5から読み出し、供給弁V1,…,Vnと加熱弁H1,…,Hnとに制御指令を送る。そして、ステップS2に戻る。
ステップS7では、異常検出タイマーがタイムアウトになったか判定し、タイムアウトでないならステップS8へ進み、タイムアウトになったらステップS9へ進む。
ステップS8では、水素圧力が最も高く且つ番号iが最も若い水素吸蔵合金タンクMHiの加熱弁Hiだけを「開」にする。そして、ステップS3に戻る。
ステップS9では、供給弁V1,…,Vnおよび加熱弁H1,…,Hnを全て「閉」とする。すなわち、制御データ5に記述がない状態が続く異常事態なので、燃料電池1への水素の供給を停止し、水素吸蔵合金タンクMH1,…,MHnの加熱を停止する。そして、処理を終了する。
図4は、燃料電池システム100をモデル化したシミュレーション上の強化学習によって最適の状態遷移経路を見つけ出し、その状態遷移経路に記録された状態と行動を基に制御データ5を作成する制御データ作成装置200を示す構成説明図である。
この制御データ作成装置200は、燃料電池1をモデル化した燃料電池・シミュレータ21と、水素吸蔵合金タンクMH1,…,MHnと温度センサT1,…,Tnと圧力センサP1,…,Pnと供給弁V1,…,Vnと加熱弁H1,…,Hnとをモデル化した水素タンク・シミュレータ22と、熱交換器3をモデル化した熱交換器・シミュレータ23と、負荷をモデル化した負荷・シミュレータ24と、各シミュレータに行動データを与えると共にそれによる状態遷移を評価し記録する状態遷移・評価部25とを具備している。
なお、制御データ作成装置200は、ハードウエア的にはコンピュータである。
図5は、制御データ作成装置200による強化学習処理の手順を示すフロー図である。
ステップP1では、各シミュレータおよび弁の状態を初期化する。
ステップP2では、各シミュレータの動作をスタートする。
ステップP3では、圧力データ等を収集すると共に変化速度を算出し、「現在の状態」を得る。
ステップP4では、「現在の状態」が前と同じならステップP3に戻り、「現在の状態」が前と違うならステップP5へ進む。
ステップP5では、ランダムに行動データを生成して各シミュレータに与える。
ステップP6では、行動データを各シミュレータに与えた結果、燃料電池が停止しなければステップP7へ進み、燃料電池が停止したらステップP8へ進む。
ステップP7では、報酬に「0」を与え、行動評価関数を更新する。そして、ステップP3に戻る。
ステップP8では、報酬に負値を与え、行動評価関数を更新する。そして、ステップP1に戻る。
状態遷移・評価部25は、十分な時間をかけて強化学習処理を行って状態遷移図を作成する。次に、状態遷移図の各状態とその状態において燃料電池の停止までの時間が最も長くなった次の行動を対応付け、制御データ5を作成する。なお、ある状態において燃料電池の停止までの時間が最も長くなる次の行動が複数あった場合は、それらの行動の一つを選択する。例えば、複数の次の行動の中で番号iが最も若い水素吸蔵合金タンクMHiの加熱弁Hiを「開」にする行動を選択する。この制御データ5をコントローラ4に記憶させればよい。
図6〜図8に、状態遷移図を例示する。
この状態遷移図は、説明の簡単のために、次の条件下で作成している。
(1)3台の水素吸蔵合金タンクMH1,MH2,MH3だけがある。
(2)状態遷移は、使用されて水素吸蔵合金タンクMH1,MH2,MH3が空になるか又は使用中に異常になるかを契機とする。空になるまでの時間は、使用中に異常になるまでの時間より長い。
(3)行動は、いずれか一台の水素吸蔵合金タンクに対応する弁を開にし、残りの水素吸蔵合金タンクに対応する弁を閉にする。
(4)四角のボックスは、状態Sa〜SEを表す。
(5)四角のボックスに書かれた番号は、次の行動で開にする水素吸蔵合金タンクの番号を表す。
(6)四角のボックスから出る矢印が状態遷移を表す。
(7)矢印の長さが、使用可能時間の長さを表す。
図9に、図6〜図8の状態遷移図から作成した制御データ5を例示する。
この制御データ5によれば、次のような制御が行われる。
(1)初期状態Saでは、水素吸蔵合金タンクMH1に対応する弁だけを開にする。
(1−1)正常なら水素吸蔵合金タンクMH1が空になって状態Sbになるので、水素吸蔵合金タンクMH2に対応する弁だけを開にする。
(1−2)水素吸蔵合金タンクMH1が異常なら状態Sgになるので、水素吸蔵合金タンクMH2に対応する弁だけを開にする。
(2)状態Sbでは、水素吸蔵合金タンクMH2に対応する弁だけを開にする。
(2−1)正常なら水素吸蔵合金タンクMH2が空になって状態Scになるので、水素吸蔵合金タンクMH3に対応する弁だけを開にする。
(2−2)水素吸蔵合金タンクMH2が異常なら状態Sdになるので、水素吸蔵合金タンクMH3に対応する弁だけを開にする。
以下、同様である。
本発明の燃料電池システムは、自動車や船舶に搭載する燃料電池システムとして利用できる。
実施例1に係る燃料電池システムを示す構成説明図である。 実施例1に係る制御データを示す概念図である。 実施例1に係る水素供給制御処理の手順を示すフロー図である。 制御データ作成装置を示す構成説明図である。 強化学習処理の手順を示すフロー図である。 状態遷移図の例示図である。 図6の続きの状態遷移図である。 図7の続きの状態遷移図である。 図6〜図8の状態遷移図から作成した制御データの例示図である。
符号の説明
1 燃料電池
2 水素配管
3 熱交換器
4 コントローラ
100 燃料電池システム
H1,…,Hn 加熱弁
MH1,…,MHn 水素吸蔵合金タンク
P1,…,Pn 圧力センサ
T1,…,Tn 温度センサ
V1,…,Vn 供給弁

Claims (2)

  1. 水素吸蔵合金に水素を吸蔵する複数個の水素吸蔵合金タンクと、燃料電池と、前記水素吸蔵合金タンクから前記燃料電池への水素の供給と停止とを行うための供給/停止手段と、前記各水素吸蔵合金タンクを加熱するための加熱手段と、前記各水素吸蔵合金タンク内の温度を検出する温度センサと、前記各水素吸蔵合金タンク内の水素圧力を検出する圧力センサと、前記供給/停止手段と前記加熱手段と前記温度センサと前記圧力センサとを監視しそれらの状態に応じて前記供給/停止手段と前記加熱手段とに指示する制御手段とを具備したことを特徴とする燃料電池システム。
  2. 請求項1に記載の燃料電池システムにおいて、前記供給/停止手段と前記加熱手段と前記温度センサと前記圧力センサの状態に応じて前記供給/停止手段と前記加熱手段とに次に指示すべき行動をそれぞれ設定した制御データを記憶する記憶手段を具備し、
    前記制御データは、前記燃料電池システムをモデル化したシミュレーション上で前記供給/停止手段と前記加熱手段とに指示を与えてその結果の前記燃料電池と前記温度センサと前記圧力センサの状態を評価することを繰り返す強化学習によって状態遷移経路を見つけ出し、その状態遷移経路に記録された前記供給/停止手段と前記加熱手段と前記温度センサと前記圧力センサの状態と次に前記供給/停止手段と前記加熱手段とに与えた指示とを基に作成されたものであり、
    前記制御手段は、前記供給/停止手段と前記加熱手段と前記温度センサと前記圧力センサとを監視しそれらの状態に応じて前記供給/停止手段と前記加熱手段とに次に指示すべき行動を前記制御データから読み出し前記供給/停止手段と前記加熱手段とに指示することを特徴とする燃料電池システム。
JP2005202599A 2005-07-12 2005-07-12 燃料電池システム Pending JP2007026683A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005202599A JP2007026683A (ja) 2005-07-12 2005-07-12 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005202599A JP2007026683A (ja) 2005-07-12 2005-07-12 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2007026683A true JP2007026683A (ja) 2007-02-01

Family

ID=37787225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005202599A Pending JP2007026683A (ja) 2005-07-12 2005-07-12 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2007026683A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110177404A1 (en) * 2010-01-15 2011-07-21 Young Green Energy Co. Fuel cartridge of fuel cell and method for operating fuel cartridge
WO2012043271A1 (ja) 2010-09-29 2012-04-05 コニカミノルタホールディングス株式会社 2次電池型燃料電池システム
CN101459249B (zh) * 2007-12-13 2013-03-20 现代自动车株式会社 用于燃料电池车的储氢***
US10060897B2 (en) 2014-10-24 2018-08-28 Toyota Jidosha Kabushiki Kaisha Tank device, a vehicle, and a method for evaluating an output of a pressure sensor
CN112886039A (zh) * 2021-01-11 2021-06-01 清华大学深圳国际研究生院 一种基于强化学习的压水堆堆芯自动控制方法
WO2023188064A1 (ja) * 2022-03-30 2023-10-05 株式会社辰巳菱機 電力供給システム

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101459249B (zh) * 2007-12-13 2013-03-20 现代自动车株式会社 用于燃料电池车的储氢***
US20110177404A1 (en) * 2010-01-15 2011-07-21 Young Green Energy Co. Fuel cartridge of fuel cell and method for operating fuel cartridge
WO2012043271A1 (ja) 2010-09-29 2012-04-05 コニカミノルタホールディングス株式会社 2次電池型燃料電池システム
US10060897B2 (en) 2014-10-24 2018-08-28 Toyota Jidosha Kabushiki Kaisha Tank device, a vehicle, and a method for evaluating an output of a pressure sensor
CN112886039A (zh) * 2021-01-11 2021-06-01 清华大学深圳国际研究生院 一种基于强化学习的压水堆堆芯自动控制方法
CN112886039B (zh) * 2021-01-11 2021-11-23 清华大学深圳国际研究生院 一种基于强化学习的压水堆堆芯自动控制方法
WO2023188064A1 (ja) * 2022-03-30 2023-10-05 株式会社辰巳菱機 電力供給システム
JP7526533B2 (ja) 2022-03-30 2024-08-01 株式会社辰巳菱機 電力供給システム

Similar Documents

Publication Publication Date Title
US11733662B2 (en) Heuristic method of automated and learning control, and building automation systems thereof
JP2007026683A (ja) 燃料電池システム
CN102163047B (zh) 学习控制机器人
Albalawi et al. Process operational safety via model predictive control: Recent results and future research directions
TWI431638B (zh) 預測核子反應爐的臨界有效k值之方法
Sterling et al. Model-based fault detection and diagnosis of air handling units: A comparison of methodologies
Du et al. An integrated fault diagnosis and safe‐parking framework for fault‐tolerant control of nonlinear systems
JP7216566B2 (ja) 情報処理装置、情報処理方法、および情報処理プログラム
Kim et al. Strategy to coordinate actions through a plant parameter prediction model during startup operation of a nuclear power plant
JP2009265819A (ja) 制御装置およびプログラム
Aboshosha et al. Employing adaptive fuzzy computing for RCP intelligent control and fault diagnosis
Karoui et al. Monitoring of dynamic processes by rectangular hybrid automata
JP7058387B2 (ja) 運転支援システム及び方法、自動プランナ、並びにプログラム
Ølmheim et al. Decision Support and Monitoring Using Autonomous Systems
JP2022137709A (ja) 制御装置、制御方法、および、制御プログラム
DE102019129888A1 (de) Speichersystem
JP2015210046A (ja) 機器の運転情報記憶制御装置
Karimshoushtari et al. On the applicability of advanced model-based strategies to control of electrified vehicle thermal systems
Albalawi et al. Simultaneous control of safety constraint sets and process economics using economic model predictive control
Li et al. Towards rapid redesign: pattern-based redesign planning for large-scale and complex redesign problems
Alanqar et al. Fault-tolerant economic model predictive control using empirical models
Quek et al. Real-time integrated process supervision
WO2024171490A1 (ja) Co2回収装置及び制御方法
Saxena et al. Automated Contingency Management for Propulsion Systems
Keating et al. Strategies for inservice inspection of compact heat exchangers in high temperature reactors