JP2007024606A - Measuring method and instrument for viscoelastic characteristics - Google Patents

Measuring method and instrument for viscoelastic characteristics Download PDF

Info

Publication number
JP2007024606A
JP2007024606A JP2005204985A JP2005204985A JP2007024606A JP 2007024606 A JP2007024606 A JP 2007024606A JP 2005204985 A JP2005204985 A JP 2005204985A JP 2005204985 A JP2005204985 A JP 2005204985A JP 2007024606 A JP2007024606 A JP 2007024606A
Authority
JP
Japan
Prior art keywords
movable
measurement target
pressing member
elastic body
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005204985A
Other languages
Japanese (ja)
Inventor
Masakazu Fukuoka
正和 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiseido Co Ltd
Original Assignee
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co Ltd filed Critical Shiseido Co Ltd
Priority to JP2005204985A priority Critical patent/JP2007024606A/en
Publication of JP2007024606A publication Critical patent/JP2007024606A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method and an instrument for obtaining measurement result or evaluation that is close to tactile sensation or tactile examination on the elasticity or viscoelasticity of a soft body by a method similar to one used when obtaining tactile sensation, the soft body being like skin, or food or industrial goods deformed by minute force. <P>SOLUTION: This instrument comprises two differential transformers. Their movable parts are serially connected to each other in their movable direction via an elastic body. With an end of one movable part kept in contact with a measuring object part, while the other movable part displaced by thereto applying external force and the movable part kept in contact with the object part displaced by elastic force of the elastic body undergoing a load caused by the displacement with the movable part caused to undergo the resistant force of the object part, this instrument is constituted so that the viscoelastic characteristics of the object part is examined, by obtaining displacement information of the two kinds from the respective differential transformers. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、皮膚の硬さ、柔らかさなどの粘弾性特性の測定方法及び装置又は食品、加工食品の食べた時に感じる歯ごたえの測定に利用できる測定方法及び装置に関するものである。   The present invention relates to a method and apparatus for measuring viscoelastic properties such as skin hardness and softness, or a measurement method and apparatus that can be used for measuring the texture of food and processed foods.

従来から、皮膚の硬さ、柔らかさなどの粘弾性特性を測ることによって、皮膚の老化度、皮膚のハリ、皮膚の弾力性、病気における皮膚の浮腫状態を判定しようという試みは数多く行われている。それらに用いる装置としては、硬さ計、機械インピーダンス計、弾力計、粘弾性計などと呼ばれる装置が用いられている。
また、これらの粘弾性を評価するための評価装置としては、大別すると、物体を押したときの力とへこみ若しくは変位の関係で評価するもの、物体に対して一定周波数の振動を与えた時の応答する周波数のずれで評価するもの、物体を吸引したときの物体の持ち上がり高さで評価するものの3種類の装置が知られている。
Conventionally, many attempts have been made to determine the degree of skin aging, skin firmness, skin elasticity, and skin edema status in diseases by measuring viscoelastic properties such as skin hardness and softness. Yes. As devices used for them, devices called hardness meter, mechanical impedance meter, elasticity meter, viscoelasticity meter and the like are used.
In addition, as an evaluation apparatus for evaluating these viscoelasticity, when roughly classified, the evaluation is based on the relationship between the force when the object is pressed and the dent or displacement, and when the object is subjected to vibration at a constant frequency. There are known three types of devices, one that evaluates based on the frequency shift of the response to the other, and one that evaluates based on the lifting height of the object when the object is sucked.

物体を押したときの力とへこみ若しくは変位の関係で評価する装置の特徴は、手や指で物体を押した時に感じる触感(指の変位、速度、加速度など)に近い評価を得られることである。他方、物体に対して一定周波数の振動を与えた時の応答する周波数のずれで評価する装置では、通常数Hz〜数kHzの微小振動を与えて評価するため、手や指の触感とは一致し難い傾向にある。また、物体を吸引したときの物体の持ち上がり高さで評価する装置にあっては、物体の延び易さを表すものであり、手や指の触感から得られる皮膚の硬さ、柔らかさ、ハリ、弾力とは概念が異なるものであった。   The feature of the device that evaluates the relationship between the force when pressing an object and the dent or displacement is that it can obtain an evaluation close to the tactile sensation (finger displacement, speed, acceleration, etc.) that you feel when you press the object with your hand or finger is there. On the other hand, in a device that evaluates with a frequency shift that responds when a vibration with a constant frequency is applied to an object, evaluation is usually performed with a minute vibration of several Hz to several kHz. It tends to be difficult. In addition, in an apparatus that evaluates the height of an object when the object is aspirated, it represents the easiness of extension of the object, and the hardness, softness, and firmness of the skin obtained from the feel of the hands and fingers. The concept of elasticity is different.

従って、当該発明のように、人が皮膚を手や指で押して感じる皮膚の硬さ、柔らかさ、ハリ、弾力などの触感とほぼ同じ結果が得られる粘弾性測定方法の開発が望まれていた。
また、食品の食感(歯ごたえなど)を簡単に数値化できる方法が望まれていた。
そのような要望に応えるものとしては、例えば、特開平5−149859号公報(特許文献1)や特開平11−125590号公報(特許文献2)に開示されているような技術が挙げられる。これらは何れも、測定対象である皮膚表面に当接させつつ該皮膚に加重する押接部材と、この押接部材の変位を検出するための検出手段と、該押接部材を変位させる駆動系とからなっている。
Therefore, as in the case of the present invention, it has been desired to develop a viscoelasticity measuring method that can obtain almost the same result as a touch feeling such as skin hardness, softness, elasticity, elasticity, etc. that a person feels by pressing the skin with a hand or a finger. .
In addition, there has been a demand for a method capable of easily quantifying the texture (eg, texture) of food.
In order to meet such a demand, for example, techniques disclosed in Japanese Patent Application Laid-Open No. 5-14959 (Patent Document 1) and Japanese Patent Application Laid-Open No. 11-125590 (Patent Document 2) can be cited. Each of these includes a pressing member that abuts against the skin surface to be measured and applies weight to the skin, detection means for detecting the displacement of the pressing member, and a drive system that displaces the pressing member. It is made up of.

しかし、これらは駆動系からの動力を押接部材に直接的に伝達しつつ、該押接部材の変位を検出することで、測定対象部位の応答変位を探り出そうとするものであって、押し込みの硬さや元の状態への弾性的な復元の様子というような微妙な情報を得ることができないという問題があった。   However, these are to transmit the power from the drive system directly to the pressing member, and to detect the displacement of the pressing member so as to find the response displacement of the measurement target part. There has been a problem that delicate information such as the hardness of the indentation and the state of elastic restoration to the original state cannot be obtained.

上述のように、押したときの力とそれによる変位とをもって粘弾性を評価する方法は、極めて古典的な常套手段であるものの、手や指による押指圧による変位を、簡便に且つ精密に測ることは極めて困難であったため、美容や医療の現場において実用に耐える程度の実用品は存在しなかった。   As described above, although the method of evaluating viscoelasticity with the force and the displacement caused by pressing is a very classic conventional means, the displacement due to the finger pressure by the hand or finger can be measured easily and precisely. Since it was extremely difficult, there was no practical product that could withstand practical use in beauty and medical settings.

特開平5−149859号公報Japanese Patent Laid-Open No. 5-149859 特開平11−125590号公報JP-A-11-125590

本発明は、化粧品を販売するコーナーなどにおいて、皮膚の粘弾性を測ることにより、お客さまの皮膚の老化度、化粧品の塗布後のハリの変化などを容易に数値化し、判別できる粘弾性特性の測定方法および装置を提供するものである。また、本発明は、食品、加工食品を食べた時に感じる歯ごたえを数値化して、食感の客観的な測定に供する粘弾性特性の測定方法および装置である。   The present invention measures viscoelasticity of skin at corners where cosmetics are sold, etc., so that it is possible to easily quantify and discriminate the degree of aging of customers' skin, the change in elasticity after applying cosmetics, etc. A measuring method and apparatus are provided. The present invention also relates to a viscoelastic property measuring method and apparatus for quantifying the texture when eating foods and processed foods and for objectively measuring the texture.

上記問題を解決するためにこの発明の測定方法が採った手段は、微弱な付勢力で加重して測定対象部位を応力変形させつつ、該測定対象部位の変位を測定すると共に、前記付勢力を生じせしめる外力を伝達するための部材の変位を測定し、これら両変位の測定結果によって測定対象部位の力学的性質を得ることを特徴とする。   The means taken by the measurement method of the present invention to solve the above problem is to measure the displacement of the measurement target portion while applying stress to the measurement target portion by applying a weak biasing force and deforming the measurement target portion. It is characterized in that a displacement of a member for transmitting an external force to be generated is measured, and a mechanical property of a measurement target part is obtained from a measurement result of both the displacements.

また、第二の発明の測定装置は、少なくとも、測定対象部位に当接させながら加重し、この加重方向と略平行して移動自在に構成される押接部材と、この押接部材に弾力的に加重するための弾性体と、この弾性体に外部からの加重を伝えるための前記加重方向に移動自在に構成される可動部材と、この可動部材の運動を検出するための検出手段と、前記押接部材の運動を検出するための検出手段とを備え、前記押接部材と可動部材とが、前記弾性体を介して連結され、可動部材に対し、外部から押接部材向きに、加重して変位させ、該可動部材と弾性体とを介して伝達される加重によって押接部材が変位して該押接部材を当接させつつ測定対象部位に加重を付与するように構成され、この際の一連の可動部材の運動と、押接部材の応答運動を計測することによって測定対象部位の粘弾性特性を測定するようにしたことを特徴とする。   The measuring device according to the second aspect of the present invention includes a pressing member configured to be able to move at least while being in contact with a measurement target portion and to be substantially parallel to the weighting direction, and to be elastic to the pressing member. An elastic body for applying weight to the elastic body, a movable member configured to be movable in the weighting direction for transmitting external weight to the elastic body, detection means for detecting the movement of the movable member, Detecting means for detecting the movement of the pressing member, wherein the pressing member and the movable member are connected via the elastic body, and the movable member is loaded from the outside toward the pressing member. The pressing member is displaced by a load transmitted through the movable member and the elastic body, and a load is applied to the measurement target portion while the pressing member abuts. The movement of a series of movable members and the response motion of a pressing member It characterized by being adapted to measure the viscoelastic properties of the measurement target sections by measuring.

そして、前記可動部材を往復運動させるための往復運動発生手段を備え、これによって可動部材に往復運動させることができ、同様な測定を多数回に渡って行なうことができるように構成されることを特徴とする。また往復運動発生手段による可動部の往復速度が、押接部材の往復速度以下であること、より具体的には、可動部の往復回数が、1秒間当りに1回以下であることを特徴とする。   And a reciprocating motion generating means for reciprocating the movable member, whereby the movable member can be reciprocated so that the same measurement can be performed many times. Features. The reciprocating speed of the movable part by the reciprocating motion generating means is not more than the reciprocating speed of the pressing member, more specifically, the number of reciprocating times of the movable part is not more than once per second. To do.

また、弾性体が、測定対象部位を応力変形させたとき元の状態に戻ろうとする復元力よりも小さな負荷で応力変形させることができるコイルスプリングであることを特徴とし、さらに詳細には、測定対象部位が皮膚であるとき、この弾性体の伸縮方向に加える力が0.03ニュートン以下の負荷でも伸縮させ得るコイルスプリングであることを特徴とする。   In addition, the elastic body is a coil spring that can be subjected to stress deformation with a load smaller than a restoring force that attempts to return to the original state when the measurement target portion is subjected to stress deformation, and more specifically, measurement It is a coil spring that can be expanded and contracted even when a load of 0.03 Newton or less is applied to the elastic body when the target site is skin.

検出手段が、可動部材及び押接部材に少なくとも電導性を有する電導体部分を設け、これらの電導体部分の移動範囲の周辺それぞれにコイルが配置され、可動部材又は押接部材の変位によって、該コイルに誘導起電力が生じるように構成されていることを特徴とし、また、前記電導体部分が、黄銅又はアルミニウムを主成分として構成されるものであることを特徴とする。   The detection means includes at least a conductive portion having electrical conductivity on the movable member and the pressing member, and a coil is disposed around each of the movement ranges of these conductive portions. It is characterized in that an induced electromotive force is generated in the coil, and the conductor portion is composed mainly of brass or aluminum.

また測定装置が、少なくとも、二つの差動トランスを有し、これらの可動部どうしが、弾性体を介してそれらの可動方向に直列的に連結され、一方の可動部の先端を測定対象部位に当接させつつ、他方の可動部に対して外力を加えて変位させると共に、この変位による負荷を受けた前記弾性体の弾性力によって、前記測定対象部位に当接された方の可動部を測定対象部位の抗力を受けさせつつ変位させ、これら両変位情報をそれぞれの差動トランスから得ることによって、測定対象部位の粘弾性特性を調べるように構成されることを特徴とする。   The measuring device has at least two differential transformers, and these movable parts are connected in series in their movable directions via an elastic body, and the tip of one movable part is used as a measurement target site. While making contact, an external force is applied to the other movable part to displace it, and the movable part that is in contact with the measurement target part is measured by the elastic force of the elastic body that receives the load due to this displacement. Displacement is performed while receiving the drag of the target part, and the viscoelastic characteristics of the part to be measured are examined by obtaining both displacement information from each differential transformer.

また、検出手段からの出力信号を受ける信号処理装置を備えることを特徴とする。   In addition, a signal processing device that receives an output signal from the detection means is provided.

本発明によれば、大掛かりな仕組みや複雑な仕組みを必要とせず、単純な仕組みの装置にして、手や指で押したときの触感とほぼ同一の感触を数値化でき、信頼度の高い客観的な評価を得ることができるという効果がある。
また、装置が単純なため、店頭で皮膚診断装置として利用することができ、皮膚の老化度、ハリ、化粧品の塗布による皮膚粘弾性の変化などを数値化して示すことができる。
更に、本発明は、被対象物の応力変形の度合いを正確に測定できるため、食品、加工食品を食べた時に感じる歯ごたえの測定に利用できる。
また、食べたときの歯ごたえは、食品の美味しさに繋がるため、歯ごたえを基準とした新製品の開発に利用できるという効果がある。
According to the present invention, a large-scale mechanism or a complicated mechanism is not required, and a simple mechanism device can be used to quantify the feeling almost the same as when touched with a hand or a finger. Effect that can be obtained.
In addition, since the device is simple, it can be used as a skin diagnostic device at a store, and the aging degree of the skin, elasticity, changes in skin viscoelasticity due to the application of cosmetics, and the like can be expressed numerically.
Furthermore, since the present invention can accurately measure the degree of stress deformation of the object, it can be used to measure the texture that is felt when eating foods and processed foods.
In addition, the texture when eaten leads to the deliciousness of the food, so that it can be used for the development of new products based on the texture.

この発明の好ましい実施の形態を以下に説明する。当該発明の粘弾性特性の測定装置は測定対象部位に当接させて使用し、該測定対象部位の力学的性状の情報を得るための探測系と、この探測系からの信号を処理する信号処理系とからなる。   A preferred embodiment of the present invention will be described below. The viscoelastic characteristic measuring apparatus according to the present invention is used in contact with a measurement target part, a probe system for obtaining information on the mechanical properties of the measurement target part, and a signal processing for processing a signal from the probe system It consists of a system.

探測系は、測定対象部位の表面に、当接させながら該表面に対して垂直に加重するこの加重方向に移動自在に構成される押接部材と、この押接部材に弾力的に加重するための弾性体と、この弾性体に外部からの加重を伝えるための前記加重方向に移動自在に構成される可動部材と、この可動部材の運動を検出するための検出手段と、前記押接部材の運動を検出するための検出手段とを備えている。そして、前記押接部材と可動部材とが、前記弾性体を介して連結されている。   The probing system has a pressing member configured to be movable in this weighting direction, in which the surface is pressed against the surface of the measurement target portion and is perpendicular to the surface, and the pressing member is elastically loaded. An elastic body, a movable member configured to be movable in the weighting direction for transmitting an external load to the elastic body, a detection means for detecting the movement of the movable member, and a pressing member. Detecting means for detecting movement. The pressing member and the movable member are coupled via the elastic body.

そして押接部材は、差動トランスのコイル内を往復運動し、該押接部材の一部が電導性を有する材料で作られるものが望ましく、一般的には、黄銅又はアルミニウム等で作られる。   The pressing member preferably reciprocates in the coil of the differential transformer, and a part of the pressing member is preferably made of a conductive material, and is generally made of brass or aluminum.

この押接部材の運動乃至は変位を検出するための検出手段としては、差動トランスが利用される。差動トランスとしては、各種の差動トランスが利用できるが、レスポンスの早さ、小型で安定性の良い点を考慮すると高周波差動トランスが好ましい。   A differential transformer is used as a detecting means for detecting the movement or displacement of the pressing member. Various differential transformers can be used as the differential transformer, but a high-frequency differential transformer is preferable in view of quick response, small size, and good stability.

可動部材とその運動を検出するための検出手段としては、前記押接部材に使用した高周波差動トランスが好ましい。高周波差動トランスは、押接部材と可動部材の運動を検出するために装置内に2つ配置されている。   As the detection means for detecting the movable member and its movement, a high-frequency differential transformer used for the pressing member is preferable. Two high-frequency differential transformers are arranged in the apparatus to detect the movement of the pressing member and the movable member.

また、押接部材と可動部材を連結する弾性体は、好ましくは測定対象部位を応力変形させたとき元の状態に戻ろうとする復元力よりも小さな負荷で応力変形させることができるコイルスプリングとする。例えば、測定対象部位が、生体の皮膚である場合には、弾性体が、この弾性体の伸縮方向に加える力が0.03ニュートン以下の負荷でも伸縮させ得るコイルスプリングを用いるとよい。   Further, the elastic body connecting the pressing member and the movable member is preferably a coil spring that can be subjected to stress deformation with a load smaller than a restoring force that attempts to return to the original state when the measurement target portion is subjected to stress deformation. . For example, when the measurement target site is the skin of a living body, it is preferable to use a coil spring that can be expanded and contracted even when a load applied to the elastic body in the expansion and contraction direction of the elastic body is 0.03 Newton or less.

また、本発明の測定装置には、可動部材に外部から所定の力を付与して往復運動させるための往復運動発生手段を備えることが望ましく、往復運動発生手段による可動部材の往復回数が、1秒間当りに1回以下の場合が、指で触れて硬さを感じる感覚と同じになるので好ましい。この装置を使用することにより、再現性ある正確な測定が可能になり、簡便に測定できることから、何回かの測定によって平均値などを求めて、信頼性のある客観的な皮膚粘弾性評価が得られるようになる。   The measuring apparatus of the present invention preferably includes a reciprocating motion generating means for applying a predetermined force from the outside to the movable member to reciprocate, and the number of reciprocating movements of the movable member by the reciprocating motion generating means is 1. The case of not more than once per second is preferred because it is the same as the feeling of hardness when touched with a finger. By using this device, accurate and reproducible measurement is possible, and it is possible to measure easily. Therefore, reliable and objective skin viscoelasticity evaluation is obtained by obtaining an average value by several measurements. It will be obtained.

信号処理系は、可動部材の運動を検出する検出手段である第1差動トランスと、押接部材の運動を検出する検出手段である第2差動トランスとからそれぞれ得られる信号を受けて、それらの信号を増幅させたり、或いは、それらの信号に適当な演算処理を施して処理結果を出力させたりするためのものであり、従来公知の演算処理装置や増幅回路などを使用することができる。   The signal processing system receives signals obtained from the first differential transformer, which is a detection means for detecting the movement of the movable member, and the second differential transformer, which is a detection means for detecting the movement of the pressing member, These signals are used to amplify these signals, or to perform appropriate arithmetic processing on these signals and output the processing results. Conventionally known arithmetic processing devices, amplifier circuits, etc. can be used. .

以上の如くの探測系と信号処理系とからなる測定装置は、好ましくは、可動部材に対し、往復運動発生手段によって押接部材向きに加重して該可動部材を変位させ、該可動部材と弾性体とを介して伝達される加重によって押接部材が測定対象部位に向かって変位して該押接部材を当接させつつ測定対象部位に加重を付与し、これによって応力変形した測定対象部位が元の状態に戻ろうとする復元力によって押接部材を押しながら変位するときの押接部材と、そのときの可動部材のそれぞれの変位を計測するように構成され、この際の一連の可動部材の運動と、押接部材の応答運動を計測した結果得られる信号を前記信号処理系によって処理することで、測定対象部位の粘弾性特性を測定するように構成される。   The measuring device comprising the probe system and the signal processing system as described above preferably displaces the movable member by applying a load to the movable member in the direction of the pressing member by the reciprocating motion generating means. The pressing member is displaced toward the measurement target portion by the load transmitted through the body and applies the weight to the measurement target portion while contacting the pressing member. It is configured to measure the displacement of the pressing member when it is displaced while pushing the pressing member with the restoring force to return to the original state, and the movable member at that time. A signal obtained as a result of measuring the motion and the response motion of the pressing member is processed by the signal processing system, so that the viscoelastic characteristics of the measurement target region are measured.

本発明の一実施例を以下に図を参照しながら説明する。図1は、本実施例の粘弾性特性の測定装置(1)の全体的な構成を示す概念図である。図2は、図1に示す測定装置(1)によって、特定の硬度のエラストマーモデルを測定したときの第1差動トランス(12)の出力信号(y)と第2差動トランス(19)の出力信号(x)の波形の一例を示したものである。図3は、図1に示す測定装置(1)によって、3段階に硬度を変えたエラストマーを試料とし、横軸にエラストマーの変位x〔mm〕、縦軸に加えた力f〔mN〕をとって、3つのエラストマーモデルの硬さ計測を行なった結果をそれぞれプロットして作成したグラフである。図4のグラフは、各種のエラストマーモデルを使って、官能検査エキスパートが硬さを評価した結果と本発明の装置による計測結果をグラフ化したものである。縦軸は、弾性率(N/m)で、横軸は、官能検査エキスパートがエラストマーモデルの堅い順に並べた距離をセンチメートルで表したものである。   An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a conceptual diagram showing an overall configuration of a viscoelastic characteristic measuring apparatus (1) of the present embodiment. 2 shows the output signal (y) of the first differential transformer (12) and the second differential transformer (19) when an elastomer model having a specific hardness is measured by the measuring device (1) shown in FIG. An example of the waveform of the output signal (x) is shown. FIG. 3 shows a sample of an elastomer whose hardness has been changed in three stages by the measuring device (1) shown in FIG. 1, with the horizontal axis representing the displacement x [mm] of the elastomer and the vertical axis representing the force f [mN]. 3 is a graph created by plotting the results of measuring the hardness of three elastomer models. The graph of FIG. 4 is a graph of the results of evaluation of hardness by a sensory test expert and the measurement results of the apparatus of the present invention using various elastomer models. The vertical axis represents the elastic modulus (N / m), and the horizontal axis represents the distance, in centimeters, arranged by the sensory test expert in the hard order of the elastomer model.

図1に示すように、本実施例の測定装置(1)は、皮膚などの測定対象部位(2)に当接させながら粘弾性特性を測定するための探測系(3)と、この探測系(3)から得られた信号を処理して粘弾性特性を計測するための信号処理系(4)とからなっている。   As shown in FIG. 1, the measuring apparatus (1) of the present embodiment includes a probe system (3) for measuring viscoelastic characteristics while being in contact with a measurement target site (2) such as skin, and the probe system. It comprises a signal processing system (4) for processing the signal obtained from (3) and measuring viscoelastic properties.

探測系(3)は、可動部材(5)に所定の力を加えて略周期的な往復運動をさせるための往復運動発生手段、具体的には、パルスモーターを駆動源とするクランク機構(6)を備えている。このクランク機構(6)と可動部材(5)とが互いに連動するように連結され、前記パルスモーターを動力として可動部材(5)が、パイプ状の上部ケーシング(7)内において、略周期的な往復運動をするように構成されている。クランク機構(6)は、可動部材(5)の可動幅が3mmとなるように構成されている。また、パルスモーターは、前記可動部材(5)の略周期的往復運動、すなわち単振動が1Hz以下となるように制御されたものである。   The probing system (3) is a reciprocating motion generating means for applying a predetermined force to the movable member (5) to cause a substantially periodic reciprocating motion, specifically, a crank mechanism (6 ). The crank mechanism (6) and the movable member (5) are connected so as to be interlocked with each other, and the movable member (5) is driven by the pulse motor as a motive power within the pipe-shaped upper casing (7). It is configured to reciprocate. The crank mechanism (6) is configured such that the movable width of the movable member (5) is 3 mm. The pulse motor is controlled such that the movable member (5) has a substantially periodic reciprocating motion, that is, a simple vibration is 1 Hz or less.

前記可動部材(5)は、運動方向に延びた棒状部分(8)を有し、その上端にはクランク機構(6)と連結するための連結部(9)を有し、下端には弾性体として使用されるコイルスプリング(10)と連結するための連結部(11)を有している。さらに、可動部材(5)は、第1差動トランス(12)の可動部をなすように、棒状部分(8)の中腹部には電気良導性を有する黄銅が配設されている。この黄銅部を囲繞し、該黄銅部の上下動によって誘導起電力が生じて前記第1差動トランス(12)のコイル部をなすように構成されるコイル(13)が、前記上部ケーシング(7)内の所定位置に配設されている。   The movable member (5) has a rod-like portion (8) extending in the direction of motion, and has a connecting portion (9) for connecting to the crank mechanism (6) at its upper end, and an elastic body at its lower end. It has a connection part (11) for connecting with the coil spring (10) used as a. Further, the movable member (5) is provided with brass having electric conductivity at the middle part of the rod-like portion (8) so as to form a movable part of the first differential transformer (12). A coil (13) that surrounds the brass portion and generates an induced electromotive force due to vertical movement of the brass portion to form a coil portion of the first differential transformer (12) includes the upper casing (7). ) In a predetermined position.

前記可動部材(5)の下端に連結されたは弾性体は、SUSを主材料として、線径0.16〔mm〕、外径3.2〔mm〕、自由長10〔mm〕、有効巻数10、バネ定数0.029〔N/mm〕に構成されたコイルスプリング(10)である。   The elastic body connected to the lower end of the movable member (5) is mainly made of SUS and has a wire diameter of 0.16 [mm], an outer diameter of 3.2 [mm], a free length of 10 [mm], and an effective number of turns. 10 is a coil spring (10) having a spring constant of 0.029 [N / mm].

このコイルスプリング(10)の下端には、押接部材(14)がその連結部(15)を介して連結されている。この押接部材(14)は、該コイルスプリング(10)と測定対象部位(2)からの応力や復元力により、下部ケーシング(16)内において、前記可動部材(5)の運動方向と同じ方向に、自在に運動できるようになっている。この下部ケーシング(16)は、前記上部ケーシング(7)に着脱自在に接合して固定されるものであり、これを取り外して内部に配設されているコイルスプリング(10)を所望のものに交換し得るようになっている。また、押接部材(14)は、その運動方向に延びた棒状部分(17)と、その上端に設けられた前記連結部(15)と、下端に設けられた測定対象部位(2)に当接させる略半球面状に下向きに凸設した触接部(18)とを有している。また、押接部材(14)は、第2差動トランス(19)の可動部をなすように、棒状部分(17)の中腹部には電気良導性を有する黄銅が配設されている。この黄銅部を囲繞し、該黄銅部の上下動によって誘導起電力が生じて前記第2差動トランス(19)のコイル部をなすように構成されるコイル(20)が、前記下部ケーシング(16)内の所定位置に配設されている。   A pressing member (14) is connected to the lower end of the coil spring (10) via the connecting portion (15). This pressing member (14) is in the same direction as the moving direction of the movable member (5) in the lower casing (16) due to the stress and restoring force from the coil spring (10) and the measurement target part (2). In addition, you can exercise freely. This lower casing (16) is detachably joined to the upper casing (7) and fixed, and the coil spring (10) disposed inside is removed and replaced with a desired one. It has come to be able to do. The pressing member (14) contacts the rod-like portion (17) extending in the movement direction, the connecting portion (15) provided at the upper end, and the measurement target portion (2) provided at the lower end. And a contact portion (18) projecting downward in a substantially hemispherical shape. Further, the pressing member (14) is provided with brass having electric conductivity at the middle part of the rod-like part (17) so as to form a movable part of the second differential transformer (19). A coil (20) configured to surround the brass portion and generate an induced electromotive force due to vertical movement of the brass portion to form a coil portion of the second differential transformer (19) includes the lower casing (16). ) In a predetermined position.

可動部材(5)の変位を検出するための上部ケーシング(7)内に配設された第1差動トランス(12)[ノーブル産業株式会社製]と、押接部材(14)の変位を検出するための下部ケーシング(16)内に配設された第2差動トランス(19)[ノーブル産業株式会社製]のそれぞれから出力された変位情報を含む信号は、A/D変換インターフェースと増幅回路とを備えた中継器(21)を介して、それらの信号を処理するための所定の演算処理プログラムを備えた記憶装置、演算処理装置及び演算処理結果を出力するための出力装置とからなるコンピューター(22)に接続されている。   The first differential transformer (12) [made by Noble Sangyo Co., Ltd.] disposed in the upper casing (7) for detecting the displacement of the movable member (5) and the displacement of the pressing member (14) are detected. A signal including displacement information output from each of the second differential transformers (19) [manufactured by Noble Sangyo Co., Ltd.] disposed in the lower casing (16) for performing an A / D conversion interface and an amplifier circuit A computer comprising a storage device having a predetermined arithmetic processing program for processing these signals, an arithmetic processing device, and an output device for outputting arithmetic processing results via a repeater (21) provided with Connected to (22).

上記説明の測定装置(1)を用いて、3つの硬度のエラストマー試料の粘弾性特性をそれぞれ調べた。その結果を図3に示す。図3に示す3つのグラフは、それぞれ左から硬い試料の測定結果、中硬度の試料の測定結果、柔らかい試料の測定結果を示したものであり、それぞれ横軸にエラストマーの変位x〔mm〕、縦軸に加えた力f〔mN〕をとってある。もちろん変位xは、測定の間、常時測定対象部位(2)に当接させて該測定対象部位(2)と共に変位するように構成された押接部材(14)の変位を近似的に測定対象部位(2)の変位xとみなしている。また加えた力fは、f=k(y−x)で与えられるものである。ここに、kは弾性体として用いられる前記コイルスプリング(10)のバネ定数であり、yは可動部材(5)の変位であり、yとxはそれぞれ前記第1差動トランス(12)と第2差動トランス(19)によって計測される量である。第2図は、第1差動トランス(12)と第2差動トランス(19)によって計測された波形yとxの一例を示している。   Using the measuring apparatus (1) described above, the viscoelastic properties of the three hardness samples were examined. The result is shown in FIG. The three graphs shown in FIG. 3 show the measurement result of the hard sample, the measurement result of the medium hardness sample, and the measurement result of the soft sample from the left, respectively, and the horizontal axis represents the displacement of the elastomer x [mm], The force f [mN] applied to the vertical axis is taken. Of course, the displacement x is an approximate measurement target of the displacement of the pressing member (14) configured to be in contact with the measurement target part (2) and displaced together with the measurement target part (2) during measurement. It is regarded as the displacement x of the part (2). The applied force f is given by f = k (y−x). Here, k is a spring constant of the coil spring (10) used as an elastic body, y is a displacement of the movable member (5), and y and x are the first differential transformer (12) and the first one, respectively. This is the quantity measured by the two differential transformers (19). FIG. 2 shows an example of waveforms y and x measured by the first differential transformer (12) and the second differential transformer (19).

図3に示すように、3つの試料の測定結果は、それぞれ皆f/x平面状において、押し込み時と復元時の経路が異なってヒステリシスを示し、硬い試料程その立ち上がりの傾きが大きく、ヒステリシスの口の広さが狭いという傾向を示すという結果が得られている。   As shown in FIG. 3, the measurement results of the three samples all show hysteresis with different paths at the time of pushing and restoration in the f / x plane, and the rising slope of the harder sample is larger. The result shows that the mouth is narrow.

図4のグラフから、官能検査エキスパートによる評価とエラストマー試料の弾性率とは、高い相関性(0.94)を示し、当該発明の測定装置(1)による粘弾性特性の測定結果と、手や指による触診による結果とが高度に一致することが判明した。   From the graph of FIG. 4, the evaluation by the sensory test expert and the elastic modulus of the elastomer sample show a high correlation (0.94), and the measurement result of the viscoelastic property by the measuring device (1) of the invention, It was found that the result of palpation with fingers was highly consistent.

本実施例の粘弾性特性の測定装置の全体的な構成を示す概念図The conceptual diagram which shows the whole structure of the measuring apparatus of the viscoelastic property of a present Example. 第1、第2差動トランスの波形一例を示すグラフA graph showing an example of waveforms of the first and second differential transformers 実施例の測定装置による3段階の硬度のエラストマー試料を測定した結果を示すグラフThe graph which shows the result of having measured the elastomer sample of 3 steps | paragraphs of hardness with the measuring apparatus of an Example 図3に示す計測値と、官能検査の専門家による硬さ評価の結果との相関性を示すグラフThe graph which shows the correlation with the measured value shown in FIG. 3, and the result of the hardness evaluation by the expert of a sensory test

符号の説明Explanation of symbols

1 当該発明の測定装置
2 測定対象部位
3 探測系
4 信号処理系
5 可動部材
6 クランク機構
7 上部ケーシング
8 棒状部分
9 連結部
10 コイルスプリング
11 連結部
12 第1差動トランス
13 コイル
14 押接部材
15 連結部
16 下部ケーシング
17 棒状部分
18 触接部
19 第2差動トランス
20 コイル
21 中継器
22 コンピューター
DESCRIPTION OF SYMBOLS 1 Measuring apparatus of the said invention 2 Measurement object part 3 Search system 4 Signal processing system 5 Movable member 6 Crank mechanism 7 Upper casing 8 Rod-like part 9 Connection part
10 Coil spring
11 Connecting part
12 First differential transformer
13 coils
14 Pushing member
15 Connecting part
16 Lower casing
17 Bar-shaped part
18 Contact part
19 Second differential transformer
20 coils
21 Repeater
22 Computer

Claims (8)

微弱な付勢力で加重して測定対象部位を応力変形させつつ、該測定対象部位の変位を測定すると共に、前記付勢力を生じせしめる外力を伝達するための部材の変位を測定し、これら両変位の測定結果によって測定対象部位の力学的性質を得ることを特徴とする粘弾性特性の測定方法。   While measuring the displacement of the measurement target part by applying stress with a weak biasing force and measuring the displacement of the measurement target part, the displacement of the member for transmitting the external force that generates the biasing force is measured. A method for measuring viscoelastic characteristics, wherein the mechanical properties of a measurement target part are obtained from the measurement results of the above. 少なくとも、測定対象部位に当接させながら加重し、この加重方向と略平行して移動自在に構成される押接部材と、この押接部材に弾力的に加重するための弾性体と、この弾性体に外部からの加重を伝えるための、前記加重方向と略平行して移動自在に構成される可動部材と、この可動部材の運動を検出するための検出手段と、前記押接部材の運動を検出するための検出手段とを備え、前記押接部材と可動部材とが、前記弾性体を介して連結され、可動部材に対し、外部から押接部材向きに、加重して変位させ、該可動部材と弾性体とを介して伝達される加重によって押接部材が変位して該押接部材を当接させつつ測定対象部位に加重を付与するように構成され、この際の一連の可動部材の運動と、押接部材の応答運動を計測することによって測定対象部位の粘弾性特性を測定するようにしたことを特徴とする粘弾性特性の測定装置。   At least a pressing member configured to be applied while being brought into contact with a measurement target portion and movable in parallel with the weighting direction, an elastic body for elastically loading the pressing member, and the elasticity A movable member configured to be movable substantially parallel to the weighting direction for transmitting a weight from the outside to the body; a detecting means for detecting a movement of the movable member; and a movement of the pressing member. Detecting means for detecting, wherein the pressing member and the movable member are connected via the elastic body, and are displaced by being applied to the movable member from the outside in the direction of the pressing member. The pressing member is displaced by the load transmitted through the member and the elastic body, and is configured to apply a weight to the measurement target portion while contacting the pressing member. By measuring the motion and the response motion of the pressing member. Measuring device viscoelastic properties, characterized in that the the to measure the viscoelastic properties of the measurement target site. 可動部材を往復運動させるための往復運動発生手段を備えることを特徴とする請求項2に記載の粘弾性特性の測定装置。   The viscoelastic characteristic measuring device according to claim 2, further comprising reciprocating motion generating means for reciprocating the movable member. 弾性体が、測定対象部位を応力変形させたとき元の状態に戻ろうとする復元力よりも小さな負荷で応力変形させることができるコイルスプリングであることを特徴とする請求項2又は3に記載の粘弾性特性の測定装置。   4. The coil spring according to claim 2, wherein the elastic body is a coil spring that can be subjected to stress deformation with a load smaller than a restoring force for returning to the original state when the measurement target portion is subjected to stress deformation. Measuring device for viscoelastic properties. 検出手段が、可動部材及び押接部材に少なくとも電導性を有する電導体部分を設け、これらの電導体部分の移動範囲の周辺それぞれにコイルが配置され、可動部材又は押接部材の変位によって、該コイルに誘導起電力が生じるように構成されていることを特徴とする請求項2乃至4のいずれかに記載の粘弾性特性の測定装置。   The detection means includes at least a conductive portion having electrical conductivity on the movable member and the pressing member, and a coil is disposed around each of the movement ranges of these conductive portions. 5. The viscoelastic characteristic measuring device according to claim 2, wherein an induced electromotive force is generated in the coil. 少なくとも、二つの差動トランスを有し、これらの可動部どうしが、弾性体を介してそれらの可動方向に直列的に連結され、一方の可動部の先端を測定対象部位に当接させつつ、他方の可動部に対して外力を加えて変位させると共に、この変位による負荷を受けた前記弾性体の弾性力によって、前記測定対象部位に当接された側の可動部を測定対象部位の抗力を受けさせつつ変位させ、これら両変位情報をそれぞれの差動トランスから得ることによって、測定対象部位の粘弾性特性を調べるように構成されることを特徴とする請求項2乃至5のいずれかに記載の粘弾性特性の測定装置。   At least two differential transformers, these movable parts are connected in series in their movable direction via an elastic body, while the tip of one movable part is in contact with the measurement target site, The other movable part is displaced by applying an external force, and the elastic part of the elastic body that receives a load due to the displacement causes the movable part on the side in contact with the measurement target part to have a drag of the measurement target part. 6. The apparatus according to any one of claims 2 to 5, wherein the viscoelastic characteristic of the measurement target part is examined by obtaining the displacement information obtained from each differential transformer. Measuring device for viscoelastic properties. 検出手段からの出力信号を受ける信号処理装置を備えることを特徴とする請求項2乃至6のいずれかに記載の粘弾性特性の測定装置。   7. The viscoelastic characteristic measuring device according to claim 2, further comprising a signal processing device that receives an output signal from the detecting means. 弾性体が、この弾性体の伸縮方向に加える力が0.03ニュートン以下の負荷でも伸縮させ得るコイルスプリングで、測定対象部位が人の皮膚であることを特徴とする請求項2乃至7のいずれかに記載の粘弾性特性の測定装置。
The elastic body is a coil spring that can be expanded and contracted even when a load applied in the expansion and contraction direction of the elastic body is 0.03 Newton or less, and the measurement target site is human skin. An apparatus for measuring viscoelastic properties according to claim 1.
JP2005204985A 2005-07-13 2005-07-13 Measuring method and instrument for viscoelastic characteristics Pending JP2007024606A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005204985A JP2007024606A (en) 2005-07-13 2005-07-13 Measuring method and instrument for viscoelastic characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005204985A JP2007024606A (en) 2005-07-13 2005-07-13 Measuring method and instrument for viscoelastic characteristics

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007008567U Continuation JP3138898U (en) 2007-11-06 2007-11-06 Measuring device for viscoelastic properties

Publications (1)

Publication Number Publication Date
JP2007024606A true JP2007024606A (en) 2007-02-01

Family

ID=37785577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005204985A Pending JP2007024606A (en) 2005-07-13 2005-07-13 Measuring method and instrument for viscoelastic characteristics

Country Status (1)

Country Link
JP (1) JP2007024606A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101488103B1 (en) 2013-10-01 2015-01-29 한국해양과학기술원 Measurement Device for Elastic Modulus of Model Ice
JP2017221543A (en) * 2016-06-17 2017-12-21 学校法人早稲田大学 Intra-tissue fat detection system, intra-tissue fat measuring device, and program
JPWO2016208253A1 (en) * 2015-06-25 2018-04-19 マクセル株式会社 Hardness tester
JP2019174259A (en) * 2018-03-28 2019-10-10 学校法人立命館 Viscoelasticity measurement device and viscoelasticity measurement method
JP2020515814A (en) * 2016-12-30 2020-05-28 ペリメトリクス, エル エル シーPerimetrics, Llc System and method for determining structural features of an object
CN113974563A (en) * 2016-12-19 2022-01-28 麦克赛尔株式会社 Hardness meter and hardness measuring method
JP2022088499A (en) * 2021-01-21 2022-06-14 マクセル株式会社 Hardness meter and hardness measurement method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101488103B1 (en) 2013-10-01 2015-01-29 한국해양과학기술원 Measurement Device for Elastic Modulus of Model Ice
JPWO2016208253A1 (en) * 2015-06-25 2018-04-19 マクセル株式会社 Hardness tester
JP2019207237A (en) * 2015-06-25 2019-12-05 マクセル株式会社 Hardness tester
CN111198142A (en) * 2015-06-25 2020-05-26 麦克赛尔株式会社 Hardness meter
CN111198142B (en) * 2015-06-25 2023-02-10 麦克赛尔株式会社 Hardness meter
JP2017221543A (en) * 2016-06-17 2017-12-21 学校法人早稲田大学 Intra-tissue fat detection system, intra-tissue fat measuring device, and program
CN113974563A (en) * 2016-12-19 2022-01-28 麦克赛尔株式会社 Hardness meter and hardness measuring method
JP2020515814A (en) * 2016-12-30 2020-05-28 ペリメトリクス, エル エル シーPerimetrics, Llc System and method for determining structural features of an object
JP7148520B2 (en) 2016-12-30 2022-10-05 ペリメトリクス,インク. Systems and methods for determining structural features of objects
JP2019174259A (en) * 2018-03-28 2019-10-10 学校法人立命館 Viscoelasticity measurement device and viscoelasticity measurement method
JP2022088499A (en) * 2021-01-21 2022-06-14 マクセル株式会社 Hardness meter and hardness measurement method
JP7219361B2 (en) 2021-01-21 2023-02-07 マクセル株式会社 Hardness tester and hardness measurement method

Similar Documents

Publication Publication Date Title
Menciassi et al. Force sensing microinstrument for measuring tissue properties and pulse in microsurgery
Zhang et al. A tactile sensor for measuring hardness of soft tissue with applications to minimally invasive surgery
JP2007024606A (en) Measuring method and instrument for viscoelastic characteristics
Brunetto et al. A resonant vibrating tactile probe for biomedical applications based on IPMC
US11678837B2 (en) Hardness meter and hardness measuring method for estimating target object having hardness estimation portion that estimates hardness of measurement object based
EP3383251B1 (en) Fetal position monitoring system and method
Chuang et al. Piezoelectric tactile sensor for submucosal tumor detection in endoscopy
JP2012135679A (en) Method for operating ultrasonic diagnostic apparatus and ultrasonic diagnostic apparatus
Konstantinova et al. Force and proximity fingertip sensor to enhance grasping perception
JP2004085548A (en) Instrument for measuring mechanical characteristics on surface of viscoelastic body
JP4517149B2 (en) Hardness measuring instrument, hardness measuring apparatus, and hardness evaluation method
JP3138898U (en) Measuring device for viscoelastic properties
EP1633248A1 (en) Tactile sensor assembly
JP2012526970A (en) A method to characterize the feel of the surface
JP5787286B2 (en) Ultrasound biological tissue measuring device
JP6971130B2 (en) Tactile measuring device
JP2019032239A (en) Fingertip contact state measurement device
CN114670224B (en) Fingertip touch information acquisition device
KR101781897B1 (en) Bone mineral density measurement method using phalanges
El-Bab et al. Tactile sensor for compliance detection
KR100589200B1 (en) Apparatus for contact surface examination using polyvinylidene fluoride sensor and method for restoring signals for properties of surface
JP4747300B2 (en) Acoustic impedance measurement method, acoustic impedance measurement device, object characteristic evaluation method, and object characteristic evaluation device
JP5354599B2 (en) Tissue hardness evaluation device
JP5247762B2 (en) Tactile sensing method
JP5305383B2 (en) Finger joint position estimation device and finger joint position estimation method