JP2007024028A - Load bellows type, rotating rod type, and insertion type prime mover - Google Patents

Load bellows type, rotating rod type, and insertion type prime mover Download PDF

Info

Publication number
JP2007024028A
JP2007024028A JP2005254072A JP2005254072A JP2007024028A JP 2007024028 A JP2007024028 A JP 2007024028A JP 2005254072 A JP2005254072 A JP 2005254072A JP 2005254072 A JP2005254072 A JP 2005254072A JP 2007024028 A JP2007024028 A JP 2007024028A
Authority
JP
Japan
Prior art keywords
bellows
load
energy
vehicle
prime mover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005254072A
Other languages
Japanese (ja)
Inventor
Norio Kadoma
教雄 門間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005254072A priority Critical patent/JP2007024028A/en
Publication of JP2007024028A publication Critical patent/JP2007024028A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a low pollution, resources-saving prime mover by solving a problem in a conventional prime mover wherein resources such as fossil fuel is reduced and carbon dioxide gas is discharged. <P>SOLUTION: The wheel of a loaded vehicle 1 on which a load is mounted is abutted on a bellows or a bellows of the upper end of a rotating rod (piston: connecting rod): rotating rod top board (head) 7 and a bellows: rotating rod is pushed down. When it is pushed down, the loaded vehicle is run by a conventional prime mover to move from the top board to a next top board for releasing pressure. At the same time, the bellows: rotating rod top board is pushed up mainly by a compression spring to restore it to the position of the head. There are two ways to rotate the rotating rod and compress and extend the bellows. One is to push down the bellows by the loaded vehicle to discharge and jet the mixture of water, oils, and air (gas-water) to rotate a wheel through a discharge tube: nozzle so as to drive a generator for generating power: electricity. The gas-water is recirculated to the bellows through the discharge tube: tank and the suction pipe: tank by the rise of the top board by the spring. Second is a method of providing a rotating force by vertically moving the rotating rod by the loaded vehicle and the spring. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は重力(重量物:荷重)を力源(エネルギー源)として原動機(エンジン)を駆動するものである。本発明は原動機:発電機やその他の動力源として汎用できます。  The present invention drives a prime mover (engine) using gravity (heavy object: load) as a force source (energy source). The present invention can be used as a prime mover: generator or other power source.

従来の原動機(エンジン)或いはボイラー(以下従来原動機等という)の大部分は石油等化石燃料やプルトニュウム等放射性物質を燃焼させて駆動している。
特開2002−147341号公報 特開2002−039052号公報 特開2001−227452号公報 特開平10−018959号公報 特開2005−030372号公報 特開平8−303340号公報 特開2004−274984号公報 特開2004−320971号公報 特開2003−028047号公報 特開2000−110706号公報 特開平10−089236号公報 上記11件は重力を利用するエンジンについて記載しております。この他の公開公報にも重力利用についての記載がある。 エネルギー.資源ハンドブック 1997年9月 出版 エネルギー・資源学会 編 オーム社 エネルギー科学大辞典 1983年7月 出版 講談社出版研究所 編 講談社 上記の非特許文献は新エネルギー:近未来エネルギーについても記載しておりますが、重力(荷重)をエネルギー源とした案件の記述はない。
Most of the conventional prime movers (engines) or boilers (hereinafter referred to as conventional prime movers) are driven by burning fossil fuels such as petroleum or radioactive materials such as plutonium.
JP 2002-147341 JP JP 2002-039052 JP JP 2001-227451 JP JP 10-018959 JP JP 2005-030372 JP JP 8-303340 JP JP 2004-274984 A Special JP 2004-320971 A JP 2003-028047 A JP 2000-110706 A JP 10-089236 A The above 11 cases are about engines that use gravity. There is also a description about the use of gravity in other publications. energy. Resource Handbook September 1997 Published by Japan Society of Energy and Resources Ohmsha Encyclopedia of Energy Science July 1983 Published by Kodansha Publishing Research Institute Kodansha The above non-patent literature also describes new energy: near-future energy, but there is no description of projects using gravity (load) as an energy source.

従来原動機等は化石燃料等の資源を減少させ炭酸ガス等を排出させている。  Conventional prime movers have reduced resources such as fossil fuels and discharged carbon dioxide.

本発明は低公害省資源型の原動機を実現提供することを目的とする。この目的を達成するために、自然界に存在する重力を根源とする重量物(荷重)を動力源(エネルギー源)として荷重車:回桿:蛇腹:水車等を駆動させエネルギーを得る方法である。本発明原動機の種類は荷重回桿式と荷重蛇腹式及び重力荷重利用ではないですが挿入式原動機がある。  An object of the present invention is to realize and provide a low-pollution resource-saving prime mover. In order to achieve this object, a heavy load (load) based on gravity existing in the natural world is used as a power source (energy source) to drive a load wheel: rotator: bellows: water wheel, etc. to obtain energy. The type of the prime mover of the present invention is not a load winding type, a load bellows type, or a gravity load, but there is an insertion type prime mover.

荷重(回桿)式原動機の駆動方法は、概述すれば従来の自動車船舶航空機等の原動機における燃焼機関系統を取り除いた状態の駆動系統機関(システム)を荷重によって駆動させる方法である。  The driving method of the load (rotating) type prime mover is generally a method of driving a drive system engine (system) in a state where a combustion engine system in a prime mover such as a conventional automobile marine aircraft is removed with a load.

その方法は、荷重車の底部に車輪:ローラーを装着し、この車輪等をピストン=回桿の頭部(ヘッド)に接触させて回桿を押し下げ(下降工程)、下げ終わる(動作底位)と同時に荷重車を従来原動機で運転走行して当該ヘッドから次のヘッドに移動させて、圧力を解放しながらバネ(主に圧縮バネ)とピストンの復半回転慣性を以って回桿(ピストン)ヘットを押し上げ(上昇工程)、ヘッドを押し下げ前の位置(動作頭位)に回復させる。この回桿の上下往復運動を以ってクランク等を介して回転軸(プロペラシャフト)を回転させ、エネルギーを得る方式です。  The method is to install a wheel: roller at the bottom of the load car, bring the wheel, etc. into contact with the piston = head of the rotating wheel, lower the rotating wheel (lowering process), and finish lowering (operating bottom position). At the same time, the load vehicle is driven by the conventional prime mover and moved from the head to the next head, releasing the pressure and rotating with the spring (mainly compression spring) and the half-rotation inertia of the piston. ) The head is pushed up (ascending process), and the head is restored to the position before pushing down (the operating head position). This is a method of obtaining energy by rotating the rotating shaft (propeller shaft) through a crank etc. with the reciprocating motion of the rotating shaft.

この方法によって発生するエネルギーの量が、荷重車運転エネルギー量よりも大きい場合はその差の分が利用できるエネルギー量(エクセルギー)である。    When the amount of energy generated by this method is larger than the load vehicle driving energy amount, the difference amount is the available energy amount (exergy).

荷重蛇腹式原動機の動作工程
重力由来の荷重をエネルギー源として原動機を駆動させる方法として、上記(A)のように直接荷重とバネで回桿(以下ピストンと言う場合がある)9を上下駆動する方式とは別に、蛇腹(ベローズ)に気水を入れ、この蛇腹を従来原動機で運転走行する荷重車1で押し下げ圧縮(押下噴出工程、押下噴出工程の終点は動作底位)し、蛇腹中の気水をその先に取り付けた噴出筒21から急速に噴出(噴出工程)させ、水車(タービン等)を回転させて動力を得る方法です。荷重車の車輪と車輪との間には常時動作頭位状態にある蛇腹が1個(台〕在置するように間隔をとっておき、荷重車が次の蛇腹に移動すると動作低位にあった蛇腹は荷重車の圧力から解放されバネ10によって元の形状に復する(押上吸入工程、この工程の終点は動作頭位)方式であり、この押上吸入工程の時に蛇腹の一端に噴出筒とは別に装着してある吸入口20:25から噴出工程で所定の貯留槽22に排出された気水を還流させて再び吸入する。気水は配列した蛇腹(ピストン)が荷重車の通過に伴い順次圧縮されると同時に貯留槽17.18.19.22にも常時圧力が加わり常時連続して気水を噴出することができる。複数の蛇腹を円周状に配列し荷重車の通過に伴い、車輪が乗った蛇腹は圧縮され車輪と車輪との間にある蛇腹はバネで原状復帰する動作が連続して繰り返され気水の噴射と吸入が続き水車を連続回転させることになります。水車を連続回転させることにより当該水車と同軸の発電機を回転させて発電します。
Operation process of load bellows type prime mover As a method of driving the prime mover by using a load derived from gravity as an energy source, a rotary (hereinafter sometimes referred to as a piston) 9 is driven up and down by a direct load and a spring as in (A) above. Separately from the system, air is poured into the bellows, and the bellows is compressed with a load wheel 1 that is driven by a conventional prime mover (the end of the press-down jet process and the end of the press-down jet process is the bottom of the operation). This is a method of obtaining power by rapidly ejecting air (jet process) from a jet cylinder 21 attached to the tip of the air and rotating a turbine (turbine, etc.). There is a space between the wheels of the load car so that there is one bellows that is always in the head position, and when the load car moves to the next bellows, It is a system that is released from the pressure of the load wheel and restored to its original shape by the spring 10 (push-up suction process, the end point of this process is the head position), and is attached to one end of the bellows separately from the jet cylinder during this push-up suction process Then, the air and water discharged from the suction port 20:25 to the predetermined storage tank 22 are recirculated and sucked again.The air and water are sequentially compressed as the arranged bellows (piston) pass through the load vehicle. At the same time, pressure is constantly applied to the storage tank 17.18.19.22 and air can be continuously spouted out. The bellows that I got on was compressed and the bellows between the wheels The operation of returning to the original state is repeated continuously, and the injection and suction of steam continues, causing the water turbine to rotate continuously.By continuously rotating the water wheel, the turbine and the coaxial generator are rotated to generate electricity. The

回桿:蛇腹:バネ:貯水槽等原動機が一体となって駆動するための部品を内包保持する容器を包容器という。内包容器は荷重車の重量や走行揺れ:振動:上下動等に十分に耐え、振動:共振等から防護し回桿:蛇腹の駆動が正常に作動できる材質構造とする。    Reinforcement: Bellows: Spring: A container such as a water storage tank that holds and holds parts for driving the motor as a unit is called a packaging container. The inner container is made of a material structure that can sufficiently withstand the weight of the load car and running vibration: vibration: up and down movement, etc., protect from vibration: resonance, etc., and rotate: drive the bellows normally.

荷重車はガソリン:軽油等を使用する従来原動機で駆動走行させる。この従来原動機は対象となる荷重車を所定の速度で移動させるための出力(荷重車運転エネルギー量)が必要ですが、アネルギーを少なくするためには車輪と蛇腹:回桿(ピストン)天板との乗移角度位置取りや車輪間隔:バネの強度の極め方等又重量:車速等全体の調和を勘案の上最大のエネルギーを発生させながら最小限の運転エネルギーで走行することが求められる。  The load car is driven by a conventional prime mover that uses gasoline or light oil. This conventional prime mover requires an output (loading vehicle operation energy amount) to move the target load vehicle at a predetermined speed, but in order to reduce anergy, wheels and bellows: a piston (top) It is required to travel with the minimum operating energy while generating the maximum energy in consideration of the overall harmony of the weight, the vehicle speed, etc.

*直接車輪方式(道路方式)
荷重車の底部(腹の部分)に車輪を装着し請求項の原動機(エンジン)のピストン:蛇腹回桿の上端平面部(ピストン天板)にこの車輪を直接接触して荷重の重量を伝えながら移動走行させる方法〜添付図面はこの方式です。
*軌道ローラー方式(応用としてモノレール方式:ロープウエイ方式がある)
電車のように荷重車の架台(支持躯体)に平行軌道を取り付け、蛇腹:回桿を軌道間に埋設し、荷重車の底部(腹の部分)に車輪(ローラー)を装着し当該台車を軌道上に走運しピストン:蛇腹回桿を順次連続圧縮:伸張駆動する方式
* Direct wheel system (road system)
The wheel is attached to the bottom (belly part) of the load car and the piston of the motor (engine) in the claim: while the wheel is in direct contact with the upper flat part (piston top plate) of the bellows rotator, the weight of the load is conveyed. This is the method of moving and traveling.
* Rolling roller system (Applications include monorail system: ropeway system)
A parallel track is attached to the platform (supporting frame) of the load car like a train, and the bellows: the rotator is buried between the tracks, and the wheel (roller) is attached to the bottom (belly part) of the load vehicle to track the cart. Piston: Continuously compressing bellows revolving coil: Extending drive system

荷重車の走行方法
*自走式=荷重車に従来原動機を直接装着して駆動走行させる方式
*鋼索(ロープ)牽引式=従来原動機を1ケ所に設置してドラムを回転させ、荷重車を鋼索に繋いで牽引走行させる方式
*時計方式=時計の針状の回転棒に荷重車を装着して、時計の中心部に当る位置で従来原動機をもって歯車等により回転棒を回転させる方式
Traveling method of a load vehicle * Self-propelled type = A method of driving with a conventional prime mover directly attached to a load vehicle * Rope pulling type = A conventional prime mover is installed in one place, the drum is rotated, and the load vehicle is searched * Clock method = A method in which a load wheel is attached to the needle-shaped rotating rod of the watch, and the rotating rod is rotated by a gear or the like with a conventional motor at a position where it hits the center of the watch.

車輪配置
荷重車に車輪:ローラーを前輪と後輪のように複数装着すること。車輪と車輪との間に未駆動(動作頭位状態)のピストン蛇腹:回桿が1個以上在置し且つ車輪と車輪とが接触しないように一定の間隔(車輪間距離)を空けて車輪を配置装着することを車輪配置という。例えば直径1mの蛇腹のときは1m置きに蛇腹:回桿を配置し車輪間隔は間に未駆動の蛇腹:回桿が1台入るように前の車輪と後ろの車輪との間隔は3m(内1mは未駆動蛇腹分)になる。この平板間隔(前蛇腹と後蛇腹との間隔)と車輪間隔との組合のことを平板車輪間隔という。
Wheel placement Wheels on load vehicles: Mount multiple rollers like front and rear wheels. Non-driven (operating head position) piston bellows between wheels: Wheels with a certain distance (distance between wheels) so that there is at least one reed and no contact between wheels It is called wheel arrangement to install. For example, when the bellows has a diameter of 1 m, the bellows: rotator is arranged every 1 m, and the distance between the wheels is not driven. 1 m is an undriven bellows). A combination of the flat plate interval (the interval between the front bellows and the rear bellows) and the wheel interval is referred to as a flat plate wheel interval.

荷重車(車輪或いはローラーを含む)の重量は蛇腹:回桿が上下往復運動する際の往工程(下降圧縮工程)の時に当該蛇腹:回桿とバネを瞬同時に押し下げクランクを回転させ或いは蛇腹内部の気水を噴出させるための十分な重量を有していることが必要である。  The weight of the load car (including wheels or rollers) is bellows: during the forward process (downward compression process) when the revolving up and down reciprocating (the downward compression process), the relevant bellows: It is necessary to have a sufficient weight for ejecting the air and water.

内包容器を固着内包装備するための架台を支持躯体(29:30:33のABCのこと)という。支持躯体には荷重車:車輪:ローラー:蛇腹:回桿:バネ:排出管:吸入管:気水貯留槽:水車:各種支持板:発電機を積載し軌道を固着内包する(この荷重車等一連の部品と発電機を組み立てた段階、〜荷重車を運転し動力発生:発電ができる状態〜この状態を荷重原動機可動機体とそれを連結した状態を可動機体連という))。支持躯体の設計においては、各部品夫々の重量に耐え且つ各種の振動共鳴共振等を防止或いは吸収減少できる構造で、かつ風雨高温低温騒音異臭等を遮断もしくは減少できるとともに、荷重車を走行させるガソリンエンジン等の排気ガス排煙等を収集するダクト及び浄化装置を設置する。又日常点検メンテナンス磨耗部品交換故障修理等が容易にできるようなスペース等と遠隔操縦運転制御等用の機器を内包する。荷重車は蛇腹:回桿等の連続押下打撃とバネによる連続押上衝撃を受け激しく上下動しながら高速走行するので、この上下動が蛇腹:回桿の往復工程距離の正常範囲を超えないように各部品間の寸法を調整する。荷重車の走行時に左右上下のブレを抑え進行方向をガイドするために原動機容器の高さと荷重車の高さを見込んで、支持躯体の天井下面に衝撃吸収用の緩衝材(天井緩衝装置)で出来たガイド用の溝(天井緩衝装置ガイドという)を設置する。荷重車の天井上面には車輪(天井車輪という)を装着してスムーズな走行を容易にする。天端車輪は荷重車がハネ上がった時に天井緩衝装置ガイドに接触しながら走行方向等を矯正:衝撃吸収する。  A frame for mounting the inner container to the fixed inner container is called a support housing (29:30:33 ABC). Loaded vehicle: wheels: rollers: bellows: revolving: springs: discharge pipes: suction pipes: air-water storage tanks: waterwheels: various support plates: a generator is mounted and the track is fixed and contained (this load car, etc.) A stage where a series of parts and a generator are assembled, driving a load vehicle to generate power: a state where power can be generated, and this state is called a load prime mover movable body and a state where it is connected to a movable body linkage))). In the design of the support housing, it has a structure that can withstand the weight of each part, prevent or reduce various vibration resonance resonances, etc., and can block or reduce wind, rain, high temperature, low temperature noise, odor, etc. Install ducts and purifiers to collect exhaust fumes from engines. In addition, it includes a space that facilitates daily inspection maintenance wear parts replacement failure repair, etc. and equipment for remote control operation control and the like. The load car is continuously struck by a bellows, such as a winding bellows, and continuously pushed up by a spring, and it moves at a high speed while moving up and down violently, so that this vertical movement does not exceed the normal range of the reciprocating process distance of the bellows Adjust the dimensions between each part. In order to suppress the left / right / up / down movements and guide the direction of travel when the load vehicle is running, expect the height of the prime mover vessel and the height of the load vehicle, and use a shock absorbing material (ceiling shock absorber) on the lower surface of the ceiling of the support housing. Install the guide groove (called ceiling shock absorber guide). Wheels (referred to as ceiling wheels) are attached to the top surface of the load car to facilitate smooth running. The top wheel corrects the traveling direction and the like while absorbing the impact while contacting the ceiling shock absorber guide when the load car lifts.

ピストン=蛇腹:回桿が上下往復運動する距離(往復工程距離=運動量)は、直接車輪方式:軌道ローラー方式共車輪:ローラーの半径以内とすることが妥当である。これは回転走行する車輪が蛇腹:回桿から次の蛇腹:回桿へ移乗し易くするためであり、従来エンジンの消費エネルギーを節約することにもなります。車輪半径の60%〜80%の距離以内で蛇腹:回桿の運動量が完了するように設計する。この運動量は荷重の重量:蛇腹の直径×高さと共に重要な要素です。  Piston = bellows: The distance that the rotator reciprocates up and down (reciprocating process distance = momentum) is appropriate to be within the radius of the direct wheel system: track roller system and wheel: roller. This is to make it easier for the rotating wheels to transfer from the bellows: next to the next bellows: to save the energy consumed by the conventional engine. Designed to complete the momentum of the bellows: revolving within a distance of 60% to 80% of the wheel radius. This momentum is an important factor with the weight of the load: the bellows diameter x height.

バネは荷重の重量に容易に圧縮しやすく荷重圧力の解放後は瞬間的に伸張し、しかも気水を吸入しながら蛇腹:回桿を瞬時に元の位置(動作頭位)に復帰させる高速往復運動を繰り返す過酷な条件下で、荷重車の運転が始まれば365日46時中1年以上できるだけ長期間の連続運転が望ましいので強靭な材質強度を有していること、性能維持保守修理交換等が容易にできること。  The spring easily compresses to the weight of the load, and after releasing the load pressure, it expands instantaneously, and while inhaling air, bellows: high-speed reciprocation that instantly returns the rotator to its original position (head position) If the operation of the load vehicle starts under severe conditions that repeat the movement, it is desirable to operate continuously for as long as 1 year at 46 o'clock on 365 days, so it should have strong material strength, performance maintenance maintenance repair replacement, etc. Can be done easily.

車輪或いはローラーは硬質ゴム:強化プラスチック:金属等に摩擦力維持と衝撃騒音振動吸収のためのゴム等を圧着して製作する。形状は原動機の大きさ等に合わせる。  The wheels or rollers are manufactured by pressing rubber or the like for maintaining frictional force and absorbing impact noise and vibration on hard rubber: reinforced plastic: metal or the like. The shape is matched to the size of the prime mover.

可動機体を直線状に配列したものを直線状可動機体連と円周状に配列したものを円周状可動機体連と更に円盤状(土星の輪のように何重にも円周状に原動機列を配列すること)敷き詰め配列したものを円盤状可動機体連と言う。直線状は往復走行のロスがあり非効率的故記述しません。円盤状に敷設する場合は円の中心軸を従来エンジンで回転駆動し、その回転軸には時計針状の腕(牽引軸)を固着し荷重車を牽引周回させて原動機を駆動する。円周状:円盤状に配列する方式は無限軌道(軌道には競輪場のように内側下がり勾配を付ける)を利用するため原動機を連続して駆動することができます。又荷重をより重くし、原動機(ピストン=蛇腹:回桿)を適宜大きく強靭にすることにより、原動機(A)では大きな回転力:原動機(B)では強力な噴射力が得られる。本項の1例として、例えば蛇腹:回桿を10台とか50台とか又2列等複数列円盤状に配列し、この時の蛇腹:回桿天板が縱10cm横30cmの場合は、車輪:ローラーの大きさは該天板との接触全圧部が縦5cm以内に収まる外周となる直径で左右間26cmの車輪(タイヤ):ローラーとし1台の重荷車に車輪間隔を十分にとった何台もの車輪列を取り付けて高速走行させ常時多数の蛇腹:回桿を順次駆動させ、この回転力をカムシャフト等或いは貯留槽等で制御させてエネルギーを取り出すのであります。本蛇腹:回桿原動機荷重車の運転を例えればピアノの鍵盤の上を車輪列が複数ある電車を走らせることに似ております。電車が走行して来て車輪が乗った鍵盤は下がりますが、車輪列と車輪列との間にある鍵盤は動作頭位の状態でおります。一度の走行で車輪列の数だけ鍵盤が下がり、鍵盤の上を車輪:ローラーが通過すれば鍵盤は元の位置に復します。この鍵盤の上下運動が上記ピストン=蛇腹:回桿の運動に似ております。    A series of movable bodies arranged in a straight line with a series of linear movable bodies connected to a circumference, and a series of movable bodies in a circumferential form and a disk shape (smoothly like a Saturn ring. Arrangement of rows) The ones that are laid out are called disk-like movable machine bodies. The straight line has a loss of reciprocal travel and is not described because it is inefficient. When laying in a disk shape, the center axis of the circle is rotationally driven by a conventional engine, and a clock needle-like arm (traction shaft) is fixed to the rotation shaft, and the prime mover is driven to drive the motor. Circumferential: The arrangement in a disk shape uses an endless track (the track has an inner downward slope like a bicycle race track), so the prime mover can be driven continuously. Further, by making the load heavier and making the prime mover (piston = bellows: revolving) appropriately large and strong, the prime mover (A) can obtain a large rotational force: the prime mover (B) has a strong injection force. As an example of this section, for example, when bellows: 10 or 50 halves are arranged in a multi-row disk shape such as 2 rows, the bellows at this time: : The size of the roller is the diameter of the outer circumference where the total pressure part in contact with the top plate is within 5 cm in length and the wheel (tire) is 26 cm between the left and right: The wheel is used as a roller, and the wheel spacing is sufficient for one heavy vehicle A number of wheel trains are attached and run at a high speed. A number of bellows are constantly driven. The rotating force is driven sequentially, and this rotational force is controlled by a camshaft or storage tank to extract energy. This bellows is similar to driving a train with multiple wheel trains on the piano keyboard, for example, when driving a powered car. The keyboard on which the train rides and wheels are lowered, but the keyboard between the wheel trains is in the head position. The keyboard is lowered by the number of wheel trains in one run, and if the wheel: roller passes over the keyboard, the keyboard returns to its original position. The up and down movement of this keyboard is similar to the above piston = bellows: revolving movement.

蛇腹上端の蛇腹:回桿天板における車輪(タイヤ):ローラーが乗架し始める部位はタイヤ:ローラーが乗上移動やすいように若干傾斜をつけて加工する。又車輪と激しく衝突する部位でもあるので硬質ゴム等若干の緩衝材を装着する。    The bellows at the top of the bellows: Wheels (tires) on the revolving top plate: The part where the roller begins to ride is processed with a slight inclination so that the tire: roller can easily move on and off. Also, because it is a part that collides violently with the wheel, a little cushioning material such as hard rubber is attached.

荷重回桿式原動機において持続連続してエネルギー(回転力)を取り出す方法(ピストンクランクシャフトの往復運動をプロペラシャフト(回転軸)に伝達する方法)は、配列された複数の原動機が荷重車の通過順に駆動するので、例えば10個の原動機を1本(原動機毎の回転軸を方向自在連結子で10本とも繋いで1本に連結する=回転軸連)の回転軸連に連結した場合は当該回転軸連の一端1ヶ所に歯車プーリーベルト等を装着すれば、連続して回転力を取り出すこと(エネルギー抽出:力転)ができる。    A method of continuously and continuously extracting energy (rotational force) in a load-rotating prime mover (a method of transmitting the reciprocating motion of the piston crankshaft to the propeller shaft (rotary shaft)) is that multiple arranged prime movers pass through the load vehicle. For example, when 10 prime movers are connected to one rotary shaft linkage (rotary shaft linkage for each prime mover is connected to one with 10 directional connectors), the rotation shaft linkage is If a gear pulley belt or the like is attached to one end of the rotating shaft linkage, the rotational force can be continuously taken out (energy extraction: force rolling).

従来の内燃機関原動機:火力発電:原子力発電等はガソリン等化石燃料:ウラン等を燃焼して駆動するため排気ガス:放射能等有害排出物を排出するが、本発明の原動機は重力で駆動するため、荷重車走行用従来原動機の燃料消費量以上に新たにクリーンエネルギー量を発生するので、資源消費量:公害量を減少する上で有効である。又大型発電機として各工場や砂漠海上山岳地帯寒冷地方等殆どの場所に設置:移動が可能です。    Conventional internal combustion engine prime mover: Thermal power generation: Nuclear power generation etc. is driven by burning fossil fuel such as gasoline: Uranium etc. Exhaust gas: Radiation and other harmful emissions are discharged, but the prime mover of the present invention is driven by gravity Therefore, a new amount of clean energy is generated in excess of the fuel consumption of the conventional motor for driving a load vehicle, which is effective in reducing the amount of resource consumption: pollution. As a large generator, it can be installed and moved in almost every place, such as factories and desert mountainous regions in cold regions.

発明の実施するための最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

図2FIG.

フローチャートを用いて本発明原動機の機関動作順と動力連続抽出方法を説明します。荷重車はその重みで車輪が到着した蛇腹9を押し下げ蛇腹内の気水を排出管:貯留槽を通過させて排出し先端のノズル21から噴射し水車26を回転させ水車と同一軸連結の発電機を駆動して電気を発生させます。この押下工程の時にはその蛇腹の側傍に設置してある圧縮バネ10も同時に圧縮されます。水車を回転させた気水は水車下部の貯留槽22に落下し貯留します。その貯留気水の一部は車輪の通過(荷重からの解放)後バネ10が伸張し蛇腹9が押し上げられるのに伴い蛇腹9に吸入されます。回桿式でも同様で荷重車の車輪の到来:通過によってピストン=回桿が上下運動し、この上下運動がクランク等を介してプロペラシャフトを回転させます。蛇腹:回桿の圧縮(下降):伸張(上昇)運動を連続させ常時安定的に動力(エネルギー)を得るためには複数の蛇腹:回桿を円周状に一定の間隔(蛇腹回桿間隔=低位期にある蛇腹:回桿上の車輪がその前の上昇期にある蛇腹:回桿に到達する間に頭位状態に復帰する時間を稼ぐための間隔=距離)を空けて配列し、車輪と車輪との間に動作頭位状態の蛇腹:回桿1台とその前後に荷重車の沈下を止め平滑な車輪走行を持続させるため動作低位の天板7の上端と同一レベルの高さを持ったストッパー38を夫々1台ずつ配置する)を持って装着された複数の車輪を持つ荷重車を走行させます。この荷重車の駆動走行には従来原動機を使用します。  The order of engine operation and the continuous power extraction method of the motor of the present invention will be explained using a flowchart. The load wheel pushes down the bellows 9 where the wheel has arrived with its weight and discharges the water in the bellows through the discharge pipe: discharges it through the storage tank, sprays it from the nozzle 21 at the tip, rotates the turbine 26 and generates power on the same axis as the turbine. Drive the machine to generate electricity. During this pressing process, the compression spring 10 installed beside the bellows is also compressed at the same time. The water that rotates the water turbine falls into the storage tank 22 at the bottom of the water turbine and is stored. A part of the stored air is sucked into the bellows 9 as the spring 10 extends and the bellows 9 is pushed up after the wheel passes (releases from the load). The same applies to the rotary type. The arrival of the wheel of the load vehicle: The piston = rotary rod moves up and down as it passes, and this vertical movement rotates the propeller shaft via the crank. Bellows: Compression (downward) of the rotator: To obtain continuous power (energy) with continuous extension (upward) motion Multiple bellows: Circumference of the rotator at a constant interval (interval of the accordion) = Bellows in the lower period: the bellows on the recumbent in the previous ascending period: arrayed with an interval) to obtain time to return to the head position while reaching the convolution; The bellows in the head position between the wheels: the same level as the upper end of the top plate 7 at the lower position to prevent the car from sinking and to keep the wheel running smoothly before and after it A load car with multiple wheels mounted with a single stopper 38 with a wheel is run. A conventional prime mover is used to drive the load car.

本発明の可動機体(蛇腹:ピストン4台)を組み立てた状態を横から見た図(断面域付近の部品との接合:組立状態を示すため断面域付近の部品も実線で表示しました。〜図2〜8も同様表示、隠部は透視できたとして実線で表示しました)  The side view of assembled movable body (bellows: 4 pistons) of the present invention (joint with parts near the cross-sectional area: parts near the cross-sectional area are also shown in solid lines to show the assembled state. 2 to 8 are displayed in the same way, and the hidden part is shown as a solid line because it can be seen through) 本発明の実施形態を示すフローチャート〜蛇腹式原動機の動作工程図  Flowchart showing an embodiment of the present invention-operation process diagram of bellows type motor 可動機体連(蛇腹:8台)を円周状に組み立てた状態を上から見た図  A top view of the assembly of movable bodies (8 bellows) assembled circumferentially 〔図3〕のB−BとC−C線断面図  Sectional view taken along line BB and CC in FIG. 〔図3〕のB−B’線断面図  B-B 'sectional view of FIG. 〔図3〕のB−B’線を上から見た図  The figure which looked at the B-B 'line of [FIG. 3] from the top 〔図2〕のA−A線の拡大図  [Figure 2] Enlarged view of line AA 〔図7〕の貯留槽部分の拡大図 参考図 〔参考図 1〕 〔参考図 2〕 〔参考図 3〕 参考資料 1台の蛇腹の直径4m:同高さ2m:運動量1.2m(車輪半径2mの60%相当の距離)荷重車輪1個が1回1台の蛇腹乗架時の気水排出量(圧縮所要時間 約1秒) 200cm×200cm×3.14×120cm=15,072,000cm〜水として15,072L/sec 蛇腹1,000台:車輪列500個:1周2,000mの円周状軌道 (蛇腹100台:平板車輪間隔を調整済みの車輪列50個を装着した長さ200mの荷重車を装着済みの荷重原動機可動機体を10連結(10可動機体連)円周状に配列)〜常時500台の蛇腹が圧縮し500台の蛇腹が伸張する 蛇腹1,000台の気水容量〜25,120t (25,120,000cm/sec/蛇腹1台×1,000台=25,120,000,000cm/sec) 10荷重車の全重1,000t 荷重車時速3.6km (1秒間に1m進む車輪間距離4m〜車輪は1秒間で移動し次の1秒間で蛇腹を圧縮する〜荷重車の速度が速すぎるとバネが十分に伸張しない内に次の車輪が圧縮に掛かることがあるので車速は蛇腹の復帰速度に合わせる) 上記緒元の場合の発電量と従来原動機運転エネルギー消費量[Figure 7] Enlarged view of the reservoir tank Reference figure [Reference figure 1] [Reference figure 2] [Reference figure 3] Reference material Diameter of one bellows 4 m: same height 2 m: momentum 1.2 m (wheel radius 2m 60% distance) Amount of air and water discharged when one load wheel is mounted on one bellows (required compression time: about 1 second) 200cm x 200cm x 3.14 x 120cm = 15,072,000cm 3 ~ 15,072L / sec as water: 1,000 bellows: 500 wheel trains: 2,000m circumference track (100 bellows: length with 50 wheel trains with adjusted flat wheel spacing Load motors with 200m-long load vehicles already installed (10 linked (10 movable machine bodies) arranged circumferentially)-500 bellows always compress and 500 bellows expand 1000 bellows Water capacity ~ 25,120t (25,120 000cm 3 / sec / bellows one × 1,000 units = 25,120,000,000cm 3 / sec) of 10 load vehicle total weight 1,000t load wheel speed 3.6km (1 m proceeds wheel distance 4m per second -Wheel moves in 1 second and compresses bellows in the next second-If the speed of the loaded vehicle is too fast, the spring may not be fully extended and the next wheel may be compressed, so the vehicle speed will return to bellows (According to the speed) Power generation amount in the case of the above specifications and conventional motor operating energy consumption

数式Formula

ア 気水の常時常用排出量は(機械の運転減損率を10%として)
常時500台の蛇腹が圧縮:500台が伸張作動するから
15,072L/蛇腹1台×500台=7,536,000L×90%=6,782,400L≒6,782T
イ この6,782t/500台の気水を秒速20mで水車側に下げ勾配にした噴射口直径2mのノズルから噴射して水車を回転させた場合の発電量は(発電機の運転減損効率を80%として)〜水車台数=170台〜1台40t/1sec.
6,782t×20m=135,640kw/sec.×0.8=108,512kw/sec.であります。
電力馬力換算 1kw=1.359psであるから
108,512kw/s × 1.359ps =147,467ps/sec.
ガソリン換算 1L=34.6mj〜電力換算9.61kw、(電力1kw=3.6mj)∴
108,512kw/s×(3.6÷34.6)=11,292L/s.
ウ この時の荷重車運転用の従来原動機のエネルギー消費量
荷重車重量 1,000tを移動させるのに必要なエネルギー量
1Kgm/sec=9.8N=9.8kw/s ∴ 1,000t×9.8KW/t/s= 9.800kw/s
車輪摩擦抵抗率 20Kgm/t/s=196w として
400t × 196w = 78kw/s
計 9,878kw/s
機械作動損耗率 10% として 9.878kw÷0.9=10,976kw/s
4,442kwの熱量換算 1kwhは 3.6wj/kwh であるから
10,976kw × 3.6mj/kwh=69,149mj
ガソリン1Lは34.6mjであるから69,149mj÷34.6mj/=1,999L
重量1,000tの荷重車を2,000m時速3.6kmで走行させるには
ガソリン は1,999L必要
エ 発生電力量と従来原動機のエネルギー消費量との関係
発生電力量 108,512kw/sec.
従来原動機のエネルギー消費量 10,976kw/sec.
差引 利用可能エネルギー量 97,536kw/sec.
オ JR鉄道車両データ(編成長、編成定員、編成質量(空車)、編成定格出力、
最高速度等記載の表)から 、
A.新幹線の200系、300系、400系、500系、700系、2台、800系、E1(MAX)、E2系、E21000番代、E3系、E3系1000番代、E4(MAX)の計13台の編成質量(空車)と編成定格出力の総平均
編成定格出力13台合計÷編成質量(空車)13台合計=1t当り定格出力
129,960kw÷6,636t=19.584kw/t(12,584w/t)
B.ディーゼル特急のキハ85系、キハ281系、キハ283系、キハ261系、キハ187系の計5台
編成定格出力5台合計÷編成質量(空車)5台合計=1t当り定格出力
10,686kw÷831.1t = 12.857kw/t
C.(A新幹線13台kw+Bディーゼル特急5台kw)÷(同13台t+5台kw)=総平均t当り編成定格出力
140,646kw÷7,467.1t 18.835kw/t(18,835w/t)
カ このことから上記ウの従来原動機の消費エネルギー量をt当り20kw/tとした場合の従来原動機の消費エネルギー量は
1,000t×20kw/t/sec=20,000kw/sec
キ カの場合の上記イの発電量との関係
発電量 108,512kw/sec
従来原動機のエネルギー消費量 20,000kw/sec
差引 利用可能エネルギー量 80,512kw/secです。
Oh, regular discharge of atmospheric water (assuming an operating loss rate of 10%)
500 bellows always compressed: Because 500 are extended, 15,072L / bellows 1 × 500 = 7,536,000L × 90% = 6,782,400L≈6,782T
The amount of power generated when the turbine is rotated by jetting these 6,782t / 500 units of air and water from a nozzle with a diameter of 2m that is lowered to the turbine side at a speed of 20m per second (the operational impairment efficiency of the generator is 80%)-Number of turbines = 170 to 1 unit 40t / 1 sec.
6,782 t × 20 m = 135,640 kw / sec. × 0.8 = 108,512 kw / sec. It is.
Power horsepower conversion Since 1 kW = 1.359 ps, 108,512 kw / s × 1.359 ps = 147,467 ps / sec.
Gasoline conversion 1L = 34.6mj-electric power conversion 9.61kw, (electric power 1kw = 3.6mj) j
108,512 kw / s × (3.6 ÷ 34.6) = 11,292 L / s.
C) Energy consumption of the conventional motor for driving the load vehicle at this time Weight of the load vehicle required to move 1,000 t 1 Kgm / sec = 9.8 N = 9.8 kw / s 1 , 1,000 t × 9. 8KW / t / s = 9.800kw / s
Wheel friction resistivity 20Kgm / t / s = 196w
400t x 196w = 78kw / s
9,878kw / s in total
9.878 kw / 0.9 = 10,976 kw / s as 10% of the mechanical wear rate
4,442kw calorie conversion 1kwh is 3.6wj / kwh
10,976 kw × 3.6 mj / kwh = 69,149 mj
Since 1L of gasoline is 34.6mj, 69,149mj ÷ 34.6mj / = 1,999L
To run a weighted car with a weight of 1,000 tons at a speed of 3.6km / h
Gasoline is 1,999L required d. Relationship between generated electric energy and energy consumption of conventional motors Generated electric power 108,512kw / sec.
Conventional motor energy consumption 10,976 kw / sec.
Subtraction Available energy amount 97,536 kw / sec.
Oh JR railcar data (knitting growth, knitting capacity, knitting mass (empty car), knitting rated output,
From the table of maximum speed, etc.)
A. Shinkansen 200 series, 300 series, 400 series, 500 series, 700 series, 2 sets, 800 series, E1 (MAX), E2 series, E21000 series, E3 series, E3 series 1000 series, E4 (MAX) Total average of 13 knitting masses (empty vehicles) and knitting rated output Total knitting rated output 13 units ÷ Total knitting mass (empty vehicles) 13 units = rated output per 1t 129,960 kw ÷ 6,636 t = 19.584 kw / t (12 , 584w / t)
B. Diesel Express Kiha 85 series, Kiha 281 series, Kiha 283 series, Kiha 261 series, Kiha 187 series in total 5 knitting rated output total ÷ knitting mass (empty) 5 total = rated output 10,686kw ÷ 831.1t = 12.857 kw / t
C. (A Shinkansen 13 kw + B diesel express 5 kw) ÷ (13 t + 5 kw) = knitting rated output per total average t 140,646 kw ÷ 7,467.1 t 18.835 kw / t (18,835 w / t)
Therefore, when the energy consumption of the conventional prime mover is 20 kw / t per t, the energy consumption of the conventional prime mover is 1,000 t × 20 kw / t / sec = 20,000 kw / sec.
Relationship with power generation amount in the case of Kika Power generation amount 108,512kw / sec
Conventional motor energy consumption 20,000kw / sec
Subtraction Available energy amount is 80,512kw / sec.

符号の説明Explanation of symbols

荷重蛇腹式原動機の構成部品一覧〜符号数字は部品番号〜並びに各部品の機能等
1 荷重車=重量物体〜重い程エネルギーが強い〜円周軌道上走行には荷重の形状は正面から見て重心が下にある台形が三角形のほうがよい
2 サスペンション=荷重物体と車輪とを連結(スプリング付)
3 車輪=重量物を積載して回桿:蛇腹との連続激突衝撃に長期間耐える材質とする。又車輪の直径は運動量を左右するので要求エネルギー量が多い場合はそれに相応する車輪直径を計算する
4 ストッパーA=下記37のストッパーBと共にスピストン=蛇腹:回桿の運動量(上下移動距離)を一定範囲内に押える部品。バネの反発力と蛇腹:回桿の駆動衝撃を吸収する緩衝用部品でストッパー緩衝装置の形状材質は原動機の材質:容量:出力:荷重台車の重量等に対応する材質形状とし、スプリング:ゴム:ショックアブソーバー:等を使用する
5 バネガイド=バネの作動による衝撃振動を吸収しながら垂直な圧縮伸張作動を支持する
6 バネ支柱=バネが垂直に圧縮伸張作動するようにガイドする支柱
7 蛇腹:回桿天板=蛇腹:回桿の上端に固着する頑丈な素材の平板〜この平板にはバネの上端に接触しバネガイドに陥入スライトする下記31の平板(ベアリング付)を固着する〜この平板7のサイズは車輪と平行方向は車輪の直径と同程度、車軸と平行方向は蛇腹の大きさに合わせる 蛇腹:回桿を円周状に配置連結する場合は外周側を長く内周側を短く(台形)の平板が良い。又平板と平板との間隔は平板の寸法:回桿:車輪の大きさによって決定する〜蛇腹:回桿に乗っている車輪が次の車輪に無理なく移動し得るのに必要な間隔(平板間隔)〜通常はバネの伸張能力:速度を考慮し車輪直径の2倍程度の距離間隔が必要。動作低位にある平板に接している車輪の接点(平板接点)から車輪半径の70%〜80%の位置がその車輪の次の平板への移乗点(車輪移乗点)とするのが、有効な運動量(蛇腹の上下動)を確保しそれに見合った気水の噴出量を保持しながら且つ荷重車を高速或いは中低速で走行させノズルからの噴出量:速度を上げ得る位置である。平板間隔は最低でも車輪移乗点と平板接点との垂直並行距離以上は開ける
8 バネガイドベアリング=蛇腹:回桿天板が平滑に上下作動させるため31の平板に固着する
9 蛇腹(ベローズ)=ゴム風船のように弾力性があり伸縮自在で気水(この気水は液体の場合は防錆剤:潤滑剤:不凍液等の混合液とする)が漏れない気密性の高い材質で出来た蛇腹円柱状:球状:楕円球状等或いは茶筒のように外筒と内筒とがスライドするタイプの容器(ベローズ)で荷重の垂直位置エネルギーを回転運動に変換する機関〜荷重車によって垂下され、荷重車が離脱した瞬間にバネと蛇腹自身のバネ構造によって動作頭位(ヘッド)に上昇復帰する。蛇腹の円平面積×高さ=容積(蛇腹の大きさ):材質:強度は車輪同様要求エネルギーの大小によって計算設計する。蛇腹1個に付排出管と吸入管を各1個(逆流防止弁付)宛装着する
10 バネ=動作低位にある蛇腹:回桿を動作頭位(ヘッド)に上昇復帰させる、蛇腹回桿の往復運動の復運動を担当する重要な部品で材質強度形状等は要求エネルギーの量によって計算設計する
11 逆流防止弁A(気水吸入管用)=荷重車による蛇腹の圧縮によって排出された気水はバネの伸張作用によって蛇腹に還流されますが、その気水が逆流するのを防止する弁
12 底板=荷重車:蛇腹:回桿:バネを支持する基盤この基盤は支持躯体等で保持
13 蛇腹底板=蛇腹に装着してある排出管と吸入管は上記12の底板同様夫々の底板を貫通し蛇腹直下の気水貯留槽に通じている
14 気水吸入管=気水の蛇腹への還流吸入用管
15 気水排出管=気水を蛇腹から排出しノズルから水車に噴射するまでの管:槽
16 逆流防止弁B(気水排出管用)
17 気水貯留槽A(気水吸入用)=水車を回転させて流下した気水が還流する管:槽経路のうち蛇腹の直下に設置する貯留槽〜気水貯留槽Bからの吸入口の数を1個とするとこのA槽には各蛇腹への吸入口の数は概ね2個とする、これは気水の排出噴射:還流吸入の一連の流れの中での圧力を調節するためであり、下記20:22:25の口径:個数は気水が蛇腹に最も効率良く潤滑に還流するように設計配置する
18 気水貯留槽B(気水排出用)=蛇腹から排出された気水を1次的に貯留する槽でこの槽の排出口:排出管の口径と数は例えば蛇腹4個1こ対し1個とする等の調整をして蛇腹4個からの流量を1個の排出管に集中することで荷重車からの圧力を高めることによって気水のノズルから水車への噴射流量を多くし更に噴出圧を高めるためです。この口径と数量のことは上記15と下記19:23にも共通することです
19 気水貯留槽C(水等排出用)=上記18を通過した気水が21の気水噴出孔(ノズル)から噴射する際に一時湛水する槽で、この管:槽内のどこかが排出噴射環流する気水流速:圧力によって、空洞化現象等アンバランスになるとが想定されるのでこれを調節し、一定の流量流速を保持しながらノズルに噴出させる導管調節機能の役割を持つので各管:槽を複数設置して圧力流量調節分担させるものです
20 気水吸入口
21 気水噴出筒(ノズル)=口径は噴出気水量によって決める、気水の流速を高めるため(重力加速度が効くようにするため)噴出筒先端は同筒の気水流入口の高さよりできるだけ低い位置になるように水車側下がりに勾配付けて装着する
22 気水貯留槽D=水車を回転させて流下する気水はこの槽に貯留し17:2025を通って蛇腹に還流吸入される
23 気水排出口
24 気水逆流防止弁(11に同じ)
25 気水吸入口(20に同じ)
26 水車=気水噴出孔(ノズル)より低い位置に装着する
27 発電機
28 隔壁=22を左右に分離するもの〜円周状の左半分に蛇腹を100個右半分に100個配列した場合22気水貯留槽Dを円周の中央で2分割しておかないと槽中で左右のノズルから流下した気水流動に乱れが生じてスムーズな環流が得られないために22を左右に分割し、円周形の左側と右側の環流を別々にする。〜円盤状連結にも隔壁を設ける。
29 支持躯体B=蛇腹:回桿:荷重車:管:槽等を組立保持するための支持構造物で連結運行状態にも使用する これは30:32:33にも共通
30 支持躯体C
31 天板ガイド板=ピストンガイド用〜7に固着
32 支持躯体天板
33 支持躯体A
34 従来エンジン=無人遠隔操縦車 例えば蛇腹30台を駆動できる規模の荷重車に1台程度
35 プロペラシャフト(従来エンジン)
36 デフレンシャルギヤ(従来エンジン)
37 ストッパーB=4のストッパーAと共に回桿:蛇腹の運動量(上下移動距離)を一定の範囲内に押える部品
38 ストッパーC=4:37と共に回桿:蛇腹の運動量(上下移動距離)を一定の範囲内に押える部品
39 予備室=気水の圧力:流量:流速の調節機能を持たせる又修繕用具等入や遠隔操縦運転制御等用の機器を内包する
List of components of load bellows type motor-Sign numbers are part numbers-Functions of each part, etc. 1 Loaded vehicle = Heavy object-Heavy, the energy is stronger-For running on a circular track, the shape of the load is the center of gravity as seen from the front It is better that the trapezoid under the triangle is a triangle 2 Suspension = Connects the load object and the wheel (with spring)
3 Wheels = Loaded with heavy objects and revolved: Made of a material that can withstand continuous impacts with the bellows for a long time. Also, since the wheel diameter affects the amount of momentum, calculate the wheel diameter corresponding to the amount of energy required. 4 Stopper A = Stopper B below 37 and Spiston = Bellows: Rotation momentum (vertical movement distance) is constant Parts that can be held within range. Spring repulsion and bellows: Shock absorbing parts that absorb the driving shock of the revolving stopper. The shape of the stopper shock absorber is the material of the prime mover: Capacity: Output: Material shape corresponding to the weight of the load carriage, etc. Spring: Rubber: 5 Use a shock absorber: etc. 5 Spring guide = Supports vertical compression / expansion operation while absorbing shock vibration due to the operation of the spring 6 Spring support = Support column 7 that guides the spring to perform compression / extension operation vertically Top plate = belly bellows: A plate made of solid material that adheres to the upper end of the winding plate. This plate is attached with the following 31 plates (with bearings) that contact the upper end of the spring and slide into the spring guide. The size parallel to the wheel is the same as the wheel diameter, and the direction parallel to the axle is adjusted to the size of the bellows. Bellows: When connecting and connecting the winding rods in a circle, the outer circumference is long and the inner circumference is short ( A trapezoidal flat plate is good. The distance between the flat plate is determined by the size of the flat plate: the rotation: the size of the wheel to the bellows: the distance necessary for the wheel on the rotation to move to the next wheel without difficulty (the plate interval) ) ~ Normally spring extension capacity: Considering the speed, a distance interval of about twice the wheel diameter is required. It is effective that the position of 70% to 80% of the wheel radius from the contact point (flat contact point) of the wheel in contact with the flat plate at the lower position of operation is the transfer point (wheel transfer point) to the next flat plate of the wheel. This is a position where the amount of jetting from the nozzle: the speed can be increased by keeping the momentum (up and down movement of the bellows) and holding the jetting amount of air and water commensurate with it and running the load vehicle at high speed or medium and low speed. The distance between the flat plates should be at least as long as the vertical parallel distance between the wheel transfer point and the flat contact point. 8 Spring guide bearing = bellows: fixed to the 31 flat plate to make the rotating top plate move up and down smoothly 9 bellows = rubber A bellows circle made of a highly airtight material that is elastic and stretchable like a balloon, and does not leak air (if this water is a liquid, it is a mixture of rust preventive: lubricant: antifreeze etc.) Columnar: Spherical: Ellipsoidal or other type of container (bellows) in which the outer cylinder and the inner cylinder slide like a brown cylinder. At the moment of separation, the spring and the bellows itself spring up and return to the head position. Bellows flat area x height = volume (size of bellows): Material: Strength is calculated and designed according to the required energy as well as wheels. Attach one exhaust pipe and one suction pipe to each bellows (with backflow prevention valve). 10 Spring = Low bellows of operation: The bellows of the bellows to return the lift to the head position (head). It is an important part responsible for the reciprocal movement of the reciprocating motion. Material strength and shape are calculated and designed according to the amount of energy required. 11 Backflow prevention valve A (for air / water intake pipe) = Although the valve is returned to the bellows due to the extension of the spring, the valve 12 prevents the air and water from flowing back. Bottom plate = Load car: Bellows: Relief: Base supporting the spring This base is supported by a support housing 13 Bellows bottom plate = The exhaust pipe and the suction pipe attached to the bellows pass through the respective bottom plates as well as the above-mentioned twelve bottom plates and lead to the air-water storage tank immediately below the bellows. Tube 15 Air-water discharge tube = Nozzle discharged from the bellows From to injecting the water wheel tube: bath 16 check valve B (for air-water discharge pipe)
17 Air / water storage tank A (for air / water intake) = pipe through which the water flowing down by rotating the water wheel is recirculated: a storage tank installed immediately below the bellows in the tank path to an intake port from the air / water storage tank B If the number is one, this tank A has approximately two inlets to each bellows, in order to adjust the pressure in the flow of air-water discharge: recirculation suction. Yes, the following 20:22:25 caliber: the number is designed and arranged so that the water is most efficiently recirculated to the bellows 18 Air-water storage tank B (for air-water discharge) = air-water discharged from the bellows This tank is the primary storage tank. The outlet of this tank: The diameter and number of the discharge pipes are adjusted so that, for example, four bellows are one, and the flow rate from four bellows is discharged one. By increasing the pressure from the load wheel by concentrating on the pipe, the jet flow from the nozzle to the water wheel is increased, and the jet pressure is further increased. Because Mel. This caliber and quantity are common to 15 above and 19:23 below. 19 Air / Water Reservoir C (for discharging water, etc.) = 21 Air / Water Ejection Holes (Nozzles) This is a tank that is temporarily submerged when it is injected from, and this pipe: Somewhere in the tank is discharged and circulated. Flow rate: It is assumed that the cavitation phenomenon will be unbalanced depending on the pressure. Since each pipe has a role of a conduit adjustment function that ejects to the nozzle while maintaining a constant flow rate, each pipe: multiple tanks are used to share the pressure and flow rate. 20 Air-water inlet 21 Air-water jet cylinder (nozzle) = The diameter is determined by the amount of jetted water, in order to increase the flow velocity of the water (to make the gravitational acceleration effective), the tip of the jet cylinder is inclined downward to the turbine side so that it is as low as possible at the height of the steam / water inlet of the cylinder. Attach and attach 22 Air-water storage tank D = Air water flowing down by rotating the water wheel is stored in this tank and is recirculated and sucked into the bellows through 17: 2025. 23 Air-water outlet 24 Air-water backflow prevention valve (same as 11)
25 Air-water inlet (same as 20)
26 Waterwheel = Mounted at a position lower than the air-water ejection hole (nozzle) 27 Generator 28 Separating partition wall = 22 left and right-When the bellows are arranged on the left half of the circumference 100 in the right half 22 If the air / water storage tank D is not divided into two at the center of the circumference, the air / water flow flowing down from the left and right nozzles in the tank will be disturbed and smooth circulation will not be obtained. Separate the circulation of the left and right sides of the circumference. ~ A partition is also provided for the disk-shaped connection.
29 Supporting frame B = bellows: rotating rod: load car: pipe: supporting structure for assembling and holding tanks, etc. It is also used for connected operation. This is common to 30:32:33 30 Supporting frame C
31 Top plate guide plate = fixed to piston guide to 7 32 Support frame top plate 33 Support frame A
34 Conventional engine = Unmanned remote control vehicle For example, about 1 unit for a load car that can drive 30 bellows 35 Propeller shaft (conventional engine)
36 Differential gear (conventional engine)
37 Turning with stopper A with stopper B = 4: Part that presses the bellows momentum (vertical movement distance) within a certain range 38 Turning with stopper C = 4: 37: Constant bellows momentum (vertical movement distance) Parts 39 to be kept within range Spare room = air pressure: flow rate: flow rate adjustment function, including repair tools, remote control operation control, etc.

Claims (1)

重力に由来する重し:重量物(以下荷重という)をエネルギー源(動力源)として原動機を駆動させる方法です。その方法を〔図 2〕をもって説明します。荷重を搭載した荷重車1(底部には車輪:ローラーを装着する)の車輪3を蛇腹(回桿=ピストンロッド)9上端に装着した蛇腹(回桿)天板(ヘッド)7に当てて蛇腹(動棹)9を押し下げ(ピストンの往復回転の内の往半回転分=以下押下工程という)、下げ終わる(動作底位)と同時に荷重車1を従来のガソリンエンジン等(従来原動機)34で走行させて当該蛇腹(回桿)天板7から次の天板7へ移動させて、荷重圧力を解放しながら蛇腹(回桿)ピストンの復半回転慣性(ピストンの往復運動の内復半回転分)に併せバネ10(主に圧縮バネ)を以って蛇腹(動棹)天板9を押し上げ(押上工程)、蛇腹(回桿)ヘッドの位置(動作頭位)に回復させる。この蛇腹(回桿)の往復運動からエネルギー(動力)を得る方法としては、(A)クランク等を介して回転軸(プロペラシャフト)を回転させ回転動力を得る荷重式回桿原動機と、(B)荷重車で蛇腹(ベローズ〜蛇腹の上端には天板を装着する)を押し下げ(押下工程)て内部の水や油脂類:空気(以下気水)を排出管15:貯留槽(排出槽)18.23:ノズル21等を通介して排出噴射し水車26を回転させて発電機27を駆動して動力:電気を発生させる荷重蛇腹式原動機とがあります。気水は貯留槽22.17と吸入管14を通じてバネ10による押上工程で動作低位から動作頭位に復帰する蛇腹に還流され循環する。従来原動機等(エンジン)はガソリン:軽油:重油等を燃焼させてピストンを駆動しているが、本発明はガソリン:軽油等の代わりに荷重力をエネルギー源とするものである。重力由来の重量物の重量(ウエイト)を以ってピストンである回桿に往復運動を発生させコネクティングロッドクランクシャフト等を介して回転運動に変換してエネルギーを得る方式と、これもピストンである蛇腹の気水を水車に噴射させ発電する方式なのであります。これを従来エンジンの機能と比較して見ますと、荷重車は爆発:ピストンの押し下げ行程の原動力に相当しバネは排気圧縮:ピストンの押し上げ行程に当たります。この上下往復運動の動作頭位と動作低位との位置差が運動量であります。荷重車の重量が大きく又車輪の半径が大きければ大きいほど運動量は大きくなり発生する動力(エネルギー)量が増大します。この方法によって発生するエネルギーの量が、荷重車を移動させるための従来原動機のガソリン等の消費エネルギー(以下荷重車運転エネルギー量という)よりも大きい場合はその差の分が利用できるエネルギー量(以下利用可能エネルギーという=エクセルギー)であります。本発明は従来原動機を利用せざるを得ないところが弱点であり、荷重車運転馬力をいかに少なくするかが課題ですが、荷重車運転エネルギー量は荷重車輪を回転させるためのエネルギー量があれば良く、荷重車の始動時は相応のエネルギーが必要ですが、始動位置に荷重車を押し出すバネやスタート位置に下り勾配を付ける等して始動時の消費エネルギー量を少なくすることが可能で、車輪にフライホイールを取り付ける等をすれば通常運転時における荷重車運転エネルギー量をさらに少なくできます。この蛇腹:回桿の往復運動を連続させて、動力(エネルギー)を連続して取り出すためには、要すれば無限軌道である円周状に複数の荷重車を連結配列して(例えば1台の荷重車に4個の車輪を着けた場合は蛇腹:回桿の数は8個〜車輪と車輪との間には1個の動作頭位の位置にある蛇腹:回桿があるように車輪間隔をとる)その荷重車連を電車のように走らせます。ピアノの鍵盤(回桿:蛇腹)の上で電車(荷重車)を走らせる様により多くのエネルギーを連続して発生抽出取得することができます。また(C)荷重車の代わりに回桿:蛇腹の上に一定の空間(軌道空間)を設置しその上に屋根(覆帯〜シリンダの役目)を被せて、軌道空間に従来エンジン付の電車様の移動車両(動力車〜従来原動機の負担を軽くするため極軽量の車両とする)を走らせ蛇腹:回桿を駆動する方式もあります。動力車は覆帯に自らの上部(電車の屋根に相当する部分〜この屋根部分には潤滑走行用の滑車を装着する)を押えられているため前に進むには蛇腹回桿を押し下げることになります。この方式を挿入式蛇腹:回桿原動機という。ついては上記原理の特許を得たく申請します。以下(A)の荷重式回桿原動機は従来エンジンのシリンダー:ピストン等の上に荷重車が載っている状態に類似しておりますので、〔007〕から〔009〕で概略を説明し、又(C)の挿入式蛇腹:回桿原動機については(A):(B)の機能を応用する方式ですので説明は省略させていただきます。つきましては上記(B)の荷重蛇腹式原動機について具体の説明をします。  Weight derived from gravity: A method of driving a prime mover using a heavy object (hereinafter referred to as load) as an energy source (power source). This method is explained with [Fig. 2]. A bellows by applying a wheel 3 of a load vehicle 1 (loading a roller: a roller at the bottom) mounted on a load to a bellows (rotator) top plate (head) 7 attached to an upper end of a bellows (rotator = piston rod) 9 (Pallet) 9 is pushed down (the half-turn of the reciprocating rotation of the piston = hereinafter referred to as a pressing step), and at the same time the lowering is finished (the bottom of operation), the load vehicle 1 is moved by a conventional gasoline engine or the like (conventional motor) 34 Travel and move from the bellows (rotating) top plate 7 to the next top plate 7 while releasing the load pressure, the half-rotating inertia of the bellows (rotating) piston (internal and reverse rotation of the piston reciprocating motion) In addition, the bellows (pallet) top plate 9 is pushed up (push-up step) with a spring 10 (mainly a compression spring) to recover the bellows (rotation) head position (operation head position). As a method of obtaining energy (power) from the reciprocating motion of the bellows (rotator), (A) a load type rotary motor that obtains rotational power by rotating a rotating shaft (propeller shaft) via a crank or the like; ) Press down the bellows (with the top plate attached to the top of the bellows to the bellows) with a load car (pressing process) to discharge the internal water and oil: air (hereinafter referred to as air) pipe 15: storage tank (discharge tank) 18.23: There is a load bellows type prime mover that generates electricity by generating discharge by jetting through the nozzle 21 etc. and rotating the water turbine 26 to drive the generator 27. The steam is recirculated through the storage tank 22.17 and the suction pipe 14 to the bellows returning from the low operating position to the operating head position in the push-up process by the spring 10. Conventionally, a prime mover or the like (engine) burns gasoline: light oil: heavy oil or the like to drive a piston, but the present invention uses load force as an energy source instead of gasoline: light oil. A method of obtaining energy by generating a reciprocating motion in the revolving rod as a piston with the weight (weight) derived from gravity and converting it into a rotational motion via a connecting rod crankshaft and the like, and this is also a piston It is a method of generating electricity by injecting bellows of water to the water wheel. Comparing this with the function of the conventional engine, the load car is equivalent to the motive force of the explosion: piston push-down stroke, and the spring is exhaust compression: the piston push-up stroke. The position difference between the head position and the lower position of this reciprocating motion is the momentum. The greater the weight of the loaded vehicle and the larger the wheel radius, the greater the momentum and the greater the amount of power (energy) generated. If the amount of energy generated by this method is greater than the energy consumed by gasoline, etc. of a conventional prime mover for moving a load vehicle (hereinafter referred to as “load vehicle operating energy amount”), the amount of energy that can be used (hereinafter referred to as “load vehicle operation energy amount”) It's exergy). The present invention has a weak point in that it has been necessary to use a prime mover in the past, and it is a problem how to reduce the horsepower of the loaded vehicle. However, the amount of energy required to rotate the loaded wheel only needs to be sufficient. When starting a load vehicle, it is necessary to have a certain amount of energy, but it is possible to reduce the amount of energy consumed at the start by adding a spring that pushes the load vehicle to the start position and a downward slope to the start position. By installing a flywheel, etc., the energy consumption of the loaded vehicle during normal operation can be further reduced. In order to continuously extract the power (energy) by continuing the reciprocating motion of this bellows: rotator, if necessary, a plurality of load vehicles are connected and arranged in a circular shape that is an endless track (for example, one vehicle) When four wheels are attached to a loaded car, the number of accordion: 8 rotators-1 position between the wheels and the wheels. Run the load car train like a train. More energy can be generated and extracted continuously by running the train (load car) on the piano keyboard (rotation: bellows). In addition, (C) instead of a loaded car, a rotator: a fixed space (orbit space) is installed on the bellows, and a roof (covering band-cylinder function) is placed on top of it. There is also a method of driving a bellows: revolving car running on a mobile vehicle (powered vehicle to make it an extremely lightweight vehicle to lighten the load on the conventional motor). Since the motor vehicle has its upper part (the part corresponding to the roof of the train to which a lubricating pulley is mounted) attached to the cover belt, it is necessary to push down the bellows fold to move forward. Become. This method is referred to as insertion-type bellows: Kaito Genki. I would like to apply for a patent for the above principle. The load type rotary motor of the following (A) is similar to the state in which a load vehicle is mounted on a conventional engine cylinder: piston, etc., so the outline is explained from [007] to [009]. (C) Insertion-type bellows: The method of applying the functions of (A) :( B) will be omitted for the rotary motor. For this reason, the load bellows type prime mover (B) above will be explained in detail.
JP2005254072A 2005-07-15 2005-07-15 Load bellows type, rotating rod type, and insertion type prime mover Pending JP2007024028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005254072A JP2007024028A (en) 2005-07-15 2005-07-15 Load bellows type, rotating rod type, and insertion type prime mover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005254072A JP2007024028A (en) 2005-07-15 2005-07-15 Load bellows type, rotating rod type, and insertion type prime mover

Publications (1)

Publication Number Publication Date
JP2007024028A true JP2007024028A (en) 2007-02-01

Family

ID=37785091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005254072A Pending JP2007024028A (en) 2005-07-15 2005-07-15 Load bellows type, rotating rod type, and insertion type prime mover

Country Status (1)

Country Link
JP (1) JP2007024028A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109072886A (en) * 2016-02-23 2018-12-21 耐科斯特资源有限责任公司 Energy storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109072886A (en) * 2016-02-23 2018-12-21 耐科斯特资源有限责任公司 Energy storage device
CN109072886B (en) * 2016-02-23 2020-09-29 耐科斯特资源有限责任公司 Energy storage device

Similar Documents

Publication Publication Date Title
US11519395B2 (en) Turbine-driven fracturing system on semi-trailer
CN102795114B (en) Modern wooden ox vehicle
CN102066710A (en) New reciprocating machines and other devices
US9856853B2 (en) Multi-stage radial flow turbine
US20060147263A1 (en) Apparatus for converting kinetic energy
CN103518035B (en) Three strokes, six-stroke rocket jet motor
JP2007024028A (en) Load bellows type, rotating rod type, and insertion type prime mover
WO2011018747A4 (en) Energy converter
US20180163567A1 (en) Multi-stage radial flow turbine
JP2009191615A (en) Various energy conservation cycle combined engine
JP2007002830A (en) Load motor (bellows type and rotary stick type), tunnel motor (bellows type and rotary stick type), combination of these motors, and assembling method
CN115680971B (en) Wave energy power generation device
CN101425765A (en) Magnetic repulsion force driving device
CN101941374A (en) Automobile driven by thermoacoustic engine
CN1831312A (en) Combined electromechanical engine
CN1140232A (en) Reaction type gas turbine
JP2009174317A (en) Various energy conservation cycle combined engine
CN1952351A (en) High-speed engine for hydraulic air-jet fly-wheel gas-turbine rotor
JP2010112171A (en) Cycle combined engine for preserving various energy
WO2014075089A1 (en) Improved non-combustion power take-off engine
CN101949306B (en) Bidirectional-starting pressure limited type high-speed engine for hydraulic air-jet fly-wheel gas-turbine rotor
WO2013069024A1 (en) Perpetual μοήον gravity &amp; buoyancy engine
JP3146592U (en) Road energy conversion seismic reduction device
JP2013076340A (en) Various energy conservation cycle combined engine
Leonidovich Development and making of a hybrid nitrogen-hydrogen vehicle