JP2007023959A - Pm accumulation-quantity estimation device - Google Patents

Pm accumulation-quantity estimation device Download PDF

Info

Publication number
JP2007023959A
JP2007023959A JP2005209790A JP2005209790A JP2007023959A JP 2007023959 A JP2007023959 A JP 2007023959A JP 2005209790 A JP2005209790 A JP 2005209790A JP 2005209790 A JP2005209790 A JP 2005209790A JP 2007023959 A JP2007023959 A JP 2007023959A
Authority
JP
Japan
Prior art keywords
excess air
air ratio
amount
actual
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005209790A
Other languages
Japanese (ja)
Other versions
JP4622719B2 (en
Inventor
Kosuke Yasuhara
功祐 安原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005209790A priority Critical patent/JP4622719B2/en
Publication of JP2007023959A publication Critical patent/JP2007023959A/en
Application granted granted Critical
Publication of JP4622719B2 publication Critical patent/JP4622719B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve estimation accuracy of PM accumulation quantity of DPF. <P>SOLUTION: A base value of PM emission quantity is calculated from engine rotation speed Ne and fuel injection quantity Qf. Target excess air factor tλ and error rate Δλ=(actual excess air factor rλ - target excess air factor tλ)/(actual excess air factor rλ) are used as a first parameter A and a second parameter B respectively, and PM emission quantity correction factor is calculated according to the same. The base value of PM emission quantity is corrected by multiplying the same by the correction factor and PM emission quantity after correction is integrated to PM emission quantity is estimated. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、内燃機関の排気通路に配置されて排気中のPM(Particulate Matter;粒子状物質)を捕集するフィルタの再生時期の判断のため、前記フィルタのPM堆積量を推定する装置に関する。   The present invention relates to an apparatus for estimating a PM accumulation amount of a filter for determining a regeneration time of a filter that is disposed in an exhaust passage of an internal combustion engine and collects PM (Particulate Matter) in exhaust gas.

従来のPM堆積量推定装置としては、特許文献1に記載されているように、1)圧力センサによりフィルタの前後差圧を検出し、これに基づいてPM堆積量を推定するものと、2)機関の運転状態(燃料噴射量、機関回転数、EGR率など)に応じてPM排出量を算出し、これを積算してPM堆積量を推定するものとが知られている。尚、特許文献1に記載の発明では、両方の推定を実施し、より信頼性の高い方の推定データを選択して、再生時期の判断に用いている。
特開2004−132358号公報
As a conventional PM accumulation amount estimation device, as described in Patent Document 1, 1) a pressure sensor detects a differential pressure across a filter and estimates the PM accumulation amount based on this, and 2) It is known that the PM emission amount is calculated according to the engine operating state (fuel injection amount, engine speed, EGR rate, etc.), and this is integrated to estimate the PM accumulation amount. In the invention described in Patent Document 1, both estimations are performed, and the more reliable estimation data is selected and used for judging the reproduction time.
JP 2004-132358 A

ところで、機関の運転状態に応じてPM排出量を算出し、これを積算してPM堆積量を推定する場合、予め実験で求めた機関の運転状態に対するPM排出量のデータを用いるが、これは定常条件でのデータであり、過渡条件において増大するPM排出量については考慮していないため、PM堆積量の推定値が実際値より少なくなり、フィルタの再生時期の判断を誤るおそれがある。   By the way, when calculating the PM emission amount according to the operating state of the engine and estimating the PM accumulation amount by integrating the PM emission amount, the PM emission amount data with respect to the operating state of the engine obtained in advance by experiment is used. Since it is data in a steady condition and does not consider the PM emission amount that increases in the transient condition, the estimated value of the PM accumulation amount becomes smaller than the actual value, and there is a possibility that the judgment of the regeneration timing of the filter is erroneous.

そのため、実験で求めたデータを何倍かにして用いることにより、PM堆積量の推定値を底上げする方法もあるが、このようにすると、フィルタ再生サイクルが一律に短くなり、燃費の悪化の原因となる。
本発明は、このような実状に鑑み、機関の運転状態に応じてPM排出量を算出し、これを積算してPM堆積量を推定する場合に、その推定精度を大幅に向上させることを目的とする。
For this reason, there is a method of raising the estimated value of the PM accumulation amount by using the data obtained by the experiment several times. However, in this case, the filter regeneration cycle is uniformly shortened, and the cause of deterioration in fuel consumption is caused. It becomes.
In view of such a situation, the present invention aims to greatly improve the estimation accuracy when calculating the PM emission amount according to the operating state of the engine and integrating the PM emission amount to estimate the PM accumulation amount. And

このため、本発明は、機関の運転状態に応じて算出したPM排出量を空気過剰率に応じて補正し、補正後のPM排出量を積算してフィルタのPM堆積量を算出する構成とする。   Therefore, the present invention is configured to correct the PM emission amount calculated according to the operating state of the engine according to the excess air ratio, and to calculate the PM accumulation amount of the filter by integrating the corrected PM emission amount. .

本発明によれば、過渡条件において空気過剰率が変動することに着目し、PM排出量を空気過剰率に応じて補正することで、過渡条件でのPM排出量の増大を考慮に入れることができ、これによりPM堆積量の推定精度を向上させることができる。   According to the present invention, attention is paid to the fact that the excess air ratio fluctuates under transient conditions, and the increase in PM emissions under transient conditions can be taken into account by correcting the PM emissions according to the excess air ratio. This can improve the estimation accuracy of the PM accumulation amount.

以下に本発明の実施の形態を図面に基づいて説明する。
図1は本発明の一実施形態を示す内燃機関(具体的にはディーゼルエンジン)のシステム図である。
ディーゼルエンジン1の吸気通路2には可変ノズル型の過給機(ターボチャージャ)3の吸気コンプレッサが備えられ、吸入空気は吸気コンプレッサによって過給され、インタークーラ4で冷却され、吸気絞り弁5を通過した後、コレクタ6を経て、各気筒の燃焼室内へ流入する。燃料は、コモンレール式燃料噴射装置により、すなわち、高圧燃料ポンプ7により高圧化されてコモンレール8に送られ、各気筒の燃料噴射弁9から燃焼室内へ直接噴射される。燃焼室内に流入した空気と噴射された燃料はここで圧縮着火により燃焼し、排気は排気通路10へ流出する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a system diagram of an internal combustion engine (specifically, a diesel engine) showing an embodiment of the present invention.
The intake passage 2 of the diesel engine 1 is provided with an intake compressor of a variable nozzle type supercharger (turbocharger) 3. The intake air is supercharged by the intake compressor and cooled by the intercooler 4. After passing, it flows through the collector 6 and into the combustion chamber of each cylinder. The fuel is increased in pressure by the common rail type fuel injection device, that is, by the high pressure fuel pump 7, sent to the common rail 8, and directly injected from the fuel injection valve 9 of each cylinder into the combustion chamber. The air that has flowed into the combustion chamber and the injected fuel are combusted by compression ignition, and the exhaust gas flows out to the exhaust passage 10.

排気通路10へ流出した排気の一部は、EGRガスとして、EGR装置により、すなわち、EGR通路11によりEGR弁12を介して、吸気側へ還流される。排気の残りは、可変ノズル型の過給機3の排気タービンを通り、これを駆動する。
ここで、排気通路10の排気タービン下流には、ディーゼル・パティキュレート・フィルタ(以下「DPF」という)13を設け、これにより排気中のPMを捕集する。この他、酸化触媒やNOxトラップ触媒なども設けるが、図示は省略した。
A part of the exhaust gas flowing into the exhaust passage 10 is recirculated as EGR gas to the intake side by the EGR device, that is, through the EGR valve 12 through the EGR valve 11. The remainder of the exhaust passes through the exhaust turbine of the variable nozzle type supercharger 3 and drives it.
Here, a diesel particulate filter (hereinafter referred to as “DPF”) 13 is provided downstream of the exhaust turbine in the exhaust passage 10 to collect PM in the exhaust. In addition, although an oxidation catalyst, a NOx trap catalyst, and the like are provided, the illustration is omitted.

エンジンコントロールユニット(以下「ECU」という)20には、エンジン1の制御のため、アクセル開度APO検出用のアクセル開度センサ21、エンジン回転数Ne検出用の回転数センサ22、吸入空気量Qa検出用のエアフローメータ23、排気通路10にてエンジン1からの排気成分濃度を検出することにより空燃比を検出可能な空燃比センサ24などから、信号が入力されている。   In order to control the engine 1, an engine control unit (hereinafter referred to as “ECU”) 20 includes an accelerator opening sensor 21 for detecting an accelerator opening APO, a rotation speed sensor 22 for detecting an engine rotation speed Ne, and an intake air amount Qa. A signal is input from an air flow meter 23 for detection, an air-fuel ratio sensor 24 that can detect an air-fuel ratio by detecting an exhaust component concentration from the engine 1 in the exhaust passage 10 and the like.

ECU20は、これらの入力信号に基づいて、燃料噴射弁9による燃料噴射の燃料噴射量及び噴射時期制御のための燃料噴射弁9への燃料噴射指令信号、吸気絞り弁5への開度指令信号、EGR弁12への開度指令信号、過給機3の可変ノズル機構15へのノズル開度指令信号等を出力する。
ここにおいて、ECU20では、DPF13でのPMの捕集によりPM堆積量が増加すると、排気抵抗が増加して、運転性が悪化することから、PM堆積量を推定し、これが所定のしきい値を超えたときに再生時期と判断し、燃料噴射時期の遅角(あるいはポスト噴射)などにより排気温度を上昇させて、再生処理(PMの燃焼除去)を行う。
Based on these input signals, the ECU 20 controls the fuel injection amount of the fuel injection by the fuel injection valve 9 and the fuel injection command signal to the fuel injection valve 9 for injection timing control, and the opening degree command signal to the intake throttle valve 5. , An opening command signal to the EGR valve 12, a nozzle opening command signal to the variable nozzle mechanism 15 of the supercharger 3, and the like are output.
Here, the ECU 20 estimates the PM accumulation amount because the exhaust resistance increases and the drivability deteriorates when the PM accumulation amount increases due to the collection of PM by the DPF 13. When it exceeds, the regeneration time is determined, and the exhaust temperature is increased by delaying the fuel injection timing (or post injection) or the like, and regeneration processing (PM combustion removal) is performed.

次に、本発明でのPM堆積量の推定について説明する。
図2はPM堆積量推定の概要を示すブロック図である。
PM排出量(基本値)マップ101は、予め定常実験により、エンジンの運転状態、詳しくはエンジン回転数Neと負荷(例えば燃料噴射量)Qfとに応じ、PM排出量を求めて、記憶させたもので、このマップを参照して、エンジン回転数Neと負荷(燃料噴射量)Qfとから、PM排出量(単位時間当たりのPM排出量)を算出する。尚、負荷としては、燃料噴射量の他、トルク等を用いてもよい。
Next, estimation of the PM accumulation amount in the present invention will be described.
FIG. 2 is a block diagram showing an outline of PM accumulation amount estimation.
The PM emission amount (basic value) map 101 was previously determined and memorized in accordance with the engine operating state, specifically, the engine speed Ne and the load (for example, fuel injection amount) Qf by a steady experiment. Therefore, referring to this map, the PM emission amount (PM emission amount per unit time) is calculated from the engine speed Ne and the load (fuel injection amount) Qf. In addition to the fuel injection amount, torque or the like may be used as the load.

PM排出量補正係数マップ102は、空気過剰率に応じて、補正係数を算出するためのもので、空気過剰率としては、目標空気過剰率と実空気過剰率との両方を用いる。
より具体的には、第1パラメータAとして、目標空気過剰率tλを用い、第2パラメータBとして、実空気過剰率rλと目標空気過剰率tλとの差(rλ−tλ)、又は、比(rλ/tλ)を用いる。
The PM emission amount correction coefficient map 102 is used to calculate a correction coefficient in accordance with the excess air ratio, and both the target excess air ratio and the actual excess air ratio are used as the excess air ratio.
More specifically, the target excess air ratio tλ is used as the first parameter A, and the difference between the actual excess air ratio rλ and the target excess air ratio tλ (rλ−tλ) or the ratio ( rλ / tλ) is used.

また、第2パラメータBとして、実空気過剰率rλと目標空気過剰率tλとの差(誤差;rλ―tλ)を用いる場合は、これを、実空気過剰率rλ又は目標空気過剰率tλに対する比に変換した値(誤差率)を用いるとよい。
この場合、B=(rλ−tλ)/tλ 又は、B=(rλ−tλ)/rλ となる。
乗算部103は、マップ101から求めたPM排出量(基本値)に、マップ102から求めたPM排出量補正係数を乗じて、PM排出量(=基本値×補正係数)を算出する。
When the difference (error; rλ−tλ) between the actual excess air ratio rλ and the target excess air ratio tλ is used as the second parameter B, this is expressed as a ratio to the actual excess air ratio rλ or the target excess air ratio tλ. The value (error rate) converted to is preferably used.
In this case, B = (rλ−tλ) / tλ or B = (rλ−tλ) / rλ.
The multiplier 103 multiplies the PM emission amount (basic value) obtained from the map 101 by the PM emission amount correction coefficient obtained from the map 102 to calculate the PM emission amount (= basic value × correction coefficient).

積算部104は、補正後のPM排出量を積算することにより、DPFのPM堆積量を推定する。
次に目標空気過剰率tλ、実空気過剰率rλの求め方について説明する。
目標空気過剰率tλは、目標空気量tQaと、実燃料噴射量Qfとから、次式により算出する。
The integrating unit 104 estimates the PM accumulation amount of the DPF by integrating the corrected PM discharge amount.
Next, how to obtain the target excess air ratio tλ and the actual excess air ratio rλ will be described.
The target excess air ratio tλ is calculated from the target air amount tQa and the actual fuel injection amount Qf by the following equation.

目標空気過剰率tλ=目標空気量tQa/(実燃料噴射量Qf×14.6)
尚、実燃料噴射量Qfは、ECUによる燃料噴射量の指令値でよく、これはアクセル開度APOとエンジン回転数Neとから算出される。目標空気量tQaは、ECUにて燃料噴射量Qfとエンジン回転数Neとに基づいて算出される値とする。
実空気過剰率rλは、実空気量rQaと、実燃料噴射量Qfとから、次式により算出する。
Target excess air ratio tλ = target air amount tQa / (actual fuel injection amount Qf × 14.6)
The actual fuel injection amount Qf may be a command value for the fuel injection amount by the ECU, and is calculated from the accelerator opening APO and the engine speed Ne. The target air amount tQa is a value calculated by the ECU based on the fuel injection amount Qf and the engine speed Ne.
The actual excess air ratio rλ is calculated from the actual air amount rQa and the actual fuel injection amount Qf by the following equation.

実空気過剰率rλ=実空気量rQa/(実燃料噴射量Qf×14.6)
尚、実空気量rQaは、エアフローメータ出力に基づく検出値とする。
目標空気過剰率tλに対する実空気過剰率rλの誤差を学習し、該学習に基づく学習値(学習補正係数)Kで空気量を補正制御する学習制御手段を備える場合、実空気量と実燃料噴射量とに基づいて算出した実空気過剰率rλは、前記学習値Kで補正するとよい。
Actual excess air ratio rλ = actual air amount rQa / (actual fuel injection amount Qf × 14.6)
The actual air amount rQa is a detected value based on the air flow meter output.
When learning control means for learning an error of the actual excess air ratio rλ with respect to the target excess air ratio tλ and correcting and controlling the air amount with a learning value (learning correction coefficient) K based on the learning is provided, the actual air amount and the actual fuel injection The actual excess air ratio rλ calculated based on the amount may be corrected with the learning value K.

この場合、実空気過剰率のrλの計算式は、次式のごとくとなる。
実空気過剰率rλ=〔実空気量rQa/(実燃料噴射量Qf×14.6)〕/K
また、実空気過剰率rλは、上記の計算式による計算値とする他、空燃比センサによる検出値としてもよい。
図3はPM堆積量推定のフローチャートである。
In this case, the equation for calculating the actual excess air ratio rλ is as follows.
Actual excess air ratio rλ = [actual air amount rQa / (actual fuel injection amount Qf × 14.6)] / K
Further, the actual excess air ratio rλ may be a value detected by the air-fuel ratio sensor in addition to the value calculated by the above formula.
FIG. 3 is a flowchart of PM accumulation amount estimation.

S1では、エンジン回転数Ne、燃料噴射量Qfを読込む。
S2では、図4のマップを参照し、エンジン回転数Neと燃料噴射量QfとからPM排出量基本値を検索する。図4のマップからわかるように、エンジン回転数Neが高いほど、また燃料噴射量Qfが多いほど、PM排出量基本値は大となる。
S3では、目標空気量tQa、実空気量rQaを読込む。目標空気量tQaはECUでの計算値、実空気量tQaはエアフローメータによる検出値である。
In S1, the engine speed Ne and the fuel injection amount Qf are read.
In S2, the PM emission basic value is searched from the engine speed Ne and the fuel injection amount Qf with reference to the map of FIG. As can be seen from the map of FIG. 4, the PM emission basic value increases as the engine speed Ne increases and the fuel injection amount Qf increases.
In S3, the target air amount tQa and the actual air amount rQa are read. The target air amount tQa is a value calculated by the ECU, and the actual air amount tQa is a value detected by an air flow meter.

S4では、目標空気量tQaと燃料噴射量Qfとから、次式により、目標空気過剰率tλを算出する。
tλ=tQa/(Qf×14.6)
S5では、実空気量rQaと燃料噴射量Qfとから、次式により、実空気過剰率rλを算出する。
In S4, the target excess air ratio tλ is calculated from the target air amount tQa and the fuel injection amount Qf by the following equation.
tλ = tQa / (Qf × 14.6)
In S5, the actual excess air ratio rλ is calculated from the actual air amount rQa and the fuel injection amount Qf by the following equation.

rλ=rQa/(Qf×14.6)
S6では、目標空気過剰率に対する実空気過剰率の誤差を学習し、該学習に基づく学習値(学習補正係数)Kで空気量を補正制御する学習制御手段を備える場合に、学習値Kを読込み、S5で算出した実空気過剰率rλを学習値Kで割ることにより、実空気過剰率rλを補正する。
rλ = rQa / (Qf × 14.6)
In S6, the learning value K is read when learning the error of the actual excess air ratio with respect to the target excess air ratio and learning control means for correcting and controlling the air amount with the learning value (learning correction coefficient) K based on the learning. The actual excess air ratio rλ is corrected by dividing the actual excess air ratio rλ calculated in S5 by the learning value K.

rλ=rλ/K
S7では、実空気過剰率rλと目標空気過剰率tλとの差を、実空気過剰率rλで割ることにより、誤差率Δλを算出する。
Δλ=(rλ−tλ)/rλ
又は、実空気過剰率rλと目標空気過剰率tλとの差を、目標空気過剰率tλで割ることにより、誤差率Δλ=(rλ−tλ)/tλを算出するようにしてもよい。
rλ = rλ / K
In S7, the error rate Δλ is calculated by dividing the difference between the actual excess air ratio rλ and the target excess air ratio tλ by the actual excess air ratio rλ.
Δλ = (rλ−tλ) / rλ
Alternatively, the error rate Δλ = (rλ−tλ) / tλ may be calculated by dividing the difference between the actual excess air ratio rλ and the target excess air ratio tλ by the target excess air ratio tλ.

S8では、図5のマップを参照し、目標空気過剰率tλと誤差率Δλとから、PM排出量補正係数を検索する。図5からわかるように、空気過剰率の誤差率Δλがリッチ側に大きくなるほど、PM排出量補正係数は大となり、更に、目標空気過剰率tλがリッチ側になるほど、PM排出量補正係数は更に大となる。尚、誤差率Δλがリーン側のとき、PM排出量補正係数は1(補正なし)となる。   In S8, the PM exhaust amount correction coefficient is searched from the target excess air rate tλ and the error rate Δλ with reference to the map of FIG. As can be seen from FIG. 5, the PM exhaust amount correction coefficient increases as the error rate Δλ of the excess air ratio increases toward the rich side, and further, the PM exhaust amount correction coefficient further increases as the target excess air ratio tλ increases toward the rich side. Become big. When the error rate Δλ is on the lean side, the PM emission amount correction coefficient is 1 (no correction).

尚、図6の特性aは、空気過剰率λと、PM排出量との一般的な関係を示している。特性bは、特性aでのλ=1.3でのPM排出量を基準値として、各λでのPM排出量の基準値に対する比を算出することにより、空気過剰率λと、PM排出量の基準値に対する比との関係を示している。図5のマップは、このような特性をもとに作成される。
S9では、S2で求めたPM排出量(基本値)に、S8で求めたPM排出量補正係数を乗じて、PM排出量(=基本値×補正係数)を算出する。
The characteristic a in FIG. 6 shows a general relationship between the excess air ratio λ and the PM emission amount. The characteristic b is calculated by calculating the ratio of the PM discharge amount at each λ to the reference value by using the PM discharge amount at λ = 1.3 in the characteristic a as a reference value. The relationship with the ratio with respect to the reference value is shown. The map of FIG. 5 is created based on such characteristics.
In S9, the PM emission amount (= basic value × correction coefficient) is calculated by multiplying the PM emission amount (basic value) obtained in S2 by the PM emission amount correction coefficient obtained in S8.

S10では、補正後のPM排出量を積算することにより、PM堆積量(=ΣPM排出量)を推定する。
図7は実空気過剰率を空燃比センサにより検出する場合のフローチャートである。
異なる部分についてのみ説明すると、S3では、目標空気量tQaのみを読込む。
S5では、空燃比センサ信号により、実空気過剰率rλを検出する。従って、図6のS6のような補正の必要はなくなる。他は同じである。
In S10, the PM accumulation amount (= ΣPM emission amount) is estimated by integrating the corrected PM emission amount.
FIG. 7 is a flowchart in the case where the actual excess air ratio is detected by the air-fuel ratio sensor.
To explain only the different parts, only the target air amount tQa is read in S3.
In S5, the actual excess air ratio rλ is detected from the air-fuel ratio sensor signal. Accordingly, there is no need for correction as in S6 of FIG. Others are the same.

本実施形態によれば、過渡条件において空気過剰率が変動することに着目し、定常条件での運転状態に応じて算出したPM排出量を空気過剰率に応じて補正することで、過渡条件でのPM排出量の増大を考慮に入れることができ、これによりPM堆積量の推定精度を向上させることができる。
また、本実施形態によれば、目標空気過剰率、及び、実空気過剰率に応じて、補正することにより、過渡条件で実、目標空気過剰率が誤差を持つ場合に増大するPM排出量を運転状態に応じたPM排出特性を変えずに推定することができ、適合範囲も少なくてすむ。
According to the present embodiment, paying attention to the fact that the excess air ratio fluctuates under transient conditions, by correcting the PM emission amount calculated according to the operating state under steady conditions according to the excess air ratio, The increase in the PM emission amount can be taken into consideration, and this can improve the estimation accuracy of the PM deposition amount.
Further, according to the present embodiment, by correcting according to the target excess air ratio and the actual excess air ratio, the PM emission amount that increases when the target excess air ratio has an error in the transient condition is actually increased. It is possible to estimate without changing the PM emission characteristic according to the operating state, and it is possible to reduce the conforming range.

また、本実施形態によれば、第1パラメータとして、目標空気過剰率、第2パラメータとして、実空気過剰率と目標空気過剰率との差(rλ−tλ)又は比(rλ/tλ)を用い、これらに応じて補正することにより、過渡条件で実空気過剰率が目標空気過剰率よりも過濃になることで、予測よりも多くのPMを発生させているという状況等を補償することができる。   Further, according to the present embodiment, the target excess air ratio is used as the first parameter, and the difference (rλ−tλ) or ratio (rλ / tλ) between the actual excess air ratio and the target excess air ratio is used as the second parameter. By correcting according to these, it is possible to compensate for a situation in which the actual excess air ratio becomes excessively higher than the target excess air ratio under transient conditions, thereby generating more PM than expected. it can.

また、本実施形態によれば、前記第2パラメータとして、実空気過剰率と目標空気過剰率との差(rλ−tλ)を用いる場合に、これを実空気過剰率tλ又は目標空気過剰率tλに対する比に変換した値を用いることにより、実空気過剰率と目標空気過剰率の誤差に対して、誤差の絶対値は同じでも、もとの空気過剰率に応じて実際には感度が違うのを、的確に反映して、補償することができる。   According to the present embodiment, when the difference (rλ−tλ) between the actual excess air ratio and the target excess air ratio is used as the second parameter, this is used as the actual excess air ratio tλ or the target excess air ratio tλ. By using the value converted to the ratio to the actual excess air ratio and the target excess air ratio error, the sensitivity is actually different depending on the original excess air ratio even though the absolute value of the error is the same. Can be accurately reflected and compensated.

この場合、特に、分母の空気過剰率として、実空気過剰率rλを用いることにより、すなわち、PM発生に最も影響の大きい実空気過剰率の感度を考慮することで、図7に示すような実際の空気過剰率とPM発生量の特性から直接求めた比を係数として、補正係数マップに適用することができる。
分母の空気過剰率として、目標空気過剰率tλを用いる場合は、実空気過剰率との誤差分だけ適合が余分に必要となるが、補償目的は満足させることができる。
In this case, in particular, by using the actual excess air ratio rλ as the excess air ratio of the denominator, that is, by considering the sensitivity of the actual excess air ratio that has the greatest influence on the PM generation, the actual excess air ratio as shown in FIG. The ratio directly obtained from the characteristics of the excess air ratio and the amount of PM generated can be applied to the correction coefficient map as a coefficient.
When the target excess air ratio tλ is used as the excess air ratio of the denominator, an extra adaptation is required by an error from the actual excess air ratio, but the compensation purpose can be satisfied.

また、本実施形態によれば、目標空気過剰率は、目標空気量と実燃料噴射量とに基づいて算出することにより、スモーク限界にかかるような運転が実施された場合に、実空気過剰率との誤差が小さくなってしまったり、補正係数マップの第1パラメータAが過濃になってしまったりすることを防止できる。
また、本実施形態によれば、実空気過剰率は、実空気量と実燃料噴射量とに基づいて算出するが、これは、空気量のバラツキが空気過剰率に及ぼす影響が大きいからであり、また空気過剰率を直接検出する手段(空燃比センサ)がない場合に特に有効である。
Further, according to the present embodiment, the target excess air ratio is calculated based on the target air amount and the actual fuel injection amount. And the first parameter A of the correction coefficient map can be prevented from becoming excessively dark.
Further, according to the present embodiment, the actual excess air ratio is calculated based on the actual air amount and the actual fuel injection amount, because the variation in the air amount greatly affects the excess air ratio. This is particularly effective when there is no means (air-fuel ratio sensor) for directly detecting the excess air ratio.

また、本実施形態によれば、目標空気過剰率に対する実空気過剰率の誤差を学習し、該学習に基づく学習値Kで空気量を補正制御する学習制御手段を備える場合に、実空気量と実燃料噴射量とに基づいて算出した実空気過剰率を、前記学習値Kで補正することにより、実空気過剰率と目標空気過剰率とを空気量で補正して一致させる制御を行った場合に、実空気過剰率が過補正となり、実空気過剰率と目標空気過剰率の誤差が収束しないのを防止できる。   In addition, according to the present embodiment, when the learning control means for learning the error of the actual excess air ratio with respect to the target excess air ratio and correcting and controlling the air amount with the learning value K based on the learning is provided, When the actual excess air ratio calculated based on the actual fuel injection amount is corrected with the learned value K, thereby correcting the actual excess air ratio and the target excess air ratio with the air amount so as to match. In addition, the actual excess air ratio is overcorrected, and it is possible to prevent the error between the actual excess air ratio and the target excess air ratio from converging.

また、本実施形態によれば、排気系に空燃比センサを備える場合に、そのセンサ信号に基づいて、実空気過剰率を検出することにより、実空気過剰率をより正確にかつ簡易にとらえることができる。
尚、本発明では、エンジンからのPM排出量を算出・補正し、これを積算してDPFのPM堆積量を算出しているが、ここでいう「PM排出量」をエンジンからの純然たるPM排出量ととらえて、PM堆積量の算出に際して、PM捕集効率を考慮してもよいし、「PM排出量」を単位時間当たりのDPFでのPM堆積量ととらえるようにしてもよい。
Further, according to the present embodiment, when the air-fuel ratio sensor is provided in the exhaust system, the actual excess air ratio can be more accurately and easily detected by detecting the actual excess air ratio based on the sensor signal. Can do.
In the present invention, the PM emission amount from the engine is calculated and corrected, and this is integrated to calculate the PM accumulation amount of the DPF. However, the “PM emission amount” here is the pure PM from the engine. When calculating the PM deposition amount, the PM collection efficiency may be taken into consideration, or “PM emission amount” may be regarded as the PM deposition amount in the DPF per unit time.

本発明の一実施形態を示すディーゼルエンジンのシステム図The system diagram of the diesel engine which shows one Embodiment of this invention PM堆積量推定の概要を示すブロック図Block diagram showing the outline of PM accumulation estimation PM堆積量推定のフローチャートFlow chart of PM accumulation amount estimation PM排出量基本値マップを示す図The figure which shows the PM emission basic value map PM排出量補正係数マップを示す図The figure which shows PM emission amount correction coefficient map 空気過剰率に対するPM排出量の特性図Characteristic chart of PM emissions against excess air ratio 実空気過剰率を空燃比センサにより検出する場合のフローチャートFlowchart when the actual excess air ratio is detected by an air-fuel ratio sensor

符号の説明Explanation of symbols

1 ディーゼルエンジン
2 吸気通路
3 過給機
4 インタークーラ
5 吸気絞り弁
6 コレクタ
7 高圧燃料ポンプ
8 コモンレール
9 燃料噴射弁
10 排気通路
11 EGR通路
12 EGR弁
13 DPF
15 可変ノズル機構
20 ECU
21 アクセル開度センサ
22 回転数センサ
23 エアフローメータ
24 空燃比センサ
DESCRIPTION OF SYMBOLS 1 Diesel engine 2 Intake passage 3 Supercharger 4 Intercooler 5 Intake throttle valve 6 Collector 7 High pressure fuel pump 8 Common rail 9 Fuel injection valve 10 Exhaust passage 11 EGR passage 12 EGR valve 13 DPF
15 Variable nozzle mechanism 20 ECU
21 Accelerator opening sensor 22 Rotation speed sensor 23 Air flow meter 24 Air-fuel ratio sensor

Claims (11)

排気通路に排気中のPMを捕集するフィルタを備える内燃機関において、
機関の運転状態に応じてPM排出量を算出するPM排出量算出手段と、
前記PM排出量を空気過剰率に応じて補正する補正手段と、
前記補正後のPM排出量を積算して前記フィルタのPM堆積量を算出するPM堆積量算出手段と、
を含んで構成されるPM堆積量推定装置。
In an internal combustion engine having a filter for collecting PM in exhaust gas in an exhaust passage,
PM emission amount calculating means for calculating the PM emission amount according to the operating state of the engine;
Correction means for correcting the PM emission amount according to the excess air ratio;
PM accumulation amount calculating means for calculating the PM accumulation amount of the filter by integrating the corrected PM discharge amount;
PM accumulation amount estimation device comprising:
前記補正手段は、目標空気過剰率、及び、実空気過剰率に応じて、補正することを特徴とする請求項1記載のPM堆積量推定装置。   The PM accumulation amount estimation apparatus according to claim 1, wherein the correction unit corrects according to a target excess air ratio and an actual excess air ratio. 前記補正手段は、第1パラメータとして、目標空気過剰率、第2パラメータとして、実空気過剰率と目標空気過剰率との差を用い、これらに応じて補正することを特徴とする請求項2記載のPM堆積量推定装置。   The correction means uses a target excess air ratio as a first parameter and a difference between an actual excess air ratio and a target excess air ratio as a second parameter, and corrects the correction accordingly. PM deposition amount estimation device. 前記補正手段は、第1パラメータとして、目標空気過剰率、第2パラメータとして、実空気過剰率と目標空気過剰率との比を用い、これらに応じて補正することを特徴とする請求項2記載のPM堆積量推定装置。   The correction means uses a target excess air ratio as a first parameter and a ratio between an actual excess air ratio and a target excess air ratio as a second parameter, and corrects the ratio accordingly. PM deposition amount estimation device. 前記補正手段は、前記第2パラメータとして、実空気過剰率と目標空気過剰率との差を、実空気過剰率に対する比に変換した値を用いることを特徴とする請求項3記載のPM堆積量推定装置。   The PM accumulation amount according to claim 3, wherein the correction means uses, as the second parameter, a value obtained by converting a difference between the actual excess air ratio and the target excess air ratio into a ratio to the actual excess air ratio. Estimating device. 前記補正手段は、前記第2パラメータとして、実空気過剰率と目標空気過剰率との差を、目標空気過剰率に対する比に変換した値を用いることを特徴とする請求項3記載のPM堆積量推定装置。   The PM accumulation amount according to claim 3, wherein the correction means uses, as the second parameter, a value obtained by converting a difference between the actual excess air ratio and the target excess air ratio into a ratio to the target excess air ratio. Estimating device. 前記目標空気過剰率は、目標空気量と実燃料噴射量とに基づいて算出することを特徴とする請求項2〜請求項6のいずれか1つに記載のPM堆積量推定装置。   The PM accumulation amount estimation device according to any one of claims 2 to 6, wherein the target air excess ratio is calculated based on a target air amount and an actual fuel injection amount. 前記実空気過剰率は、実空気量と実燃料噴射量とに基づいて算出することを特徴とする請求項2〜請求項7のいずれか1つに記載のPM堆積量推定装置。   8. The PM accumulation amount estimation device according to claim 2, wherein the actual excess air ratio is calculated based on an actual air amount and an actual fuel injection amount. 目標空気過剰率に対する実空気過剰率の誤差を学習し、該学習に基づく学習値で空気量を補正制御する学習制御手段を備える場合に、
実空気量と実燃料噴射量とに基づいて算出した実空気過剰率を、前記学習値で補正することを特徴とする請求項8記載のPM堆積量推定装置。
When learning error of the actual excess air ratio with respect to the target excess air ratio, and having learning control means for correcting and controlling the air amount with the learning value based on the learning,
9. The PM accumulation amount estimation device according to claim 8, wherein an actual excess air ratio calculated based on an actual air amount and an actual fuel injection amount is corrected by the learned value.
前記実空気過剰率は、空燃比センサにより検出することを特徴とする請求項2〜請求項7のいずれか1つに記載のPM堆積量推定装置。   The PM accumulation amount estimation apparatus according to any one of claims 2 to 7, wherein the actual excess air ratio is detected by an air-fuel ratio sensor. 前記PM排出量算出手段は、機関回転数及び負荷に応じてPM排出量を算出することを特徴とする請求項1〜請求項10のいずれか1つに記載のPM堆積量推定装置。   The PM accumulation amount estimation device according to any one of claims 1 to 10, wherein the PM emission amount calculation means calculates a PM emission amount according to an engine speed and a load.
JP2005209790A 2005-07-20 2005-07-20 PM deposition amount estimation device Active JP4622719B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005209790A JP4622719B2 (en) 2005-07-20 2005-07-20 PM deposition amount estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005209790A JP4622719B2 (en) 2005-07-20 2005-07-20 PM deposition amount estimation device

Publications (2)

Publication Number Publication Date
JP2007023959A true JP2007023959A (en) 2007-02-01
JP4622719B2 JP4622719B2 (en) 2011-02-02

Family

ID=37785033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005209790A Active JP4622719B2 (en) 2005-07-20 2005-07-20 PM deposition amount estimation device

Country Status (1)

Country Link
JP (1) JP4622719B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030603A (en) * 2007-07-24 2009-02-12 Robert Bosch Gmbh Determining method of injected fuel mass
JP2009030478A (en) * 2007-07-25 2009-02-12 Toyota Motor Corp Pm emission amount estimation system for internal combustion engine and exhaust emission control system for internal combustion engine
WO2009139507A1 (en) * 2008-05-16 2009-11-19 トヨタ自動車株式会社 Soot discharge estimating device for internal combustion engines
WO2011018918A1 (en) 2009-08-10 2011-02-17 三菱重工業株式会社 Pm emission amount estimation device for diesel engine
JP2011122596A (en) * 2011-01-13 2011-06-23 Nissan Motor Co Ltd Regeneration start timing control device and regeneration start timing control method for exhaust emission control filter
JP2012087650A (en) * 2010-10-18 2012-05-10 Mitsubishi Heavy Ind Ltd Pm emission amount estimating device and pm emission amount control device of diesel engine
WO2013073510A1 (en) * 2011-11-18 2013-05-23 いすゞ自動車株式会社 Fuel injection method for internal combustion engine and internal combustion engine
WO2013073509A1 (en) * 2011-11-18 2013-05-23 いすゞ自動車株式会社 Abnormality determination method for fuel injection of internal combustion engine and internal combustion engine
WO2013073512A1 (en) * 2011-11-18 2013-05-23 いすゞ自動車株式会社 Fuel injection method for internal combustion engine and internal combustion engine
WO2014083626A1 (en) * 2012-11-28 2014-06-05 トヨタ自動車株式会社 Control device for internal combustion engine
JP2014134167A (en) * 2013-01-11 2014-07-24 Toyota Motor Corp Pm discharge amount estimation device
US9008949B2 (en) 2009-06-03 2015-04-14 Toyota Jidosha Kabushiki Kaisha Soot discharge estimating device for internal combustion engines

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254039A (en) * 2002-02-25 2003-09-10 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2004044457A (en) * 2002-07-10 2004-02-12 Nissan Motor Co Ltd Exhaust emission control device of internal combustion engine
WO2004036002A1 (en) * 2002-10-16 2004-04-29 Mitsubishi Fuso Truck And Bus Corporation Exhaust emission control device of internal combustion engine
JP2005054634A (en) * 2003-08-01 2005-03-03 Nissan Diesel Motor Co Ltd Exhaust emission control device
JP2005090319A (en) * 2003-09-16 2005-04-07 Nissan Diesel Motor Co Ltd Exhaust emission control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254039A (en) * 2002-02-25 2003-09-10 Nissan Motor Co Ltd Exhaust emission control device for internal combustion engine
JP2004044457A (en) * 2002-07-10 2004-02-12 Nissan Motor Co Ltd Exhaust emission control device of internal combustion engine
WO2004036002A1 (en) * 2002-10-16 2004-04-29 Mitsubishi Fuso Truck And Bus Corporation Exhaust emission control device of internal combustion engine
JP2005054634A (en) * 2003-08-01 2005-03-03 Nissan Diesel Motor Co Ltd Exhaust emission control device
JP2005090319A (en) * 2003-09-16 2005-04-07 Nissan Diesel Motor Co Ltd Exhaust emission control device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030603A (en) * 2007-07-24 2009-02-12 Robert Bosch Gmbh Determining method of injected fuel mass
JP2009030478A (en) * 2007-07-25 2009-02-12 Toyota Motor Corp Pm emission amount estimation system for internal combustion engine and exhaust emission control system for internal combustion engine
WO2009139507A1 (en) * 2008-05-16 2009-11-19 トヨタ自動車株式会社 Soot discharge estimating device for internal combustion engines
US8457905B2 (en) 2008-05-16 2013-06-04 Toyota Jidosha Kabushiki Kaisha Soot discharge estimating device for internal combustion engines
EP2439383A4 (en) * 2009-06-03 2017-12-27 Toyota Jidosha Kabushiki Kaisha Device for estimating amount of soot discharged from internal combustion engine
US9008949B2 (en) 2009-06-03 2015-04-14 Toyota Jidosha Kabushiki Kaisha Soot discharge estimating device for internal combustion engines
US8869606B2 (en) 2009-08-10 2014-10-28 Mitsubishi Heavy Industries, Ltd. PM emission amount estimation device for diesel engine
WO2011018918A1 (en) 2009-08-10 2011-02-17 三菱重工業株式会社 Pm emission amount estimation device for diesel engine
JP2011058487A (en) * 2009-08-10 2011-03-24 Mitsubishi Heavy Ind Ltd Pm emission amount estimation device for diesel engine
JP2012087650A (en) * 2010-10-18 2012-05-10 Mitsubishi Heavy Ind Ltd Pm emission amount estimating device and pm emission amount control device of diesel engine
JP2011122596A (en) * 2011-01-13 2011-06-23 Nissan Motor Co Ltd Regeneration start timing control device and regeneration start timing control method for exhaust emission control filter
WO2013073509A1 (en) * 2011-11-18 2013-05-23 いすゞ自動車株式会社 Abnormality determination method for fuel injection of internal combustion engine and internal combustion engine
JP2013108408A (en) * 2011-11-18 2013-06-06 Isuzu Motors Ltd Combustion injection method for internal combustion engine, and internal combustion engine
JP2013108403A (en) * 2011-11-18 2013-06-06 Isuzu Motors Ltd Failure determination method for combustion injection of internal combustion engine, and internal combustion engine
JP2013108407A (en) * 2011-11-18 2013-06-06 Isuzu Motors Ltd Combustion injection method for internal combustion engine and internal combustion engine
WO2013073512A1 (en) * 2011-11-18 2013-05-23 いすゞ自動車株式会社 Fuel injection method for internal combustion engine and internal combustion engine
WO2013073510A1 (en) * 2011-11-18 2013-05-23 いすゞ自動車株式会社 Fuel injection method for internal combustion engine and internal combustion engine
WO2014083626A1 (en) * 2012-11-28 2014-06-05 トヨタ自動車株式会社 Control device for internal combustion engine
JP2014134167A (en) * 2013-01-11 2014-07-24 Toyota Motor Corp Pm discharge amount estimation device

Also Published As

Publication number Publication date
JP4622719B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
JP4622719B2 (en) PM deposition amount estimation device
US9010180B2 (en) Method and observer for determining the exhaust manifold temperature in a turbocharged engine
US8387593B2 (en) EGR flow rate control apparatus of internal combustion engine
EP1862657B1 (en) Fuel jetting control unit for internal combustion engine
EP2518291B1 (en) Internal combustion engine control apparatus
US7096861B1 (en) Control system for internal combustion engine
JP5331613B2 (en) In-cylinder gas amount estimation device for internal combustion engine
US20160169168A1 (en) Exhaust system state detection device
JP2004324538A (en) Engine control device
JP2009047130A (en) Control device for internal combustion engine
JP2009002281A (en) Intake air amount detection device
JP2006029084A (en) Control device of internal combustion engine
JP5111534B2 (en) EGR control device for internal combustion engine
JP4072860B2 (en) Intake air amount detection device for internal combustion engine
JP2008064022A (en) Control device for internal combustion engine
JP2013036355A (en) Air flow rate sensor calibration device
JP5608614B2 (en) Engine EGR flow rate detection device
JP5004036B2 (en) Exhaust gas purification device for internal combustion engine
JP2006291871A (en) Controller of internal combustion engine
JP2006046071A (en) Atmospheric pressure estimating device for vehicle
JP2011179425A (en) Exhaust recirculation device of internal combustion engine
WO2016159019A1 (en) Exhaust gas estimation apparatus
JP5110203B2 (en) EGR control system for internal combustion engine
JP2010190119A (en) Combustion control device for diesel engine
JP4407508B2 (en) Idle speed control device for internal combustion engine

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080324

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080527

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100715

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent or registration of utility model

Ref document number: 4622719

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3