JP2007022991A - Phenol derivative and method for producing the same - Google Patents

Phenol derivative and method for producing the same Download PDF

Info

Publication number
JP2007022991A
JP2007022991A JP2005210503A JP2005210503A JP2007022991A JP 2007022991 A JP2007022991 A JP 2007022991A JP 2005210503 A JP2005210503 A JP 2005210503A JP 2005210503 A JP2005210503 A JP 2005210503A JP 2007022991 A JP2007022991 A JP 2007022991A
Authority
JP
Japan
Prior art keywords
formula
group
carbon atoms
phenol derivative
integer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005210503A
Other languages
Japanese (ja)
Inventor
Masami Ochiai
雅美 落合
Atsushi Takahashi
敦之 高橋
Tatatomi Nishikubo
忠臣 西久保
Hiroto Kudo
宏人 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa University
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Kanagawa University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Kanagawa University filed Critical Hitachi Chemical Co Ltd
Priority to JP2005210503A priority Critical patent/JP2007022991A/en
Publication of JP2007022991A publication Critical patent/JP2007022991A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phenol derivative having high refractive index, and to provide a method for producing the same. <P>SOLUTION: This phenol derivative represented by formula (4) [(n) is an integer of 0 to 3; (m) is an integer of 1 to 1,000; (l) is an integer of 1 to 1,000; R<SB>1</SB>is H, -OH, or a 1 to 10C monovalent alkyl; R<SB>2</SB>is a 1 to 20C divalent organic group; R<SB>3</SB>is a 1 to 20C monovalent organic group; R<SB>4</SB>and R<SB>5</SB>are each H or a 1 to 20C organic group, or R<SB>4</SB>and R<SB>5</SB>may be bound to each other; X is O or S; R<SB>6</SB>and R<SB>7</SB>are each H or a 1 to 20C monovalent organic group; R<SB>6</SB>and R<SB>7</SB>may be bound to each other]. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、新規なフェノール誘導体及びその製造方法に関する。   The present invention relates to a novel phenol derivative and a method for producing the same.

新しいポリマー素材はこれまでのように単一機能性ではなく、複合化された多機能性及び高次構造に基づく新しい機能が求められている。   New polymer materials are not single-functional as in the past, but new functions based on complex multifunctionality and higher order structure are required.

例として、グラフトポリマー、ブロックポリマーは従来のポリマーが単一相であるのに対してミクロ的に多相構造を有するポリマーであり、その組み合わせの多様性等から、柔軟性と多面的な機能を持つポリマーとして今後の展開が期待されている。   For example, a graft polymer and a block polymer are polymers having a multiphase structure microscopically compared with a conventional polymer having a single phase. Future development is expected as a polymer possessed.

また、枝分かれ構造を有する分岐ポリマーは、直鎖状ポリマーと比較して、慣性半径が小さいことから溶液粘度が低く、有機溶媒に対して高い溶解性を示し、末端官能基数が多いことから機能化に有利であるため、様々な分野への応用が可能である。   Branched polymers with a branched structure are functionalized because they have a lower inertia radius compared to linear polymers, have a low solution viscosity, have a high solubility in organic solvents, and have a large number of terminal functional groups. Therefore, it can be applied to various fields.

一方、光学用樹脂の重要な特性のひとつに屈折率がある。屈折率を精密に制御することは、光学レンズ、光導波路等に応用する際、必要不可欠である。屈折率の制御には、樹脂中に様々な置換基を導入する手法が広く用いられている。例えばアクリルその他の樹脂中にフッ素を導入して低屈折率化した検討が数多くなされている(例えば特許文献1参照)。フッ素の導入は低屈折率化のみならず低吸水化や低誘電率化にも有効な手段である。しかしながら樹脂の低屈折率化は、例えばレンズとして使用する場合厚肉化を招く等の欠点も有している。光学樹脂、特に光学特性に優れるアクリル樹脂の高屈折率化は、光導波路や光学レンズ用途に非常に有用である。樹脂の高屈折率化には、フッ素以外のハロゲン原子、硫黄原子及び芳香環等の導入が有効とされている(例えば特許文献2参照)。
特開平3−217412号公報 特開平4−055416号公報
On the other hand, one of the important characteristics of optical resins is the refractive index. Precise control of the refractive index is indispensable when applied to optical lenses, optical waveguides, and the like. In order to control the refractive index, a technique of introducing various substituents into the resin is widely used. For example, many studies have been made on introducing a low refractive index by introducing fluorine into an acrylic or other resin (see, for example, Patent Document 1). The introduction of fluorine is an effective means not only for lowering the refractive index but also for lowering water absorption and lowering the dielectric constant. However, lowering the refractive index of the resin also has drawbacks such as increasing the thickness when used as a lens. Increasing the refractive index of an optical resin, particularly an acrylic resin excellent in optical properties, is very useful for optical waveguide and optical lens applications. In order to increase the refractive index of the resin, introduction of halogen atoms other than fluorine, sulfur atoms, aromatic rings, and the like is effective (see, for example, Patent Document 2).
Japanese Patent Laid-Open No. 3-217812 Japanese Unexamined Patent Publication No. 4-05416

本発明の目的は、高屈折率を有するフェノール誘導体及びその製造方法を提供することである。   The objective of this invention is providing the phenol derivative which has high refractive index, and its manufacturing method.

本発明者らは、環構造中に硫黄原子を含むフェノール水酸基について化学修飾の検討を詳細に行い、塩素基を有する誘導体を出発原料にしてポリチオエーテル鎖を伸長することにより、高屈折率樹脂を見出すことができた。
本発明によれば、以下のフェノール誘導体及びその製造方法が提供される。
1.式(1)で表されるフェノール誘導体。

Figure 2007022991
(式(1)中、nは0〜3の整数を表し、Rは水素、−OH又は炭素数1〜10の1価のアルキル基を示し、Rは炭素数1〜20の2価の有機基を示す。)
2.式(2)で表されるフェノール誘導体。
Figure 2007022991
(式(2)中、nは0〜3の整数を表し、Rは水素、−OH又は炭素数1〜10の1価のアルキル基を示し、Rは炭素数1〜20の2価の有機基を示し、Rは炭素数1〜20の1価の有機基を示す。)
3.式(3)で表されるフェノール誘導体。
Figure 2007022991
(式(3)中、nは0〜3の整数を表し、mは1〜1000の整数を表し、Rは水素、−OH又は炭素数1〜10の1価のアルキル基を示し、Rは炭素数1〜20の2価の有機基を示し、Rは炭素数1〜20の1価の有機基を示し、R及びRはそれぞれ水素又は炭素数1〜20の1価の有機基を示し、またRとRは結合してもよい。)
4.式(4)で表されるフェノール誘導体。
Figure 2007022991
(式(4)中、nは0〜3の整数を表し、mは1〜1000の整数を表し、lは1〜1000の整数を表し、Rは水素、−OH又は炭素数1〜10の1価のアルキル基を示し、Rは炭素数1〜20の2価の有機基を示し、Rは炭素数1〜20の1価の有機基を示し、R及びRはそれぞれ水素又は炭素数1〜20の1価の有機基を示し、またRとRは結合してもよく、Xは酸素又は硫黄を示し、R及びRはそれぞれ水素又は炭素数1〜20の1価の有機基を示し、またRとRは結合してもよい。)
5.下記式で表されるフェノール誘導体にCl−R−COY(Rは式(1)と同じであり、Yはハロゲンである。)を反応させる1記載のフェノール誘導体の製造方法。
Figure 2007022991
(式中、nは0〜3の整数を表し、Rは水素、−OH又は炭素数1〜10の1価のアルキル基を示す。)
6.1記載の誘導体にR−COS−Z(Rは式(2)と同じであり、Zはアルカリ金属である。)を反応させる2記載のフェノール誘導体の製造方法。
7.2記載の誘導体に、下記式で表されるチイラン誘導体を反応させる3記載のフェノール誘導体の製造方法。
Figure 2007022991
(式中、R及びRは式(3)と同じである。)
8.3記載の誘導体に、下記式で表されるエポキシ化合物又はチイラン化合物を反応させる4記載のフェノール誘導体の製造方法。
Figure 2007022991
(式中、R、R及びXは式(4)と同じである。)
9.重合性基を有する3又は4記載のフェノール誘導体。
10.9記載のフェノール誘導体を含む化合物に加熱又は活性エネルギー線照射を行うことによって得られる3次元硬化物。
11.9記載のフェノール誘導体を含む化合物に加熱又は活性エネルギー線照射を行うことによって得られる3次元硬化物の製造方法。 The present inventors have studied in detail the chemical modification of a phenolic hydroxyl group containing a sulfur atom in the ring structure, and by extending a polythioether chain using a derivative having a chlorine group as a starting material, a high refractive index resin can be obtained. I was able to find it.
According to the present invention, the following phenol derivatives and methods for producing the same are provided.
1. A phenol derivative represented by the formula (1).
Figure 2007022991
(In Formula (1), n represents an integer of 0 to 3, R 1 represents hydrogen, —OH, or a monovalent alkyl group having 1 to 10 carbon atoms, and R 2 represents a divalent group having 1 to 20 carbon atoms. Represents an organic group of
2. A phenol derivative represented by the formula (2).
Figure 2007022991
(In formula (2), n represents an integer of 0 to 3, R 1 represents hydrogen, —OH, or a monovalent alkyl group having 1 to 10 carbon atoms, and R 2 represents a divalent group having 1 to 20 carbon atoms. R 3 represents a monovalent organic group having 1 to 20 carbon atoms.)
3. A phenol derivative represented by the formula (3).
Figure 2007022991
(In Formula (3), n represents an integer of 0 to 3, m represents an integer of 1 to 1000, R 1 represents hydrogen, —OH, or a monovalent alkyl group having 1 to 10 carbon atoms; 2 represents a divalent organic group having 1 to 20 carbon atoms, R 3 represents a monovalent organic group having 1 to 20 carbon atoms, and R 4 and R 5 are each hydrogen or monovalent having 1 to 20 carbon atoms. And R 4 and R 5 may be bonded to each other.)
4). A phenol derivative represented by the formula (4).
Figure 2007022991
(In formula (4), n represents an integer of 0 to 3, m represents an integer of 1 to 1000, l represents an integer of 1 to 1000, and R 1 represents hydrogen, —OH, or a carbon number of 1 to 10. R 2 represents a divalent organic group having 1 to 20 carbon atoms, R 3 represents a monovalent organic group having 1 to 20 carbon atoms, and R 4 and R 5 each represents Hydrogen or a monovalent organic group having 1 to 20 carbon atoms; R 4 and R 5 may be bonded; X represents oxygen or sulfur; R 6 and R 7 are each hydrogen or carbon number 1 to 1; 20 represents a monovalent organic group, and R 6 and R 7 may be bonded.)
5. 2. The method for producing a phenol derivative according to 1, wherein a phenol derivative represented by the following formula is reacted with Cl—R 2 —COY (R 2 is the same as in formula (1), and Y is a halogen).
Figure 2007022991
(In the formula, n represents an integer of 0 to 3, and R 1 represents hydrogen, —OH, or a monovalent alkyl group having 1 to 10 carbon atoms.)
6. The method for producing a phenol derivative according to 2, wherein the derivative according to 6.1 is reacted with R 3 —COS—Z (R 3 is the same as in formula (2), and Z is an alkali metal).
The method for producing a phenol derivative according to 3, wherein the derivative according to 7.2 is reacted with a thiirane derivative represented by the following formula.
Figure 2007022991
(In the formula, R 4 and R 5 are the same as in formula (3).)
8. The method for producing a phenol derivative according to 4, wherein the derivative described in 8.3 is reacted with an epoxy compound or a thiirane compound represented by the following formula.
Figure 2007022991
(In the formula, R 6 , R 7 and X are the same as in formula (4).)
9. 5. The phenol derivative according to 3 or 4 having a polymerizable group.
A three-dimensional cured product obtained by heating or irradiating active energy rays to a compound containing the phenol derivative described in 10.9.
The manufacturing method of the three-dimensional hardened | cured material obtained by heating or active energy ray irradiation to the compound containing the phenol derivative of 11.9.

本発明によれば、高屈折率を有するフェノール誘導体及びその製造方法が提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the phenol derivative which has a high refractive index, and its manufacturing method can be provided.

本発明の式(3)又は(4)で表されるフェノール誘導体は、式(1)乃至式(3)で表されるフェノール誘導体を中間体として製造できる。   The phenol derivative represented by the formula (3) or (4) of the present invention can be produced using the phenol derivative represented by the formula (1) to the formula (3) as an intermediate.

式(1)〜(4)中のRは水素、−OH又は炭素数1〜10の1価のアルキル基を示す。1価のアルキル基として、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基等のアルキル基がある。Rは好ましくは水素又は炭素数1〜4のアルキル基である。 R 1 in the formulas (1) to (4) represents hydrogen, —OH or a monovalent alkyl group having 1 to 10 carbon atoms. Examples of the monovalent alkyl group include alkyl groups such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, and t-butyl group. R 1 is preferably hydrogen or an alkyl group having 1 to 4 carbon atoms.

式(1)〜(4)中のRは、炭素数1〜20の2価の有機基であり、例えばメチレン基、エチレン基等のアルキレン基やフェニレン基等の芳香族基及びそれらの置換化合物であるが、塩素基の反応性の観点から炭素数1〜4のアルキレン基、又はジニトロ置換フェニレン基等の電子吸引性基が望ましい。 R 2 in the formulas (1) to (4) is a divalent organic group having 1 to 20 carbon atoms, for example, an alkylene group such as a methylene group or an ethylene group, an aromatic group such as a phenylene group, and substitution thereof. Although it is a compound, an electron-withdrawing group such as an alkylene group having 1 to 4 carbon atoms or a dinitro-substituted phenylene group is desirable from the viewpoint of the reactivity of the chlorine group.

式(1)〜(4)中のnは、0〜3の整数であり、好ましくは1〜3である。   N in the formulas (1) to (4) is an integer of 0 to 3, preferably 1 to 3.

式(2)〜(4)中のRは、炭素数1〜20の1価の有機基であり、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基等のアルキル基や、ビニル基、アリル基等のアルケニル基や、シクロヘキシル基、ノルボルネン基等の飽和又は不飽和環状脂肪族炭化水素基や、フェニル基、ナフチル基等の芳香族基や、エーテル類、エステル類、アミノ類、及びそれらの置換化合物である。好ましくは炭素数1〜4のアルキル基で置換された又は非置換のフェニル基又はナフチル基である。 R 3 in the formulas (2) to (4) is a monovalent organic group having 1 to 20 carbon atoms, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group. Alkyl groups such as sec-butyl group and t-butyl group, alkenyl groups such as vinyl group and allyl group, saturated or unsaturated cyclic aliphatic hydrocarbon groups such as cyclohexyl group and norbornene group, phenyl group and naphthyl group Aromatic groups such as groups, ethers, esters, aminos, and substituted compounds thereof. Preferably, it is a phenyl group or naphthyl group substituted or unsubstituted by an alkyl group having 1 to 4 carbon atoms.

式(3)及び式(4)中のR及びRはそれぞれ水素又は炭素数1〜20の1価の有機基であり、例えば、互いに独立してメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基等のアルキル基や、ビニル基、アリル基等のアルケニル基や、シクロヘキシル基、ノルボルネン基等の飽和又は不飽和環状脂肪族炭化水素基や、フェニル基、ナフチル基等の芳香族基や、エーテル類、エステル類、アミノ類、及びそれらの置換化合物である。また、RとRが結合して、例えばシクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、ノルボルナン環等の環を形成してもよい。好ましくは、Rは水素又は炭素数1〜4のアルキル基であり、Rは炭素数1〜4のアルキル基で置換された又は非置換のフェノキシアルキル(好ましくは炭素数1〜4)基である。 R 4 and R 5 in Formula (3) and Formula (4) are each hydrogen or a monovalent organic group having 1 to 20 carbon atoms, and are, for example, independently of each other a methyl group, an ethyl group, or an n-propyl group. , Isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl and other alkyl groups, vinyl, allyl and other alkenyl groups, cyclohexyl, norbornene and other saturated or unsaturated cyclic groups They are aliphatic hydrocarbon groups, aromatic groups such as phenyl groups and naphthyl groups, ethers, esters, aminos, and substituted compounds thereof. R 4 and R 5 may combine to form a ring such as a cyclobutane, cyclopentane, cyclohexane, cycloheptane, or norbornane ring. Preferably, R 4 is hydrogen or an alkyl group having 1 to 4 carbon atoms, and R 5 is a phenoxyalkyl (preferably having 1 to 4 carbon atoms) group substituted or unsubstituted by an alkyl group having 1 to 4 carbon atoms. It is.

式(3)及び式(4)中のmは1〜1000の整数であり、好ましくは1〜500である。また、mは繰り返し数を表し、好ましくは数平均分子量が1000〜50000である。   M in Formula (3) and Formula (4) is an integer of 1-1000, Preferably it is 1-500. M represents the number of repetitions, and the number average molecular weight is preferably 1000 to 50000.

式(4)中のR及びRはそれぞれ水素又は炭素数1〜20の1価の有機基であり、例えば、互いに独立してメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、t−ブチル基、クロトニル基、アルコキシ基、フェノキシ基、等のアルキル基や、ビニル基、アリル基、アクリロリル基、メタクリロイル基、スチリル基、p−ビニルアリール基、ビニロキシ基等のアルケニル基や、シクロヘキシル基、ノルボルネン基、等の飽和又は不飽和環状脂肪族炭化水素基や、フェニル基、ナフチル基等の芳香族基や、エーテル類、エステル類、及びそれらの置換化合物であり、また、RとRが結合して、例えばシクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン、ノルボルナン環等の環を形成してもよい。好ましくは、Rは水素又は炭素数1〜4のアルキル基であり、Rは(メタ)アクリロキシアルキル(好ましくは炭素数1〜4)基である。 R 6 and R 7 in the formula (4) are each hydrogen or a monovalent organic group having 1 to 20 carbon atoms, and for example, independently of each other, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, n -Alkyl group such as butyl group, isobutyl group, sec-butyl group, t-butyl group, crotonyl group, alkoxy group, phenoxy group, vinyl group, allyl group, acrylolyl group, methacryloyl group, styryl group, p-vinyl Aryl groups, alkenyl groups such as vinyloxy groups, saturated or unsaturated cyclic aliphatic hydrocarbon groups such as cyclohexyl groups, norbornene groups, aromatic groups such as phenyl groups, naphthyl groups, ethers, esters, and Those substituted compounds, and R 6 and R 7 are bonded to each other, for example, cyclobutane, cyclopentane, cyclohexane, cycloheptane, norbornyl. A ring such as a nan ring may be formed. Preferably, R 6 is hydrogen or an alkyl group having 1 to 4 carbon atoms, and R 7 is a (meth) acryloxyalkyl (preferably having 1 to 4 carbon atoms) group.

式(4)中のlは1〜1000の整数であり、好ましくは1〜500である。また、lは繰り返し数を表し、好ましくは数平均分子量が1000〜50000である。   L in Formula (4) is an integer of 1-1000, Preferably it is 1-500. Moreover, l represents the number of repetitions, Preferably the number average molecular weight is 1000-50000.

式(1)で示されるフェノール誘導体は、下記式で示される対応するフェノール体

Figure 2007022991
(式中、nは0〜3の整数を表し、Rは水素、−OH又は炭素数1〜10の1価のアルキル基を示す。)
にCl−R−COY(Rは式(1)と同じであり、Yはハロゲンである。)を反応させることにより得ることができる。好ましくは塩基存在下で反応を行う。 The phenol derivative represented by the formula (1) is a corresponding phenol compound represented by the following formula:
Figure 2007022991
(In the formula, n represents an integer of 0 to 3, and R 1 represents hydrogen, —OH, or a monovalent alkyl group having 1 to 10 carbon atoms.)
And Cl—R 2 —COY (wherein R 2 is the same as in formula (1) and Y is a halogen). The reaction is preferably performed in the presence of a base.

用いる塩基としては、ピリジン、トリエチルアミン等の第3級アミン化合物、水酸化ナトリウムや水酸化カリウム等の金属水酸化物等がある。塩基の量はフェノール水酸基に対し好ましくは1〜10倍量、より好ましくは1〜2倍量用いる。   Examples of the base used include tertiary amine compounds such as pyridine and triethylamine, and metal hydroxides such as sodium hydroxide and potassium hydroxide. The amount of the base is preferably 1 to 10 times, more preferably 1 to 2 times the amount of the phenolic hydroxyl group.

反応に用いる溶剤は、ジエチルエーテルやテトラヒドロフラン等のエーテル類、ジクロロメタンやクロロホルム等のハロゲン系溶媒、ヘキサンやトルエン等の炭化水素系溶媒、N,N−ジメチルホルムアミド、N−メチルピロリドンやN−ジメチルアセトアミド等の非プロトン性極性溶媒、アセトンやシクロヘキサノン等のケトン系溶媒、酢酸エチル等のエステル類を用いることができる。また、無溶媒でも反応させることができる。   Solvents used in the reaction are ethers such as diethyl ether and tetrahydrofuran, halogen solvents such as dichloromethane and chloroform, hydrocarbon solvents such as hexane and toluene, N, N-dimethylformamide, N-methylpyrrolidone and N-dimethylacetamide. An aprotic polar solvent such as acetone, ketone solvents such as acetone and cyclohexanone, and esters such as ethyl acetate can be used. Moreover, it can be made to react even without solvent.

反応温度は、通常、−78〜100℃の間で行うが好ましくは−50〜50℃、より好ましくは−50〜20℃である。反応温度が−78℃未満だと反応時間が長くなる恐れがあり、また反応温度が100℃を超えると副反応が起こる恐れがある。   The reaction temperature is usually between −78 and 100 ° C., preferably −50 to 50 ° C., more preferably −50 to 20 ° C. If the reaction temperature is less than −78 ° C., the reaction time may become longer, and if the reaction temperature exceeds 100 ° C., side reactions may occur.

式(2)で示されるフェノール誘導体は、式(1)で示される化合物に、R−COS−Z(Rは式(2)と同じであり、Zはアルカリ金属である。)を反応させることにより得ることができる。好ましくは塩触媒存在下で反応を行う。 The phenol derivative represented by the formula (2) reacts with the compound represented by the formula (1) by R 3 —COS—Z (R 3 is the same as the formula (2), and Z is an alkali metal). Can be obtained. The reaction is preferably carried out in the presence of a salt catalyst.

塩触媒としては、テトラブチルアンモニウムブロミドやテトラエチルアンモニウムクロリド等の4級アンモニウム塩や、リチウムクロリド、リチウムブロミド等の金属塩が用いられる。触媒の添加量は、式(1)で示される化合物100部に対し1〜10部である。R−COS−Zは式(1)で示される化合物に対し大過剰加え、反応途中でさらに追加してもよい。 As the salt catalyst, quaternary ammonium salts such as tetrabutylammonium bromide and tetraethylammonium chloride, and metal salts such as lithium chloride and lithium bromide are used. The addition amount of the catalyst is 1 to 10 parts with respect to 100 parts of the compound represented by the formula (1). R 3 —COS—Z may be added in a large excess relative to the compound represented by formula (1), and may be further added during the reaction.

反応に用いる溶媒はエーテル類、ハロゲン系溶媒、炭化水素系溶媒の他に、N,N−ジメチルホルムアミドやN−メチルピロリドン等の非プロトン性極性溶媒、アセトンやシクロヘキサノン等のケトン系溶媒、酢酸エチル等のエステル類を用いることができる。   Solvents used in the reaction include ethers, halogen solvents, hydrocarbon solvents, aprotic polar solvents such as N, N-dimethylformamide and N-methylpyrrolidone, ketone solvents such as acetone and cyclohexanone, and ethyl acetate. Esters such as can be used.

反応温度は、通常、−78〜100℃の間で行うが、好ましくは−50〜80℃、より好ましくは−50〜50℃である。反応温度が−78℃未満だと反応時間が長くなる恐れがあり、また反応温度が100℃を超えると副反応が起こる恐れがある。   The reaction temperature is usually −78 to 100 ° C., preferably −50 to 80 ° C., more preferably −50 to 50 ° C. If the reaction temperature is less than −78 ° C., the reaction time may become longer, and if the reaction temperature exceeds 100 ° C., side reactions may occur.

式(3)で示されるフェノール誘導体は、式(2)で示される化合物に、下記式で示される対応するチイラン化合物

Figure 2007022991
(式中、R及びRは式(3)と同じである。)
を反応させることによって得ることができる。好ましくは塩触媒存在下で反応行う。 The phenol derivative represented by the formula (3) is a thiirane compound corresponding to the compound represented by the formula (2) represented by the following formula:
Figure 2007022991
(In the formula, R 4 and R 5 are the same as in formula (3).)
Can be obtained by reacting. The reaction is preferably carried out in the presence of a salt catalyst.

塩触媒としては、テトラブチルアンモニウムブロミドやテトラエチルアンモニウムクロリド等の4級アンモニウム塩や、リチウムクロリド、リチウムブロミド等の金属塩が用いられる。触媒の添加量は、式(2)で示される化合物の官能基量と等量が好ましい。   As the salt catalyst, quaternary ammonium salts such as tetrabutylammonium bromide and tetraethylammonium chloride, and metal salts such as lithium chloride and lithium bromide are used. The addition amount of the catalyst is preferably equal to the functional group amount of the compound represented by the formula (2).

反応に用いる溶媒はエーテル類、ハロゲン系溶媒、炭化水素系溶媒の他に、N,N−ジメチルホルムアミドやN−メチルピロリドン等の非プロトン性極性溶媒、アセトンやシクロヘキサノン等のケトン系溶媒、酢酸エチル等のエステル類を用いることができる。また、無溶媒でも反応させることができる。   Solvents used in the reaction include ethers, halogen solvents, hydrocarbon solvents, aprotic polar solvents such as N, N-dimethylformamide and N-methylpyrrolidone, ketone solvents such as acetone and cyclohexanone, and ethyl acetate. Esters such as can be used. Moreover, it can be made to react even without solvent.

反応温度は、通常、0〜150℃の間で行うが、好ましくは20〜100℃、より好ましくは50〜100℃である。反応温度が0℃未満だと反応時間が長くなる恐れがあり、また反応温度が150℃を超えると副反応が起こりやすくなる。
反応は、アンプル封管等、水分を除去できる状態で行うのが望ましい。
Although reaction temperature is normally performed between 0-150 degreeC, Preferably it is 20-100 degreeC, More preferably, it is 50-100 degreeC. If the reaction temperature is less than 0 ° C, the reaction time may be prolonged, and if the reaction temperature exceeds 150 ° C, side reactions are likely to occur.
The reaction is desirably performed in a state where moisture can be removed, such as an ampoule sealed tube.

式(4)で示されるフェノール誘導体は、式(3)で示される化合物に、下記式に示される対応するチイラン化合物又はエポキシ化合物

Figure 2007022991
(式中、R、R及びXは式(4)と同じである。)
を反応させることによって得ることができる。好ましくは塩触媒存在下で反応を行う。 The phenol derivative represented by the formula (4) corresponds to the compound represented by the formula (3) and the corresponding thiirane compound or epoxy compound represented by the following formula
Figure 2007022991
(In the formula, R 6 , R 7 and X are the same as in formula (4).)
Can be obtained by reacting. The reaction is preferably carried out in the presence of a salt catalyst.

塩触媒としては、テトラブチルアンモニウムブロミドやテトラエチルアンモニウムクロリド等の4級アンモニウム塩や、リチウムクロリド、リチウムブロミド等の金属塩が用いられる。触媒の添加量は、式(3)で示される化合物の官能基量と等量が好ましい。   As the salt catalyst, quaternary ammonium salts such as tetrabutylammonium bromide and tetraethylammonium chloride, and metal salts such as lithium chloride and lithium bromide are used. The addition amount of the catalyst is preferably equal to the functional group amount of the compound represented by the formula (3).

反応に用いる溶媒はエーテル類、ハロゲン系溶媒、炭化水素系溶媒の他に、N,N−ジメチルホルムアミドやN−メチルピロリドン等の非プロトン性極性溶媒、アセトンやシクロヘキサノン等のケトン系溶媒、酢酸エチル等のエステル類を用いることができる。また、無溶媒でも反応させることができる。   Solvents used in the reaction include ethers, halogen solvents, hydrocarbon solvents, aprotic polar solvents such as N, N-dimethylformamide and N-methylpyrrolidone, ketone solvents such as acetone and cyclohexanone, and ethyl acetate. Esters such as can be used. Moreover, it can be made to react even without solvent.

反応温度は、通常、0〜150℃の間で行うが、好ましくは20〜100℃、より好ましくは50〜100℃である。反応温度が0℃未満だと反応時間が長くなる恐れがあり、また反応温度が150℃を超えると副反応が起こる恐れがある。
反応は、アンプル封管等、水分を除去できる状態で行うのが望ましい。
Although reaction temperature is normally performed between 0-150 degreeC, Preferably it is 20-100 degreeC, More preferably, it is 50-100 degreeC. If the reaction temperature is less than 0 ° C, the reaction time may be prolonged, and if the reaction temperature exceeds 150 ° C, side reactions may occur.
The reaction is desirably performed in a state where moisture can be removed, such as an ampoule sealed tube.

式(3)で示される化合物は、2重結合や3重結合をもつ不飽和炭化水素基や、アクリル基やメタクリル基、シクロプロパン基やシクロブタン基等の高歪炭化水素基、ビニルエーテル基、ビニルエステル基、エポキシ基やオキセタン基等の環状エーテル基等、ラジカル重合性やカチオン、アニオン重合性等の重合性基を含むことができる。例えばR,R,R,R,Rの少なくとも1つが重合性基を含んでもよい。 The compound represented by the formula (3) is an unsaturated hydrocarbon group having a double bond or a triple bond, a high strain hydrocarbon group such as an acrylic group, a methacryl group, a cyclopropane group or a cyclobutane group, a vinyl ether group, a vinyl group. It can contain polymerizable groups such as radical polymerizable, cationic and anionic polymerizable groups such as ester groups, cyclic ether groups such as epoxy groups and oxetane groups. For example, at least one of R 1 , R 2 , R 3 , R 4 and R 5 may contain a polymerizable group.

式(4)で示される化合物は、2重結合や3重結合をもつ不飽和炭化水素基や、アクリル基やメタクリル基、シクロプロパン基やシクロブタン基等の高歪炭化水素基、ビニルエーテル基、ビニルエステル基、エポキシ基やオキセタン基等の環状エーテル基等、ラジカル重合性やカチオン、アニオン重合性等の重合性基を含むことができる。好ましくは炭素数2〜4の不飽和炭化水素基、アクリル基又はメタクリル基である。例えばR,R,R,R,R,R,Rの少なくとも1つが重合性基を含んでもよい。 The compound represented by the formula (4) is an unsaturated hydrocarbon group having a double bond or a triple bond, a high strain hydrocarbon group such as an acrylic group, a methacryl group, a cyclopropane group or a cyclobutane group, a vinyl ether group, a vinyl group. It can contain polymerizable groups such as radical polymerizable, cationic and anionic polymerizable groups such as ester groups, cyclic ether groups such as epoxy groups and oxetane groups. Preferably they are a C2-C4 unsaturated hydrocarbon group, an acryl group, or a methacryl group. For example, at least one of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 and R 7 may contain a polymerizable group.

式(3)及び(4)の化合物が重合性基を含む場合、対応する重合触媒を加え加熱又は光等の活性エネルギー線を照射することによって、3次元硬化物を得ることができる。   When the compounds of formulas (3) and (4) contain a polymerizable group, a three-dimensional cured product can be obtained by adding a corresponding polymerization catalyst and irradiating active energy rays such as heating or light.

熱ラジカル重合開始剤としては、特に制限されず公知のものが使用できる。代表的なものを例示すると、ベンゾイルパーオキシド、p−クロルベンゾイルパーオキシド、ラウロイルパーオキシド、t−ブチルパーオキシジカーボネート等のパーオキシド、アゾイソブチロニトリル等のアゾ化合物である。熱ラジカル重合開始剤の使用量は、重合条件や開始剤の種類、重合性モノマーの種類や組成によって異なるため一概に限定できないが、重合性基に対して0.01〜10当量%の範囲で用いるのが好適である。重合温度及び重合時間は、重合開始剤の種類と量や重合性モノマーの種類によって大きく変化するので限定できないが、2〜40時間で重合が完結するように条件を選ぶのが好ましい。   The thermal radical polymerization initiator is not particularly limited and known ones can be used. Typical examples are peroxides such as benzoyl peroxide, p-chlorobenzoyl peroxide, lauroyl peroxide, t-butyl peroxydicarbonate, and azo compounds such as azoisobutyronitrile. The amount of thermal radical polymerization initiator used varies depending on the polymerization conditions, the type of initiator, the type and composition of the polymerizable monomer, and cannot be unconditionally limited, but is in the range of 0.01 to 10 equivalent% with respect to the polymerizable group. It is preferred to use. The polymerization temperature and polymerization time are not limited because they vary greatly depending on the type and amount of polymerization initiator and the type of polymerizable monomer, but it is preferable to select conditions so that the polymerization is completed in 2 to 40 hours.

また紫外線、可視光、あるいは放射線等の活性エネルギー線を用いたラジカル重合の開始剤としては、特に制限されず公知のものが使用できる。代表的なものとして、ベンゾインメチルエーテル、ベンゾフェノン、アセトフェノン、ベンジルメチルケタール、2−イソプロピルチオキサントン等が用いられる。これらの重合開始剤は、重合性基に対して0.001〜5当量%の範囲で用いるのが一般的である。   The initiator for radical polymerization using active energy rays such as ultraviolet rays, visible light, or radiation is not particularly limited, and known ones can be used. Representative examples include benzoin methyl ether, benzophenone, acetophenone, benzylmethyl ketal, 2-isopropylthioxanthone and the like. These polymerization initiators are generally used in the range of 0.001 to 5 equivalent% with respect to the polymerizable group.

熱カチオン重合開始剤としては、特に制限されず公知のものが使用できる。代表的なものを例示すると、塩化アルミニウム、4塩化スズ、4塩化チタン等が用いられる。熱カチオン重合開始剤の使用量は、重合条件や開始剤の種類、重合性モノマーの種類や組成によって異なるため一概に限定できないが、重合性基に対して0.01〜10当量%の範囲で用いるのが好適である。重合温度及び重合時間は、重合開始剤の種類と量や重合性モノマーの種類によって大きく変化するので限定できないが、2〜40時間で重合が完結するように条件を選ぶのが好ましい。   The thermal cationic polymerization initiator is not particularly limited and known ones can be used. As a typical example, aluminum chloride, tin chloride, titanium tetrachloride and the like are used. The amount of the thermal cationic polymerization initiator used varies depending on the polymerization conditions, the type of the initiator, the type and composition of the polymerizable monomer, and cannot be unconditionally limited. It is preferred to use. The polymerization temperature and polymerization time are not limited because they vary greatly depending on the type and amount of polymerization initiator and the type of polymerizable monomer, but it is preferable to select conditions so that the polymerization is completed in 2 to 40 hours.

また紫外線、可視光、あるいは放射線等の活性エネルギー線を用いたカチオン重合の開始剤としては、特に制限されず公知のものが使用できる。代表的なものとして、スルホニウム塩類、ヨードニウム塩類等が用いられる。これらの重合開始剤は、重合性基に対して0.001〜5当量%の範囲で用いるのが一般的である。   The initiator for cationic polymerization using active energy rays such as ultraviolet rays, visible light, or radiation is not particularly limited, and known ones can be used. Typical examples include sulfonium salts and iodonium salts. These polymerization initiators are generally used in the range of 0.001 to 5 equivalent% with respect to the polymerizable group.

アニオン重合開始剤としては、特に制限されず公知のものが使用できる。代表的なものを例示すると、水酸化カリウムや水酸化ナトリウム、金属リチウム等が用いられる。   The anionic polymerization initiator is not particularly limited, and known ones can be used. As typical examples, potassium hydroxide, sodium hydroxide, metallic lithium and the like are used.

以上の触媒に、各種増感剤や助触媒を加えてもよい。また、3次元硬化物の物性を制御するために、酸化防止剤、金属不活性化剤、紫外線吸収剤、難燃剤、安定剤、レベリング剤等の各種添加剤を加えてもよい。   Various sensitizers and promoters may be added to the above catalyst. In order to control the physical properties of the three-dimensional cured product, various additives such as an antioxidant, a metal deactivator, an ultraviolet absorber, a flame retardant, a stabilizer, and a leveling agent may be added.

さらに、3次元硬化物の特性を高める目的で、シリカや酸化チタン等無機フィラーや有機フィラーを任意の割合で加えてもよい。   Furthermore, for the purpose of enhancing the properties of the three-dimensional cured product, an inorganic filler such as silica or titanium oxide or an organic filler may be added at an arbitrary ratio.

式(3)及び式(4)で示される化合物中に、エポキシ樹脂、アクリル樹脂、ポリスチレン、ポリアミド、ポリイミド、ポリアミドイミド、ポリオレフィン、シロキサンポリマー等の各種ポリマーを任意の割合でブレンドしてもよい。   Various compounds such as epoxy resin, acrylic resin, polystyrene, polyamide, polyimide, polyamideimide, polyolefin, and siloxane polymer may be blended in the compound represented by formula (3) and formula (4) in an arbitrary ratio.

以下、実施例により本発明の光学用樹脂の製造法について詳細に説明するが、本発明はこれら実施例に制限されない。
実施例1
下記式(5)で示される化合物(以下(5)と略す)を下記の方法で合成した。

Figure 2007022991
300ml三つ口フラスコに、上記式(6)のフェノール誘導体(東京化成工業株式会社製)1.23g(4mmol)、ピリジン2.85ml(36mmol)、テトラヒドロフラン100mlを加え、0℃窒素雰囲気下で攪拌した。クロロアセチルクロリド4.07ml(36mmol)を滴下し24時間攪拌後、酢酸エチルを100ml加え、1N塩酸100mlで1回、5mol%炭酸水素ナトリウム水溶液100mlで3回洗浄し、さらに水100mlで3回洗浄した。有機層を無水硫酸マグネシウムで乾燥し、乾燥剤を濾別後、溶媒留去した。得られた褐色液体をn−へキサンで洗浄後、クロロホルムとn−へキサンの混合溶媒(1:5)を用いて再結晶し、(5)を白色針状結晶として0.68g(収率31%)得た。
得られた化合物の分析結果を以下に示す。
IR(cm−1):2956、2869、1775、1601、1503、1203、1166、688
H−NMR(600MHz、DMSO−d):δ(ppm)4.61(s、6H)、5.75(s、1H)、7.16(dd、6H)、7.21(dd、6H) EXAMPLES Hereinafter, although the Example demonstrates the manufacturing method of the optical resin of this invention in detail, this invention is not restrict | limited to these Examples.
Example 1
A compound represented by the following formula (5) (hereinafter abbreviated as (5)) was synthesized by the following method.
Figure 2007022991
To a 300 ml three-necked flask, 1.23 g (4 mmol) of the phenol derivative of the above formula (6) (manufactured by Tokyo Chemical Industry Co., Ltd.), 2.85 ml (36 mmol) of pyridine, and 100 ml of tetrahydrofuran are added and stirred under a nitrogen atmosphere at 0 ° C. did. 4.07 ml (36 mmol) of chloroacetyl chloride was added dropwise and stirred for 24 hours. Then, 100 ml of ethyl acetate was added, washed once with 100 ml of 1N hydrochloric acid, three times with 100 ml of 5 mol% aqueous sodium bicarbonate solution, and further washed three times with 100 ml of water. did. The organic layer was dried over anhydrous magnesium sulfate, the desiccant was filtered off, and the solvent was distilled off. The obtained brown liquid was washed with n-hexane and then recrystallized using a mixed solvent of chloroform and n-hexane (1: 5) to give 0.68 g (yield) as white needle crystals. 31%).
The analysis results of the obtained compound are shown below.
IR (cm −1 ): 2956, 2869, 1775, 1601, 1503, 1203, 1166, 688
1 H-NMR (600 MHz, DMSO-d 6 ): δ (ppm) 4.61 (s, 6H), 5.75 (s, 1H), 7.16 (dd, 6H), 7.21 (dd, 6H)

実施例2
下記式(7)で示される化合物(以下(7)と略す)を下記の方法で合成した。

Figure 2007022991
50mlフラスコに、チオ安息香酸カリウム1.59g(9.0mmol)、(6)1.07g(2.0mmol)、テトラブチルアンモニウムブロミド0.15g(0.3mmol)、N−メチルピロリドン10mlを加え室温で攪拌した。24時間攪拌後、酢酸エチル20mlを加え水20mlで3回洗浄し、有機層を無水硫酸マグネシウムで乾燥し、濾別後、溶媒留去した。得られた褐色液体をn−へキサンで洗浄後、得られた淡黄色粉末固体をクロロホルムとn−へキサンの混合溶媒(1:5)で再結晶し、(7)を白色粉末固体として0.68g(収率43%)得た。
得られた化合物の分析結果を以下に示す。
IR(cm−1):2976、2869、1759、1667、1595、1503、1126、1204、688
H−NMR(500MHz、DMSO−d):δ(ppm)4.26(s、6H)、5.73(s、1H)、7.12(d、12H)、7.19(d、12H)、7.59(t、6H)、7.73(d、3H)、7.97(d、6H) Example 2
A compound represented by the following formula (7) (hereinafter abbreviated as (7)) was synthesized by the following method.
Figure 2007022991
To a 50 ml flask was added 1.59 g (9.0 mmol) of potassium thiobenzoate, 1.07 g (2.0 mmol) of (6), 0.15 g (0.3 mmol) of tetrabutylammonium bromide, and 10 ml of N-methylpyrrolidone at room temperature. And stirred. After stirring for 24 hours, 20 ml of ethyl acetate was added and washed with 20 ml of water three times. The organic layer was dried over anhydrous magnesium sulfate, filtered and the solvent was distilled off. The obtained brown liquid was washed with n-hexane, and then the resulting pale yellow powder solid was recrystallized with a mixed solvent of chloroform and n-hexane (1: 5) to give (7) as a white powder solid. Obtained .68 g (43% yield).
The analysis results of the obtained compound are shown below.
IR (cm −1 ): 2976, 2869, 1759, 1667, 1595, 1503, 1126, 1204, 688
1 H-NMR (500 MHz, DMSO-d 6 ): δ (ppm) 4.26 (s, 6H), 5.73 (s, 1H), 7.12 (d, 12H), 7.19 (d, 12H), 7.59 (t, 6H), 7.73 (d, 3H), 7.97 (d, 6H)

実施例3
下記式(8)で示される化合物(以下(8)と略す)を下記の方法で合成した。

Figure 2007022991
湿度10%以下に保ったドライボックス中で、アンプル管にテトラブチルアンモニウムクロリド0.017g(0.06mmol)、(7)0.017g(0.02mmol)、3−フェノキシプロピレンスルフィド0.05g(0.3mmol)、N−メチルピロリドン0.04mlを加え封管した。アンプル管を90℃で24時間攪拌後、適当量のテトラヒドロフランを加え、メタノール中に再沈殿した。得られた固体を再びテトラヒドロフランに溶解し、メタノール100ml中に再沈殿し、(8)を黄色固体として0.065g(収率97%)得た。
得られた化合物の分子量をGPC法で測定したところ、数平均分子量1.9x10、分散度1.24であった。GPC法の測定条件は以下の通りであった。
(a)ゲルパーミエーションクロマトグラフィー(SEC):東ソー株式会社製、ゲル浸透クロマトグラフィー(SEC)HLC−8020型
(b)カラム:TSKgelG1000H
(c)展開溶媒:テトラヒドロフラン
(d)標準物質:ポリスチレン
得られた化合物のIR結果を以下に示す。
IR(cm−1):1737、1681、1598、1496、1240、1172、754
また、3−フェノキシプロピレンスルフィドの量を変えて同様の条件で反応を行い、得られた化合物について以下の方法で屈折率を測定した。
種々のポリマー20mgを、テトラヒドロフラン2mlに溶解させ、この溶液0.2mlをシリコンウエハー上に滴下し、スピンコータ(浅沼製作所株式会社製)により塗布した。次いで、この溶液が塗布されたシリコンウエハーを室温で24時間減圧乾燥後、エリプソメータ(ガードナー社製、115B型)により波長632.8nmにおける屈折率測定を5回行い、最大値と最小値を除いた3回の測定値の平均を屈折率とした。結果を表1に示す。 Example 3
A compound represented by the following formula (8) (hereinafter abbreviated as (8)) was synthesized by the following method.
Figure 2007022991
In a dry box kept at a humidity of 10% or less, 0.017 g (0.06 mmol) of tetrabutylammonium chloride, 0.017 g (0.02 mmol) of (7), 0.05 g of 3-phenoxypropylene sulfide (0 .3 mmol) and 0.04 ml of N-methylpyrrolidone were added and sealed. After stirring the ampoule tube at 90 ° C. for 24 hours, an appropriate amount of tetrahydrofuran was added and reprecipitated in methanol. The obtained solid was again dissolved in tetrahydrofuran and reprecipitated in 100 ml of methanol to obtain 0.065 g (yield 97%) of (8) as a yellow solid.
When the molecular weight of the obtained compound was measured by the GPC method, it was a number average molecular weight of 1.9 × 10 3 and a dispersity of 1.24. The measurement conditions of the GPC method were as follows.
(A) Gel permeation chromatography (SEC): manufactured by Tosoh Corporation, gel permeation chromatography (SEC) HLC-8020 (b) column: TSKgel G1000H
(C) Developing solvent: Tetrahydrofuran (d) Standard substance: Polystyrene IR results of the obtained compound are shown below.
IR (cm −1 ): 1737, 1681, 1598, 1496, 1240, 1172, 754
Moreover, it reacted on the same conditions by changing the quantity of 3-phenoxypropylene sulfide, and the refractive index was measured with the following method about the obtained compound.
20 mg of various polymers were dissolved in 2 ml of tetrahydrofuran, and 0.2 ml of this solution was dropped onto a silicon wafer and applied by a spin coater (manufactured by Asanuma Seisakusho Co., Ltd.). Next, the silicon wafer coated with this solution was dried under reduced pressure at room temperature for 24 hours, and then the refractive index measurement at a wavelength of 632.8 nm was performed 5 times with an ellipsometer (manufactured by Gardner, Inc., model 115B) to remove the maximum and minimum values. The average of three measurements was taken as the refractive index. The results are shown in Table 1.

Figure 2007022991
Figure 2007022991

実施例4
下記式(9)で示される化合物(以下(9)と略す)を下記の方法で合成した。

Figure 2007022991
湿度10%以下に保ったドライボックス中で、アンプル管にテトラブチルアンモニウムクロリド0.033g(0.12mmol)、(7)0.033g(0.04mmol)、3−フェノキシプロピレンスルフィド(以下、スルフィドAという)0.590g(3.50mmol)、3−メタクリロイルオキシプロピレンスルフィド(以下、スルフィドBという)0.028g(0.11mmol)、N−メチルピロリドン0.04mlを加え封管した。アンプル管を90℃で24時間攪拌後、適当量のテトラヒドロフランを加え、メタノール中に再沈殿した。得られた固体を再びテトラヒドロフランに溶解し、メタノール100ml中に再沈殿し、(9)を黄色固体として0.631g(収率97%)得た。
得られた化合物の分子量を実施例3と同様にGPC法で測定したところ、数平均分子量8.0x10、分散度2.61であった。
得られた化合物のIR結果を以下に示す。
IR(cm−1):1737、1681、1598、1496、1240、1172、754
また、スルフィドAとスルフィドBの仕込み比を種々変えて反応を同様に行い、得られた化合物の屈折率を測定した。結果を表2に示す。 Example 4
A compound represented by the following formula (9) (hereinafter abbreviated as (9)) was synthesized by the following method.
Figure 2007022991
In a dry box kept at a humidity of 10% or less, 0.033 g (0.12 mmol) of tetrabutylammonium chloride, (7) 0.033 g (0.04 mmol), 3-phenoxypropylene sulfide (hereinafter referred to as sulfide A) was placed in an ampule tube. 0.590 g (3.50 mmol), 3-methacryloyloxypropylene sulfide (hereinafter referred to as sulfide B) 0.028 g (0.11 mmol) and N-methylpyrrolidone 0.04 ml were added and sealed. After stirring the ampoule tube at 90 ° C. for 24 hours, an appropriate amount of tetrahydrofuran was added and reprecipitated in methanol. The obtained solid was dissolved again in tetrahydrofuran and reprecipitated in 100 ml of methanol to obtain 0.631 g (yield 97%) of (9) as a yellow solid.
When the molecular weight of the obtained compound was measured by the GPC method in the same manner as in Example 3, the number average molecular weight was 8.0 × 10 3 and the dispersity was 2.61.
IR results of the obtained compound are shown below.
IR (cm −1 ): 1737, 1681, 1598, 1496, 1240, 1172, 754
In addition, the reaction was carried out in the same manner with various charge ratios of sulfide A and sulfide B, and the refractive index of the obtained compound was measured. The results are shown in Table 2.

実施例5
(9)を用いて3次元硬化物を下記の方法で合成した。
(9)1.0gをテトラヒドロフラン1mlに溶解し、Irgacure907(0.003g)、2−エチルアントラキノン0.001gを加えた。溶液を臭化カリウム板上に塗布しフィルムを形成した。その後、光源として250W超高圧水銀灯を用いて15分間光照射を行い、3次元硬化物を得た。
また、スルフィドAとスルフィドBの仕込み比を種々変えて得られた化合物について光硬化反応を行い、得られた3次元硬化物の屈折率を測定した。結果を表2に示す。
Example 5
Using (9), a three-dimensional cured product was synthesized by the following method.
(9) 1.0 g was dissolved in 1 ml of tetrahydrofuran, and Irgacure 907 (0.003 g) and 2-ethylanthraquinone 0.001 g were added. The solution was applied on a potassium bromide plate to form a film. Thereafter, light irradiation was performed for 15 minutes using a 250 W ultra-high pressure mercury lamp as a light source to obtain a three-dimensional cured product.
Moreover, the photocuring reaction was performed about the compound obtained by changing various preparation ratios of sulfide A and sulfide B, and the refractive index of the obtained three-dimensional cured product was measured. The results are shown in Table 2.

Figure 2007022991
Figure 2007022991

本発明のフェノール誘導体を用いることにより、屈折率調整可能であり、高屈折率を有する樹脂を提供できる。また、光照射することでさらに高屈折率な硬化物が得ることができる。この樹脂は光学レンズ、光学フィルム、光学フィルムを用いた液晶表示装置等に用いることができる。
By using the phenol derivative of the present invention, the refractive index can be adjusted, and a resin having a high refractive index can be provided. Further, a cured product having a higher refractive index can be obtained by light irradiation. This resin can be used for an optical lens, an optical film, a liquid crystal display device using the optical film, and the like.

Claims (11)

式(1)で表されるフェノール誘導体。
Figure 2007022991
(式(1)中、nは0〜3の整数を表し、Rは水素、−OH又は炭素数1〜10の1価のアルキル基を示し、Rは炭素数1〜20の2価の有機基を示す。)
A phenol derivative represented by the formula (1).
Figure 2007022991
(In Formula (1), n represents an integer of 0 to 3, R 1 represents hydrogen, —OH, or a monovalent alkyl group having 1 to 10 carbon atoms, and R 2 represents a divalent group having 1 to 20 carbon atoms. Represents an organic group of
式(2)で表されるフェノール誘導体。
Figure 2007022991
(式(2)中、nは0〜3の整数を表し、Rは水素、−OH又は炭素数1〜10の1価のアルキル基を示し、Rは炭素数1〜20の2価の有機基を示し、Rは炭素数1〜20の1価の有機基を示す。)
A phenol derivative represented by the formula (2).
Figure 2007022991
(In formula (2), n represents an integer of 0 to 3, R 1 represents hydrogen, —OH, or a monovalent alkyl group having 1 to 10 carbon atoms, and R 2 represents a divalent group having 1 to 20 carbon atoms. R 3 represents a monovalent organic group having 1 to 20 carbon atoms.)
式(3)で表されるフェノール誘導体。
Figure 2007022991
(式(3)中、nは0〜3の整数を表し、mは1〜1000の整数を表し、Rは水素、−OH又は炭素数1〜10の1価のアルキル基を示し、Rは炭素数1〜20の2価の有機基を示し、Rは炭素数1〜20の1価の有機基を示し、R及びRはそれぞれ水素又は炭素数1〜20の1価の有機基を示し、またRとRは結合してもよい。)
A phenol derivative represented by the formula (3).
Figure 2007022991
(In Formula (3), n represents an integer of 0 to 3, m represents an integer of 1 to 1000, R 1 represents hydrogen, —OH, or a monovalent alkyl group having 1 to 10 carbon atoms; 2 represents a divalent organic group having 1 to 20 carbon atoms, R 3 represents a monovalent organic group having 1 to 20 carbon atoms, and R 4 and R 5 are each hydrogen or monovalent having 1 to 20 carbon atoms. And R 4 and R 5 may be bonded to each other.)
式(4)で表されるフェノール誘導体。
Figure 2007022991
(式(4)中、nは0〜3の整数を表し、mは1〜1000の整数を表し、lは1〜1000の整数を表し、Rは水素、−OH又は炭素数1〜10の1価のアルキル基を示し、Rは炭素数1〜20の2価の有機基を示し、Rは炭素数1〜20の1価の有機基を示し、R及びRはそれぞれ水素又は炭素数1〜20の1価の有機基を示し、またRとRは結合してもよく、Xは酸素又は硫黄を示し、R及びRはそれぞれ水素又は炭素数1〜20の1価の有機基を示し、またRとRは結合してもよい。)
A phenol derivative represented by the formula (4).
Figure 2007022991
(In formula (4), n represents an integer of 0 to 3, m represents an integer of 1 to 1000, l represents an integer of 1 to 1000, and R 1 represents hydrogen, —OH, or a carbon number of 1 to 10. R 2 represents a divalent organic group having 1 to 20 carbon atoms, R 3 represents a monovalent organic group having 1 to 20 carbon atoms, and R 4 and R 5 each represents Hydrogen or a monovalent organic group having 1 to 20 carbon atoms; R 4 and R 5 may be bonded; X represents oxygen or sulfur; R 6 and R 7 are each hydrogen or carbon number 1 to 1; 20 represents a monovalent organic group, and R 6 and R 7 may be bonded.)
下記式で表されるフェノール誘導体にCl−R−COY(Rは式(1)と同じであり、Yはハロゲンである。)を反応させる請求項1記載のフェノール誘導体の製造方法。
Figure 2007022991
(式中、nは0〜3の整数を表し、Rは水素、−OH又は炭素数1〜10の1価のアルキル基を示す。)
Cl-R 2 -COY phenol derivative represented by the following formula (R 2 is the same as formula (1), Y is a halogen.) The method of producing a phenol derivative according to claim 1, wherein the reaction of.
Figure 2007022991
(In the formula, n represents an integer of 0 to 3, and R 1 represents hydrogen, —OH, or a monovalent alkyl group having 1 to 10 carbon atoms.)
請求項1記載の誘導体にR−COS−Z(Rは式(2)と同じであり、Zはアルカリ金属である。)を反応させる請求項2記載のフェノール誘導体の製造方法。 The method for producing a phenol derivative according to claim 2, wherein the derivative according to claim 1 is reacted with R 3 -COS-Z (R 3 is the same as in formula (2), and Z is an alkali metal). 請求項2記載の誘導体に、下記式で表されるチイラン誘導体を反応させる請求項3記載のフェノール誘導体の製造方法。
Figure 2007022991
(式中、R及びRは式(3)と同じである。)
The method for producing a phenol derivative according to claim 3, wherein the derivative according to claim 2 is reacted with a thiirane derivative represented by the following formula.
Figure 2007022991
(In the formula, R 4 and R 5 are the same as in formula (3).)
請求項3記載の誘導体に、下記式で表されるエポキシ化合物又はチイラン化合物を反応させる請求項4記載のフェノール誘導体の製造方法。
Figure 2007022991
(式中、R、R及びXは式(4)と同じである。)
The method for producing a phenol derivative according to claim 4, wherein the derivative according to claim 3 is reacted with an epoxy compound or a thiirane compound represented by the following formula.
Figure 2007022991
(In the formula, R 6 , R 7 and X are the same as in formula (4).)
重合性基を有する請求項3又は4記載のフェノール誘導体。   The phenol derivative according to claim 3 or 4, which has a polymerizable group. 請求項9記載のフェノール誘導体を含む化合物に加熱又は活性エネルギー線照射を行うことによって得られる3次元硬化物。   A three-dimensional cured product obtained by subjecting a compound containing the phenol derivative according to claim 9 to heating or active energy ray irradiation. 請求項9記載のフェノール誘導体を含む化合物に加熱又は活性エネルギー線照射を行うことによって得られる3次元硬化物の製造方法。
The manufacturing method of the three-dimensional hardened | cured material obtained by heating or active energy ray irradiation to the compound containing the phenol derivative of Claim 9.
JP2005210503A 2005-07-20 2005-07-20 Phenol derivative and method for producing the same Pending JP2007022991A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005210503A JP2007022991A (en) 2005-07-20 2005-07-20 Phenol derivative and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005210503A JP2007022991A (en) 2005-07-20 2005-07-20 Phenol derivative and method for producing the same

Publications (1)

Publication Number Publication Date
JP2007022991A true JP2007022991A (en) 2007-02-01

Family

ID=37784232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005210503A Pending JP2007022991A (en) 2005-07-20 2005-07-20 Phenol derivative and method for producing the same

Country Status (1)

Country Link
JP (1) JP2007022991A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019233A (en) * 2006-06-14 2008-01-31 Hitachi Chem Co Ltd Graft polymer having sulfur atom in side chain, and method for producing the same
JP2008031134A (en) * 2006-07-07 2008-02-14 Hitachi Chem Co Ltd Phenol derivative and method for producing the same
JP2008050266A (en) * 2006-07-27 2008-03-06 Hitachi Chem Co Ltd Phenol derivative and core crosslinking type star polysulfide obtained from the same
WO2024004755A1 (en) * 2022-06-27 2024-01-04 三井化学株式会社 Compound, additive, plasticizer, curable composition, adhesive, cured product and tackifier

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199495A (en) * 1978-02-28 1980-04-22 Argus Chemical Corp. Thiolcarbonate ester stabilizers
WO2006083970A2 (en) * 2005-01-31 2006-08-10 Ception Therapeutics, Inc. Tumor necrosis factor inhibitors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199495A (en) * 1978-02-28 1980-04-22 Argus Chemical Corp. Thiolcarbonate ester stabilizers
WO2006083970A2 (en) * 2005-01-31 2006-08-10 Ception Therapeutics, Inc. Tumor necrosis factor inhibitors

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008019233A (en) * 2006-06-14 2008-01-31 Hitachi Chem Co Ltd Graft polymer having sulfur atom in side chain, and method for producing the same
JP2008031134A (en) * 2006-07-07 2008-02-14 Hitachi Chem Co Ltd Phenol derivative and method for producing the same
JP2008050266A (en) * 2006-07-27 2008-03-06 Hitachi Chem Co Ltd Phenol derivative and core crosslinking type star polysulfide obtained from the same
WO2024004755A1 (en) * 2022-06-27 2024-01-04 三井化学株式会社 Compound, additive, plasticizer, curable composition, adhesive, cured product and tackifier

Similar Documents

Publication Publication Date Title
JP2019521118A (en) Multifunctional oxetane compound and method for producing the same
JP4277105B2 (en) Siloxane monomer containing trifluorovinyl ether functional group and sol-gel hybrid polymer produced using this siloxane monomer
JP5654050B2 (en) NOVEL FLUORINE COMPOUND, COMPOSITION CONTAINING THE SAME, MOLDED BODY USING THE SAME, AND METHOD FOR PRODUCING MOLDED BODY
JP2007022991A (en) Phenol derivative and method for producing the same
JP4553647B2 (en) Calix resorcinarene derivative and process for producing the same
JP2003226718A (en) Photo-curing composition of high refractive index and its cured substance
JP4794930B2 (en) Thiacalixarene derivative and method for producing the same
JP5578512B2 (en) Novel (meth) acrylate compound and method for producing the same
JP4485815B2 (en) Calixarene derivative and method for producing the same
JP4937515B2 (en) Sulfur atom-containing cyclic compound, method for producing the same, and crosslinkable composition
JP2008031134A (en) Phenol derivative and method for producing the same
JP4734807B2 (en) Diphenyl sulfide derivatives with oxetane ring
JP2008031394A (en) Novolac phenolic resin derivative and process for its production
US6528601B1 (en) Polymerizable sulfur-containing (meth) acrylate, polymerizable composition and optical lens
JP2008050266A (en) Phenol derivative and core crosslinking type star polysulfide obtained from the same
US20060122301A1 (en) Fluorinated divinyl ethers
JP2007023233A (en) Graft polymer containing sulfur atom at side chain and method for producing the same
KR102264925B1 (en) Curable compound with high refractive index, adhesive composition for optical member comprising the same and composition for optical sheet comprising the same
KR100885676B1 (en) Aromatic Allyl Ether Compounds and Photopolymerisable Compositions containing the same
JP2009067978A (en) Inclusion compound
JP2018127410A (en) Curable composition and cured product thereof
JP6924373B2 (en) Poly (oxyalkylene oxynaphthylene) compounds, their production methods and their uses.
JP2004137421A (en) Sulfur-containing polyene compound and cured product having high refractive index
JP2003313288A (en) Fluorine-containing copolymer, production process therefor and optical resin
JPH0684333B2 (en) Biphenyl compound and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080714

A131 Notification of reasons for refusal

Effective date: 20111115

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120313