JP2007019975A - Surface acoustic wave device, module apparatus, and oscillation circuit - Google Patents

Surface acoustic wave device, module apparatus, and oscillation circuit Download PDF

Info

Publication number
JP2007019975A
JP2007019975A JP2005200475A JP2005200475A JP2007019975A JP 2007019975 A JP2007019975 A JP 2007019975A JP 2005200475 A JP2005200475 A JP 2005200475A JP 2005200475 A JP2005200475 A JP 2005200475A JP 2007019975 A JP2007019975 A JP 2007019975A
Authority
JP
Japan
Prior art keywords
saw
acoustic wave
surface acoustic
film thickness
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005200475A
Other languages
Japanese (ja)
Inventor
Takuya Owaki
卓弥 大脇
Takao Morita
孝夫 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2005200475A priority Critical patent/JP2007019975A/en
Publication of JP2007019975A publication Critical patent/JP2007019975A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a SAW device with a smaller device size than that of a conventional structure, a high Q value, and an excellent frequency temperature characteristic that can suppress the lateral high order mode spurious level. <P>SOLUTION: In the surface acoustic wave device provided with a rotary Y-cut crystal substrate 1 whose cut angle θis set counterclockwise to a range of -64.0°<θ<-49.3°from a crystal Z axis and IDTs 2 made of Al or an alloy whose major component is Al formed on the crystal substrate 1, wherein the propagation direction of a surface acoustic wave is selected in a direction orthogonal to a crystal X axis and a stimulated surface acoustic wave employs an SH wave propagated around the surface of the crystal substrate 1, and a normalized electrode film thickness H/λ resulting from the electrode thickness normalized by the wavelength λ of the surface acoustic wave is selected to be 0.04<H/λ<0.12, a dummy electrode 11 is provided to each IDT 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水晶基板を用いた弾性表面波デバイスに関わり、特に小型でQ値を高く、周波数温度特性に優れた弾性表面波デバイスに好適なものである。   The present invention relates to a surface acoustic wave device using a quartz substrate, and is particularly suitable for a surface acoustic wave device that is small in size, has a high Q value, and is excellent in frequency temperature characteristics.

近年、弾性表面波(Surface Acoustic Wave:以下、SAW)デバイスは移動体通信用端末や車載用機器等の部品として幅広く利用され、小型であること、Q値が高いこと、周波数安定性が優れていることが強く要求されている。
これらの要求を実現するSAWデバイスとして、STカット水晶基板を用いたSAWデバイスがある。STカット水晶基板は結晶X軸を回転軸としてXZ面を結晶Z軸より反時計方向に42.75°回転した面(XZ’面)を持つ水晶板のカット名であり、結晶X軸方向に伝搬するレイリー波と呼ばれる(P+SV)波であるSAW(以下、STカット水晶SAWと称す)を利用する。STカット水晶SAWデバイスの用途は、発振素子として用いられるSAW共振子や、移動体通信端末のRF段とIC間に配置されるIF用フィルタなど幅広く存在する。
STカット水晶SAWデバイスが小型でQ値の高いデバイスを実現できる理由として、SAWの反射を効率良く利用できる点が挙げられる。
以下、図12に示すSTカット水晶SAW共振子を例に説明する。
この図12に示すSTカット水晶SAW共振子は、STカット水晶基板101上にそれぞれ互いに間挿し合う複数本の電極指を有するくし形電極(以下、IDTと称す)102を配置し、このIDT102の両側にSAWを反射する為のグレーティング反射器103a、103bを配置した構造である。
STカット水晶SAWは、圧電基板の表面に沿って伝搬する波であるので、グレーティング反射器103a、103bにより効率良く反射され、SAWのエネルギーをIDT102内に十分閉じ込めることができ、小型で且つQ値の高いデバイスが得られる。
更に、SAWデバイスを使用する上で重要な要素に周波数温度特性がある。上述のSTカット水晶SAWにおいては、周波数温度特性の1次温度係数が零であり、その特性は2次曲線で表され、頂点温度を使用温度範囲の中心に位置するように調整すると周波数変動量が格段に小さくなるので周波数安定性に優れていることが一般的に知られている。
しかしながら、前記STカット水晶SAWデバイスは、1次温度係数は零であるが、2次温度係数は−0.034(ppm/℃2)と比較的大きいので、使用温度範囲を拡大すると周波数変動量が極端に大きくなってしまうという問題があった。
前記問題を解決する手法として、Meirion Lewis, “Surface Skimming Bulk Wave, SSBW”, IEEE Ultrasonics Symp. Proc., pp.744〜752 (1977)及び特公昭62−016050号に開示されたSAWデバイスがある。このSAWデバイスは、図13に示すように回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−50°回転した付近に設定し、且つ、SAWの伝搬方向を結晶X軸に対して垂直方向(Z’軸方向)にしたことが特徴である。なお、前述のカット角をオイラー角で表示する場合は(0°,θ+90°,90°)=(0°,40°,90°)となる。このSAWデバイスは、圧電基板の表面直下を伝搬するSH波をIDTによって励起し、その振動エネルギーを電極直下に閉じ込めることを特徴としていて、周波数温度特性が3次曲線となり、使用温度範囲における周波数変動量が極めて少なくなるので良好な周波数温度特性が得られる。
In recent years, surface acoustic wave (SAW) devices have been widely used as parts for mobile communication terminals and in-vehicle devices, and are small in size, high in Q value, and excellent in frequency stability. There is a strong demand to be.
As a SAW device that realizes these requirements, there is a SAW device using an ST cut quartz substrate. The ST cut quartz substrate is a cut name of a quartz plate having a plane (XZ ′ plane) obtained by rotating the XZ plane by 42.75 ° counterclockwise from the crystal Z axis with the crystal X axis as the rotation axis. A SAW which is a (P + SV) wave called a propagating Rayleigh wave (hereinafter referred to as ST cut quartz SAW) is used. ST-cut quartz SAW devices have a wide range of applications, such as SAW resonators used as oscillation elements and IF filters arranged between the RF stage and the IC of mobile communication terminals.
The reason why the ST-cut quartz SAW device can realize a small device with a high Q value is that SAW reflection can be used efficiently.
Hereinafter, the ST cut quartz SAW resonator shown in FIG. 12 will be described as an example.
The ST-cut quartz SAW resonator shown in FIG. 12 has comb-shaped electrodes (hereinafter referred to as IDTs) 102 each having a plurality of electrode fingers interleaved with each other on an ST-cut quartz substrate 101. In this structure, grating reflectors 103a and 103b for reflecting SAW are arranged on both sides.
Since the ST cut quartz SAW is a wave propagating along the surface of the piezoelectric substrate, the ST cut quartz SAW is efficiently reflected by the grating reflectors 103a and 103b, and the energy of the SAW can be sufficiently confined in the IDT 102. A high device can be obtained.
Further, an important factor in using the SAW device is a frequency temperature characteristic. In the above-described ST-cut quartz SAW, the first-order temperature coefficient of the frequency temperature characteristic is zero, the characteristic is represented by a quadratic curve, and the frequency fluctuation amount is obtained by adjusting the apex temperature to be located at the center of the operating temperature range. Is generally known to be excellent in frequency stability.
However, the ST-cut quartz SAW device has a primary temperature coefficient of zero, but the secondary temperature coefficient is relatively large, -0.034 (ppm / ° C. 2 ). There was a problem that would become extremely large.
As a technique for solving the above problem, there is a SAW device disclosed in Meirion Lewis, “Surface Skimming Bulk Wave, SSBW”, IEEE Ultrasonics Symp. Proc. . In this SAW device, as shown in FIG. 13, the cut angle θ of the rotated Y-cut quartz substrate is set in the vicinity of −50 ° rotated counterclockwise from the crystal Z axis, and the SAW propagation direction is set to the crystal X axis. In contrast, the vertical direction (Z′-axis direction) is characteristic. When the above cut angle is displayed in Euler angle, (0 °, θ + 90 °, 90 °) = (0 °, 40 °, 90 °). This SAW device is characterized in that the SH wave propagating directly below the surface of the piezoelectric substrate is excited by IDT and the vibration energy is confined immediately below the electrode. The frequency-temperature characteristic becomes a cubic curve, and the frequency fluctuation in the operating temperature range Since the amount is extremely small, good frequency temperature characteristics can be obtained.

しかしながら、前記SH波は基本的に基板内部に潜って進んでいく波である為、圧電基板表面に沿って伝搬するSTカット水晶SAWと比較してグレーティング反射器によるSAWの反射効率が悪い。従って、小型で高QなSAWデバイスを実現し難いという問題がある。また、前述の先行文献においてもSAWの反射を利用しない遅延線としての応用については開示されているものの、SAWの反射を利用する手段は提案されておらず実用は困難であると言われていた。
この問題を解決すべく、特公平01−034411号では、回転Yカット水晶基板のカット角θを−50°付近に設定し、SAWの伝搬方向を結晶X軸に対し垂直方向(Z’軸方向)にした圧電基板111上に800±200対もの多対のIDT112を形成することにより、図14に示すようにグレーティング反射器を利用せずIDT112自体の反射だけでSAWエネルギーを閉じ込め高Q化を図った所謂多対IDT型SAW共振子が開示されている。
しかしながら、前記多対IDT型SAW共振子はグレーティング反射器を設けたSAW共振子と比較して効率的なエネルギー閉じ込め効果が得られず、高いQ値を得るのに必要なIDT対数が800±200対と非常に多くなってしまうので、STカット水晶SAW共振子よりもデバイスサイズが大きくなってしまい、近年の小型化の要求に応えることができないという問題があった。
また、前記特公平01−034411号に開示されているSAW共振子においては、IDTにて励振されたSAWの波長をλとした時、電極膜厚を2%λ以上、好ましくは4%λ以下にすることによりQ値を高めることができるとされており、共振周波数200MHzの場合、4%λ付近でQ値が飽和に達するが、その時のQ値は20000程度しか得られずSTカット水晶SAW共振子と比較してもほぼ同等のQ値しか得られない。この原因として、膜厚が2%λ以上4%λ以下の範囲ではSAWが圧電基板表面に十分集まっていないので反射が効率良く利用できないことが考えられる。
特公昭62−016050号 特公平01−034411号 Meirion Lewis, “Surface Skimming Bulk Wave, SSBW”, IEEE Ultrasonics Symp. Proc., pp.744〜752 (1977)
However, since the SH wave is basically a wave that goes under the substrate, the reflection efficiency of the SAW by the grating reflector is worse than the ST cut quartz SAW propagating along the surface of the piezoelectric substrate. Therefore, there is a problem that it is difficult to realize a small and high Q SAW device. Also, in the above-mentioned prior literature, although application as a delay line that does not use SAW reflection is disclosed, no means using SAW reflection has been proposed, and it was said that practical use is difficult. .
In order to solve this problem, in Japanese Patent Publication No. 01-034411, the cut angle θ of the rotated Y-cut quartz substrate is set to around −50 °, and the SAW propagation direction is perpendicular to the crystal X axis (Z ′ axis direction). By forming 800 ± 200 pairs of IDTs 112 on the piezoelectric substrate 111, the SAW energy is confined only by the reflection of the IDT 112 itself without using a grating reflector as shown in FIG. A so-called many-pair IDT SAW resonator is disclosed.
However, the multi-pair IDT SAW resonator does not provide an efficient energy confinement effect as compared with a SAW resonator provided with a grating reflector, and the IDT logarithm necessary to obtain a high Q value is 800 ± 200. Since the number of the pair becomes very large, the device size becomes larger than that of the ST cut quartz SAW resonator, and there has been a problem that the recent demand for miniaturization cannot be met.
In the SAW resonator disclosed in Japanese Patent Publication No. 01-034411, when the wavelength of the SAW excited by the IDT is λ, the electrode film thickness is 2% λ or more, preferably 4% λ or less. It is said that the Q value can be increased by setting the Q value to reach saturation when the resonance frequency is 200 MHz, and the Q value reaches only about 20000 at that time. Even when compared with the resonator, only a substantially equivalent Q value can be obtained. As a cause of this, it is considered that the SAW is not sufficiently collected on the surface of the piezoelectric substrate when the film thickness is in the range of 2% λ to 4% λ, so that reflection cannot be used efficiently.
Japanese Examined Sho 62-016050 Japanese Patent Publication No. 01-034411 Meirion Lewis, “Surface Skimming Bulk Wave, SSBW”, IEEE Ultrasonics Symp. Proc., Pp.744〜752 (1977)

しかしながら、圧電基板にSTカット水晶基板を用いると周波数温度特性の2次温度係数が−0.034(ppm/℃2)と大きいので実用上の周波数変動量が極端に大きくなってしまう問題点があった。また特公平01−034411号に開示されているSAWデバイスの構造では、IDTの対数を非常に多くしなければならないのでデバイスサイズが大型になってしまうという問題点があった。
そこで、本出願人らは上記したような問題を解決するために、特願2004−310452で、回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−64.0°<θ<−49.3°、好ましくは−61.4°<θ<−51.1°とした水晶基板を用いて、SAWの伝搬方向を結晶X軸に対して垂直方向とし、励振されるSAWは前記水晶基板の表面付近を伝搬するSH波であるSAWデバイスを構成し、そのIDTはAl又はAlを主成分とする合金からなり、SAWの波長で基準化した電極膜厚H/λを0.04<H/λ<0.12、好ましくは0.05<H/λ<0.10とすることで、従来から一般的に使用されているSTカット水晶SAWデバイスよりも高いQ値と良好な周波数温度特性が得られる小型のSAWデバイスを実現する手法を提案した。
しかしながら、本出願人が先に提案したSAWデバイスは横高次モードスプリアスレベルが大きいため、SAW共振子を構成した場合は複共振特性になるという問題点があった。またSAWフィルタを構成した場合は通過帯域の高域側の減衰量が劣化するという問題があった。
However, when an ST-cut quartz substrate is used as the piezoelectric substrate, the second-order temperature coefficient of the frequency temperature characteristic is as large as −0.034 (ppm / ° C. 2 ), so that there is a problem that the practical frequency fluctuation amount becomes extremely large. there were. Further, the structure of the SAW device disclosed in Japanese Patent Publication No. 01-034411 has a problem that the device size becomes large because the logarithm of the IDT must be very large.
Therefore, in order to solve the above-described problems, the applicants of Japanese Patent Application No. 2004-310452 set the cut angle θ of the rotated Y-cut quartz substrate in the counterclockwise direction from the crystal Z axis to −64.0 ° <θ. Using a quartz substrate with <−49.3 °, preferably −61.4 ° <θ <−51.1 °, the SAW propagation direction is perpendicular to the crystal X axis, and the excited SAW is A SAW device that is an SH wave propagating in the vicinity of the surface of the quartz substrate is formed, and the IDT is made of Al or an alloy containing Al as a main component, and the electrode film thickness H / λ normalized by the SAW wavelength is set to 0. By making 04 <H / λ <0.12, preferably 0.05 <H / λ <0.10, a higher Q value and better performance than ST-cut quartz SAW devices generally used in the past. Realize small SAW device with frequency temperature characteristics We proposed a method to.
However, since the SAW device previously proposed by the present applicant has a high lateral high-order mode spurious level, there is a problem in that when a SAW resonator is configured, double resonance characteristics are obtained. Further, when the SAW filter is configured, there is a problem that the attenuation amount on the high frequency side of the pass band is deteriorated.

そこで、本発明は上記したような問題点を鑑みてなされたものであり、請求項1に記載の発明は、回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−64.0°<θ<−49.3°の範囲に設定した水晶基板と、該水晶基板上に形成されたAl又はAlを主成分とする合金からなるIDTとを備え、弾性表面波の伝搬方向を結晶X軸に対して直交方向、励振される弾性表面波を前記水晶基板の表面付近を伝搬するSH波とし、前記弾性表面波の波長λで基準化した電極膜厚H/λを0.04<H/λ<0.12に設定した弾性表面波デバイスであって、前記IDTにダミー電極を設けたことを特徴とする。
請求項2に記載の発明は、前記水晶基板の前記回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−61.4°<θ<−51.1°の範囲に設定したことを特徴とする。
請求項3に記載の発明は、前記電極膜厚H/λを0.05<H/λ<0.10に設定したことを特徴とする。
請求項4に記載の発明は、請求項1乃至請求項3の何れか1項に記載の弾性表面波デバイスにおいて、前記IDTの交差幅をW、前記ダミー電極の電極長をDとしたときに、前記交差幅Wに対する前記ダミー電極長Dの割合D/Wを、0.02≦D/W≦0.20とすることを特徴とする。
請求項5に記載の発明は、請求項1乃至請求項4の何れか1項に記載の弾性表面波デバイスを用いたモジュール装置であることを特徴とする。
請求項6に記載の発明は、請求項1乃至請求項4の何れか1項に記載の弾性表面波デバイスを用いた発振回路であることを特徴とする。
Therefore, the present invention has been made in view of the above-described problems, and the invention according to claim 1 is characterized in that the cut angle θ of the rotated Y-cut quartz substrate is −64. A crystal substrate set in a range of 0 ° <θ <−49.3 ° and an IDT made of Al or an alloy mainly composed of Al formed on the crystal substrate, and the propagation direction of the surface acoustic wave The surface acoustic wave excited in the direction orthogonal to the crystal X axis is an SH wave propagating near the surface of the quartz substrate, and the electrode film thickness H / λ normalized by the wavelength λ of the surface acoustic wave is 0.04. A surface acoustic wave device in which <H / λ <0.12 is set, and a dummy electrode is provided on the IDT.
In the invention according to claim 2, the cut angle θ of the rotated Y-cut quartz substrate of the quartz substrate is set in the range of −61.4 ° <θ <−51.1 ° counterclockwise from the crystal Z axis. It is characterized by that.
The invention according to claim 3 is characterized in that the electrode film thickness H / λ is set to 0.05 <H / λ <0.10.
According to a fourth aspect of the present invention, in the surface acoustic wave device according to any one of the first to third aspects, the intersection width of the IDT is W and the electrode length of the dummy electrode is D. The ratio D / W of the dummy electrode length D to the intersection width W is 0.02 ≦ D / W ≦ 0.20.
The invention according to claim 5 is a module device using the surface acoustic wave device according to any one of claims 1 to 4.
The invention according to claim 6 is an oscillation circuit using the surface acoustic wave device according to any one of claims 1 to 4.

本発明のSAWデバイスは、回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−64.0°<θ<−49.3°、好ましくは−61.4°<θ<−51.1°の範囲に設定した水晶基板と、この水晶基板上に形成されたAl又はAlを主成分とする合金からなるIDTとを備え、弾性表面波の伝搬方向を結晶X軸に対して直交方向、励振される弾性表面波を水晶基板の表面付近を伝搬するSH波とし、弾性表面波の波長λで基準化した電極膜厚H/λを0.04<H/λ<0.12、好ましくは0.05<H/λ<0.10とすることで、従来から一般的に使用されているSTカット水晶SAWデバイスよりも高いQ値と良好な周波数温度特性を得られる小型のSAWデバイスにおいて、IDTにダミー電極を設け、交差幅Wに対するダミー電極長Dの割合D/Wを0.02≦D/W≦0.20とした。このように構成されるSAWデバイスをSAW共振子に適用すれば複共振特性の問題を解決することができる。またSAWフィルタに適用すれば通過帯域の高域側において発生していた減衰量の劣化を防止することができる。   In the SAW device of the present invention, the cut angle θ of the rotated Y-cut quartz substrate is −64.0 ° <θ <−49.3 ° counterclockwise from the crystal Z axis, preferably −61.4 ° <θ <−. A quartz substrate set in a range of 51.1 ° and an IDT formed on the quartz substrate and made of Al or an alloy containing Al as a main component, the propagation direction of the surface acoustic wave with respect to the crystal X axis The surface acoustic wave excited in the orthogonal direction is an SH wave propagating near the surface of the quartz substrate, and the electrode film thickness H / λ normalized by the wavelength λ of the surface acoustic wave is 0.04 <H / λ <0.12. In addition, it is preferable that 0.05 <H / λ <0.10 so that a small SAW that can obtain a higher Q value and better frequency-temperature characteristics than ST-cut quartz SAW devices generally used conventionally. In the device, a dummy electrode is provided on the IDT, and the crossing width W The ratio D / W of the dummy electrode length D was set to 0.02 ≦ D / W ≦ 0.20. If the SAW device configured as described above is applied to a SAW resonator, the problem of multiple resonance characteristics can be solved. If applied to a SAW filter, it is possible to prevent the deterioration of the attenuation that has occurred on the high frequency side of the passband.

先ず、図1〜図8を参照して本出願人が特願2004−310452で提案した弾性表面波フィルタについて説明する。
図1(a)は本出願人が先に提案したSAWデバイスの一例であるSAW共振子の平面図を示しており、圧電基板1上に正電極指と負電極指とがそれぞれ互いに間挿し合うIDT2(くし形電極)と、このIDT2の両側にSAWを反射する為のグレーティング反射器3a、3bとを配置する。そして、前記IDT2の入出力パッド4a、4bとパッケージ6の入出力用端子とを金属ワイヤ5a、5bにより電気的に導通し、パッケージ6の開口部を蓋(リッド)で気密封止する。圧電基板1は、図13に示すように回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−50°回転した付近に設定し、SAWの伝搬方向を結晶X軸に対しほぼ垂直方向(90°±5°)にした水晶平板であって、励振するSAWはSH波である。なお、IDT2及びグレーティング反射器3a、3bの電極材料はAl又はAlを主成分とする合金である。また、図1(b)はIDT2の断面図を示しており、ここではIDT2上を励振するSAWの波長をλとした時に電極膜厚を波長で基準化した値H/λで表し、IDT2を構成する電極指の電極指幅L/(電極指幅L+電極指間のスペースS)をライン占有率mrとした時にmr=0.60としている。
上記のSAWデバイスにおいては、電極膜厚H/λを従来より大きく設定することで、SAWを圧電基板表面に集中させて、グレーティング反射器によりSAWの反射を効率良く利用できるようにし、少ないIDT対数やグレーティング反射器本数でもSAWエネルギーをIDT内に閉じ込めるようにしてデバイスサイズの小型化を図った。
一般的にSAW共振子における最適設計とは、周波数温度特性が優れており、Qが高く且つ容量比γの小さいもの、即ちfigure of merit(Q/γ)が大きいことが重要である。ここで、図1に示したSAW共振子の諸特性について調べた。図2は、図1に示すSAW共振子において、圧電基板1に−51°回転Yカット90°X伝搬水晶基板(オイラー角表示では(0°,39°,90°))を用い、共振周波数を315MHz、電極膜厚H/λを0.06、IDT2の対数を100対、グレーティング反射器3a、3bの本数を各々100本とした場合の共振子の諸特性を表している。図2(a)にQ値、figure of merit、2次温度係数を、図2(b)に周波数温度特性を実際の試作結果に基づき示している。また、比較の為に、圧電基板のサイズを同じにしたSTカット水晶SAW共振子の諸特性を従来品として併記した。
First, a surface acoustic wave filter proposed by the present applicant in Japanese Patent Application No. 2004-310452 will be described with reference to FIGS.
FIG. 1A shows a plan view of a SAW resonator which is an example of a SAW device previously proposed by the present applicant, and a positive electrode finger and a negative electrode finger are respectively inserted on the piezoelectric substrate 1. IDT2 (comb electrode) and grating reflectors 3a and 3b for reflecting SAW are arranged on both sides of the IDT2. The input / output pads 4a and 4b of the IDT 2 and the input / output terminals of the package 6 are electrically connected by metal wires 5a and 5b, and the opening of the package 6 is hermetically sealed with a lid. In the piezoelectric substrate 1, as shown in FIG. 13, the cut angle θ of the rotated Y-cut quartz substrate is set in the vicinity of −50 ° rotated counterclockwise from the crystal Z axis, and the SAW propagation direction is approximately the crystal X axis. A quartz plate in a vertical direction (90 ° ± 5 °), and the excited SAW is an SH wave. Note that the electrode materials of the IDT 2 and the grating reflectors 3a and 3b are Al or an alloy containing Al as a main component. FIG. 1B shows a cross-sectional view of the IDT 2. Here, when the wavelength of the SAW excited on the IDT 2 is λ, the electrode film thickness is expressed by a value H / λ, and IDT 2 is expressed by the wavelength. When the electrode finger width L / (electrode finger width L + space between electrode fingers S) of the constituting electrode fingers is the line occupation ratio mr, mr = 0.60.
In the above SAW device, the electrode film thickness H / λ is set larger than the conventional one so that the SAW is concentrated on the surface of the piezoelectric substrate so that the SAW reflection can be efficiently used by the grating reflector, and the IDT logarithm is small. The device size was reduced by confining the SAW energy in the IDT even with the number of grating reflectors.
In general, the optimum design of a SAW resonator is important in that it has excellent frequency temperature characteristics, a high Q and a small capacitance ratio γ, that is, a large figure of merit (Q / γ). Here, various characteristics of the SAW resonator shown in FIG. 1 were examined. FIG. 2 shows a resonance frequency of the SAW resonator shown in FIG. 1 using a -51 ° rotated Y-cut 90 ° X propagation quartz substrate (Euler angle display (0 °, 39 °, 90 °)) as the piezoelectric substrate 1. Represents the various characteristics of the resonator, where 315 MHz is the electrode film thickness H / λ is 0.06, the logarithm of IDT2 is 100, and the number of grating reflectors 3a and 3b is 100. FIG. 2A shows the Q value, the figure of merit, the second-order temperature coefficient, and FIG. 2B shows the frequency temperature characteristics based on the actual trial result. For comparison, various characteristics of ST cut quartz SAW resonators having the same piezoelectric substrate size are also shown as conventional products.

図2より図1に示したSAW共振子と従来のSTカット水晶SAW共振子とを比較すると、Q値が1.8倍強、figure of meritが約2倍と大きい値が得られている。また、周波数温度特性については、頂点温度Tpは約+25℃が得られ、温度による周波数変動量は従来の約0.6倍程度に小さくなるという非常に優れた効果が確認された。
更に、図1に示したSAW共振子はSTカット水晶SAW共振子よりも良好なQ値を保ちながら圧電基板のサイズを小型化できる。これは、図1に示したSAW共振子の電極膜厚H/λの増加に対するIDT又はグレーティング反射器でのSAWの反射量の増加分が、STカット水晶SAW共振子と比較して著しく大きいことに起因する。即ち、図1に示したSAW共振子は電極膜厚H/λを大きくすることで、STカット水晶SAW共振子よりも少ないIDT対数又はグレーティング反射器本数で高いQ値を実現可能である。
図3は図1に示したSAW共振子における電極膜厚H/λとQ値の関係を示したものであり、共振子設計条件は前述と同等である。同図より、0.04<H/λ<0.12の範囲においてSTカット水晶SAW共振子のQ値(=15000)を上回る値が得られることが分かる。更に、0.05<H/λ<0.10の範囲に設定することにより20000以上もの高いQ値が得られる。
また、特公平01−034411号にある多対IDT型SAW共振子と図1に示したSAW共振子のQ値を比較すると、特公平01−034411号で得られているQ値は共振周波数が207.561(MHz)における値であり、これを共振周波数315(MHz)に変換すると、Q値は15000程度となり、STカット水晶SAW共振子とほぼ同等である。また、共振子のサイズを比較すると、特公平01−034411号の多対IDT型SAW共振子は800±200対もの対数が必要なのに対し、図1に示したSAW共振子ではIDTとグレーティング反射器の両方で200対分の大きさで十分であるので格段に小型化できる。従って、電極膜厚を0.04<H/λ<0.12の範囲に設定し、グレーティング反射器を設けて効率良くSAWを反射することで、特公平01−034411号に開示されている多対IDT型SAW共振子よりも小型で且つQ値が高いSAWデバイスを実現できる。
When comparing the SAW resonator shown in FIG. 1 with the conventional ST-cut quartz crystal SAW resonator as shown in FIG. 2, the Q value is slightly over 1.8 times and the figure of merit is about twice as large. As for the frequency temperature characteristics, it was confirmed that the apex temperature Tp was about + 25 ° C., and the frequency fluctuation amount due to temperature was reduced to about 0.6 times that of the prior art.
Furthermore, the SAW resonator shown in FIG. 1 can reduce the size of the piezoelectric substrate while maintaining a better Q value than the ST cut quartz SAW resonator. This is because the increase in the SAW reflection amount at the IDT or grating reflector with respect to the increase in the electrode film thickness H / λ of the SAW resonator shown in FIG. 1 is significantly larger than that of the ST cut quartz SAW resonator. caused by. That is, by increasing the electrode film thickness H / λ, the SAW resonator shown in FIG. 1 can realize a high Q value with a smaller IDT logarithm or number of grating reflectors than the ST cut quartz SAW resonator.
FIG. 3 shows the relationship between the electrode film thickness H / λ and the Q value in the SAW resonator shown in FIG. 1, and the resonator design conditions are the same as described above. From the figure, it can be seen that a value exceeding the Q value (= 15000) of the ST cut quartz SAW resonator can be obtained in the range of 0.04 <H / λ <0.12. Furthermore, a Q value as high as 20000 or more can be obtained by setting the range of 0.05 <H / λ <0.10.
Further, when comparing the Q values of the many-pair IDT type SAW resonator in Japanese Patent Publication No. 01-034411 and the SAW resonator shown in FIG. 1, the Q value obtained in Japanese Patent Publication No. 01-034411 has a resonance frequency. It is a value at 207.561 (MHz), and when this is converted to a resonance frequency of 315 (MHz), the Q value becomes about 15000, which is almost equivalent to the ST cut quartz SAW resonator. Further, comparing the size of the resonator, the multi-pair IDT type SAW resonator of Japanese Patent Publication No. 01-034411 requires 800 ± 200 pairs of logarithms, whereas the SAW resonator shown in FIG. 1 has IDT and grating reflector. In both cases, the size of 200 pairs is sufficient, so that the size can be greatly reduced. Therefore, the electrode film thickness is set in a range of 0.04 <H / λ <0.12, and a grating reflector is provided to efficiently reflect SAW, which is disclosed in Japanese Patent Publication No. 01-034411. A SAW device that is smaller than the IDT-type SAW resonator and has a high Q value can be realized.

次に、図4は図1に示したSAW共振子における電極膜厚H/λと2次温度係数の関係を示したものであり、共振子設計条件は前述と同等である。同図より、高いQ値が得られる0.04<H/λ<0.12の範囲においてSTカット水晶SAW共振子の2次温度係数−0.034(ppm/℃2)よりも良好な値が得られることが分かる。
以上より、電極膜厚H/λを0.04<H/λ<0.12の範囲に設定することで、STカット水晶SAWデバイス及び特公平01−034411号に開示されているSAWデバイスよりも小型でQ値が高く、且つ周波数安定性に優れたSAWデバイスを提供できる。
また、これまでカット角θを−51°とした場合についてのみ示してきたが、図1に示したSAW共振子においては、カット角θを変えても膜厚依存性は大きく変化せず、−51°から数度ずれたカット角においても電極膜厚を0.04<H/λ<0.12の範囲に設定することで、良好なQ値と2次温度係数が得られる。
ところで、図1に示したSAW共振子は、非常に広い温度範囲では3次的な温度特性となるが、特定の狭い温度範囲では2次特性と見なすことができ、その頂点温度Tpは電極膜厚やカット角によって変化する。従って、いくら周波数温度特性が優れていても頂点温度Tpが使用温度範囲外となってしまうと周波数安定性は著しく劣化してしまうので、実用的な使用温度範囲(−50℃〜+125℃)において優れた周波数安定性を実現するには、2次温度係数だけでなく頂点温度Tpについても詳細に検討する必要がある。
Next, FIG. 4 shows the relationship between the electrode film thickness H / λ and the secondary temperature coefficient in the SAW resonator shown in FIG. 1, and the resonator design conditions are the same as described above. From the figure, in the range of 0.04 <H / λ <0.12 where a high Q value can be obtained, a value better than the secondary temperature coefficient of the ST-cut quartz SAW resonator −0.034 (ppm / ° C. 2 ). It can be seen that
From the above, by setting the electrode film thickness H / λ in the range of 0.04 <H / λ <0.12, than the ST-cut quartz SAW device and the SAW device disclosed in Japanese Patent Publication No. 01-034411. A SAW device having a small size, a high Q value, and excellent frequency stability can be provided.
Further, only the case where the cut angle θ is set to −51 ° has been shown so far, but in the SAW resonator shown in FIG. 1, the film thickness dependency does not change greatly even when the cut angle θ is changed. By setting the electrode film thickness within the range of 0.04 <H / λ <0.12 even at a cut angle shifted by several degrees from 51 °, a good Q value and secondary temperature coefficient can be obtained.
The SAW resonator shown in FIG. 1 has a third-order temperature characteristic in a very wide temperature range, but can be regarded as a second-order characteristic in a specific narrow temperature range. Varies with thickness and cut angle. Therefore, no matter how excellent the frequency temperature characteristics, if the apex temperature Tp falls outside the operating temperature range, the frequency stability will be significantly deteriorated. Therefore, in the practical operating temperature range (-50 ° C to + 125 ° C). In order to realize excellent frequency stability, it is necessary to examine not only the secondary temperature coefficient but also the apex temperature Tp in detail.

図5(a)は、図1に示したSAW共振子においてカット角θを−50.5°とした時の電極膜厚H/λと頂点温度Tpの関係を示している。同図から明らかなように、電極膜厚H/λを大きくすると頂点温度Tpは下がり、電極膜厚H/λと頂点温度Tpの関係は次の近似式で表わされる。
Tp(H/λ)=−41825×(H/λ)2+2855.4×(H/λ)−26.42 ・・・(1)
また、−50°近傍のカット角においても切片を除けばおおよそ式(1)が適用できる。
また、図5(b)は、図1に示したSAW共振子において電極膜厚H/λを0.06とした時のカット角θと頂点温度Tpの関係を示している。同図から明らかなように、カット角θの絶対値を小さくすると頂点温度Tpは下がり、カット角θと頂点温度Tpの関係は次の近似式で表わされる。
Tp(θ)=−43.5372×θ−2197.14 ・・・(2)
式(1)及び式(2)から電極膜厚H/λを0.04<H/λ<0.12とした時に頂点温度Tpを実用的な使用温度範囲(−50〜+125℃)に設定するには、カット角θを−59.9°≦θ≦−48.9°の範囲に設定すれば良いことが分かる。
また、電極膜厚H/λとカット角θの双方を考慮する場合、頂点温度Tpは式(1)及び式(2)から次の近似式で表わされる。
Tp(H/λ,θ)=Tp(H/λ)+Tp(θ)=−41825×(H/λ)2+2855.4×(H/λ)−43.5372×θ−2223.56 ・・・(3)
式(3)より、頂点温度Tpを使用温度範囲(−50〜+125℃)に設定するには、次式で表される範囲に電極膜厚H/λ及びカット角θを設定すれば良い。
0.9613≦−18.498×(H/λ)2+1.2629×(H/λ)−0.019255×θ≦1.0387 ・・・(4)
FIG. 5A shows the relationship between the electrode film thickness H / λ and the apex temperature Tp when the cut angle θ is −50.5 ° in the SAW resonator shown in FIG. As can be seen from the figure, when the electrode film thickness H / λ is increased, the vertex temperature Tp decreases, and the relationship between the electrode film thickness H / λ and the vertex temperature Tp is expressed by the following approximate expression.
Tp (H / λ) = − 41825 × (H / λ) 2 + 2855.4 × (H / λ) −26.42 (1)
Further, the expression (1) can be roughly applied even when the intercept is removed even at a cut angle in the vicinity of −50 °.
FIG. 5B shows the relationship between the cut angle θ and the apex temperature Tp when the electrode film thickness H / λ is 0.06 in the SAW resonator shown in FIG. As can be seen from the figure, when the absolute value of the cut angle θ is decreased, the vertex temperature Tp decreases, and the relationship between the cut angle θ and the vertex temperature Tp is expressed by the following approximate expression.
Tp (θ) =-43.5372 × θ-2197.14 (2)
From Equation (1) and Equation (2), when the electrode film thickness H / λ is 0.04 <H / λ <0.12, the apex temperature Tp is set to a practical operating temperature range (−50 to + 125 ° C.). For this purpose, it is understood that the cut angle θ should be set in the range of −59.9 ° ≦ θ ≦ −48.9 °.
When considering both the electrode film thickness H / λ and the cut angle θ, the apex temperature Tp is expressed by the following approximate expression from the expressions (1) and (2).
Tp (H / λ, θ) = Tp (H / λ) + Tp (θ) = − 41825 × (H / λ) 2 + 2855.4 × (H / λ) −43.5372 × θ−2223.56・ (3)
From equation (3), in order to set the apex temperature Tp within the operating temperature range (−50 to + 125 ° C.), the electrode film thickness H / λ and the cut angle θ may be set within the range represented by the following equation.
0.9613 ≦ −18.498 × (H / λ) 2 + 1.2629 × (H / λ) −0.019255 × θ ≦ 1.0387 (4)

このように、本出願人が先に提案したSAWデバイスではカット角θが−59.9°≦θ≦−48.9°の範囲にある回転Yカット水晶基板を用い、SAWの伝搬方向がX軸に対してほぼ垂直方向(直交方向)として励振されるSH波を用い、IDTやグレーティング反射器の電極材料をAlまたはAlを主とした合金にて構成し、その電極膜厚H/λを0.04<H/λ<0.12とすることで、STカット水晶SAWデバイスより小型で、且つQ値が大きく、且つ周波数安定性の優れているSAWデバイスを実現できる。
ここで、より最適な条件について検討すると、電極膜厚H/λは図3よりQ値が20000以上得られる0.05<H/λ<0.10の範囲に設定するのが好ましい。また、頂点温度Tpをより実用的な使用温度範囲(0〜+70℃)に設定する為には、カット角θは−55.7°≦θ≦−50.2°の範囲に設定するのが好ましく、更には、式(3)より得られる次式の範囲にカット角θ及び電極膜厚H/λを設定するのが好ましい。
0.9845≦−18.518×(H/λ)2+1.2643×(H/λ)−0.019277×θ≦1.0155 ・・・(5)
以上では、図5(a)のカット角θを−50.5°とした時の電極膜厚H/λと頂点温度Tpの関係、及び図5(b)の電極膜厚H/λを0.06とした時のカット角θと頂点温度Tpの関係から、頂点温度Tpが実用的な使用温度範囲に入るような電極膜厚H/λとカット角θの関係式を導き出したが、更にカット角θの範囲を広げて実験を行ったところ、より詳細な条件を見出すことができたので以下説明する。
Thus, the SAW device previously proposed by the present applicant uses a rotating Y-cut quartz substrate having a cut angle θ in the range of −59.9 ° ≦ θ ≦ −48.9 °, and the SAW propagation direction is X The SH wave excited in a direction substantially perpendicular to the axis (orthogonal direction) is used, and the electrode material of the IDT or grating reflector is made of Al or an alloy mainly containing Al, and the electrode film thickness H / λ is By setting 0.04 <H / λ <0.12, it is possible to realize a SAW device that is smaller than the ST-cut quartz SAW device, has a large Q value, and is excellent in frequency stability.
Here, considering more optimal conditions, the electrode film thickness H / λ is preferably set in a range of 0.05 <H / λ <0.10 in which a Q value of 20000 or more can be obtained from FIG. Further, in order to set the vertex temperature Tp to a more practical use temperature range (0 to + 70 ° C.), the cut angle θ should be set to a range of −55.7 ° ≦ θ ≦ −50.2 °. More preferably, the cut angle θ and the electrode film thickness H / λ are preferably set within the range of the following formula obtained from the formula (3).
0.9845 ≦ −18.518 × (H / λ) 2 + 1.2643 × (H / λ) −0.019277 × θ ≦ 1.0155 (5)
The relationship between the electrode film thickness H / λ and the apex temperature Tp when the cut angle θ in FIG. 5A is −50.5 ° and the electrode film thickness H / λ in FIG. From the relationship between the cut angle θ and the apex temperature Tp when .06 was set, a relational expression between the electrode film thickness H / λ and the cut angle θ that led the apex temperature Tp to fall within the practical operating temperature range was derived. When the experiment was conducted with the range of the cut angle θ widened, more detailed conditions could be found and will be described below.

図6は、前記SAW共振子において頂点温度Tp(℃)がTp=−50,0,+70,+125である時の水晶基板のカット角θと電極膜厚H/λの関係を示しており、各Tp特性の近似式は以下の通りである。
Tp=−50(℃):H/λ≒−1.02586×10-4×θ3−1.73238×10-2×θ2−0.977607×θ−18.3420
Tp=0(℃):H/λ≒−9.87591×10-5×θ3−1.70304×10-2×θ2−0.981173×θ−18.7946
Tp=+70(℃):H/λ≒−1.44605×10-4×θ3−2.50690×10-2×θ2−1.45086×θ−27.9464
Tp=+125(℃):H/λ≒−1.34082×10-4×θ3−2.34969×10-2×θ2−1.37506×θ−26.7895
図6から、頂点温度Tp(℃)を実用的な範囲である−50≦Tp≦+125に設定するには、Tp=−50℃及びTp=+125℃の曲線に囲まれた領域、即ち、−1.34082×10-4×θ3−2.34969×10-2×θ2−1.37506×θ−26.7895<H/λ<−1.02586×10-4×θ3−1.73238×10-2×θ2−0.977607×θ−18.3420となるようにカット角θ及び電極膜厚H/λを設定すれば良いことが分かる。また、この時の電極膜厚H/λの範囲は、従来のSTカット水晶デバイスより優れた特性が得られる0.04<H/λ<0.12とし、カット角θの範囲は図6の点Aから点Bに示す範囲の−64.0°<θ<−49.3°とする必要がある。
更に、より最適な条件について検討すると、頂点温度Tp(℃)はより実用的な使用温度範囲である0≦Tp≦+70に設定するのが望ましい。Tp(℃)を前述の範囲に設定するには、図6に示すTp=0℃及びTp=+70℃の曲線に囲まれた領域、即ち、−1.44605×10-4×θ3−2.50690×10-2×θ2−1.45086×θ−27.9464<H/λ<−9.87591×10-5×θ3−1.70304×10-2×θ2−0.981173×θ−18.7946となるようにカット角θ及び電極膜厚H/λを設定すれば良い。また、電極膜厚H/λはQ値が20000以上得られる0.05<H/λ<0.10の範囲にするのが望ましく、電極膜厚を前述の範囲とし、頂点温度Tp(℃)を0≦Tp≦+70の範囲内に設定するには、カット角θを図6(a)の点Cから点Dに示す範囲の−61.4°<θ<−51.1°に設定する必要がある。
以上、詳細に検討した結果、カット角θが−64.0°<θ<−49.3°、好ましくは−61.4°<θ<−51.1°の範囲にある回転Yカット水晶基板を用い、SAWの伝搬方向がX軸に対してほぼ垂直方向(直交方向)として励振されるSH波を用い、IDTやグレーティング反射器の電極材料をAlまたはAlを主とした合金にて構成し、その電極膜厚H/λを0.04<H/λ<0.12、好ましくは0.05<H/λ<0.10とすることで、STカット水晶SAWデバイスよりQ値が大きく優れた温度特性が得られると共に、頂点温度Tpを実用的な使用温度範囲内に設定できることを見出した。
ところで、これまでIDTのライン占有率mrを0.60と固定した時の例について説明してきたが、以下ではライン占有率を変数に含めた場合のTp特性について検討した。
図7は、電極膜厚とライン占有率の積H/λ×mrと頂点温度Tpの関係を示している。なお、縦軸は頂点温度Tp(℃)を、横軸は電極膜厚とライン占有率との積H/λ×mrを示しており、この時の水晶基板のカット角θは−51.5°としている。同図に示すように、電極膜厚とライン占有率の積H/λ×mrの値を大きくする程、頂点温度Tpは下がることが分かる。
FIG. 6 shows the relationship between the crystal substrate cut angle θ and the electrode film thickness H / λ when the apex temperature Tp (° C.) is Tp = −50, 0, +70, +125 in the SAW resonator. The approximate expression of each Tp characteristic is as follows.
Tp = −50 (° C.): H / λ≈−1.02586 × 10 −4 × θ 3 −173238 × 10 −2 × θ 2 −0.977607 × θ−18.3420
Tp = 0 (° C.): H / λ≈−9.887591 × 10 −5 × θ 3 −1.70304 × 10 −2 × θ 2 −0.981173 × θ−18.7946
Tp = + 70 (° C.): H / λ≈−1.44605 × 10 −4 × θ 3 −2.50690 × 10 −2 × θ 2 −1.45086 × θ−27.9464
Tp = + 125 (° C.): H / λ≈−1.34082 × 10 −4 × θ 3 −2.334969 × 10 −2 × θ 2 −1.37506 × θ−26.7895
From FIG. 6, in order to set the apex temperature Tp (° C.) to a practical range of −50 ≦ Tp ≦ + 125, the region surrounded by the curves of Tp = −50 ° C. and Tp = + 125 ° C., that is, − 1.40882 × 10 −4 × θ 3 −2.34969 × 10 −2 × θ 2 −1.37506 × θ−26.7895 <H / λ <−1.02586 × 10 −4 × θ 3 -1. It can be seen that the cut angle θ and the electrode film thickness H / λ may be set so as to be 73238 × 10 −2 × θ 2 −0.977607 × θ−18.3420. Further, the range of the electrode film thickness H / λ at this time is 0.04 <H / λ <0.12 in which characteristics superior to those of the conventional ST-cut quartz crystal device can be obtained, and the range of the cut angle θ is shown in FIG. It is necessary to satisfy −64.0 ° <θ <−49.3 ° in the range shown from the point A to the point B.
Further, considering more optimal conditions, it is desirable to set the vertex temperature Tp (° C.) to 0 ≦ Tp ≦ + 70, which is a more practical use temperature range. In order to set Tp (° C.) within the above-mentioned range, the region surrounded by the curves of Tp = 0 ° C. and Tp = + 70 ° C. shown in FIG. 6, ie, −1.44605 × 10 −4 × θ 3 −2 50690 × 10 −2 × θ 2 −1.45086 × θ−27.9464 <H / λ <−9.875991 × 10 −5 × θ 3 −1.70304 × 10 −2 × θ 2 −0.981173 The cut angle θ and the electrode film thickness H / λ may be set so that × θ−18.7946. The electrode film thickness H / λ is preferably in the range of 0.05 <H / λ <0.10 where a Q value of 20000 or more can be obtained. The electrode film thickness is in the above range, and the apex temperature Tp (° C.). Is set within the range of 0 ≦ Tp ≦ + 70, the cut angle θ is set to −61.4 ° <θ <−51.1 ° in the range indicated by the point C to the point D in FIG. There is a need.
As a result of detailed examination, the rotated Y-cut quartz substrate having a cut angle θ in the range of −64.0 ° <θ <−49.3 °, preferably −61.4 ° <θ <−51.1 °. The electrode material of the IDT and the grating reflector is made of Al or an alloy mainly composed of Al, using SH waves that are excited with the SAW propagation direction almost perpendicular to the X axis (orthogonal direction). By setting the electrode film thickness H / λ to 0.04 <H / λ <0.12, preferably 0.05 <H / λ <0.10, the Q value is significantly superior to that of ST-cut quartz SAW devices. It was found that the temperature characteristics can be obtained and the apex temperature Tp can be set within a practical use temperature range.
By the way, although the example when the line occupation rate mr of IDT is fixed to 0.60 has been described so far, the Tp characteristic in the case where the line occupation rate is included in the variable is examined below.
FIG. 7 shows the relationship between the product H / λ × mr of the electrode film thickness and the line occupation ratio, and the apex temperature Tp. The vertical axis indicates the apex temperature Tp (° C.), and the horizontal axis indicates the product H / λ × mr of the electrode film thickness and the line occupancy. At this time, the cut angle θ of the quartz substrate is −51.5. °. As shown in the figure, it is understood that the vertex temperature Tp decreases as the value of the product H / λ × mr of the electrode film thickness and the line occupation ratio increases.

次に、図8は頂点温度Tp(℃)がTp=−50,0,+70,+125である時の水晶基板のカット角θと電極膜厚とライン占有率の積H/λ×mrの関係を示している。なお、各Tp特性の近似式は以下の通りである。
Tp=−50(℃):H/λ×mr≒−6.15517×10-5×θ3−1.03943×10-2×θ2−0.586564×θ−11.0052
Tp=0(℃):H/λ×mr≒−5.92554×10-5×θ3−1.02183×10-2×θ2−0.588704×θ−11.2768
Tp=+70(℃):H/λ×mr≒−8.67632×10-5×θ3−1.50414×10-2×θ2−0.870514×θ−16.7678
Tp=+125(℃):H/λ×mr≒−8.04489×10-5×θ3−1.40981×10-2×θ2−0.825038×θ−16.0737
図8から、頂点温度Tp(℃)を実用的な範囲である−50≦Tp≦+125に設定するには、Tp=−50℃及びTp=+125℃の曲線に囲まれた領域、即ち、−8.04489×10-5×θ3−1.40981×10-2×θ2−0.825038×θ−16.0737<H/λ×mr<−6.15517×10-5×θ3−1.03943×10-2×θ2−0.586564×θ−11.0052となるようにカット角θ及び電極膜厚とライン占有率の積H/λ×mrを設定すれば良いことが分かる。また、この時の電極膜厚H/λの範囲は従来のSTカット水晶デバイスより優れた特性が得られる0.04<H/λ<0.12とし、カット角θの範囲は−64.0°<θ<−49.3°とする必要がある。
また、頂点温度Tp(℃)をより実用的な使用温度範囲である0≦Tp≦+70に設定するには、図8に示すTp=0℃及びTp=+70℃の曲線に囲まれた領域、即ち、−8.67632×10-5×θ3−1.50414×10-2×θ2−0.870514×θ−16.7678<H/λ×mr<−5.92554×10-5×θ3−1.02183×10-2×θ2−0.588704×θ−11.2768となるようにカット角θ及び電極膜厚とライン占有率の積H/λ×mrを設定すれば良い。また、この時の電極膜厚H/λはQ値が20000以上得られる0.05<H/λ<0.10とするのが望ましく、電極膜厚を前述の範囲とし、且つ、頂点温度Tp(℃)を0≦Tp≦+70の範囲内に設定するには、カット角θは−61.4°<θ<−51.1°とするのが望ましい。
Next, FIG. 8 shows the relationship of the product H / λ × mr of the crystal substrate cut angle θ, electrode film thickness, and line occupancy when the apex temperature Tp (° C.) is Tp = −50, 0, +70, +125. Is shown. The approximate expression of each Tp characteristic is as follows.
Tp = −50 (° C.): H / λ × mr≈−6.15517 × 10 −5 × θ 3 −1.03943 × 10 −2 × θ 2 −0.586564 × θ-11.0052
Tp = 0 (° C.): H / λ × mr≈−5.99254 × 10 −5 × θ 3 −1.02183 × 10 −2 × θ 2 −0.588704 × θ−11.2768
Tp = + 70 (° C.): H / λ × mr≈−8.67632 × 10 −5 × θ 3 −1.50414 × 10 −2 × θ 2 −0.870514 × θ−16.7678
Tp = + 125 (° C.): H / λ × mr≈−8.04489 × 10 −5 × θ 3 −1.40981 × 10 −2 × θ 2 −0.825038 × θ−16.0737
From FIG. 8, in order to set the apex temperature Tp (° C.) to a practical range of −50 ≦ Tp ≦ + 125, the region surrounded by the curves of Tp = −50 ° C. and Tp = + 125 ° C., that is, − 8.04489 × 10 −5 × θ 3 −1.40981 × 10 −2 × θ 2 −0.825038 × θ−16.0737 <H / λ × mr <−6.15517 × 10 −5 × θ 3 − It can be seen that the cut angle θ and the product H / λ × mr of the electrode film thickness and the line occupancy should be set so that 1.03943 × 10 −2 × θ 2 −0.586564 × θ-11.0052. . In this case, the range of the electrode film thickness H / λ is 0.04 <H / λ <0.12 in which characteristics superior to those of the conventional ST-cut quartz crystal device are obtained, and the range of the cut angle θ is −64.0. It is necessary to make it <° <θ <−49.3 °.
Further, in order to set the apex temperature Tp (° C.) to 0 ≦ Tp ≦ + 70 which is a more practical use temperature range, a region surrounded by curves of Tp = 0 ° C. and Tp = + 70 ° C. shown in FIG. That is, −8.66762 × 10 −5 × θ 3 −1.50414 × 10 −2 × θ 2 −0.870514 × θ−16.7678 <H / λ × mr <−5.992554 × 10 −5 × The cut angle θ and the product of the electrode film thickness and the line occupation ratio H / λ × mr may be set so that θ 3 −1.02183 × 10 −2 × θ 2 −0.588704 × θ−11.2768. . Further, the electrode film thickness H / λ at this time is desirably 0.05 <H / λ <0.10, which can obtain a Q value of 20000 or more, the electrode film thickness is in the above range, and the apex temperature Tp. In order to set (° C.) within the range of 0 ≦ Tp ≦ + 70, the cut angle θ is desirably −61.4 ° <θ <−51.1 °.

以下、本発明のSAWデバイスの実施形態について説明する。
ところで、上記したような本出願人が先に提案したSAWデバイスは、横高次モードスプリアスレベルが大きいため、SAW共振子を構成した場合は複共振特性になるという問題があった。またSAWフィルタを構成した場合は通過帯域の高域側の減衰量が劣化するという問題があった。
そこで、本出願人らはSAWデバイスにおいて横高次モードスプリアスレベルを抑制するために各種実験を行った結果、SAWフィルタのIDT2にダミー電極11を形成すると効果的であることがわかった。以下、具体例を挙げて説明する。
図9は本実施形態のSAW共振子の構成を示した平面図である。
この図9に示すSAW共振子では、横高次モードスプリアスを抑制するために、図示するようにIDT2にダミー電極11を形成するようにしている。
即ち、本実施形態のSAW共振子では、回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−64.0°<θ<−49.3°、好ましくは−61.4°<θ<−51.1°の範囲に設定した水晶基板1と、この水晶基板1上に形成されたAl又はAlを主成分とする合金からなるIDT2とを備え、SAWの伝搬方向を結晶X軸に対して直交方向、励振されるSAWを水晶基板1の表面付近を伝搬するSH波とし、SAWの波長λで基準化した電極膜厚H/λを0.04<H/λ<0.12、好ましくは0.05<H/λ<0.10としたSAWデバイスのIDT2にダミー電極11を形成するようにした。
Hereinafter, embodiments of the SAW device of the present invention will be described.
By the way, since the SAW device previously proposed by the applicant as described above has a high lateral high-order mode spurious level, there is a problem that when a SAW resonator is formed, a double resonance characteristic is obtained. Further, when the SAW filter is configured, there is a problem that the attenuation amount on the high frequency side of the pass band is deteriorated.
Therefore, the present applicants conducted various experiments to suppress the lateral higher-order mode spurious level in the SAW device, and as a result, it has been found that it is effective to form the dummy electrode 11 on the IDT 2 of the SAW filter. Hereinafter, a specific example will be described.
FIG. 9 is a plan view showing the configuration of the SAW resonator of this embodiment.
In the SAW resonator shown in FIG. 9, a dummy electrode 11 is formed on the IDT 2 as shown in order to suppress lateral higher-order mode spurious.
That is, in the SAW resonator of this embodiment, the cut angle θ of the rotated Y-cut quartz substrate is −64.0 ° <θ <−49.3 °, preferably −61.4 °, counterclockwise from the crystal Z axis. <Θ <−51.1 ° and includes a quartz substrate 1 and an IDT 2 formed on the quartz substrate 1 and made of Al or an alloy containing Al as a main component, and the SAW propagation direction is crystal X The SAW excited in the direction orthogonal to the axis is an SH wave propagating near the surface of the quartz substrate 1, and the electrode thickness H / λ normalized by the SAW wavelength λ is 0.04 <H / λ <0. 12, preferably the dummy electrode 11 is formed on the IDT 2 of the SAW device with 0.05 <H / λ <0.10.

図10は、IDT2の電極指の交差幅をW、ダミー電極11の電極長をDとしたときの交差幅Wに対するダミー電極長Dの割合D/Wと、横3次モードスプリアスレベルの関係を示した図である。
この図10から交差幅Wに対するダミー電極長Dの割合D/Wを、0.02≦D/Wにすると、ダミー電極11が無い場合(D/W=0.00)に比べて横3次モードスプリアスが抑圧され、ダミー電極長Dの割合が増加するのに伴いスプリアスレベルが抑圧されていることがわかる。これは横3次モードの界分布の交差部Wに占める割合が低下したことに起因するものである。
一方、0.20<D/Wでは横モードスプリアスレベルが一度元に戻る現象が見られる。これは交差部Wとダミー電極11の全体の長さが大きくなり、界分布が横5次モードのようになることに起因するものであると考えられる。
ここで、交差幅Wに対するダミー電極長Dの割合D/Wが0.20より大きいSAW共振子と、ダミー電極11無し(D/W=0.00)のSAW共振子を比較すると、D/Wが0.20より大きいSAW共振子のほうがスプリアスは抑圧されているという利点があるものの、その効果が小さく、逆にチップサイズが大きくなるため本来の小型であるという長所に悪影響を与える。
従って、IDT2の交差幅Wに対するダミー電極11の電極長Dの割合D/Wは、0.02≦D/W≦0.20に設定することが好適であることが分かった。
なお、IDT2の電極指端とダミー電極11との間のギャップは小さい方がよく、本実施形態では0.25λとした。
また本実施形態では、本発明のSAWデバイスをSAW共振子に適用した場合を例に挙げたが、これはあくまでも一例であり、SAWフィルタに適用した場合も同様、高次横モードスプリアスを抑制することができる。
FIG. 10 shows the relationship between the ratio D / W of the dummy electrode length D to the intersection width W, where the intersection width of the electrode fingers of the IDT 2 is W, and the electrode length of the dummy electrode 11 is D, and the transverse tertiary mode spurious level. FIG.
From FIG. 10, when the ratio D / W of the dummy electrode length D to the intersection width W is 0.02 ≦ D / W, the horizontal tertiary is compared with the case where there is no dummy electrode 11 (D / W = 0.00). It can be seen that the spurious level is suppressed as the mode spurious is suppressed and the ratio of the dummy electrode length D is increased. This is because the ratio of the transverse tertiary mode field distribution to the intersecting portion W is reduced.
On the other hand, when 0.20 <D / W, there is a phenomenon that the transverse mode spurious level is once restored. This is considered to be caused by the fact that the entire length of the intersection W and the dummy electrode 11 becomes large, and the field distribution becomes like a transverse fifth-order mode.
Here, comparing a SAW resonator in which the ratio D / W of the dummy electrode length D to the intersection width W is greater than 0.20 and a SAW resonator without the dummy electrode 11 (D / W = 0.00), Although the SAW resonator with W greater than 0.20 has the advantage that spurious is suppressed, the effect is small, and conversely, the chip size is increased, which adversely affects the original small size.
Therefore, it was found that the ratio D / W of the electrode length D of the dummy electrode 11 to the intersection width W of IDT2 is preferably set to 0.02 ≦ D / W ≦ 0.20.
The gap between the electrode finger end of the IDT 2 and the dummy electrode 11 should be small, and in this embodiment, it is 0.25λ.
In this embodiment, the case where the SAW device of the present invention is applied to a SAW resonator is taken as an example. However, this is only an example, and high-order transverse mode spurious is suppressed similarly when applied to a SAW filter. be able to.

図11は本発明SAWデバイス(ダミー電極有り)を適用したSAWフィルタと、従来のSAWデバイス(ダミー電極無し)を適用したSAWフィルタの周波数特性を示した図である。なお、ここではSAWデバイスの交差幅Wに対するダミー電極長Dの割合D/Wを0.133とした。
この図11から、本発明のSAWデバイスを適用したSAWフィルタのほうが、従来のSAWデバイスを適用したSAWフィルタに比べて、通過帯域における高域側の減衰量が大きいことが分かる。つまり、本発明のSAWデバイスをSAWフィルタに適用すれば通過帯域の高域側において発生していた減衰量の劣化を防止することができる。
なお、これまで説明したSAWデバイスにおいて、IDTやグレーティング反射器上にSiO2等の保護膜やAlを陽極酸化した保護膜等を形成したり、Al電極の上部あるいは下部に密着層あるいは耐電力向上等の目的で別の金属薄膜を形成した場合においても、本発明と同様の効果を得られることは明らかである。また、センサ装置やモジュール装置、発振回路等に本発明のSAWデバイスが適用できることは言うまでもない。また、電圧制御SAW発振器(VCSO)等に本発明のSAWデバイスを用いれば、容量比γを小さくできるので周波数可変幅を大きくとれる。
また、本発明のSAWデバイスは、図1に示すようなSAWチップとパッケージをワイヤボンディングした構造以外でも良く、SAWチップの電極パッドとパッケージの端子とを金属バンプで接続したフリップチップボンディング(FCB)構造や、配線基板上にSAWチップをフリップチップボンディングしSAWチップの周囲を樹脂封止したCSP(Chip Size Package)構造、或いは、SAWチップ上に金属膜や樹脂層を形成することによりパッケージや配線基板を不要としたWLCSP(Wafer Level Chip Size Package)構造等にしても良い。更には、水晶デバイスを水晶又はガラス基板で挟んで積層封止したAQP(All Quartz Package)構造としても良い。前記AQP構造は、水晶又はガラス基板で挟んだだけの構造であるのでパッケージが不要で薄型化が可能であり、低融点ガラス封止や直接接合とすれば接着剤によるアウトガスが少なくなりエージング特性に優れた効果を奏する。
FIG. 11 is a diagram showing frequency characteristics of a SAW filter to which the SAW device of the present invention (with dummy electrodes) is applied and a SAW filter to which a conventional SAW device (without dummy electrodes) is applied. Here, the ratio D / W of the dummy electrode length D to the intersection width W of the SAW device was set to 0.133.
From FIG. 11, it can be seen that the SAW filter to which the SAW device of the present invention is applied has a higher attenuation amount on the high band side in the pass band than the SAW filter to which the conventional SAW device is applied. That is, if the SAW device of the present invention is applied to a SAW filter, it is possible to prevent the attenuation amount that has been generated on the high frequency side of the pass band.
In the SAW device described so far, a protective film such as SiO 2 or anodized Al is formed on the IDT or the grating reflector, or an adhesion layer or an improvement in power resistance is formed above or below the Al electrode. Even when another metal thin film is formed for such purposes, it is obvious that the same effect as the present invention can be obtained. Needless to say, the SAW device of the present invention can be applied to a sensor device, a module device, an oscillation circuit, and the like. Further, if the SAW device of the present invention is used for a voltage controlled SAW oscillator (VCSO) or the like, the capacitance ratio γ can be reduced, so that the frequency variable width can be increased.
Further, the SAW device of the present invention may have a structure other than the structure in which the SAW chip and the package are wire bonded as shown in FIG. 1, and flip chip bonding (FCB) in which the electrode pad of the SAW chip and the terminal of the package are connected by metal bumps. Structure, CSP (Chip Size Package) structure in which a SAW chip is flip-chip bonded on a wiring board and the periphery of the SAW chip is resin-sealed, or a metal film or resin layer is formed on the SAW chip to form a package or wiring A WLCSP (Wafer Level Chip Size Package) structure that does not require a substrate may be used. Furthermore, an AQP (All Quartz Package) structure in which a quartz crystal device is sandwiched between quartz or glass substrates and sealed. Since the AQP structure is simply sandwiched between crystal or glass substrates, a package is not required and the thickness can be reduced. If it is sealed with a low melting point glass or directly joined, outgas due to the adhesive is reduced and aging characteristics are achieved. Excellent effect.

本発明に係るSAW共振子を説明する図であり、(a)は平面図、(b)はIDTの断面図。It is a figure explaining the SAW resonator which concerns on this invention, (a) is a top view, (b) is sectional drawing of IDT. 本発明に係るSAW共振子と従来品の比較を示したものであり、(a)はQ値及びFigure of merit及び2次温度係数の比較を示す図、(b)は周波数温度特性の比較を示す図。The comparison between the SAW resonator according to the present invention and the conventional product is shown, (a) is a diagram showing a comparison of the Q value, the figure of merit, and the secondary temperature coefficient, and (b) is a comparison of the frequency temperature characteristics. FIG. 本発明に係るSAW共振子の電極膜厚H/λとQ値との関係を示す図。The figure which shows the relationship between the electrode film thickness H / λ and the Q value of the SAW resonator according to the present invention. 本発明に係るSAW共振子の電極膜厚H/λと2次温度係数との関係を示す図。The figure which shows the relationship between the electrode film thickness H / (lambda) of the SAW resonator which concerns on this invention, and a secondary temperature coefficient. (a)は本発明に係るSAW共振子の電極膜厚H/λと頂点温度Tpの関係を示す図、(b)はカット角θと頂点温度Tpの関係を示す図。(A) is a figure which shows the relationship between electrode film thickness H / (lambda) of the SAW resonator which concerns on this invention, and vertex temperature Tp, (b) is a figure which shows the relationship between cut angle (theta) and vertex temperature Tp. 本発明に係るSAW共振子の頂点温度Tp(℃)がTp=−50,0,+70,+125である時のカット角θと電極膜厚H/λの関係を示す図。The figure which shows the relationship between the cut angle (theta) and electrode film thickness H / (lambda) when the vertex temperature Tp (degreeC) of the SAW resonator which concerns on this invention is Tp = -50,0, + 70, + 125. 本発明に係るSAW共振子の電極膜厚とライン占有率の積H/λ×mrと頂点温度Tpの関係を示す図。The figure which shows the relationship between the electrode film thickness of the SAW resonator which concerns on this invention, the product of line occupancy H / (lambda) * mr, and the vertex temperature Tp. 本発明に係るSAW共振子の頂点温度Tp(℃)がTp=−50,0,+70,+125である時のカット角θと電極膜厚とライン占有率の積H/λ×mrの関係を示す図。The relationship of the product H / λ × mr of the cut angle θ, the electrode film thickness, and the line occupancy when the apex temperature Tp (° C.) of the SAW resonator according to the present invention is Tp = −50, 0, +70, +125. FIG. 本発明の実施形態のSAW共振子の構成を示した平面図。The top view which showed the structure of the SAW resonator of embodiment of this invention. D/Wと横3次モードスプリアスレベルの関係を示した図。The figure which showed the relationship between D / W and a horizontal tertiary mode spurious level. 本発明のSAWデバイスを適用したSAWフィルタと、従来のSAWデバイスを適用したSAWフィルタの周波数特性を示す図。The figure which shows the frequency characteristic of the SAW filter to which the SAW device of the present invention is applied, and the SAW filter to which the conventional SAW device is applied. 従来のSTカット水晶SAW共振子を説明する図。The figure explaining the conventional ST cut quartz crystal SAW resonator. (a)(b)は−50°回転Yカット90°X伝搬水晶基板を説明する図。(A) (b) is a figure explaining -50 degree rotation Y cut 90 degree X propagation quartz substrate. 従来の多対IDT型SAW共振子を説明する図。The figure explaining the conventional many-pair IDT type SAW resonator.

符号の説明Explanation of symbols

1 圧電基板、2 IDT、3a、3b グレーティング反射器、4a、4b 入出力用パッド、5a、5b 金属ワイヤ、6 パッケージ、11 ダミー電極   DESCRIPTION OF SYMBOLS 1 Piezoelectric substrate, 2 IDT, 3a, 3b Grating reflector, 4a, 4b Input / output pad, 5a, 5b Metal wire, 6 package, 11 Dummy electrode

Claims (6)

回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−64.0°<θ<−49.3°の範囲に設定した水晶基板と、該水晶基板上に形成されたAl又はAlを主成分とする合金からなるIDTとを備え、弾性表面波の伝搬方向を結晶X軸に対して直交方向、励振される弾性表面波を前記水晶基板の表面付近を伝搬するSH波とし、前記弾性表面波の波長λで基準化した電極膜厚H/λを0.04<H/λ<0.12に設定した弾性表面波デバイスであって、前記IDTにダミー電極を設けたことを特徴とする弾性表面波デバイス。   A quartz substrate in which the cut angle θ of the rotated Y-cut quartz substrate is set in a range of −64.0 ° <θ <−49.3 ° counterclockwise from the crystal Z axis, and Al or An IDT made of an alloy containing Al as a main component, the propagation direction of the surface acoustic wave is orthogonal to the crystal X axis, and the excited surface acoustic wave is an SH wave propagating near the surface of the quartz substrate, A surface acoustic wave device in which the electrode film thickness H / λ normalized by the wavelength λ of the surface acoustic wave is set to 0.04 <H / λ <0.12, and a dummy electrode is provided on the IDT. A surface acoustic wave device. 前記水晶基板の前記回転Yカット水晶基板のカット角θを結晶Z軸より反時計方向に−61.4°<θ<−51.1°の範囲に設定したことを特徴とする請求項1に記載の弾性表面波デバイス。   The cut angle θ of the rotated Y-cut quartz substrate of the quartz substrate is set in a range of −61.4 ° <θ <−51.1 ° counterclockwise from the crystal Z axis. The surface acoustic wave device as described. 前記電極膜厚H/λを0.05<H/λ<0.10に設定したことを特徴とする請求項1又は、請求項2に記載の弾性表面波デバイス。   The surface acoustic wave device according to claim 1, wherein the electrode film thickness H / λ is set to 0.05 <H / λ <0.10. 請求項1乃至請求項3の何れか1項に記載の弾性表面波デバイスにおいて、前記IDTの交差幅をW、前記ダミー電極の電極長をDとしたときに、前記交差幅Wに対する前記ダミー電極長Dの割合D/Wを0.02≦D/W≦0.20とすることを特徴とする弾性表面波デバイス。   The surface acoustic wave device according to any one of claims 1 to 3, wherein the dummy electrode with respect to the intersection width W when the intersection width of the IDT is W and the electrode length of the dummy electrode is D. A surface acoustic wave device characterized in that the ratio D / W of the length D is 0.02 ≦ D / W ≦ 0.20. 請求項1乃至請求項4の何れか1項に記載の弾性表面波デバイスを用いたことを特徴とするモジュール装置。   A module apparatus using the surface acoustic wave device according to claim 1. 請求項1乃至請求項4の何れか1項に記載の弾性表面波デバイスを用いたことを特徴とする発振回路。   An oscillation circuit using the surface acoustic wave device according to any one of claims 1 to 4.
JP2005200475A 2005-07-08 2005-07-08 Surface acoustic wave device, module apparatus, and oscillation circuit Pending JP2007019975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005200475A JP2007019975A (en) 2005-07-08 2005-07-08 Surface acoustic wave device, module apparatus, and oscillation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005200475A JP2007019975A (en) 2005-07-08 2005-07-08 Surface acoustic wave device, module apparatus, and oscillation circuit

Publications (1)

Publication Number Publication Date
JP2007019975A true JP2007019975A (en) 2007-01-25

Family

ID=37756713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005200475A Pending JP2007019975A (en) 2005-07-08 2005-07-08 Surface acoustic wave device, module apparatus, and oscillation circuit

Country Status (1)

Country Link
JP (1) JP2007019975A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286606A (en) * 2007-05-16 2008-11-27 Japan Radio Co Ltd Surface acoustic wave sensor, and biomolecule measuring device equipped with surface acoustic wave sensor
JP5397477B2 (en) * 2010-06-22 2014-01-22 株式会社村田製作所 Ladder type elastic wave filter device and duplexer
WO2014133084A1 (en) * 2013-02-27 2014-09-04 京セラ株式会社 Elastic wave element, demultiplexer and communication module
CN107817013A (en) * 2017-09-22 2018-03-20 天津大学 A kind of high temperature surface acoustic wave sensor based on langasite substrate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008286606A (en) * 2007-05-16 2008-11-27 Japan Radio Co Ltd Surface acoustic wave sensor, and biomolecule measuring device equipped with surface acoustic wave sensor
JP5397477B2 (en) * 2010-06-22 2014-01-22 株式会社村田製作所 Ladder type elastic wave filter device and duplexer
US9154113B2 (en) 2010-06-22 2015-10-06 Murata Manufacturing Co., Ltd. Ladder acoustic wave filter device and branching filter
WO2014133084A1 (en) * 2013-02-27 2014-09-04 京セラ株式会社 Elastic wave element, demultiplexer and communication module
JP5844939B2 (en) * 2013-02-27 2016-01-20 京セラ株式会社 Elastic wave device, duplexer and communication module
US9806692B2 (en) 2013-02-27 2017-10-31 Kyocera Corporation Acoustic wave element, duplexer, and communication module
US10541672B2 (en) 2013-02-27 2020-01-21 Kyocera Corporation Acoustic wave element, duplexer, and communication module
CN107817013A (en) * 2017-09-22 2018-03-20 天津大学 A kind of high temperature surface acoustic wave sensor based on langasite substrate

Similar Documents

Publication Publication Date Title
JP4148294B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
JP2006203408A (en) Surface acoustic wave device
US7382217B2 (en) Surface acoustic wave device
JPWO2006137464A1 (en) Surface acoustic wave device, module, and oscillator
US8928432B2 (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
JP4645957B2 (en) Surface acoustic wave element and surface acoustic wave device
JPWO2010047112A1 (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
US8476984B2 (en) Vibration device, oscillator, and electronic apparatus
JP2006295311A (en) Surface acoustic wave element chip and surface acoustic wave device
JP2007124627A (en) Surface acoustic wave device, module device, oscillation circuit and method for manufacturing surface acoustic wave device
JP4148220B2 (en) Surface acoustic wave device, composite device, oscillation circuit and module
JP2007019975A (en) Surface acoustic wave device, module apparatus, and oscillation circuit
JP2007288812A (en) Surface acoustic wave device, module device, oscillation circuit and method for manufacturing surface acoustic wave device
JP4356773B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
JP4582150B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
JP2010103720A (en) Surface acoustic wave device
JPWO2007004661A1 (en) Surface acoustic wave device
JP2007019976A (en) Longitudinally coupled multiple mode surface acoustic wave filter, and module apparatus
JP4148216B2 (en) Surface acoustic wave device and module device or oscillation circuit using the same
JP2020080519A (en) Surface acoustic wave element
US8471434B2 (en) Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus
JP2007013682A (en) Surface acoustic wave device
JP2010104031A (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
JP2007088952A (en) Surface acoustic wave device
JP4356675B2 (en) Surface acoustic wave device