JP2007016834A - Method of bending and cutting vacuum heat insulating material - Google Patents

Method of bending and cutting vacuum heat insulating material Download PDF

Info

Publication number
JP2007016834A
JP2007016834A JP2005197184A JP2005197184A JP2007016834A JP 2007016834 A JP2007016834 A JP 2007016834A JP 2005197184 A JP2005197184 A JP 2005197184A JP 2005197184 A JP2005197184 A JP 2005197184A JP 2007016834 A JP2007016834 A JP 2007016834A
Authority
JP
Japan
Prior art keywords
insulating material
heat insulating
vacuum heat
heat
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005197184A
Other languages
Japanese (ja)
Inventor
Hiroto Nakama
啓人 中間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005197184A priority Critical patent/JP2007016834A/en
Publication of JP2007016834A publication Critical patent/JP2007016834A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent bag breakage of a bent and cut vacuum heat insulating material, to secure quality of a core material, and to inhibit time degradation of heat conductivity in the multi-core vacuum heat insulating material obtained by a manufacturing method for heat sealing circumferences of the plurality of core materials by heating and pressing the material including the core material between covering materials. <P>SOLUTION: A heat sealing portion 14 of a bent and cut part of the vacuum heat insulating material 10 has a width wider than the other heat sealing portions 13, 17, thus effects of prevention of bag breakage of the vacuum heat insulating material 10, securement of quality of the core material 11, and prevention of time degradation of heat conductivity can be be achieved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、パソコン等の情報機器や電子機器、保温保冷機器、防寒具等の衣料用品、および住宅部材等に使用できる、複雑な形状や折り曲げが可能な真空断熱材に関するものである。   The present invention relates to a vacuum heat insulating material that can be used for an information device such as a personal computer, an electronic device, a heat-retaining device, a clothing product such as a cold protection device, a housing member, and the like, and that can be bent in a complicated shape.

多孔体の芯材を、ガスバリア層と熱溶着層とを有するプラスチックラミネートフィルム製の外被材で覆って減圧封止してなる真空断熱材は、その封止技術として、封止時の信頼性、および生産性の観点から、2枚のラミネートフィルムの接合面を加熱加圧することで封止する熱溶着法が一般的に使用されている。   Vacuum insulation made by covering the porous core material with a plastic laminate film jacket material having a gas barrier layer and a heat-welded layer, and sealing under reduced pressure is a reliable sealing technology. From the viewpoint of productivity, a heat welding method is generally used in which the bonding surfaces of two laminate films are sealed by heating and pressing.

このようにして形成する真空断熱材は、予め、プラスチックラミネートフィルム製の外被材を芯材より大きめの袋状に成形し、この袋状の外被材に芯材を挿入し、減圧後、開口部を熱溶着により封止するものである。   In this way, the vacuum heat insulating material to be formed in advance, the outer cover material made of plastic laminate film is formed into a bag shape larger than the core material, the core material is inserted into the bag-shaped outer cover material, and after decompression, The opening is sealed by heat welding.

そのため、このような構成の真空断熱材の外周部の四辺端部には、外被材の熱溶着部と、芯材を問に含まず密着しただけの外被材とから構成される周縁部が形成される。真空断熱材の適用にあたっては、この周縁部をできるだけ小さくするため、従来から種々の取り組みがなされている。   Therefore, at the four sides of the outer peripheral portion of the vacuum heat insulating material having such a configuration, a peripheral portion composed of a heat-welded portion of the outer cover material and an outer cover material that does not include the core material and is in close contact Is formed. In applying the vacuum heat insulating material, various approaches have been conventionally made in order to make the peripheral portion as small as possible.

図5は従来の真空断熱材の製造過程を示す斜視図、図6は従来の真空断熱材を示す斜視図である。   FIG. 5 is a perspective view showing a manufacturing process of a conventional vacuum heat insulating material, and FIG. 6 is a perspective view showing a conventional vacuum heat insulating material.

図5、図6において、真空断熱材300は、フイルム状の薄体301の上にコア材302を置き、コア材302を包むように薄体301を折り返し、この状態で薄体301内部を真空引きされ、折り返すことで相互に接合された薄体301同士を、周囲三方にて熱溶着により接着して作製される。   5 and 6, the vacuum heat insulating material 300 is obtained by placing a core material 302 on a film-like thin body 301, folding the thin body 301 so as to wrap the core material 302, and evacuating the inside of the thin body 301 in this state. Then, the thin bodies 301 that are joined to each other by being folded are bonded to each other at three sides by heat welding.

このとき、薄体301の折り返される部位をコア材302の一端面に密着させることで、真空断熱材300の端面303には、熱融着による突起(熱溶着部)304が形成されないことが開示されている(例えば、特許文献1参照)。   At this time, it is disclosed that a protrusion (thermal welding portion) 304 due to heat fusion is not formed on the end surface 303 of the vacuum heat insulating material 300 by bringing the folded portion of the thin body 301 into close contact with one end surface of the core material 302. (For example, refer to Patent Document 1).

次に、従来の折り曲げ可能な真空断熱材について説明する。図7は従来の真空断熱材の平面図で、図8は同従来の真空断熱材を断熱箱体の外箱に設けた状態の断面図である。   Next, a conventional foldable vacuum heat insulating material will be described. FIG. 7 is a plan view of a conventional vacuum heat insulating material, and FIG. 8 is a cross-sectional view of the conventional vacuum heat insulating material provided in the outer box of the heat insulating box.

図7において、3つの長方形の芯材311をガスバリア性のフィルム312で覆いフィルム312の内部を減圧して成り、3つの芯材311は一方向に互いに所定間隔離れて略同一面上に配置されており、3つの芯材311のそれぞれが独立した空問内に位置するように隣接する芯材311の間に位置するフィルムが熱溶着されており、隣接する芯材311の間に位置する熱溶着部313を折曲線314aとして折り曲げ可能な真空断熱材314があった(例えぱ、特許文献2参照)。   In FIG. 7, three rectangular core materials 311 are covered with a gas barrier film 312 and the inside of the film 312 is decompressed, and the three core materials 311 are arranged on substantially the same plane at a predetermined distance from each other in one direction. The film located between the adjacent core materials 311 is thermally welded so that each of the three core materials 311 is located in an independent space, and the heat positioned between the adjacent core materials 311 There was a vacuum heat insulating material 314 that can be bent with the welded portion 313 as a folding line 314a (see, for example, Patent Document 2).

この真空断熱材314は、図8に示すように、冷蔵庫などの断熱箱体の外箱315の内側に設けられるものである。外箱315は金属板316をコ字状に折り曲げたものであるが、真空断熱材314は、コ字状に折り曲げる前の状態の金属板316に、金属板316の折曲線に真空断熱材314の折曲線314aが対応するように接着固定されており、外箱315の内面となる面に真空断熱材314が接着固定された金属板316をコ字状に折り曲げることにより、図8に示す、内面に真空断熱材314を備えた外箱315が造られる。
特開平7−269781号公報 特開平7−98090号公報
As shown in FIG. 8, the vacuum heat insulating material 314 is provided inside an outer box 315 of a heat insulating box such as a refrigerator. The outer box 315 is formed by bending a metal plate 316 into a U-shape, but the vacuum heat insulating material 314 is a metal plate 316 in a state before being folded into a U-shape, and a vacuum heat insulating material 314 along a folding curve of the metal plate 316. 8 is obtained by bending a metal plate 316 having a vacuum heat insulating material 314 bonded and fixed to a surface to be an inner surface of the outer box 315 into a U-shape by bending and fixing the folding line 314a of FIG. An outer box 315 having a vacuum heat insulating material 314 on the inner surface is produced.
JP-A-7-269781 Japanese Patent Laid-Open No. 7-98090

しかしながら、特許文献1に示される従来の構成では、真空断熱材300の一端面303には熱融着による突起(熱溶着部)304が形成されないものの、残りの周囲三方には熱融着による突起(熱溶着部)304が存在する。   However, in the conventional configuration shown in Patent Document 1, a heat-welded protrusion (heat-welded portion) 304 is not formed on the one end surface 303 of the vacuum heat insulating material 300, but the remaining three sides are heat-bonded protrusions. (Heat welding part) 304 exists.

また同時に、芯材302を入れるため大きめに作製した袋状の薄体(外被材)301は、内部を減圧したときには、芯材302と熱融着による突起(熱溶着部)304の間に芯材302を間に含まない薄体(外被材)301のみから構成された部分が残る。   At the same time, a bag-like thin body (cover material) 301 made large to contain the core material 302 has a space between the core material 302 and a protrusion (heat welding portion) 304 by heat fusion when the inside is depressurized. The part comprised only of the thin body (cover material) 301 which does not include the core material 302 in between remains.

そのため、芯材302の周囲に形成される周縁部の幅が大きくなり、適用にあたってはこの周縁部の折り曲げ処理が必要となる等の課題を有していた。   For this reason, the width of the peripheral edge formed around the core member 302 is increased, and there is a problem that the peripheral edge needs to be bent when applied.

また、芯材302と熱溶着部304の間には、芯材302を間に含まない外被材301のみから構成された部分が形成されるため、真空断熱材300の形状が制限され、任意形状の真空断熱材300を作製することが困難であった。   In addition, since a portion composed only of the jacket material 301 that does not include the core material 302 is formed between the core material 302 and the heat welded portion 304, the shape of the vacuum heat insulating material 300 is limited, and any It was difficult to manufacture the vacuum heat insulating material 300 having a shape.

また、特許文献2に示される従来の真空断熱材314は、複数の長方形の芯材311が一方向に互いに所定間隔離れて略同一面上に配置されており、隣接する芯材311の間に位置する熱溶着部313に形成される各折曲線314aは、互いに略平行であるため、従来の真空断熱材314を適用(接着または貼付)することのできる対象物は、平面と、横断面の形状および大きさが長手方向で変わらない物体の側面(例えば、横断面が三つ以上の角をもつ多角形の多角柱形状の物体の側面、横断面が三つ以上の角をもつ多角形の筒状の物体の内側の側面または外側の側面)に限られており、例えば防寒具の中の羽毛や綿の代わりに、上記従来の真空断熱材314を使うことは困難であった。   In addition, in the conventional vacuum heat insulating material 314 shown in Patent Document 2, a plurality of rectangular core materials 311 are arranged on one and the same plane at a predetermined interval in one direction, and between adjacent core materials 311. Since each folding line 314a formed in the heat welding part 313 located is substantially parallel to each other, an object to which the conventional vacuum heat insulating material 314 can be applied (adhered or pasted) is a plane, a cross section The side of an object whose shape and size do not change in the longitudinal direction (for example, the side of a polygonal prism-shaped object with a cross section of three or more corners, the side of a polygon with three or more corners) It is difficult to use the conventional vacuum heat insulating material 314 in place of, for example, feathers and cotton in a cold protection device.

これらの課題に対しては、熱溶着層を有するガスバリア性の外被材と板状の芯材と用いて、前記熱溶着層同士が対向する様に設置された外被材の間に前記芯材を配置し、内部を減圧すると共に前記外被材の間に芯材がある部分を含めて加熱加圧を行うことにより解決可能であるが、建材用等として大きな真空断熱材を製造した場合、運搬・設置において真空断熱材を折り曲げると真空断熱材に破袋が生じたり、微少なピンホール等の発生により経時信頼性が低下する等の課題を有していた。   In order to solve these problems, the core material is disposed between the jacket materials that are installed so that the thermal welding layers face each other using a gas barrier outer jacket material having a thermal welding layer and a plate-like core material. When a large vacuum heat insulating material is manufactured for building materials etc., it can be solved by placing the material, reducing the inside and heating and pressurizing the part including the core material between the jacket materials. When the vacuum heat insulating material is bent during transportation and installation, the vacuum heat insulating material is broken, and the reliability over time is lowered due to the occurrence of minute pinholes.

また、建材用等として大きな真空断熱材を製造した場合、この真空断熱材を切断して使用しようとした場合、切断位置により芯材を有しない熱溶着部の幅が短くなり、経時信頼性が低下する等の課題を有していた。   In addition, when manufacturing a large vacuum heat insulating material for building materials, etc., when trying to cut and use this vacuum heat insulating material, the width of the heat-welded part that does not have a core material is shortened depending on the cutting position, and reliability over time is improved. It had problems such as lowering.

本発明は、上記従来の課題を解決するもので、外被材の間に複数の芯材のそれぞれが互いに独立した空間に位置するように外被材の間に芯材がある部分を含めて加熱加圧をしてなる真空断熱材の折り曲げ・切断において、真空断熱材の耐久性と熱伝導率の経時信頼性を向上することを目的とする。   The present invention solves the above-described conventional problems, and includes a portion where the core material is between the jacket materials so that each of the plurality of core materials is positioned in a space independent from each other between the jacket materials. An object of the present invention is to improve the durability of the vacuum heat insulating material and the temporal reliability of the thermal conductivity in bending and cutting of the vacuum heat insulating material formed by heating and pressing.

上記目的を達成するために、本発明は、折り曲げ・切断を行う熱溶着部の幅をそれ以外の熱溶着部に比較して大きくしたり、また折り曲げ・切断マークを有しているため、真空断熱材を所定熱溶着部で折り曲げた場合、折り曲げ部の熱溶着部の長さが十分確保されていることにより熱溶着部近傍での芯材同士の接触による破袋・微少なピンホール等の発生による経時熱伝導率の悪化や芯材の変形を防止することができる。   In order to achieve the above-mentioned object, the present invention increases the width of the heat-welded part for bending / cutting as compared with other heat-welded parts, and has a folding / cutting mark. When the heat insulating material is bent at a predetermined heat welded portion, the length of the heat welded portion of the bent portion is sufficiently secured so that the bag may be broken or a minute pinhole may be caused by contact between the core materials near the heat welded portion. It is possible to prevent deterioration of thermal conductivity with time and deformation of the core material due to the generation.

また、真空断熱材を所定熱溶着部で切断する場合、前記熱溶着部は通常の熱溶着部よりもその幅が2倍以上であるため、切断時における真空断熱材端面からの単位長さ当たりのガス侵入量を同等以上に抑制できるため、熱伝導率の経時変化の悪化を抑えることができる効果が得られる。   Further, when the vacuum heat insulating material is cut at a predetermined heat welded portion, the width of the heat welded portion is twice or more than that of a normal heat welded portion. Therefore, per unit length from the end face of the vacuum heat insulating material at the time of cutting. Since the amount of gas intrusion can be suppressed to the same level or more, an effect of suppressing deterioration of the temporal change in thermal conductivity can be obtained.

本発明は、外被材の間に複数の芯材のそれぞれが互いに独立した空間に位置するように外被材の間に芯材がある部分を含めて加熱加圧する方法で作製された真空断熱材の折り曲げ、切断において、真空断熱材の破袋、経時熱伝導率の悪化や芯材の変形を防止することができる効果が得られる。   The present invention is a vacuum heat insulation manufactured by a method of heating and pressurizing a portion including a core material between the outer jacket materials so that each of the plurality of core materials is located in an independent space between the outer jacket materials. In the bending and cutting of the material, the effect of preventing the vacuum insulation material from being broken, the deterioration of the thermal conductivity with time, and the deformation of the core material can be obtained.

請求項1に記載の真空断熱材の折り曲げ方法の発明は、熱溶着層を有するガスバリア性の外被材と、複数の板状の芯材とを有し、前記熱溶着層同士が対向する前記外被材の間に複数の前記芯材のそれぞれが互いに独立した空間に位置するように減圧密封されて成り、前記外被材の間に前記芯材がある部分を含めて加熱加圧することにより、対向する前記熱溶着層同士が芯材形状に沿うように前記芯材の際まで熱溶着された真空断熱材において、前記真空断熱材の一端から対向する他端に略直線として構成される所定熱溶着部の幅は他の同一構成の熱溶着部の幅よりも広くかつ少なくとも真空断熱材の厚み以上であり、この熱溶着部を基準として折り曲げるものである。   The invention of the method for bending a vacuum heat insulating material according to claim 1 includes a gas barrier outer covering material having a heat welding layer and a plurality of plate-like core materials, wherein the heat welding layers face each other. A plurality of the core materials are sealed under reduced pressure so that each of the core materials is located in a space independent from each other, and the portion including the core material is heated and pressed between the jacket materials. In the vacuum heat insulating material that is heat-welded to the core material so that the heat-welding layers facing each other follow the shape of the core material, a predetermined straight line is formed from one end of the vacuum heat-insulating material to the other opposite surface. The width of the heat-welded portion is wider than the width of other heat-welded portions having the same configuration and at least the thickness of the vacuum heat insulating material, and the heat-welded portion is bent on the basis of this heat-welded portion.

この真空断熱材の折り曲げ方法においては、真空断熱材の一端から対向する他端に略直線として構成される所定熱溶着部の幅は他の同一構成の熱溶着部の幅よりも広く、かつ余裕があるため、真空断熱材の折り曲げ時に熱溶着部の長さ不足により熱溶着部近傍の芯材同士が接触することを防止できる。これにより、芯材の接触による真空断熱材の破袋、芯材の変形、微少ピンホール等の発生による経時熱伝導率変化の悪化を防止することができる効果が得られる。   In this method of bending the vacuum heat insulating material, the width of the predetermined heat welded portion formed as a substantially straight line from one end of the vacuum heat insulating material to the other end facing is wider than the width of the other heat welded portion having the same configuration and a margin. Therefore, when the vacuum heat insulating material is bent, it is possible to prevent the core materials in the vicinity of the heat welded portion from coming into contact with each other due to insufficient length of the heat welded portion. Thereby, the effect which can prevent the deterioration of the heat conductivity change with time by the breakage of the vacuum heat insulating material due to the contact of the core material, the deformation of the core material, the occurrence of minute pinholes and the like can be obtained.

請求項2に記載の真空断熱材の折り曲げ方法の発明は、請求項1に記載の発明において、前記熱溶着層のほぽ中央部に設けられた折り曲げマークに沿って折り曲げるものである。   According to a second aspect of the present invention, there is provided a method for folding a vacuum heat insulating material according to the first aspect of the present invention, wherein the vacuum heat insulating material is folded along a folding mark provided at the center of the heat welding layer.

この真空断熱材の折り曲げ方法においては、真空断熱材は熱溶着部のほぽ中央で折り曲げることができるため、折り曲げ時における熱溶着部近傍での芯材の接触を極力防止できると共に、真空断熱材が折り曲げ易くなる効果が得られる。   In this method of bending the vacuum heat insulating material, the vacuum heat insulating material can be bent at the center of the hot welded portion, so that the contact of the core material in the vicinity of the heat welded portion during bending can be prevented as much as possible, and the vacuum heat insulating material Can be easily bent.

請求項3に記載の真空断熱材の切断方法の発明は、熱溶着層を有するガスバリア性の外被材と、複数の板状の芯材とを有し、前記熱溶着層同士が対向する前記外被材の間に複数の前記芯材のそれぞれが互いに独立した空間に位置するように減圧密封されて成り、前記外被材の間に前記芯材がある部分を含めて加熱加圧することにより、対向する前記熱溶着層同士が芯材形状に沿うように前記芯材の際まで熱溶着された真空断熱材において、前記真空断熱材の一端から対向する他端の少なくとも1組に対し、略直線として構成される所定熱溶着部の幅は真空断熱材外周の熱溶着部の幅の2倍以上広く、この熱溶着部を基準として切断するものである。   The invention of the method for cutting a vacuum heat insulating material according to claim 3 includes a gas barrier outer covering material having a heat welding layer and a plurality of plate-like core materials, wherein the heat welding layers are opposed to each other. A plurality of the core materials are sealed under reduced pressure so that each of the core materials is located in a space independent from each other, and the portion including the core material is heated and pressed between the jacket materials. In the vacuum heat insulating material that is heat-welded up to the core material so that the heat-welding layers facing each other follow the shape of the core material, at least one set of the other end facing from the one end of the vacuum heat-insulating material is approximately The width of the predetermined heat welded portion configured as a straight line is wider than twice the width of the heat welded portion on the outer periphery of the vacuum heat insulating material, and the heat welded portion is cut based on the heat welded portion.

この真空断熱材の切断方法においては、熱溶着部の幅が、通常の熱溶着部の幅の2倍以上あるため、切断時における真空断熱材端面からの単位長さ当たりのガス侵入量を同等以上に抑制できるため、切断後の真空断熱材の経時熱伝導率変化の悪化を防止できる効果が得られる。   In this vacuum insulation material cutting method, since the width of the heat welded portion is more than twice the width of the normal heat welded portion, the gas intrusion amount per unit length from the end face of the vacuum heat insulating material at the time of cutting is equivalent. Since it can suppress above, the effect which can prevent the deterioration of the temporal heat conductivity change of the vacuum heat insulating material after a cutting | disconnection is acquired.

請求項4に記載の真空断熱材の切断方法の発明は、請求項3に記載の発明において、前記熱溶着層のほぽ中央部に設けられた切断マークに沿って切断するものである。   According to a fourth aspect of the present invention, there is provided a method for cutting a vacuum heat insulating material according to the third aspect of the present invention, wherein the heat insulating layer is cut along a cutting mark provided at a center portion of the heat welding layer.

この真空断熱材の切断方法においては、熱溶着部のほぽ中央に沿って真空断熱材を切断することが可能であるため、請求項3に記載の発明の効果に加え経時熱伝導率変化のバラツキを小さくできる効果が得られる。   In this method of cutting a vacuum heat insulating material, since it is possible to cut the vacuum heat insulating material along the center of the hot welded portion, in addition to the effect of the invention according to claim 3, An effect of reducing variation can be obtained.

次に、真空断熱材の構成材料について詳細に説明する。   Next, the constituent materials of the vacuum heat insulating material will be described in detail.

芯材に使用する材料は、気相比率90%前後の多孔体をシート状または板状に加工したものであり、工業的に利用できるものとして、発泡体、粉体、および繊維体等がある。これらは、その使用用途や必要特性に応じて公知の材料を使用することができる。   The material used for the core material is obtained by processing a porous body having a gas phase ratio of about 90% into a sheet or plate shape, and industrially usable materials include foams, powders, and fiber bodies. . These can use a well-known material according to the use use and required characteristic.

このうち、発泡体としては、ウレタンフォーム、スチレンフォーム、フェノールフォーム等の連続気泡体が利用できる。また、粉体としては、無機系、有機系、およびこれらの混合物を利用できるが、工業的には、乾式シリカ、湿式シリカ、パーライト等を主成分とするものが使用できる。   Among these, as the foam, open-cell bodies such as urethane foam, styrene foam, and phenol foam can be used. In addition, inorganic, organic, and mixtures thereof can be used as the powder, but industrially, powders mainly composed of dry silica, wet silica, pearlite, and the like can be used.

また、繊維体としては、無機系、有機系、およびこれらの混合物が利用できるが、コストと断熱性能の観点から無機繊維が有利である。無機繊維の一例としては、グラスウール、グラスファイバー、アルミナ繊維、シリカアルミナ繊維、シリカ繊維、ロックウール等、公知の材料を使用することができる。   In addition, inorganic, organic, and mixtures thereof can be used as the fibrous body, but inorganic fibers are advantageous from the viewpoint of cost and heat insulation performance. As an example of the inorganic fiber, a known material such as glass wool, glass fiber, alumina fiber, silica alumina fiber, silica fiber, rock wool, or the like can be used.

また、これら、発泡体、粉体、および繊維体等の混合物も適用することができる。   In addition, mixtures of these foams, powders, fiber bodies and the like can also be applied.

外被材に使用するラミネートフィルムは、最内層を熱溶着層とし、中問層にはガスバリア層として、金属箔、或いは金属蒸着層を有し、最外層には表面保護層を設けたラミネートフィルムが適用できる。また、ラミネートフィルムは、金属箔を有するラミネートフィルムと金属蒸着層を有するラミネートフィルムの2種類のラミネートフィルムを組み合わせて適用しても良い。   The laminate film used for the jacket material is a laminate film in which the innermost layer is a heat-welded layer, the middle layer is a gas barrier layer, a metal foil or a metal vapor-deposited layer, and the outermost layer is provided with a surface protective layer Is applicable. In addition, the laminate film may be applied by combining two types of laminate films, ie, a laminate film having a metal foil and a laminate film having a metal vapor deposition layer.

なお、熱溶着層としては、低密度ポリエチレンフィルム、鎖状低密度ポリエチレンフィルム、高密度ポリエチレンフィルム、ポリプロピレンフィルム、ポリアクリロニトリルフィルム、無延伸ポリエチレンテレフタレートフィルム、エチレンービニルアルコール共重合体フィルム、或いはそれらの混合体等を用いることができる。   In addition, as a heat welding layer, a low density polyethylene film, a chain low density polyethylene film, a high density polyethylene film, a polypropylene film, a polyacrylonitrile film, an unstretched polyethylene terephthalate film, an ethylene-vinyl alcohol copolymer film, or those A mixture or the like can be used.

表面保護層としては、ナイロンフィルム、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルムの延伸加工品など、公知の材料が利用できる。   As the surface protective layer, known materials such as nylon film, polyethylene terephthalate film, and stretched polypropylene film can be used.

以下、本発明による実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって、この発明が限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. In addition, this invention is not limited by this embodiment.

(実施の形態1)
図1は、本発明の実施の形態1における真空断熱材の平面図、図2は図1のA−A線での真空断熱材の断面図である。
(Embodiment 1)
1 is a plan view of a vacuum heat insulating material according to Embodiment 1 of the present invention, and FIG. 2 is a cross-sectional view of the vacuum heat insulating material taken along line AA in FIG.

本実施の形態の真空断熱材10は、例えば16個の四角形に成形された繊維体からなる厚さ2〜10mmの芯材11をガスバリア性のラミネートフィルムからなる外被材12で覆い、外被材12の内部を減圧して成り、この16個の芯材11は、格子状に、縦(横)方向に隣接する芯材11と横(縦)の辺が対向するように、所定間隔で隔離して配置しており、この16個の芯材11のそれぞれが独立した空間内に位置するように芯材11の周囲に外被材12の熱溶着部13が設けられているものである。   The vacuum heat insulating material 10 according to the present embodiment covers, for example, a core material 11 having a thickness of 2 to 10 mm made of a fiber body formed into 16 squares with an outer cover material 12 made of a gas barrier laminate film. The inside of the material 12 is formed by reducing the pressure, and the 16 core materials 11 are arranged in a lattice shape at a predetermined interval so that the core material 11 adjacent in the vertical (horizontal) direction faces the horizontal (vertical) side. The 16 core members 11 are arranged so as to be separated from each other, and the heat welding portion 13 of the outer cover member 12 is provided around the core member 11 so that each of the 16 core members 11 is located in an independent space. .

この中で、熱溶着部14は、真空断熱材10の端15から他端16に略直線として構成され、その幅は他の同一構成の熱溶着部17の幅よりも大きく、且つ少なくとも真空断熱材の厚み以上広くなっている。   In this, the heat welding part 14 is comprised as a substantially straight line from the end 15 to the other end 16 of the vacuum heat insulating material 10, The width is larger than the width | variety of the other heat welding part 17 of the same structure, At least vacuum heat insulation It is wider than the thickness of the material.

また、図1に示すように、幅の広い熱溶着部14の幅中央部にライン18が設けられている。   Moreover, as shown in FIG. 1, the line 18 is provided in the width | variety center part of the wide heat welding part 14. As shown in FIG.

次に、この真空断熱材10の製造方法の一例について説明する。   Next, an example of the manufacturing method of this vacuum heat insulating material 10 is demonstrated.

図3は本発明の実施の形態1における真空断熱材の製造方法で使用する真空包装機の概略断面図である。   FIG. 3 is a schematic cross-sectional view of a vacuum packaging machine used in the method for manufacturing a vacuum heat insulating material in Embodiment 1 of the present invention.

図3において、気密室を構成できる真空包装機19の内部には、長方形にカットされたガスバリア性の外被材12aが、熱溶着層側を上側にして真空包装機19の供試台20に設置されている。この供試台20にはコンベア(図示せず)が設置されており、外被材12aを図中右から左へ移動させることができる。   In FIG. 3, inside the vacuum packaging machine 19 that can constitute an airtight chamber, a gas barrier outer covering material 12a cut into a rectangle is placed on the test stand 20 of the vacuum packaging machine 19 with the heat-welded layer side facing up. is set up. The test stand 20 is provided with a conveyor (not shown), and the outer covering material 12a can be moved from the right to the left in the drawing.

外被材12aの上には芯材11が配置され、その上に外被材12bがその熱溶着層側が芯材11側を向くように、かつ上下の外被材12a,12bの各端面がほぽ一致するように配置される。   The core material 11 is disposed on the outer cover material 12a, and the end surface of the upper and lower outer cover materials 12a and 12b is arranged such that the outer cover material 12b has the heat welding layer side facing the core material 11 side. Arranged to match the cheeks.

真空包装機19において、加熱加圧により熱溶着するための熱板21は供試台20の中央付近の上下部位に位置しており、外被材12a,12bを図3の手前側から奥行き側の方向に渡り熱溶着することができる位置に配置されている。   In the vacuum packaging machine 19, the hot plate 21 for heat welding by heating and pressurization is located in the upper and lower parts near the center of the test table 20, and the jacket materials 12a and 12b are moved from the front side to the depth side in FIG. It is arrange | positioned in the position which can be heat-welded over the direction.

また、芯材11はそれぞれが所定間隔をおいて配置されている。真空包装機19の蓋22を閉じて真空ポンプ23の運転を開始すると、真空包装機19の内部は排気され10Pa以下に減圧した後、コンベアが動いて外被材12a,12bを熱板21の幅以下で所定距離移動させた後停止し、熱板21が加熱することにより外被材12a,12bに熱溶着部13が形成される。   Further, the core members 11 are arranged at predetermined intervals. When the lid 22 of the vacuum packaging machine 19 is closed and the operation of the vacuum pump 23 is started, the inside of the vacuum packaging machine 19 is evacuated and depressurized to 10 Pa or less, and then the conveyor moves so that the jacket materials 12a and 12b are moved to the hot plate 21. After being moved by a predetermined distance below the width, it stops and the hot plate 21 heats, whereby the heat-welded portion 13 is formed on the jacket materials 12a and 12b.

この時、芯材11と芯材11の距離は、その距離が真空断熱材の厚み以上になっているため、熱溶着部13は熱溶着部17よりも、その幅は大きくなっている。また、ライン18は、この真空断熱材の製造時における加熱または加熱加圧時もしくは真空断熱材作作製後に設けられている。   At this time, since the distance between the core material 11 and the core material 11 is equal to or greater than the thickness of the vacuum heat insulating material, the width of the heat-welded portion 13 is larger than that of the heat-welded portion 17. Further, the line 18 is provided at the time of heating or heating and pressurization during the production of the vacuum heat insulating material or after the production of the vacuum heat insulating material.

この操作を減圧中で繰り返すことにより、すべての芯材11がそれぞれが独立した空間内に位置し、かつ、芯材11の周囲に沿うように熱溶着部13が形成された真空断熱材10を製造することができる。   By repeating this operation under reduced pressure, the vacuum heat insulating material 10 in which all the core members 11 are located in independent spaces and the heat welded portions 13 are formed along the periphery of the core member 11 is obtained. Can be manufactured.

このように熱溶着することにより、外被材12a,12b間に芯材11がある部分の全てが加熱されているため、真空包装後の大気開放時においても、大気圧による芯材11の圧縮変形の影響を最小限とすることができる。   Since all the portions with the core material 11 between the jacket materials 12a and 12b are heated by heat welding in this way, the core material 11 is compressed by atmospheric pressure even when the atmosphere is released after vacuum packaging. The influence of deformation can be minimized.

特に、加熱加圧時は加圧力を1kg/cm2以上とすることで、大気開放時の大気圧縮による芯材11の圧縮変形が完全に抑制できるため、圧縮変形の大きい芯材材料を適用した場合にも、芯材端部は芯材形状に沿うように熱溶着部13を有する真空断熱材10とすることができる。 In particular, by applying a pressure of 1 kg / cm 2 or more at the time of heating and pressurizing, the core material 11 having a large compressive deformation is applied because the core material 11 can be completely prevented from being compressed and deformed by atmospheric compression when the atmosphere is released. Even in this case, the end portion of the core material can be the vacuum heat insulating material 10 having the heat welding portion 13 along the shape of the core material.

真空断熱材10の作製後、真空断熱材10を運搬、保管、機器への設置等の用途において折り曲げを行う。この時、真空断熱材10は、熱溶着部14を折り曲げ部のとして折り曲げを行う。   After the vacuum heat insulating material 10 is manufactured, the vacuum heat insulating material 10 is bent in applications such as transportation, storage, and installation in equipment. At this time, the vacuum heat insulating material 10 is bent using the heat-welded portion 14 as a bent portion.

この場合には、真空断熱材10の15端から対向する他端16に略直線として構成される所定熱溶着部14の幅は他の同一構成の熱溶着部13の幅よりも広いため、真空断熱材10の折り曲げ時に熱溶着部14の長さ不足により熱溶着部近傍の芯材11同士が接触することを防止できる。   In this case, since the width of the predetermined heat welding portion 14 configured as a substantially straight line from the 15 end of the vacuum heat insulating material 10 to the other end 16 is wider than the width of the other heat welding portion 13 having the same configuration, When the heat insulating material 10 is bent, it is possible to prevent the core materials 11 in the vicinity of the heat welded portion from coming into contact with each other due to the insufficient length of the heat welded portion 14.

これにより、芯材11の接触による真空断熱材10の破袋、芯材の変形、微少ピンホール等の発生による経時熱伝導率変化の悪化を防止することができる効果が得られる。   Thereby, the effect which can prevent the deterioration of the thermal conductivity change with time by the bag breakage of the vacuum heat insulating material 10 due to the contact of the core material 11, the deformation of the core material, the occurrence of minute pinholes and the like can be obtained.

また、真空断熱材10は、熱溶着部14のライン18を折り曲げの基準として折り曲げを行うこともできる。この場合には、ライン18により熱溶着部14のほぽ中央部で折り曲げを行うことができるため、より芯材11の接触による真空断熱材10の破袋、芯材の変形、微少ピンホール等の発生による経時熱伝導率変化の悪化を防止することができる効果が得られる。   Moreover, the vacuum heat insulating material 10 can also be bent using the line 18 of the heat welding part 14 as a reference | standard of bending. In this case, the line 18 can be bent at the center of the hot welded portion 14, so that the vacuum heat insulating material 10 is broken due to the contact with the core material 11, the core material is deformed, a minute pinhole, etc. The effect that the deterioration of the thermal conductivity change with the lapse of time due to the generation of can be prevented is obtained.

なお、本実施の形態では、外被材12間に芯材11がある部分を含めて所定回数加熱加圧することにより、対向する外被材12の熱溶着層同士を芯材形状に沿うように熱溶着する真空断熱材の製造法を示したが、熱板21をガスバリア性の外被材12a,12bの寸法より大きくすると、熱板21を一回だけ加熱加圧することで熱溶着部13を形成する製造方法とすることができる。   In the present embodiment, the heat-welded layers of the facing jacket material 12 facing each other are aligned with the core material shape by heating and pressing a predetermined number of times including a portion where the core material 11 is present between the jacket materials 12. Although the manufacturing method of the vacuum heat insulating material which carries out heat welding was shown, if the hot plate 21 is made larger than the dimension of the jacket material 12a, 12b of gas-barrier property, the hot weld part 13 will be made by heating and pressurizing the hot plate 21 only once. It can be set as the manufacturing method to form.

また、本実施の形態による真空断熱材10の芯材11の形状は四角形であるが、三角形、多角形、円形、L型、およびこれらの組み合わせからなる任意形状が選定できる。   Moreover, although the shape of the core material 11 of the vacuum heat insulating material 10 by this Embodiment is a rectangle, the arbitrary shapes which consist of a triangle, a polygon, a circle, L shape, and these combination can be selected.

また、本実施の形態では、芯材11に水分、空気等を吸着する吸着剤を充填しないで真空断熱材10を作製したが、吸着剤を充填してもよく、吸着剤の充填により真空断熱材10の経時の熱伝導率変化はより小さく抑える事ができる効果が得られる。   Moreover, in this Embodiment, although the vacuum heat insulating material 10 was produced without filling the adsorbent which adsorb | sucks a water | moisture content, air, etc. in the core material 11, you may fill with an adsorbent and vacuum heat insulation by filling with an adsorbent. The effect that the change in the thermal conductivity of the material 10 over time can be reduced can be obtained.

また、前記吸着剤は−30℃から100℃の間で、水分、空気を吸着できる吸着剤であればよい。   The adsorbent may be an adsorbent that can adsorb moisture and air between -30 ° C and 100 ° C.

また、本実施の形態では、縦4個、横4個、計16個の芯材11を配置する場合について示したが、その数を限定するものではない。   Further, in the present embodiment, the case where four cores 11 in total, four in the vertical direction and four in the horizontal direction are shown, but the number is not limited.

(実施の形態2)
以下、本発明の実施の形態2における真空断熱材について説明するが、実施の形態1と同一構成については同一符号を付してその詳細な説明は省略する。
(Embodiment 2)
Hereinafter, although the vacuum heat insulating material in Embodiment 2 of this invention is demonstrated, about the same structure as Embodiment 1, the same code | symbol is attached | subjected and the detailed description is abbreviate | omitted.

図4は、本発明の実施の形態2における真空断熱材の平面図である。   FIG. 4 is a plan view of the vacuum heat insulating material in Embodiment 2 of the present invention.

本実施の形態の真空断熱材30は、16個の四角形に成形された繊維体からなる厚さ2〜10mmの芯材11をガスバリア性のラミネートフィルムからなる外被材12で覆い、外被材12の内部を減圧して成り、この16個の芯材11は、格子状に、縦(横)方向に隣接する芯材11と横(縦)の辺が対向するように、所定間隔で隔離して配置しており、この16個の芯材11のそれぞれが独立した空間内に位置するように芯材11の周囲に外被材12の熱溶着部31が設けられているものである。   The vacuum heat insulating material 30 according to the present embodiment covers the core material 11 having a thickness of 2 to 10 mm made of a fiber body formed into 16 quadrangles with the jacket material 12 made of a gas barrier laminate film, and the jacket material. The sixteen core members 11 are formed by depressurizing the inside of 12 and are separated at predetermined intervals so that the core members 11 adjacent to each other in the vertical (horizontal) direction face the horizontal (vertical) sides in a lattice shape. A heat-welded portion 31 of the jacket material 12 is provided around the core material 11 so that each of the 16 core materials 11 is located in an independent space.

この中で、熱溶着部32は、真空断熱材30の端33から対向する他端34に略直線として構成され、その幅は真空断熱材30の外周の熱溶着部の幅の2倍以上広くなっている。また、前記熱溶着部32の幅中央部に切断ライン35が設けられる。   In this, the heat welding part 32 is comprised as a substantially straight line at the other end 34 which opposes from the end 33 of the vacuum heat insulating material 30, and the width | variety is 2 times or more wider than the width | variety of the heat welding part of the outer periphery of the vacuum heat insulating material 30. It has become. Further, a cutting line 35 is provided at the center of the width of the heat welded portion 32.

また、熱溶着部36は真空断熱材30の端37から対向する他端38に略直線として構成され、その幅は真空断熱材30の外周の熱溶着部の幅の2倍以上広くなっている。また、前記熱溶着部36の幅中央部に切断ライン39が設けられる。   Moreover, the heat welding part 36 is comprised by the other end 38 which opposes from the edge 37 of the vacuum heat insulating material 30 as a substantially straight line, The width | variety is more than twice the width | variety of the heat welding part of the outer periphery of the vacuum heat insulating material 30. . In addition, a cutting line 39 is provided at the center of the width of the heat welding portion 36.

真空断熱材30の作製後、真空断熱材30の適用用途において切断を行う。この時、真空断熱材30は、熱溶着部32,36を切断を行う。この場合には、真空断熱材30の端33から対向する他端34に略直線として構成される所定熱溶着部32の幅は真空断熱材外周の熱溶着部の幅の2倍以上を有しているため、真空断熱材30の切断において、切断後の真空断熱材の端面からの単位長さ当たりのガス侵入量は同等以上を確保することができるため、経時熱伝導率変化の悪化を防止することができる効果が得られる。   After the vacuum heat insulating material 30 is manufactured, cutting is performed in the application application of the vacuum heat insulating material 30. At this time, the vacuum heat insulating material 30 cuts the heat welding parts 32 and 36. In this case, the width of the predetermined heat-welded portion 32 configured as a substantially straight line from the end 33 of the vacuum heat insulating material 30 to the other end 34 is more than twice the width of the heat-welded portion on the outer periphery of the vacuum heat insulating material. Therefore, when cutting the vacuum heat insulating material 30, the amount of gas intrusion per unit length from the end face of the vacuum heat insulating material after cutting can be ensured to be equal to or higher, thereby preventing deterioration of the thermal conductivity change with time. The effect which can be done is acquired.

また、真空断熱材30は、熱溶着部32,36の切断ライン39を切断の基準として切断することもできる。この場合には、ライン39により熱溶着部32,36のほぼ中央部で切断することができるため、切断のバラツキによる経時熱伝導率変化のバラツキを防止することができる効果が得られる。   Moreover, the vacuum heat insulating material 30 can also be cut | disconnected using the cutting line 39 of the heat welding parts 32 and 36 as a reference | standard of cutting. In this case, since it can cut | disconnect in the substantially center part of the heat welding parts 32 and 36 by the line 39, the effect which can prevent the variation in a thermal conductivity change with time by the variation in cutting | disconnection is acquired.

なお、本実施の形態では、外被材12間に芯材11がある部分を含めて所定回数加熱加圧することにより、対向する外被材12の熱溶着層同士を芯材形状に沿うように熱溶着する真空断熱材の製造法を示したが、熱板21をガスバリア性の外被材12a,12bの寸法より大きくすると、熱板21を一回だけ加熱加圧することで熱溶着部13を形成する製造方法とすることができる。   In the present embodiment, the heat-welded layers of the facing jacket material 12 facing each other are aligned with the core material shape by heating and pressing a predetermined number of times including a portion where the core material 11 is present between the jacket materials 12. Although the manufacturing method of the vacuum heat insulating material which carries out heat welding was shown, if the hot plate 21 is made larger than the dimension of the jacket material 12a, 12b of gas-barrier property, the hot weld part 13 will be made by heating and pressurizing the hot plate 21 only once. It can be set as the manufacturing method to form.

また、本実施の形態による真空断熱材30の芯材11の形状は四角形であるが、三角形、多角形、円形、L型、およびこれらの組み合わせからなる任意形状が選定できる。   Moreover, although the shape of the core material 11 of the vacuum heat insulating material 30 according to the present embodiment is a quadrangle, an arbitrary shape including a triangle, a polygon, a circle, an L shape, and a combination thereof can be selected.

また、本実施の形態では、芯材11に水分、空気等を吸着する吸着剤を充填しないで真空断熱材30を作製したが吸着剤を充填してもよく、吸着剤の充填により真空断熱材30の経時の熱伝導率変化はより小さく抑える事ができる効果が得られる。   Further, in the present embodiment, the vacuum heat insulating material 30 is manufactured without filling the core material 11 with the adsorbent that adsorbs moisture, air, etc., but the adsorbent may be filled, and the vacuum heat insulating material can be filled with the adsorbent. The effect that the change in thermal conductivity with time of 30 can be suppressed to a smaller value is obtained.

また、前記吸着剤は−30℃から100℃の間で、水分、空気を吸着できる吸着剤であればよい。   The adsorbent may be an adsorbent that can adsorb moisture and air between -30 ° C and 100 ° C.

また、本実施の形態では、縦4個、横4個、計16個の芯材11を配置する場合について示したが、その数を限定するものではない。   Further, in the present embodiment, the case where four cores 11 in total, four in the vertical direction and four in the horizontal direction are shown, but the number is not limited.

以上のように、本発明にかかる真空断熱材は、外被材の間に複数の芯材のそれぞれが互いに独立した空間に位置するように外被材の間に芯材がある部分を含めて加熱加圧する方法で作製された真空断熱材の折り曲げ、切断において、真空断熱材の破袋、経時熱伝導率の悪化や芯材の変形を防止することができる効果が得られるので、省エネを必要とする保温保冷機器に留まらず、情報機器や電子機器等、省スベースを必要とする機器の熱害対策用断熱材等の用途にも適用できる。   As described above, the vacuum heat insulating material according to the present invention includes a portion where the core material is between the jacket materials so that each of the plurality of core materials is located in a space independent from each other between the jacket materials. In bending and cutting of vacuum insulation material produced by heating and pressurizing methods, it is possible to prevent vacuum insulation material from breaking, deterioration of thermal conductivity over time and deformation of core material, so energy saving is required. It can be applied not only to the heat and cold insulation equipment, but also to applications such as heat insulation for heat damage countermeasures for equipment that requires a small base, such as information equipment and electronic equipment.

また、複数の芯材の大きさを適切に選択して柔軟性を確保することにより、より用途が広い真空断熱材とすることができ、防寒具としてのジャケットのほか、ズボンや帽子、手袋、または寝具のふとんや座布団、建材等にも適用できる。   In addition, by appropriately selecting the size of multiple core materials and ensuring flexibility, it can be used as a vacuum insulator with more versatility. In addition to jackets as cold protection, trousers, hats, gloves, It can also be applied to bedding, cushions, building materials, etc. for bedding.

本発明の実施の形態1における真空断熱材の平面図The top view of the vacuum heat insulating material in Embodiment 1 of this invention 図1のA−A線断面図AA line sectional view of FIG. 同実施の形態の真空断熱材の製造に使用する真空包装機の概略断面図Schematic sectional view of a vacuum packaging machine used for manufacturing the vacuum heat insulating material of the same embodiment 本発明の実施の形態2における真空断熱材の平面図The top view of the vacuum heat insulating material in Embodiment 2 of this invention 特許文献1に示される従来の真空断熱材の製造過程を示す斜視図The perspective view which shows the manufacturing process of the conventional vacuum heat insulating material shown by patent document 1 同従来の真空断熱材を示す斜視図Perspective view showing the conventional vacuum heat insulating material 特許文献2に示される従来の真空断熱材の平面図Plan view of conventional vacuum heat insulating material shown in Patent Document 2 同従来の真空断熱材を断熱箱体の外箱に設けた状態の断面図Sectional view of the state where the conventional vacuum heat insulating material is provided in the outer box of the heat insulating box

符号の説明Explanation of symbols

10 真空断熱材
11 芯材
12 外被材
14 熱溶着部
30 真空断熱材
32 熱溶着部
36 真空断熱材
DESCRIPTION OF SYMBOLS 10 Vacuum heat insulating material 11 Core material 12 Cover material 14 Heat welding part 30 Vacuum heat insulating material 32 Thermal welding part 36 Vacuum heat insulating material

Claims (4)

熱溶着層を有するガスバリア性の外被材と、複数の板状の芯材とを有し、前記熱溶着層同士が対向する前記外被材の間に複数の前記芯材のそれぞれが互いに独立した空間に位置するように減圧密封されて成り、前記外被材の間に前記芯材がある部分を含めて加熱加圧することにより、対向する前記熱溶着層同士が芯材形状に沿うように前記芯材の際まで熱溶着された真空断熱材において、前記真空断熱材の一端から対向する他端に略直線として構成される所定熱溶着部の幅は他の同一構成の熱溶着部の幅よりも広くかつ少なくとも真空断熱材の厚み以上であり、この熱溶着部を基準として折り曲げる真空断熱材の折り曲げ方法。   Each of the plurality of core materials is independent from each other between the jacket materials having a gas barrier outer cover material having a heat-welded layer and a plurality of plate-shaped core members facing each other. It is formed by being sealed under reduced pressure so as to be located in a space, and by applying heat and pressure including a portion where the core material is present between the jacket materials, the opposing heat-welded layers are in line with the core material shape. In the vacuum heat insulating material heat-welded to the core material, the width of the predetermined heat-welded portion configured as a substantially straight line from one end of the vacuum heat-insulating material to the other end facing is the width of another heat-welded portion having the same configuration. A method of bending a vacuum heat insulating material that is wider than the thickness of the vacuum heat insulating material and bent on the basis of the heat welded portion. 前記熱溶着層のほぽ中央部に設けられた折り曲げマークに沿って折り曲げる請求項1に記載の真空断熱材の折り曲げ方法。   The method for bending a vacuum heat insulating material according to claim 1, wherein the bending is performed along a folding mark provided at a center portion of the heat welding layer. 熱溶着層を有するガスバリア性の外被材と、複数の板状の芯材とを有し、前記熱溶着層同士が対向する前記外被材の間に複数の前記芯材のそれぞれが互いに独立した空間に位置するように減圧密封されて成り、前記外被材の間に前記芯材がある部分を含めて加熱加圧することにより、対向する前記熱溶着層同士が芯材形状に沿うように前記芯材の際まで熱溶着された真空断熱材において、前記真空断熱材の一端から対向する他端の少なくとも1組に対し、略直線として構成される所定熱溶着部の幅は真空断熱材外周の熱溶着部の幅の2倍以上広く、この熱溶着部を基準として切断する真空断熱材の切断方法。   Each of the plurality of core materials is independent from each other between the jacket materials having a gas barrier outer cover material having a heat-welded layer and a plurality of plate-shaped core members facing each other. It is formed by being sealed under reduced pressure so as to be located in a space, and by applying heat and pressure including a portion where the core material is present between the jacket materials, the opposing heat-welded layers are in line with the core material shape. In the vacuum heat insulating material heat-welded to the core material, the width of the predetermined heat-welded portion configured as a substantially straight line with respect to at least one set of the other end facing from one end of the vacuum heat insulating material is the outer periphery of the vacuum heat insulating material. A method of cutting a vacuum heat insulating material, which is wider than twice the width of the heat welded portion and cut based on the heat welded portion. 前記熱溶着層のほぽ中央部に設けられた切断マークに沿って切断する請求項3に記載の真空断熱材の切断方法。   The cutting method of the vacuum heat insulating material of Claim 3 cut | disconnected along the cutting mark provided in the burrow center part of the said heat welding layer.
JP2005197184A 2005-07-06 2005-07-06 Method of bending and cutting vacuum heat insulating material Pending JP2007016834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005197184A JP2007016834A (en) 2005-07-06 2005-07-06 Method of bending and cutting vacuum heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005197184A JP2007016834A (en) 2005-07-06 2005-07-06 Method of bending and cutting vacuum heat insulating material

Publications (1)

Publication Number Publication Date
JP2007016834A true JP2007016834A (en) 2007-01-25

Family

ID=37754171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005197184A Pending JP2007016834A (en) 2005-07-06 2005-07-06 Method of bending and cutting vacuum heat insulating material

Country Status (1)

Country Link
JP (1) JP2007016834A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013525705A (en) * 2010-04-30 2013-06-20 ヴァ−クー−テック アーゲー Vacuum sheet material for heat insulation
WO2016084763A1 (en) * 2014-11-26 2016-06-02 旭硝子株式会社 Vacuum thermal insulating material and manufacturing method therefor
JPWO2018029997A1 (en) * 2016-08-09 2019-06-20 パナソニックIpマネジメント株式会社 Thermal insulation sheet and method of manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798090A (en) * 1993-09-30 1995-04-11 Toshiba Corp Vacuum heat insulation panel and manufacture for heat insulation box body in which vacuum heat insulation panel is used
JP2001141178A (en) * 1999-11-12 2001-05-25 Matsushita Refrig Co Ltd Vacuum heat insulating material, heat insulating container, method for manufacturing heat insulating container, heat insulating box body and heat insulating panel
JP2004197935A (en) * 2002-12-05 2004-07-15 Matsushita Refrig Co Ltd Vacuum heat insulating material and its manufacturing method as well as outfit for protection against cold and personal computer using the same
JP2005028691A (en) * 2003-07-10 2005-02-03 Kawakami Sangyo Co Ltd Easily foldable plastic cellular sheet and laminated cushioning packaging material using it

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798090A (en) * 1993-09-30 1995-04-11 Toshiba Corp Vacuum heat insulation panel and manufacture for heat insulation box body in which vacuum heat insulation panel is used
JP2001141178A (en) * 1999-11-12 2001-05-25 Matsushita Refrig Co Ltd Vacuum heat insulating material, heat insulating container, method for manufacturing heat insulating container, heat insulating box body and heat insulating panel
JP2004197935A (en) * 2002-12-05 2004-07-15 Matsushita Refrig Co Ltd Vacuum heat insulating material and its manufacturing method as well as outfit for protection against cold and personal computer using the same
JP2005028691A (en) * 2003-07-10 2005-02-03 Kawakami Sangyo Co Ltd Easily foldable plastic cellular sheet and laminated cushioning packaging material using it

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013525705A (en) * 2010-04-30 2013-06-20 ヴァ−クー−テック アーゲー Vacuum sheet material for heat insulation
WO2016084763A1 (en) * 2014-11-26 2016-06-02 旭硝子株式会社 Vacuum thermal insulating material and manufacturing method therefor
JPWO2018029997A1 (en) * 2016-08-09 2019-06-20 パナソニックIpマネジメント株式会社 Thermal insulation sheet and method of manufacturing the same
JP7050230B2 (en) 2016-08-09 2022-04-08 パナソニックIpマネジメント株式会社 Insulation sheet and its manufacturing method

Similar Documents

Publication Publication Date Title
JP3559035B2 (en) Vacuum insulation material, method of manufacturing the same, and cold protection equipment and personal computer using vacuum insulation material
JP6150191B2 (en) Method for manufacturing a vacuum insulation panel
JP6070269B2 (en) Insulation
JP2006077792A (en) Vacuum insulating material
WO2006009063A1 (en) Vacuum thermal insulation material, thermal insulation apparatus using the material, and refrigerator-freezer
JP4742605B2 (en) Vacuum insulation material and manufacturing method thereof
JP2007016834A (en) Method of bending and cutting vacuum heat insulating material
KR100753720B1 (en) Vacuum Heat Insulating Material And Manufacturing Method Thereof
JP2015007450A (en) Vacuum heat insulation material vacuum-packaged doubly
JP2007239288A (en) Member for construction using vacuum insulating material
JP2004197954A (en) Vacuum heat insulating material
JP2011089740A (en) Bag body and vacuum heat insulating material
JP2010071303A (en) Vacuum heat insulating material
JP4556746B2 (en) Manufacturing method of vacuum insulation
JP6253534B2 (en) Vacuum insulating material manufacturing method and vacuum insulating material manufactured by the manufacturing method
JP2007138976A (en) Vacuum heat insulating material and its manufacturing method
JP4378953B2 (en) Vacuum insulation
JP4742744B2 (en) Vacuum insulation
JP2007155083A (en) Vacuum thermal-insulating material
JP6422713B2 (en) Bag body and vacuum heat insulating material using the bag body
JP2005076725A (en) Core material for vacuum heat insulating material and vacuum heat insulating panel
JP2006090499A (en) Vacuum heat insulating material and its manufacturing method
JP5424929B2 (en) Vacuum heat insulating material and heat insulating box provided with this vacuum heat insulating material
JP3983783B2 (en) Manufacturing method of vacuum insulation
KR102113939B1 (en) Method for manufacturing vacuum insulated panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080318

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110208