JP2007015893A - Lightweight mortar or concrete using granulated hydrothermal solid matter of paper sludge incineration ash - Google Patents

Lightweight mortar or concrete using granulated hydrothermal solid matter of paper sludge incineration ash Download PDF

Info

Publication number
JP2007015893A
JP2007015893A JP2005199903A JP2005199903A JP2007015893A JP 2007015893 A JP2007015893 A JP 2007015893A JP 2005199903 A JP2005199903 A JP 2005199903A JP 2005199903 A JP2005199903 A JP 2005199903A JP 2007015893 A JP2007015893 A JP 2007015893A
Authority
JP
Japan
Prior art keywords
concrete
cement
water
granulated
mortar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005199903A
Other languages
Japanese (ja)
Inventor
Toshimoto Mimori
敏司 三森
Tatsumi Hosaka
達巳 保坂
Hirotoshi Takeya
宏敏 竹谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Institute of National Colleges of Technologies Japan
Original Assignee
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd, Jujo Paper Co Ltd, Institute of National Colleges of Technologies Japan filed Critical Nippon Paper Industries Co Ltd
Priority to JP2005199903A priority Critical patent/JP2007015893A/en
Publication of JP2007015893A publication Critical patent/JP2007015893A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lightweight mortar or concrete whose raw material is an unfired and granulated solid matter manufactured by a reaction (hydrothermal solidifying reaction) wherein a mixture of a PS (paper sludge) incineration ash added with a small amount of a solidifying material (cement, quick lime or the like) and water is stirred in a mixer, granulated and cured in an autoclave at a high temperature and high pressure, for reducing the treating cost for PS incineration ash through its effective utilization. <P>SOLUTION: A granular formed body is prepared by adding water and/or warm water, quicklime and cement to the paper sludge incineration ash and mixing in the temperature range of a normal temperature to 98°C, followed by granulating, and is cured. A solid matter manufactured by a reaction (hydrothermal solidifying reaction) of the granular body at a high temperature and high pressure is conditioned to be a surface-drying state as artificial lightweight aggregate, is mixed with natural sand and cement in a mixer and then is kneaded with water in the mixer and, as a result, lightweight and strong mortar or concrete is manufactured. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、パルプ製造工程、紙製造工程、古紙処理工程等から発生するペーパースラッジ(以下PSと略す)を焼却処理した際に発生する焼却灰から、重金属類の溶出を抑制した、高強度、かつ、長期的に安定な粒状の水熱固化体を原料として作製された造粒品を用いた軽量モルタル又はコンクリートに関する。   The present invention is a high-strength material that suppresses elution of heavy metals from incineration ash generated when paper sludge (hereinafter abbreviated as PS) generated from pulp manufacturing process, paper manufacturing process, waste paper processing process, etc. is incinerated. In addition, the present invention relates to a lightweight mortar or concrete using a granulated product made from a granular hydrothermal solidified material that is stable over the long term.

ペーパースラッジとは、一般的には、古紙を再生するときに生ずる産業廃棄物をいうが、ここでは、パルプ製造工程、紙製造工程、古紙処理工程等から発生するものを含む。   Paper sludge generally refers to industrial waste generated when recycling used paper, but here includes waste generated from a pulp manufacturing process, a paper manufacturing process, a used paper processing process, and the like.

軽量コンクリートとは、砂利、砂、砕石、砕砂、およびスラグ骨材を用いた普通コンクリートに比べて単位容積質量の小さいコンクリートの総称である。軽量コンクリートには、普通骨材よりも、密度の小さい骨材を用いた軽量骨材コンクリートと多量の気泡を混入した気泡コンクリートに大別される。社会基盤である鉄筋コンクリート工事の標準仕様書では、密度の小さい骨材を用いた軽量骨材コンクリートに限定されている。   Lightweight concrete is a general term for concrete having a small unit volume mass compared to ordinary concrete using gravel, sand, crushed stone, crushed sand, and slag aggregate. Lightweight concrete is broadly divided into light-weight aggregate concrete using aggregate with a lower density than ordinary aggregate and aerated concrete mixed with a large amount of bubbles. The standard specifications for reinforced concrete construction, which is a social infrastructure, are limited to lightweight aggregate concrete using low density aggregate.

建設現場で使用される構造用軽量骨材のうち人工軽量骨材は、通常、焼成骨材であり膨張頁岩、膨張粘土、焼成フライアッシュなどに分類され実用化されている。このうち石炭灰を使用したフライアッシュ焼成骨材の製造工程としては自然式焼結法とロータリーキルン法がある。   Of the structural lightweight aggregates used at construction sites, artificial lightweight aggregates are usually calcined aggregates, which are classified and put into practical use as expanded shale, expanded clay, fired fly ash, and the like. Among these, there are a natural sintering method and a rotary kiln method as a manufacturing process of fly ash calcined aggregate using coal ash.

近年、特許文献1、特許文献2で石炭灰を利用した高強度で吸水率の低い焼成骨材が開発されている。また、焼成フライアッシュ骨材の製造方法とそれを用いたコンクリートでは、特許文献3がある。また、非焼成骨材の製造方法には、原料を石炭灰として常圧水蒸気養生を行う方法が、特許文献4に記載されている。   In recent years, Patent Documents 1 and 2 have developed calcined aggregates having high strength and low water absorption using coal ash. Moreover, there exists patent document 3 in the manufacturing method of baked fly ash aggregate, and the concrete using it. In addition, Patent Document 4 describes a method of performing atmospheric pressure steam curing using coal ash as a raw material as a method for producing a non-fired aggregate.

一方、PS焼却灰は嵩高であることにより輸送賃がかかることと、灰の形状が不均一であることにより、フライアッシュのようにセメント原料としての用途が少ない。また、PS焼却灰には、重金属類の有害物質が含まれており、直接埋立処分ができず、埋立を行う場合は、管理型処分場といわれる遮水シート等で外部への浸透水流出を防止した処分場で埋立処分をしなければならないように義務づけられている。さらに、埋立処分とする場合、有害物質の溶出を抑制する中間処理が必要である。   On the other hand, PS incineration ash is bulky and has a transportation cost, and the ash shape is non-uniform, so that it has few uses as a cement raw material like fly ash. In addition, PS incineration ash contains hazardous materials such as heavy metals, and direct landfill disposal is not possible. It is obliged to carry out landfill disposal at the prevented disposal site. Furthermore, in the case of landfill disposal, an intermediate treatment that suppresses the elution of harmful substances is necessary.

中間処理として薬剤(キレート)処理や溶融固化処理があるが、高価なキレート剤が処理すべき灰に対して数%程度必要であり、溶融固化処理では設備費及び多くのエネルギーが必要となり、これらの中間処理方法は焼却灰処理費用を増大させる要因となる。また、埋立処分場を確保すること自体が、近年ますます困難になってきている。

特公平7−84338号公報 特開2001−163646号公報 特許第3326571号公報 特許第3151239号公報
There are chemical (chelate) treatment and melt solidification treatment as intermediate treatment, but expensive chelating agents require several percent of the ash to be treated, and melt solidification treatment requires equipment costs and a lot of energy. This intermediate treatment method increases the cost of incineration ash treatment. In addition, securing a landfill site itself has become increasingly difficult in recent years.

Japanese Examined Patent Publication No. 7-84338 JP 2001-163646 A Japanese Patent No. 3326571 Japanese Patent No. 3151239

上記のように、石炭灰を使用する人工軽量骨材はあるが、PS焼却灰を使用したものはない状況であった。
このような状況に鑑み、PS焼却灰を有効利用することで処理費の抑制を図る方法として、PS焼却灰に少量の固化材(セメント、生石灰等)を添加し、水を加え混合機で攪拌造粒したものを高温高圧のオートクレーブ養生で反応(水熱固化反応)により製造された非焼成の造粒固化体を原料として、軽量なモルタルまたはコンクリートを提供すること、およびその製造方法を提供することを課題とした。
As described above, there are artificial lightweight aggregates that use coal ash, but none have used PS incineration ash.
In view of this situation, as a method for reducing the processing costs by effectively using PS incineration ash, a small amount of solidification material (cement, quicklime, etc.) is added to PS incineration ash, and water is added and stirred with a mixer. To provide a lightweight mortar or concrete using a non-fired granulated solid body produced by reaction (hydrothermal solidification reaction) of the granulated product by a high-temperature and high-pressure autoclave curing, and a production method thereof That was the issue.

上記の課題を達成するために、本発明のペーパースラッジ焼却灰造粒水熱固化体を用いた軽量モルタル又はコンクリートの製造方法は、ペーパースラッジを焼却する際に発生する焼却灰に、水及び/又は温水、生石灰並びにセメントを加え、常温から98℃までの温度で混合して粒状に造粒した成形体を養生した後、高温・高圧下で反応(水熱固化反応)させて製造された固化体を人工軽量骨材として表乾状態に調整し、天然砂及びセメントと混合しミキサーで空練りし、水を加えて練り混ぜを行うことで、軽量で強度を有するモルタル又はコンクリートを製造するように構成されている。
In order to achieve the above object, a method for producing a lightweight mortar or concrete using the paper sludge incinerated ash granulated hydrothermal solidified body of the present invention includes water and / or incineration ash generated when paper sludge is incinerated. Or solidified by adding hot water, quicklime and cement, curing at room temperature to 98 ° C, and curing the molded product granulated, then reacting under high temperature and high pressure (hydrothermal solidification reaction) The body is adjusted to surface dryness as an artificial lightweight aggregate, mixed with natural sand and cement, kneaded with a mixer, and mixed with water to make mortar or concrete that is lightweight and strong. It is configured.

本発明によれば、PS焼却灰を原料としてこれに少量の固化材(セメント、生石灰等)と水を加え粒状としたものを高温・高圧下で反応(水熱固化反応)させ軽量で多孔質な固化品として生成されるPS焼却灰造粒水熱固化体を人工軽量骨材として、モルタルまたはコンクリートへ混合することで、PS焼却灰造粒水熱固化体が多孔質で高吸水率であるため、モルタルまたはコンクリートは湿潤養生を行わなくとも、造粒品内部に保有している水分を利用して自己養生効果を発揮し、所定の強度を確保することが可能である。また、型枠存置期間の短縮が可能なため、工期短縮が図られる。 さらに、PS焼却灰造粒水熱固化体を用いたモルタルまたはコンクリートは、軽量で熱伝導率が小さく、断熱性、遮音性、吸放湿性(調湿性)に優れ、十分な強度と耐久性を有しており、建築物の躯体材料、壁体パネル・タイルなどの不燃材料、断熱材料、仕上げ材料、道路防音壁など多方面への用途に使用でき、総合的に省エネルギー上極めて有効な材料を得ることができる。   According to the present invention, PS incinerated ash is used as a raw material, and a small amount of solidified material (cement, quicklime, etc.) and water are granulated by reacting at high temperature and high pressure (hydrothermal solidification reaction) and lightweight and porous. PS incinerated ash granulated hydrothermal solidified body produced as a solidified product is mixed with mortar or concrete as an artificial lightweight aggregate, so that the PS incinerated ash granulated hydrothermal solidified body is porous and has a high water absorption rate Therefore, even if mortar or concrete is not subjected to wet curing, it is possible to exert a self-curing effect by using the moisture retained in the granulated product and to secure a predetermined strength. Moreover, since the formwork storage period can be shortened, the construction period can be shortened. In addition, mortar or concrete using PS incinerated ash granulated hydrothermal solidified material is lightweight and has low thermal conductivity, excellent heat insulation, sound insulation, moisture absorption and desorption (humidity control), sufficient strength and durability. It can be used for various purposes such as building frame materials, incombustible materials such as wall panels and tiles, heat insulating materials, finishing materials, road noise barriers, etc. Obtainable.

また、従来、有効活用が難しかったPS焼却灰を活用することで、処理費用の削減及び環境側面からの負荷も低減され、非常に好ましいものと言える。
Moreover, it can be said that using PS incinerated ash, which has been difficult to use effectively, is very preferable because it reduces processing costs and reduces environmental burden.

以下、本発明の実施の形態について説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更して実施することができるものである。
先ず、ペーパースラッジ焼却灰造粒水熱固化体の製造に関して述べる。
Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications.
First, the production of a paper sludge incinerated ash granulated hydrothermal solidified body will be described.

PS焼却灰は、パルプ製造工程、紙製造工程、古紙処理工程等から発生するペーパースラッジをボイラーで焼却処理した焼却灰のことである。ボイラーには流動層ボイラやストーカ焼却炉等種々あるが、この場合、形式は限定されるものではない。また、助燃用とする程度であれば重油や石炭をペーパースラッジと共に、ボイラーで混焼しても構わない。
さらに、PS焼却灰の本来の性状である細孔性や多孔性を損なわない程度であれば、RDF(ごみ固形燃料)、RPF(産業系廃プラスチック・古紙類固形燃料)、その他一般可燃物もペーパースラッジと共に、ボイラーでの混焼は構わない。助燃用に石炭を使用した場合の、ペーパースラッジ焼却灰は微量ながらも重金属類(六価クロム、砒素、セレン、フッ素、ホウ素等)を含んでいるのが、一般的である。
PS incineration ash is incineration ash obtained by incinerating paper sludge generated from a pulp manufacturing process, paper manufacturing process, waste paper processing process, and the like with a boiler. There are various types of boilers such as a fluidized bed boiler and a stoker incinerator, but in this case, the type is not limited. Further, heavy oil or coal may be co-fired in a boiler together with paper sludge as long as it is used for auxiliary combustion.
Furthermore, RDF (garbage solid fuel), RPF (industrial waste plastics / waste paper solid fuel), and other general combustibles, as long as the original properties of PS incinerated ash are not impaired. Along with paper sludge, mixed firing in a boiler is acceptable. When coal is used for auxiliary combustion, the paper sludge incineration ash generally contains heavy metals (hexavalent chromium, arsenic, selenium, fluorine, boron, etc.) even though the amount is small.

PS焼却灰に加える水及び/又は温水は、焼却灰100重量部に対して、60〜100重量部、望ましくは75〜95重量部である。水及び/又は温水の添加量は、造粒条件や造粒後の強度に影響する。焼却灰に対して、水及び/又は温水の添加量が多くなると、造粒時間は短くなる。これは、水及び/又は温水が速く焼却灰に浸透することで、造粒も速く進むと考えられる。但し、造粒後の強度は低くなる傾向にある。一方、焼却灰に対して、水及び/又は温水の添加量が少なくなると、造粒時間は長くなるが、造粒後の強度は高くなる傾向である。このことから、造粒後の強度も高く、製造効率も高い望ましい範囲を追究したところ、上記記載の、PS焼却灰に加える水及び/又は温水は、焼却灰100重量部に対して、60〜100重量部、望ましくは75〜95重量部であることが得られた。   The water and / or warm water added to the PS incineration ash is 60 to 100 parts by weight, desirably 75 to 95 parts by weight with respect to 100 parts by weight of the incineration ash. The addition amount of water and / or warm water affects the granulation conditions and the strength after granulation. If the amount of water and / or warm water added to the incinerated ash is increased, the granulation time is shortened. This is thought to be because granulation progresses rapidly as water and / or hot water quickly penetrates the incineration ash. However, the strength after granulation tends to be low. On the other hand, when the amount of water and / or warm water added to the incinerated ash is reduced, the granulation time becomes longer, but the strength after granulation tends to increase. From this, after pursuing a desirable range where the strength after granulation is high and the production efficiency is also high, the water and / or hot water added to the PS incinerated ash is 60 to 100 parts by weight with respect to 100 parts by weight of the incinerated ash. The result was 100 parts by weight, desirably 75 to 95 parts by weight.

PS焼却灰に加える生石灰量は、PS焼却灰に含有される生石灰分量にもよるが、焼却灰100重量部に対して、0〜20重量部の範囲が望ましい。また、ボイラーの脱硫用として、燃焼時に添加される炭酸カルシウムを増やすことで、PS焼却灰に含有される生石灰量が増すため、混合時に加える生石灰量を少なくすることができる。焼却灰とよく混合できるように、生石灰は粒状もしくは粉状が望ましい。添加される生石灰(CaO)は、PS焼却灰に元々含有している石灰分(CaO)と共に、後述するシリカ(SiO)と、水熱固化反応において強度向上及び重金属類の有害物質の溶出抑制に、重要な役割を果たす。PS焼却灰に加えるセメントは、必要な強度にもよるが、焼却灰100重量部に対して、0〜20重量部が望ましい。添加されるセメントは、水及び/又は温水とから成る強度自体を発生させる役割があることと、さらにはセメントに含有するシリカ分(SiO)が、PS焼却灰に元々含有しているシリカ分(SiO)と共に、先述した石灰分(CaO)と、水熱固化反応において強度向上及び重金属類の有害物質の溶出抑制に、重要な役割を果たす。 Although the amount of quicklime added to PS incineration ash is based also on the amount of quicklime contained in PS incineration ash, the range of 0-20 weight part is desirable with respect to 100 weight part of incineration ash. Moreover, since the amount of quick lime contained in PS incineration ash increases by increasing the calcium carbonate added at the time of combustion for desulfurization of a boiler, the amount of quick lime added at the time of mixing can be decreased. The quicklime is preferably granular or powdery so that it can be well mixed with the incineration ash. The added quicklime (CaO), together with the lime (CaO) originally contained in the PS incinerated ash, silica (SiO 2 ), which will be described later, improves the strength in the hydrothermal solidification reaction and suppresses the elution of harmful substances such as heavy metals It plays an important role. The cement added to the PS incineration ash is preferably 0 to 20 parts by weight with respect to 100 parts by weight of the incineration ash, although it depends on the required strength. The added cement has a role of generating strength itself composed of water and / or hot water, and further, the silica content (SiO 2 ) contained in the cement is the silica content originally contained in the PS incineration ash. Together with (SiO 2 ), the lime content (CaO) and the hydrothermal solidification reaction play an important role in improving the strength and suppressing elution of harmful substances such as heavy metals.

必要により添加される硬化促進剤、分散剤は、PS焼却灰、水及び/又は温水、生石灰、セメントとの混合物において、水和作用を促進して早期に強度を発現させる役割があり、後述する前養生及び水蒸気養生の処理時間を短くする効果がある。硬化促進剤、分散剤には、塩化カルシウム、塩化第二鉄、塩化アルミニウム、塩化マグネシウム、炭酸ソーダ、炭酸カリ、珪弗化亜鉛、珪弗化マグネシウム、珪弗化ソーダ等がある。   The curing accelerator and dispersant added as necessary have a role of promoting hydration and developing strength early in a mixture with PS incinerated ash, water and / or hot water, quicklime, and cement, which will be described later. It has the effect of shortening the pre-curing and steam curing treatment times. Examples of the hardening accelerator and dispersant include calcium chloride, ferric chloride, aluminum chloride, magnesium chloride, sodium carbonate, potassium carbonate, zinc silicofluoride, magnesium silicofluoride, and sodium silicofluoride.

PS焼却灰、水及び/又は温水、生石灰、セメント、必要により硬化促進剤、分散剤を加え、混合工程及び造粒工程を行う。混合・造粒工程の温度は、常温〜98℃、例えば、15〜98℃、望ましくは60〜95℃を保持することが強度向上のためには必要である。混合・造粒時間は先述したように、水及び/又は温水の添加量に影響され、また、混合装置(撹拌子の回転数や大きさ等)にも影響されるが、5〜10分間が望ましい。なお、PS焼却灰、水、生石灰、セメントは造粒機に別々に供給してもよく、予め混合した状態で供給してもよい。   PS incineration ash, water and / or warm water, quicklime, cement, hardening accelerator and dispersant are added if necessary, and mixing step and granulation step are performed. The temperature of the mixing / granulating step is from normal temperature to 98 ° C., for example, 15 to 98 ° C., desirably 60 to 95 ° C., in order to improve the strength. As described above, the mixing / granulation time is affected by the amount of water and / or warm water added, and is also affected by the mixing device (such as the rotational speed and size of the stirrer). desirable. In addition, PS incineration ash, water, quicklime, and cement may be supplied separately to the granulator, or may be supplied in a premixed state.

造粒機には、押出造粒機、転動造粒機、ロール成形機、打錠式造粒機、フレーカ式造粒機等がある。押出造粒機は、一定の穴径を備えたダイスから材料を強制的に圧縮押出するものである。転動造粒機は、回転体に供給された材料が回転運動により相互に付着成長しながら、比較的ソフトで形状の整った球状物を大量に作るのに適している。ロール成形機は、相対する一対の回転ロールに凹状のポケットが刻んであり、上部より材料を供給し形状一定の造粒物を作る装置である。打錠式造粒機は、円板上に放射線上に並んだ金型に材料が充填され、押棒により圧縮され、次いで造粒物が排出される、これを連続で行うものである。フレーカ式造粒機は、溶融物やスラリー状の材料を回転ドラムやスチームベルトに付着させ、冷却又は加熱することによりフレーク状に造粒するものである。   Examples of the granulator include an extrusion granulator, a rolling granulator, a roll molding machine, a tableting granulator, and a flaker granulator. An extrusion granulator forcibly extrudes a material from a die having a constant hole diameter. The rolling granulator is suitable for producing a large amount of relatively soft and well-formed spheres while the materials supplied to the rotating body adhere and grow to each other by rotational movement. A roll forming machine is a device in which a concave pocket is carved in a pair of opposed rotating rolls, and a material is supplied from above to form a granulated product having a constant shape. The tableting granulator continuously performs this process, in which a material is filled in a metal mold arranged in a radial pattern on a disk, compressed by a push bar, and then the granulated product is discharged. The flake type granulator is a granulator that forms a flake by adhering a melt or slurry-like material to a rotating drum or a steam belt, and cooling or heating.

本発明の造粒機は、土壌改良材に適した細孔性及び多孔性を保持する必要から、粒子自体がソフトに成形でき、さらに、施工上締め固めしやすいように一定の粒径ではなく、ある範囲をもった粒度分布が得られ、また、用途上、大量生産に適したものでなければならない。これから、上記の造粒機の中では、転動造粒機がもっとも好適である。   Since the granulator of the present invention needs to maintain the porosity and porosity suitable for the soil improvement material, the particles themselves can be softly molded, and the particle size is not constant so that it can be easily compacted in construction. A particle size distribution with a certain range should be obtained, and it should be suitable for mass production in terms of use. From the above, among the above granulators, the rolling granulator is most suitable.

造粒工程後、造粒品を前養生する必要がある。前養生を行うことにより、造粒品の硬度が増し、それによってその後の水熱固化体の硬度も増すことになるため、この前養生は重要である。養生方法には、大きく分けて自然養生と強制養生がある。自然養生とは、特に手を加えることなく、時間をかけることによる養生方法である。強制養生とは、高温状態に保持して、短時間で効率的な養生方法である。本発明においては、どちらの養生方法でも構わない。   After the granulation process, the granulated product needs to be pre-cured. This pre-curing is important because the pre-curing increases the hardness of the granulated product, thereby increasing the hardness of the subsequent hydrothermal solidified body. There are two types of curing methods: natural curing and forced curing. Natural curing is a curing method that takes time without any particular changes. Forced curing is an efficient curing method in a short time while maintaining a high temperature state. In the present invention, either curing method may be used.

前養生後、水蒸気養生(185℃で10気圧の蒸気によるオートクレーブ養生)による水熱固化反応を行うことにより、PS焼却灰に元々含有している石灰分(CaO)とシリカ(SiO)及び添加する生石灰(CaO)とセメントに含有するシリカ(SiO)とから、水熱固化反応によってケイ酸カルシウム(トバモライト、5CaO・6SiO・5HO)の結晶が生成して、高強度、かつ、長期的に安定な粒状の土壌改良材に適した水熱固化体が得られる。元々PS焼却灰に含有している石灰分とシリカだけでは、水熱固化反応で充分な強度を得ることはできないため、後添加の生石灰とセメントが必要である。 After pre-curing, hydrothermal solidification reaction is performed by steam curing (autoclave curing with steam at 185 ° C. and 10 atm), so that lime (CaO) and silica (SiO 2 ) originally contained in PS incinerated ash and addition Crystal of calcium silicate (tobermorite, 5CaO · 6SiO 2 · 5H 2 O) is produced from hydrolime (CaO) and silica (SiO 2 ) contained in the cement by hydrothermal solidification reaction, A hydrothermal solidified body suitable for a long-term stable granular soil improvement material is obtained. Since the lime content and silica originally contained in PS incineration ash cannot provide sufficient strength by the hydrothermal solidification reaction, post-added quick lime and cement are necessary.

以上が、PS焼却灰造粒水熱固化体の製造に関する記載である。
次ぎに、上記で述べたPS焼却灰造粒水熱固化体を骨材として、軽量なモルタル又はコンクリートの製造方法に関して述べる。
The above is description regarding manufacture of PS incineration ash granulation hydrothermal solidification body.
Next, a method for producing a lightweight mortar or concrete using the PS incinerated ash granulated hydrothermal solidified body described above as an aggregate will be described.

そもそも、セメントと水を練り混ぜたものをセメントペーストといい、これに細骨材が入ったものをモルタルといい、これに更に粗骨材が入ったものをコンクリートという。つまり、セメントペーストに細骨材と粗骨材が入ったものが、コンクリートである。   In the first place, a mixture of cement and water is called a cement paste, a mixture containing fine aggregate is called a mortar, and a mixture containing coarse aggregate is called concrete. That is, concrete is a mixture of fine and coarse aggregates in cement paste.

ペースト、モルタル、コンクリートが固まったときの強度は、水とセメントの量比(水セメント比、W/C比)によって支配され、この比が小さいほど、硬化体の強度は大きくなる。   The strength when the paste, mortar and concrete are solidified is governed by the amount ratio of water and cement (water cement ratio, W / C ratio), and the smaller the ratio, the greater the strength of the cured body.

セメントには、コンクリート工事用としてもっとも多量に一般的に使用されているセメントである普通ポルトランドセメントを使用することが出来る。
骨材とは、天然の砂や砂利、人工的に作られた砕石、高炉スラグの粉砕物、ひる石、パーライトのような軽量骨材など、様々である。大きさが粒径5mm以上のものを粗骨材、5mm以下のものを細骨材という。骨材の役割は安価で安定した増量材となり、しかも乾燥状態によりおこる体積変化を減少させることである。
As the cement, ordinary Portland cement, which is the most commonly used cement for concrete construction, can be used.
Aggregates include natural sand and gravel, artificially crushed stones, ground blast furnace slag, vermiculite, and lightweight aggregates such as perlite. Those having a particle size of 5 mm or more are called coarse aggregate, and those having a size of 5 mm or less are called fine aggregate. The role of the aggregate is to reduce the volume change caused by the dry state while it becomes an inexpensive and stable filler.

また混合剤は、コンクリートの施工のしやすさ、流動性、やわらかさの改善、凝結時間の調整など、それぞれの使用目的に応じて種類がある。混合剤には、AE剤、発泡剤、分散剤、防水剤、減水剤、流動化剤、凝結調節剤などがある。   There are various types of admixtures depending on the purpose of use, such as ease of concrete construction, improvement of fluidity and softness, and adjustment of setting time. Examples of the mixing agent include an AE agent, a foaming agent, a dispersing agent, a waterproofing agent, a water reducing agent, a fluidizing agent, and a setting modifier.

AE剤(air entraining agent)は、コンクリート中に適量の空気を混入させるものである。
また、更に多くの気泡を発生させるものを、発泡剤という。分散剤は、セメント粒子表面に吸着し、その凝集を防ぐことによりセメントの水和を促進するものである。防水剤は、コンクリートにばっ水性または不透水性を与えるものである。減水剤は、セメントの水和に必要な理論水量に近い水セメント比(W/C比)で、作業性のよいコンクリートを作ることを目的としている。流動化剤は、少ない単位水量でコンクリートの作業性を改善するもので、減水剤の役割も果たす。凝結調節剤は、水和促進の働きである。

軽量なモルタルの製造は、以下となる。
An AE agent (air entraining agent) mixes an appropriate amount of air into concrete.
Moreover, what generates more bubbles is called a foaming agent. The dispersant promotes hydration of the cement by adsorbing on the cement particle surface and preventing its aggregation. The waterproofing agent imparts water repellency or water impermeability to concrete. The water reducing agent is intended to make concrete with good workability at a water cement ratio (W / C ratio) close to the theoretical water amount necessary for cement hydration. The fluidizing agent improves the workability of concrete with a small amount of unit water, and also serves as a water reducing agent. The setting regulator has a function of promoting hydration.

The production of lightweight mortar is as follows.

生成されたPS焼却灰造粒水熱固化体を表乾状態に調整する。これを人工軽量細骨材とするためJISA5002「構造用軽量コンクリート骨材」規定の範囲に粒度調整を行う。粒度調整装置は、振動ふるい等所定の粒度分け調整ができる分級機であれば形式は問わない。   The produced PS incinerated ash granulated hydrothermal solidified body is adjusted to the surface dry state. In order to make this an artificial lightweight fine aggregate, the grain size is adjusted within the range specified in JIS A5002 “Structural lightweight concrete aggregate”. The particle size adjusting device may be of any type as long as it is a classifier capable of adjusting a predetermined particle size such as a vibrating screen.

モルタルにおける細骨材として使用する場合は、PS焼却灰造粒水熱固化体の単独使用もしくは、PS焼却灰造粒水熱固化体と天然砂等の細骨材との混合使用も可能である。セメントは、一般的な普通ポルトランドセメントを使用することができる。   When used as fine aggregate in mortar, PS incinerated ash granulated hydrothermal solidified material can be used alone or mixed with PS incinerated ash granulated hydrothermal solidified material and fine sand such as natural sand. . As the cement, general ordinary Portland cement can be used.

モルタルの調合は、質量比でセメント:細骨材=1:2〜1:3が、好ましい。また水セメント比は、45〜55%が好ましい。
セメントと細骨材との練り混ぜは、混練機で空練りした後、水を加えて練り混ぜを行う。混練機は、二軸強制練りミキサーが適している。
The blending ratio of mortar is preferably cement: fine aggregate = 1: 2 to 1: 3 by mass ratio. The water cement ratio is preferably 45 to 55%.
The kneading of cement and fine aggregate is performed by kneading with a kneader and then adding water. As the kneader, a biaxial forced kneading mixer is suitable.

混練機から排出された水セメントのモルタルを養生後、気乾単位容積質量は普通モルタル(2.20t/m)と比較すると、1.6t/mであり、PS焼却灰造粒水熱固化体を使用することによって、軽量なものが製造できる。

軽量なコンクリートの製造は、以下となる。
After curing the mortar of the discharged water cement from the kneader, the air-dried unit volume mass compared with ordinary mortar (2.20t / m 3), a 1.6t / m 3, PS ash granulation hydrothermal A lightweight thing can be manufactured by using a solidified body.

The production of lightweight concrete is as follows.

モルタルの場合と同様に、生成されたPS焼却灰造粒水熱固化体を表乾状態に調整する。これを人工軽量細骨材とするためJISA5002規定の範囲に粒度調整を行う。粒度調整装置は、振動ふるい等所定の粒度分け調整ができる分級機であれば形式は問わない。   As in the case of mortar, the produced PS incinerated ash granulated hydrothermal solidified body is adjusted to the surface dry state. In order to make this an artificial lightweight fine aggregate, the particle size is adjusted within the range specified by JIS A5002. The particle size adjusting device may be of any type as long as it is a classifier capable of adjusting a predetermined particle size such as a vibrating screen.

コンクリートに対する骨材として細骨材および粗骨材には、PS焼却灰造粒水熱固化体の単独使用もしくは、PS焼却灰造粒水熱固化体と天然の骨材との混合使用も可能である。セメントは、一般的な普通ポルトランドセメントを使用することができる。   As fine aggregate and coarse aggregate for concrete, PS incinerated ash granulated hydrothermal solidified material can be used alone or mixed with PS incinerated ash granulated hydrothermal solidified material and natural aggregate. is there. As the cement, general ordinary Portland cement can be used.

コンクリートの調合は、質量比でセメント:細骨材:粗骨材=1:2:2〜1:3:2が、好ましい。また水セメント比は、45〜55%が好ましい。
セメントと骨材との練り混ぜは、混練機で空練りした後、水を加えて練り混ぜを行う。混練機は、二軸強制練りミキサーが適している。
The mixing ratio of concrete is preferably cement: fine aggregate: coarse aggregate = 1: 2: 2 to 1: 3: 2. The water cement ratio is preferably 45 to 55%.
Cement and aggregate are kneaded with a kneader and then added with water. As the kneader, a biaxial forced kneading mixer is suitable.

混練機から排出された水セメントのコンクリートを養生後、気乾単位容積質量は普通コンクリート(2.30t/m)と比較すると、約1.62t/mであり、PS焼却灰造粒水熱固化体を使用することによって、軽量なものが製造できる。 After curing the water cement concrete discharged from the kneader, the air dry unit volume mass is about 1.62 t / m 3 compared to ordinary concrete (2.30 t / m 3 ), and PS incinerated ash granulated water A lightweight thing can be manufactured by using a heat-solidified body.

普通骨材によるモルタルおよびコンクリートは型枠を外した段階から表面上より乾燥が始まり、強度を高めるためには表面に水をかけて養生(湿潤養生)することが必要である。これに対し、PS焼却灰造粒水熱固化体を骨材とした軽量なモルタルおよびコンクリートは、湿潤養生を行わなくても、骨材であるPS焼却灰造粒水熱固化体の多孔質で高吸水率により内部に蓄えていた水分を徐々に放出することで、モルタルおよびコンクリートの水和反応に寄与する、いわゆる自己養生効果を発揮し、所定の強度を確保することができる。また、型枠存置期間の短縮が可能なため、工期短縮が図られる。
Ordinary aggregate mortar and concrete begin to dry from the surface at the stage of removing the formwork, and in order to increase the strength, it is necessary to cure the surface by applying water (wet curing). On the other hand, lightweight mortar and concrete made from PS incinerated ash granulated hydrothermal solidified body are porous of PS incinerated ash granulated hydrothermally solidified body, which is an aggregate without wet curing. By gradually releasing the water stored inside due to the high water absorption rate, a so-called self-healing effect that contributes to the hydration reaction of mortar and concrete can be exhibited, and a predetermined strength can be ensured. Moreover, since the formwork storage period can be shortened, the construction period can be shortened.

以下に本発明の実施例を示すが、これは例示的なものであって、本発明がこれに限定されるべきではない。
PS焼却灰造粒水熱固化体の製造で用いた原料は、製紙工場内のボイラーから主成分をペーパスラッジとして燃焼した際の副産物であるPS焼却灰を使用した。PS焼却灰造粒水熱固化体の製造は、PS焼却灰と固化材(生石灰、セメント等)を所要量計量し攪拌後、混練機内で加水・混練し、混練した材料を造粒機で3〜10mm程度の造粒物とした後、185℃、10気圧のオートクレーブ養生を行った。図1(写真)にPS焼却灰造粒水熱固化体を示す。
Although the Example of this invention is shown below, this is illustrative and this invention should not be limited to this.
The raw material used in the production of PS incinerated ash granulated hydrothermal solidified material was PS incinerated ash which is a by-product when the main component was burned as a paper sludge from a boiler in a paper mill. Production of PS incinerated ash granulated hydrothermal solidified product is carried out by measuring and stirring the required amount of PS incinerated ash and solidified material (quick lime, cement, etc.), then adding and kneading in a kneader. After making a granulated product of about 10 mm, autoclave curing at 185 ° C. and 10 atm was performed. Fig. 1 (photo) shows PS incinerated ash granulated hydrothermal solidified product.

生成されたPS焼却灰造粒水熱固化体の絶乾密度は1.0g/cm未満と軽量なことから、JISA5002「構造用軽量コンクリート骨材」に準拠して実験を行った。
図2に無調整PS焼却灰造粒水熱固化体のふるい分け試験結果を示す。PS焼却灰造粒水熱固化体は最大寸法15mm で、粗粒率が4.73、粒度は、JISA5002規定の人工軽量細骨材および人工軽量粗骨材の範囲外であったため、粒度調整を行ってモルタル、コンクリートに用いた。なお、無調整PS焼却灰造粒水熱固化体の粗骨材部分(5〜15mm)は28.5%、細骨材部分(0.15〜5mm)は66.8%であった。
Since the absolutely dry density of the produced PS incinerated ash granulated hydrothermal solidified body was as light as less than 1.0 g / cm 3 , an experiment was conducted in accordance with JIS A5002 “Structural lightweight concrete aggregate”.
FIG. 2 shows the screening test results of the non-adjusted PS incinerated ash granulated hydrothermal solidified body. The PS incinerated ash granulated hydrothermal solidified body has a maximum size of 15 mm, the coarse particle ratio is 4.73, and the particle size is outside the range of artificial lightweight fine aggregates and artificial lightweight coarse aggregates specified in JIS A5002. Used for mortar and concrete. The coarse aggregate portion (5 to 15 mm) of the non-adjusted PS incinerated ash granulated hydrothermal solidified body was 28.5%, and the fine aggregate portion (0.15 to 5 mm) was 66.8%.

PS焼却灰造粒水熱固化体を細骨材として用いたモルタルの強度、および粗骨材として用いたコンクリートの低温強度増進、初期凍害抵抗性、RILEM CIF法(Capillary suction, Internal damage and Freeze-thaw test「毛細管吸水−内部損傷−凍結溶融試験」)による耐凍害性の実験を行い、普通骨材コンクリートと比較した。   Strength of mortar using PS incinerated ash granulated hydrothermal solidified material as fine aggregate, enhancement of low temperature strength of concrete used as coarse aggregate, resistance to initial frost damage, RIREM CIF method (Capillary suction, Internal damage and Freeze- Thaw test "capillary water absorption-internal damage-freeze-thaw test") was conducted and compared with ordinary aggregate concrete.

モルタルに関しては、セメントは普通ポルトランドセメント(密度3.16g/cm)を、細骨材は表1に示す白糠産陸砂およびPS焼却灰造粒水熱固化体を用いた。
モルタルの基本調合は、JISR5201「セメントの物理試験方法」に準じ、質量比でセメント1、細骨材3、水セメント比50%とした。なお、密度の小さいPS焼却灰造粒水熱固化体は陸砂と同体積に換算して使用した。練り混ぜは機械練りにより行い、4×4×16cmの角柱供試体を作製し、所定の材齢まで20℃水中養生を行った。曲げ、圧縮強度試験の材齢は、成形後1、3、7、28、91日とした。
As for the mortar, ordinary Portland cement (density 3.16 g / cm 3 ) was used as the cement, and birch land sand and PS incinerated ash granulated hydrothermal solidified material shown in Table 1 were used as the fine aggregate.
The basic composition of the mortar was set to 50% by weight of cement 1, fine aggregate 3, and water cement according to JIS R5201 “Cement physical test method”. In addition, PS incinerated ash granulation hydrothermal solidification body with small density was used in the same volume as land sand. The kneading was carried out by mechanical kneading, and a 4 × 4 × 16 cm prism specimen was prepared and cured at 20 ° C. in water until a predetermined age. The age of the bending and compressive strength tests was 1, 3, 7, 28, and 91 days after molding.

コンクリートに関しては、セメントは普通ポルトランドセメントを、細骨材は鶴居産山砂、粗骨材は尾幌産砕石(最大寸法20mm)およびPS焼却灰造粒水熱固化体(最大寸法15mm)を用いた。各骨材の物理試験結果を表1に示す。また、化学混和剤はAE減水剤標準形を用い、必要に応じて空気量調整剤を使用した。   Regarding concrete, ordinary Portland cement was used as cement, fine sand from Tsurui, and coarse crushed stone from Taihoro (maximum size 20 mm) and PS incinerated ash granulated hydrothermal solidified material (maximum size 15 mm) were used. Table 1 shows the physical test results of each aggregate. Moreover, the chemical admixture used the AE water reducing agent standard form, and the air quantity adjusting agent was used as needed.

コンクリートの調合は、表2に示す目標空気量、目標スランプが得られるように、練り上がり温度20℃を基本調合とし、試し練りにより定めた。混練は二軸強制練りミキサを用い、スランプ、空気量、単位容積質量、練り上がり温度を測定した。調合を表3に、練り上がり性状と91日後の気乾単位容積質量を表4に示す。   The mix of concrete was determined by trial kneading with a kneading temperature of 20 ° C. as the basic mix so as to obtain the target air amount and target slump shown in Table 2. For the kneading, a biaxial forced kneading mixer was used, and slump, air volume, unit volume mass, and kneading temperature were measured. The composition is shown in Table 3, and the kneading properties and the air-dry unit volume mass after 91 days are shown in Table 4.

強度増進性状に関する実験は、φ10×20cmの円柱供試体を用い、練り上がり温度を5℃、20℃として所定の材齢まで封緘養生を行った。圧縮強度試験の材齢は、5℃養生で7、14、28、56、112、182日、20℃養生で1、3、7、14、28、56、91日とした。   In the experiment on the strength enhancement property, a cylindrical specimen having a diameter of 10 × 20 cm was used and the kneading temperature was set to 5 ° C. and 20 ° C. to perform sealing curing until a predetermined age. The age of the compressive strength test was 7, 14, 28, 56, 112, 182 days for 5 ° C curing and 1, 3, 7, 14, 28, 56, 91 days for 20 ° C curing.

初期凍害抵抗性は表5に示す試験条件とし、φ10×20cmの円柱供試体を用いた。練り上がり温度を5℃とし、所定の材齢まで5℃封緘養生を行い、その後気中凍結水中融解による6サイクルの凍結融解作用を与えた後、20℃で材齢28日まで封緘養生を行った。凍結融解開始材齢は圧縮強度5N/mmをはさむ4水準とし、圧縮強度の測定は、凍結融解開始時および終了時、材齢28日で行った。 The initial frost damage resistance was set to the test conditions shown in Table 5, and a cylindrical specimen of φ10 × 20 cm was used. The kneading temperature is 5 ° C, 5 ° C sealing curing is performed until the specified age, and then 6 cycles of freezing and thawing action are performed by thawing in the frozen water in the air, followed by sealing curing at 20 ° C until the age of 28 days. It was. Freezing and thawing starting material age was 4 levels sandwiching compressive strength of 5 N / mm 2 , and compressive strength was measured at the age of 28 days at the start and end of freezing and thawing.

図3にCIF試験の行程を示す。CIF試験は10×10×20cmの梁型供試体を用い、脱型後6日間水中で、21日間20℃ 60% RHの恒温室中で養生した試験体の側面をブチルゴム付アルミテープでシールし、7日間の下面吸水後に図4に示すCIF試験装置で最高温度20℃(1時間保持)、最低温度−20℃(3時間保持)、温度勾配±10K/時で1日2サイクルの下面吸水状態での一面凍結融解を56サイクルまで繰り返した。測定項目は質量変化、相対動弾性係数、剥離量である。剥離量は、各測定サイクル毎に試験容器ごと3分間の超音波洗浄を行い、溶液を濾過した後、剥離片を105℃で24時間乾燥させ、剥離片の質量を測定した。相対動弾性係数は、たわみ振動法と超音波速度法の2種類の方法で測定した。   FIG. 3 shows the process of the CIF test. In the CIF test, a 10 × 10 × 20 cm beam-type specimen was used, and the side of the specimen cured in a constant temperature room at 20 ° C. and 60% RH for 21 days was sealed with aluminum tape with butyl rubber for 6 days after demolding. After 7 days of water absorption on the lower surface, the CIF test apparatus shown in FIG. 4 has a maximum temperature of 20 ° C. (held for 1 hour), a minimum temperature of −20 ° C. (held for 3 hours), and a temperature gradient of ± 10 K / hour. One-side freeze-thaw in the state was repeated up to 56 cycles. Measurement items are mass change, relative dynamic elastic modulus, and peel amount. The amount of peeling was measured by ultrasonic cleaning for 3 minutes for each test vessel for each measurement cycle, filtering the solution, drying the peeling piece at 105 ° C. for 24 hours, and measuring the mass of the peeling piece. The relative kinematic modulus was measured by two methods, a flexural vibration method and an ultrasonic velocity method.

表6にモルタル、コンクリートの基礎物性値を示す。PS焼却灰造粒水熱固化他体を用いたモルタルの絶乾密度は、1.19g/cmで普通モルタルの59%、コンクリートの絶乾密度は1.49g/cmで普通コンクリートの68%と軽量であった。 Table 6 shows the basic physical properties of mortar and concrete. The absolute dry density of mortar using PS incinerated ash granulated hydrothermal solidified other body is 1.19 g / cm 3 , 59% of ordinary mortar, and the dry density of concrete is 1.49 g / cm 3, which is 68 of ordinary concrete. % And light weight.

図5にモルタルおよびコンクリートの絶乾密度と圧縮強度の関係を示す。強度比とは、圧縮強度/絶乾密度のことであるが、PS焼却灰造粒水熱固化体を用いたモルタルおよびコンクリートと普通モルタルおよびコンクリートの強度比の差は1前後と小さい。   FIG. 5 shows the relationship between the absolute dry density and compressive strength of mortar and concrete. The strength ratio refers to compressive strength / absolute density, but the difference in strength ratio between mortar and concrete using PS incinerated ash granulated hydrothermal solidified material and ordinary mortar and concrete is as small as around 1.

図6にモルタルの曲げ、圧縮強度増進性状を示す。圧縮強度は直線的に増大し、91日後のPS焼却灰造粒水熱固化体で陸砂の56%の強度発現となった。
PS焼却灰造粒水熱固化体を用いたコンクリートは、普通コンクリートに比べ常温、低温時とも流動性が低下することがわかった。また、フレッシュ時の単位容積質量は1.83kg/lと普通コンクリートの80%であったが、91日後には1.62kg/l(普通コンクリートの71%)と更に軽量となった。これはPS焼却灰造粒水熱固化体の密度が小さく多孔質であることによる。
FIG. 6 shows the mortar bending and compressive strength enhancement properties. The compressive strength increased linearly, and the PS incinerated ash granulated hydrothermal solidified product after 91 days became 56% strength development of land sand.
It was found that the concrete using the PS incinerated ash granulated hydrothermal solidified material has lower fluidity at normal and low temperatures than ordinary concrete. Further, the unit volume mass at the time of freshness was 1.83 kg / l, which was 80% of ordinary concrete, but after 91 days, it became 1.62 kg / l (71% of ordinary concrete), which was even lighter. This is because the PS incinerated ash granulated hydrothermal solidified body is small in density and porous.

図7に積算温度と強度増進性状の関係を示す。砕石、PS焼却灰造粒水熱固化体とも5℃養生は20℃養生と比較して、初期材齢では強度差が小さく、長期強度でその差が大きくなる傾向が見られる。また、PS焼却灰造粒水熱固化体は砕石と比較して、5℃養生で67〜74%、20℃養生で59〜77%の範囲の圧縮強度発現となっている。   FIG. 7 shows the relationship between the integrated temperature and the strength enhancement property. In both crushed stone and PS incinerated ash granulated hydrothermal solidified body, the 5 ° C. curing shows a tendency that the difference in strength is small at the initial age and that the difference becomes large in the long-term strength compared with the curing at 20 ° C. In addition, PS incinerated ash granulated hydrothermal solidified product has a compressive strength in the range of 67 to 74% when cured at 5 ° C and 59 to 77% when cured at 20 ° C.

強度回復の程度を、凍結融解を受けた供試体と受けない供試体の840°D・D(強度を温度と材齢の両者を加味した積算温度)時の強度比で表し、凍結融解後の後養生による強度回復の程度によって初期凍害を受けたか否かを判定した結果を、図8に示す。砕石、PS焼却灰造粒水熱固化体とも凍結融解開始時22N/mmを超える圧縮強度であれば90%以上の強度回復を示しており、初期凍害を受けていないと判断できる。従って、粗骨材にPS焼却灰造粒水熱固化体を用いた場合の初期凍害防止のために必要な圧縮強度は、普通コンクリートと同様に5N/mmと考えて良い。 The degree of strength recovery is expressed as an intensity ratio at 840 ° D · D (integrated temperature taking into account both temperature and age) between the specimen that has undergone freeze-thawing and the specimen that has not undergone freeze-thawing. FIG. 8 shows the result of determining whether or not the initial frost damage was caused by the degree of strength recovery by post-curing. If both the crushed stone and PS incinerated ash granulated hydrothermal solidified product have a compressive strength exceeding 22 N / mm 2 at the start of freezing and thawing, the strength recovery of 90% or more is shown, and it can be determined that there is no initial frost damage. Therefore, the compressive strength required for preventing the initial frost damage when PS incinerated ash granulated hydrothermal solidified material is used for the coarse aggregate may be considered to be 5 N / mm 2 as in the case of ordinary concrete.

図9に下面吸水の毛細管吸水量の経時変化を示す。試験初日の吸水量が最も多く、総吸水量は軽量多孔質なPS焼却灰造粒水熱固化体で砕石の約2倍の値となった。図10にCIF試験での累積剥離量の変化を示す。PS焼却灰造粒水熱固化体は28サイクルまでは22g/mと微量であったが、42サイクルで154g/m、56サイクル569g/mと剥離量が増加した。 FIG. 9 shows the change over time in the amount of capillary water absorbed by the lower surface water absorption. The water absorption amount was the largest on the first day of the test, and the total water absorption amount was about twice as much as that of crushed stone in a lightweight porous PS incinerated ash granulated hydrothermal solidified body. FIG. 10 shows the change in the cumulative peel amount in the CIF test. PS ash granulation hydrothermal solidification body Until 28 cycles was 22 g / m 2 and a small amount, 154g / m 2, 56 cycles 569 g / m 2 and the release amount increased in 42 cycles.

超音波速度法による相対動弾性係数に変化は認められなかったが、PS焼却灰造粒水熱固化体の一部でCIF試験42サイクルから、たわみ振動法による相対動弾性係数が低下する傾向を示した。   Although there was no change in the relative dynamic elastic modulus by the ultrasonic velocity method, the relative dynamic elastic modulus by the flexural vibration method tends to decrease from 42 cycles of the CIF test in part of PS incinerated ash granulated hydrothermal solidified body. Indicated.

PS焼却灰造粒水熱固化体を骨材として用いたモルタル、コンクリートについて諸特性の検討を行った。得られた結果を以下に示す。
(1)普通モルタル、コンクリートとの比強度の差は1程度と小さい。
(2)気乾単位容積質量は、1.62kg/lと普通コンクリートに比べ軽量である。
(3)強度発現は普通コンクリートの6〜7割である。
(4)初期凍害防止のために必要な圧縮強度は、普通コンクリートと同等な5N/mmとすることができる。
(5)毛細管吸水量は普通コンクリートの約2倍であり、CIF試験42サイクルから剥離量が増加した。
Various characteristics were examined for mortar and concrete using PS incinerated ash granulated hydrothermal solidified body as aggregate. The obtained results are shown below.
(1) The difference in specific strength between ordinary mortar and concrete is as small as about 1.
(2) Air-dry unit volume mass is 1.62 kg / l, which is lighter than ordinary concrete.
(3) Strength development is 60 to 70% of ordinary concrete.
(4) The compressive strength necessary for preventing initial frost damage can be 5 N / mm 2 which is equivalent to that of ordinary concrete.
(5) Capillary water absorption was about twice that of ordinary concrete, and the peel amount increased from 42 cycles of the CIF test.

PS焼却灰造粒水熱固化体を示す写真である。It is a photograph which shows PS incinerated ash granulation hydrothermal solidification body. 無調整PS焼却灰造粒水熱固化体のふるい分け試験結果を示す。The screening test result of a non-adjustment PS incineration ash granulation hydrothermal solidification body is shown. CIF試験の行程を示す。The course of the CIF test is shown. CIF試験装置を示す。1 shows a CIF test apparatus. モルタルおよびコンクリートの絶乾密度と圧縮強度の関係を示す。The relationship between the absolute dry density and compressive strength of mortar and concrete is shown. モルタルの曲げ、圧縮強度増進性状を示す。Shows mortar bending and compressive strength enhancement properties. 積算温度と強度増進性状の関係を示す。The relationship between integrated temperature and strength enhancement properties is shown. 強度回復の程度を、凍結融解を受けた供試体と受けない供試体の840°D・D(強度を温度と材齢の両者を加味した積算温度)時の強度比で表し、凍結融解後の後養生による強度回復の程度によって初期凍害を受けたか否かを判定した結果を示す。The degree of strength recovery is expressed as an intensity ratio at 840 ° D · D (integrated temperature taking into account both temperature and age) between the specimen that has undergone freeze-thawing and the specimen that has not undergone freeze-thawing. The result of having judged whether it received initial frost damage by the degree of strength recovery by post-curing is shown. 下面吸水の毛細管吸水量の経時変化を示す。The time-dependent change of the capillary water absorption of the lower surface water absorption is shown. CIF試験での累積剥離量の変化を示す。The change of the accumulated peeling amount in a CIF test is shown.

Claims (4)

ペーパースラッジ焼却灰、生石灰及びセメントの混合物を造粒、養生後、水熱固化反応させた固化体を人工軽量骨材として含有する、軽量であり強度も有するモルタル又はコンクリート。   A lightweight and strong mortar or concrete containing, as an artificial lightweight aggregate, a solidified body obtained by granulating and curing a mixture of paper sludge incinerated ash, quicklime and cement, and then hydrothermally solidifying the mixture. 天然砂及びセメントを添加剤としてさらに含む請求項1記載のモルタル又はコンクリート。   The mortar or concrete according to claim 1, further comprising natural sand and cement as additives. ペーパースラッジを焼却する際に発生する焼却灰に、水及び/又は温水、生石灰並びにセメントを加え、常温から98℃までの温度で混合して粒状に造粒した成形体を養生した後、水熱固化反応を利用して製造された固化体を含有することを特徴とする、軽量であり強度も有するモルタル又はコンクリートの製造方法。   Water and / or warm water, quicklime and cement are added to the incinerated ash generated when paper sludge is incinerated, and after curing the molded body granulated into granules by mixing at a temperature from room temperature to 98 ° C, hydrothermal A method for producing mortar or concrete which is lightweight and has strength, comprising a solidified body produced by utilizing a solidification reaction. ペーパースラッジを焼却する際に発生する焼却灰に、水及び/又は温水、生石灰並びにセメントを加え、常温から98℃までの温度で混合して粒状に造粒した成形体を養生した後、水熱固化反応を利用して製造された固化体を人工軽量骨材として表乾状態に調整し、天然砂及びセメントと混合しミキサーで空練りし、水を加えて練り混ぜを行うことを特徴とする、軽量で強度を有するモルタル又はコンクリートを製造する方法。   Water and / or hot water, quick lime and cement are added to the incineration ash generated when incinerating paper sludge, and after the molded body granulated into granules by mixing at a temperature from room temperature to 98 ° C, hydrothermal The solidified product manufactured using the solidification reaction is adjusted to the surface dry state as an artificial lightweight aggregate, mixed with natural sand and cement, kneaded with a mixer, and mixed with water. A method for producing mortar or concrete that is lightweight and strong.
JP2005199903A 2005-07-08 2005-07-08 Lightweight mortar or concrete using granulated hydrothermal solid matter of paper sludge incineration ash Pending JP2007015893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005199903A JP2007015893A (en) 2005-07-08 2005-07-08 Lightweight mortar or concrete using granulated hydrothermal solid matter of paper sludge incineration ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005199903A JP2007015893A (en) 2005-07-08 2005-07-08 Lightweight mortar or concrete using granulated hydrothermal solid matter of paper sludge incineration ash

Publications (1)

Publication Number Publication Date
JP2007015893A true JP2007015893A (en) 2007-01-25

Family

ID=37753380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005199903A Pending JP2007015893A (en) 2005-07-08 2005-07-08 Lightweight mortar or concrete using granulated hydrothermal solid matter of paper sludge incineration ash

Country Status (1)

Country Link
JP (1) JP2007015893A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233646A (en) * 2008-03-06 2009-10-15 Kobe Steel Ltd Method for treating toxic component by solidifying waste
JP2010269293A (en) * 2009-05-25 2010-12-02 Shoji Iwahara Method for manufacturing paper sludge ash, cement composition containing paper sludge ash prepared by the method and cement solid matter constituted by solidifying the cement composition
CN102173695A (en) * 2011-01-10 2011-09-07 东南大学 Novel composite additive for solidifying material for dredged silt with high water content
ES2392069A1 (en) * 2010-09-07 2012-12-04 Consejo Superior De Investigaciones Científicas (Csic) Autonival composition. (Machine-translation by Google Translate, not legally binding)
CN108863221A (en) * 2018-07-23 2018-11-23 巩义市欧洁源环保技术服务有限公司 A kind of foam concrete and preparation method thereof using artificial compounded lightweight aggregate
US11146714B2 (en) 2018-06-25 2021-10-12 Canon Kabushiki Kaisha Image capturing apparatus, control method thereof, and non-transitory computer-readable storage medium
JP7424163B2 (en) 2020-03-30 2024-01-30 株式会社大林組 Method for estimating the addition rate of curing accelerator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114938A (en) * 1990-08-31 1992-04-15 Noda Corp Production of lightweight inorganic extrusion formed product
JPH07101767A (en) * 1991-03-29 1995-04-18 Noda Corp Lightweight inorganic building material
JP2000344564A (en) * 1999-06-07 2000-12-12 Nippon Kayaku Co Ltd Lightweight hydraulic composition
JP2001322846A (en) * 2000-05-12 2001-11-20 Sumitomo Metal Mining Co Ltd Production process of high-strength steam-curing aggregate using coal ash
JP2005040659A (en) * 2003-07-23 2005-02-17 Kawasaki Heavy Ind Ltd Method for producing sand-like solid from incineration residue
JP4589652B2 (en) * 2004-04-27 2010-12-01 日本製紙株式会社 Method for producing hydrothermal solidified product of paper sludge incineration ash

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04114938A (en) * 1990-08-31 1992-04-15 Noda Corp Production of lightweight inorganic extrusion formed product
JPH07101767A (en) * 1991-03-29 1995-04-18 Noda Corp Lightweight inorganic building material
JP2000344564A (en) * 1999-06-07 2000-12-12 Nippon Kayaku Co Ltd Lightweight hydraulic composition
JP2001322846A (en) * 2000-05-12 2001-11-20 Sumitomo Metal Mining Co Ltd Production process of high-strength steam-curing aggregate using coal ash
JP2005040659A (en) * 2003-07-23 2005-02-17 Kawasaki Heavy Ind Ltd Method for producing sand-like solid from incineration residue
JP4589652B2 (en) * 2004-04-27 2010-12-01 日本製紙株式会社 Method for producing hydrothermal solidified product of paper sludge incineration ash

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009233646A (en) * 2008-03-06 2009-10-15 Kobe Steel Ltd Method for treating toxic component by solidifying waste
JP2010269293A (en) * 2009-05-25 2010-12-02 Shoji Iwahara Method for manufacturing paper sludge ash, cement composition containing paper sludge ash prepared by the method and cement solid matter constituted by solidifying the cement composition
ES2392069A1 (en) * 2010-09-07 2012-12-04 Consejo Superior De Investigaciones Científicas (Csic) Autonival composition. (Machine-translation by Google Translate, not legally binding)
CN102173695A (en) * 2011-01-10 2011-09-07 东南大学 Novel composite additive for solidifying material for dredged silt with high water content
US11146714B2 (en) 2018-06-25 2021-10-12 Canon Kabushiki Kaisha Image capturing apparatus, control method thereof, and non-transitory computer-readable storage medium
CN108863221A (en) * 2018-07-23 2018-11-23 巩义市欧洁源环保技术服务有限公司 A kind of foam concrete and preparation method thereof using artificial compounded lightweight aggregate
JP7424163B2 (en) 2020-03-30 2024-01-30 株式会社大林組 Method for estimating the addition rate of curing accelerator

Similar Documents

Publication Publication Date Title
Chandra et al. Lightweight aggregate concrete
Muthusamy et al. Effect of mixing ingredient on compressive strength of oil palm shell lightweight aggregate concrete containing palm oil fuel ash
US8535435B2 (en) Method of fabrication of construction materials from industrial solid waste
JP2009528240A (en) Masonry member matrix and manufacturing method thereof
Güneyisi et al. Influence of the artificial lightweight aggregate on fresh properties and compressive strength of the self-compacting mortars
WO2015104466A1 (en) Hydraulic cements based on cement or on cement clinker or on lime, on calcium sulphate, and on a pozzolanic component; process for the manufacture thereof and uses thereof
JP2007015893A (en) Lightweight mortar or concrete using granulated hydrothermal solid matter of paper sludge incineration ash
JP2008247728A (en) Method for producing water-retentive block
JP2009227574A (en) Cement composition and method for producing the same
KR100880587B1 (en) Self leveling bottom mortar agent manufacturing method
EP4077234A1 (en) Method for producing supersulphated cement
JP2007331976A (en) Cement admixture and cement composition
JP2001146420A (en) Anhydrous gypsum compounds produced from gypsum waste material and method for producing the same
JP2007246293A (en) Low shrinkage type light-weight concrete
JPH03275134A (en) Utilization of coal ash
JP4658362B2 (en) Manufacturing method for lightweight mortar
AU2020103844A4 (en) EFI – Low Cost Indian Brick: Environment-Friendly Very Low Cost Indian Brick
JP3864762B2 (en) Concrete composition and mortar composition
Preethi et al. A preliminary study on production of roof tiles and paver blocks using wood and coal ash
JP4028966B2 (en) Method for producing cement-based composition
JP5276276B2 (en) Concrete composition and hardened concrete
JP5398953B2 (en) Cement composition and cement molded body using the same
Ban et al. Properties of Concrete Containing Large Volumes of Ground Granulated Blast Furnace Slag and Ground Coal Bottom Ash with Lime Kiln Dust
GB2512606A (en) A lightweight aggregate and a concrete comprising the lightweight aggregate
Nguyen et al. Influence of artificial lightweight aggregate on property modification of unfired brick with low energy super-sulfated cement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100630

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120411