JP2007009300A - Method for manufacturing cold-coiled wire rod for spring - Google Patents

Method for manufacturing cold-coiled wire rod for spring Download PDF

Info

Publication number
JP2007009300A
JP2007009300A JP2005194427A JP2005194427A JP2007009300A JP 2007009300 A JP2007009300 A JP 2007009300A JP 2005194427 A JP2005194427 A JP 2005194427A JP 2005194427 A JP2005194427 A JP 2005194427A JP 2007009300 A JP2007009300 A JP 2007009300A
Authority
JP
Japan
Prior art keywords
wire
cooling
cold
wire rod
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005194427A
Other languages
Japanese (ja)
Inventor
Kazuma Tsuzuki
和馬 都築
Tomonori Nakamura
友紀 中村
Takumi Sato
佐藤  巧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2005194427A priority Critical patent/JP2007009300A/en
Publication of JP2007009300A publication Critical patent/JP2007009300A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a cold-coiled wire rod of high quality for a spring, which acquires opposing properties of having a reduced amount of a decarburized surface layer but being soft in material quality. <P>SOLUTION: This manufacturing method includes the steps of: coiling a hot-rolled wire rod 14; spreading it on a conveyer 18; and cooling it while transporting it. The cooling step comprises: (a) a quenching step P4 of quenching the wire rod 14 to a temperature in the vicinity of the eutectic transformation point; and (b) a slow-cooling step P5 of slowly cooling the quenched wire rod 14 in the quenching step P4 at a cooling rate lower than that in the quenching step P4. Thus obtained cold-coiled wire rod 14 of high quality for a spring acquires the opposing properties, that are the reduced amount of the decarburized surface layer and the soft material quality, because the rolled wire rod 14 quickly passes through a decarburization region in between an A<SB>3</SB>line and an A<SB>1</SB>line (eutectic transformation temperature) to minimize the precipitation of ferrite, namely, the formation of the decarburized surface layer, and is slowly cooled in the slow-cooling step P5 to be sufficiently softened and enhance workability at ordinary temperature. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷間巻ばね用線材の製造方法関するものである。   The present invention relates to a method for manufacturing a wire for a cold wound spring.

熱間において圧延された線材をコイル状に巻回し、コンベア上に展開して搬送する過程で冷却する冷却工程を有する冷間巻ばね用線材の製造方法が知られている。このような冷間巻ばね用線材は、車両の懸架装置のコイルばねに用いられる。近年、このような用途における冷間巻ばね用線材は、合金添加を用いないで低コストを維持しつつ、ばねの寿命を低下させないために表面脱炭層を少なくし、且つ塑性加工による冷間加工性を高めるために軟質とするという相反する性質が要求される。   There is known a method for manufacturing a cold-wound spring wire having a cooling step in which a wire rolled in a hot state is wound in a coil shape and cooled in the process of being developed and conveyed on a conveyor. Such a wire material for cold winding springs is used for a coil spring of a vehicle suspension system. In recent years, a wire for a cold-wound spring in such an application has a low surface decarburization layer in order to maintain the low cost without using an alloy and reduce the life of the spring, and cold working by plastic working In order to enhance the properties, the contradictory properties of softening are required.

これに対し、特許文献1が提案されている。この特許文献1は、熱間圧延により圧延された線材ではあるが、Cr、Mo、NiおよびMnなどを多く含む焼き入れ性の高い合金鋼であっても、圧延のままで軟質組織が得られ且つ表面にフェライト脱炭の少ない線材を得るために、900〜1250°に加熱した後で仕上げ前の圧延を表面温度650〜750°且つ60秒以下で行い、最終仕上げ圧延を表面温度700〜900°且つ減面率30%で行い、直ちに表面温度がMs点を超え且つ850℃以下になるように冷却し、レーイング式巻取機で巻き取って10〜50本/mのリング密度でコンベア上に展開し、その最低温度部の温度が650℃以上で且つ最高温度の温度が800℃以下になるまで冷却し、次いで、リング密度を150〜500本/mとし、0.15〜2℃/秒の速度で徐冷する技術を提案している。   On the other hand, Patent Document 1 has been proposed. Although this patent document 1 is a wire rolled by hot rolling, even if it is alloy steel with high hardenability containing many Cr, Mo, Ni, Mn, etc., a soft structure is obtained with rolling. And in order to obtain a wire with less ferrite decarburization on the surface, after rolling to 900 to 1250 °, rolling before finishing is performed at a surface temperature of 650 to 750 ° and 60 seconds or less, and final finishing rolling is performed at a surface temperature of 700 to 900. The temperature is reduced at a surface reduction rate of 30%, immediately cooled so that the surface temperature exceeds the Ms point and is 850 ° C. or less, wound on a laying-type winder, and on a conveyor with a ring density of 10-50 pieces / m. And cooled until the temperature of the lowest temperature part is 650 ° C. or higher and the maximum temperature is 800 ° C. or lower, and then the ring density is 150 to 500 pieces / m, 0.15 to 2 ° C./m Speed in seconds It has proposed a gradual cooling technology.

また、特許文献2が提案されている。この特許文献2は、コイルばねへの製造後において安定した疲労強度が確保できるフェライト脱炭の少ない線材を得るために、熱間圧延に際して、仕上げ圧延を表面温度が800〜1000°の温度範囲で終了させた後、巻き取り後の冷却過程において、冷却条件を急変させることなく空冷以下の速度で変態完了まで冷却する技術を提案している。
特開2000−256740号公報 特開2003−268453号公報
Patent Document 2 has been proposed. In Patent Document 2, in order to obtain a wire material with less ferrite decarburization that can secure a stable fatigue strength after being manufactured into a coil spring, the finish rolling is performed in a temperature range of 800 to 1000 ° during the hot rolling. After completion, in the cooling process after winding, a technique for cooling to the completion of transformation at a speed equal to or lower than air cooling without abruptly changing the cooling conditions is proposed.
JP 2000-256740 A JP 2003-268453 A

ところで、上記特許文献1および特許文献2において提案されている技術はいずれも圧延中の温度と冷却中の温度を共に制御するものである。また、上記特許文献1にて提案されているばね鋼の製造方法では、圧延とレーイング式巻取機との間で表面温度がMs点を超え且つ850℃以下になるように冷却する工程が必要であり、圧延から線材を巻き取ってコンベア上で冷却する過程のみでは対処できないことから、工程が複雑であるという問題があった。また、上記特許文献2にて提案されているばね鋼線材の製造方法では、巻き取り後の冷却過程において、冷却条件を急変させることなく空冷以下の速度で変態完了まで冷却する技術であるため、季節要因に大きく影響されるだけでなく表面脱炭層が大きくなるという問題があった。   By the way, the techniques proposed in Patent Document 1 and Patent Document 2 both control the temperature during rolling and the temperature during cooling. Moreover, in the manufacturing method of the spring steel proposed by the said patent document 1, the process of cooling so that surface temperature exceeds Ms point and it is 850 degrees C or less between rolling and a laying type winder is required. In addition, there is a problem that the process is complicated because it cannot be dealt with only by the process of winding the wire from rolling and cooling on the conveyor. Moreover, in the manufacturing method of the spring steel wire proposed in the above-mentioned Patent Document 2, in the cooling process after winding, since it is a technique of cooling to the completion of transformation at a speed equal to or lower than air cooling without suddenly changing the cooling conditions, In addition to being greatly affected by seasonal factors, there was a problem that the surface decarburization layer became large.

本発明は以上の事情を背景として為されたものであって、その目的とするところは、熱間圧延後の冷却条件の工夫によって、表面脱炭層を少なくし、且つ塑性加工による冷間加工性を高めるために軟質とするという相反する性質を備えた高品質の冷間巻ばね用線材の製造方法を提供することにある。   The present invention has been made against the background of the above circumstances, and its object is to reduce the surface decarburization layer by devising the cooling conditions after hot rolling, and cold workability by plastic working. An object of the present invention is to provide a method for producing a high-quality cold-wound spring wire material having the contradictory properties of making it soft in order to increase the resistance.

本発明者等は、以上の事情を背景として種々検討を重ねた結果、圧延後の冷却期間において、線材の共析変態点付近まで急冷した後で、積極的に徐冷すると、表面脱炭層が少なくなりしかも材料が軟質となるという事実を見出した。本発明はそのような知見に基づいて為されたものである。   As a result of repeated investigations on the background of the above circumstances, the present inventors have rapidly cooled to the vicinity of the eutectoid transformation point of the wire in the cooling period after rolling, and when the surface is gradually cooled, the surface decarburized layer is formed. We found the fact that the material becomes softer and softer. The present invention has been made based on such knowledge.

すなわち、請求項1に係る発明の要旨とするところは、熱間圧延された線材をコイル状に巻回してコンベア上に展開し且つ搬送する過程で冷却する冷却工程を有する冷間巻ばね用線材の製造方法であって、該冷却工程は、(a) 前記線材の共析変態点付近まで急冷する急冷工程と、(b) その急冷工程により急冷された前記線材をその急冷工程における冷却速度よりも遅い冷却速度で徐冷する徐冷工程とを、含むことにある。   That is, the gist of the invention according to claim 1 is that a wire material for a cold-wound spring having a cooling process in which a hot-rolled wire is wound in a coil shape and is developed on a conveyor and cooled in the course of conveyance. The cooling step includes (a) a rapid cooling step in which the wire is rapidly cooled to near the eutectoid transformation point of the wire, and (b) the wire rapidly quenched in the rapid cooling step from a cooling rate in the rapid cooling step. And a slow cooling step of slow cooling at a slow cooling rate.

また、請求項2に係る発明は、前記急冷工程が、前記線材の少なくとも脱炭領域において2℃/秒以上の冷却速度で該線材を急冷させるものであることを特徴とする。   The invention according to claim 2 is characterized in that the rapid cooling step quenches the wire at a cooling rate of 2 ° C./second or more in at least the decarburization region of the wire.

また、請求項3に係る発明は、前記徐冷工程が、すくなくともパーライト変態終了温度まで1.0℃/秒以下の冷却速度で前記線材を徐冷するものであることを特徴とする。   The invention according to claim 3 is characterized in that in the slow cooling step, the wire is gradually cooled to a pearlite transformation end temperature at a cooling rate of 1.0 ° C./second or less.

また、請求項4に係る発明は、前記線材が、質量%で、C:0.40〜0.61%、Si:1.50〜2.20%、Mn:0.60〜1.00%、P:0〜0.035%、S:0〜0.035%、Cu:0〜0.30%を含有し、残部がFeおよび不可避的不純物から成るばね鋼であることを特徴とする。   Further, in the invention according to claim 4, the wire is mass%, C: 0.40 to 0.61%, Si: 1.50 to 2.20%, Mn: 0.60 to 1.00%. , P: 0 to 0.035%, S: 0 to 0.035%, Cu: 0 to 0.30%, the balance being spring steel made of Fe and inevitable impurities.

すなわち、請求項1に係る発明によれば、熱間にて圧延された線材をコイル状に巻回してコンベア上に展開し且つ搬送する過程で冷却する冷却工程が、(a) 前記線材の共析変態点付近まで急冷する急冷工程と、(b) その急冷工程により急冷された前記線材をその急冷工程の冷却速度よりも遅い冷却速度で徐冷する徐冷工程とを、含むことから、圧延後の線材はA線とA線(共析変態点温度)との間の脱炭領域を速やかに通過させられることによりフェライトの析出すなわち表面脱炭層の形成が可及的に少なくされるとともに、徐冷工程による徐冷によって十分に軟化されて常温加工性が高められるので、表面脱炭層が少なく且つ軟質であるという相反する性質を備えた高品質の冷間巻ばね用線材が得られる。この冷間巻ばね用線材は、脱炭層が少なく、高い冷間加工性を備えたものとなる。 That is, according to the first aspect of the invention, the cooling step of cooling the hot-rolled wire in the process of winding it in a coil shape, developing it on a conveyor and transporting it is as follows: A rapid cooling step of rapidly cooling to near the eutectic transformation point, and (b) a slow cooling step of gradually cooling the wire material rapidly cooled by the rapid cooling step at a cooling rate lower than the cooling rate of the rapid cooling step. wire after precipitation i.e. formation of a surface decarburized layer of the ferrite is as much as possible reduced by being allowed to quickly pass through the decarburization region between a 3-wire and a 1 line (eutectoid transformation point temperature) At the same time, it is sufficiently softened by gradual cooling in the gradual cooling step to improve the room temperature workability, so that a high-quality cold-wound spring wire material having the contradictory properties of having a small surface decarburized layer and being soft can be obtained. . This cold wound spring wire has few decarburized layers and has high cold workability.

また、請求項2に係る発明では、前記急冷工程が、前記線材の少なくとも脱炭領域において2℃/秒以上の冷却速度でその線材を急冷させるものであることから、圧延後の線材がA線とA線との間の脱炭領域を速やかに通過させられることによりフェライトの析出すなわち表面脱炭層の形成が可及的に少なくされる。 Further, in the invention according to claim 2, wherein the quenching step, since the wire at 2 ° C. / sec or more cooling rate is intended to quench at least decarburization region of the wire, the wire after rolling is A 3 precipitation i.e. formation of a surface decarburized layer of the ferrite is as much as possible reduced by being allowed to quickly pass through the decarburization region between the lines and a 1 line.

また、請求項3に係る発明は、前記徐冷工程が、すくなくともパーライト変態終了温度まで1.0℃/秒以下の冷却速度で前記線材を徐冷するものであることから、その徐冷によって十分に軟化されるので、線材の常温加工性が高められるのでコイルばねとしての冷間成形が容易になる。   In the invention according to claim 3, since the slow cooling step is to cool the wire at a cooling rate of 1.0 ° C./second or less to at least the pearlite transformation end temperature, the slow cooling is sufficient. Therefore, cold forming as a coil spring is facilitated because the room temperature workability of the wire is improved.

また、請求項4に係る発明は、前記線材が、質量%で、C:0.40〜0.61%、Si:1.50〜2.20%、Mn:0.60〜1.00%、P:0〜0.035%、S:0〜0.035%、Cu:0〜0.30%を含有し、残部がFeおよび不可避的不純物から成るばね鋼であることから、脱炭の発生が少なく、高い冷間加工性を備えたばね用鋼が得られる。   Further, in the invention according to claim 4, the wire is mass%, C: 0.40 to 0.61%, Si: 1.50 to 2.20%, Mn: 0.60 to 1.00%. , P: 0 to 0.035%, S: 0 to 0.035%, Cu: 0 to 0.30%, and the balance is spring steel composed of Fe and inevitable impurities. Spring steel with low occurrence and high cold workability can be obtained.

ここで、前記熱間圧延は、たとえば、900〜1250℃において圧延されるものであり、種々の圧延温度が選択され得る。   Here, the said hot rolling is rolled at 900-1250 degreeC, for example, and various rolling temperature can be selected.

また、好適には、前記急冷工程は、圧延後にコンベア上で搬送される線材を、フェライトの析出による脱炭を可及的に少なくするために、そのフェライトの析出が終了する共析変態点付近すなわちA変態終了温度付近まで急冷するものであるが、必ずしも共析変態点を下回るまで急冷する必要はなく、A線とA線との間の脱炭領域の少なくとも一部を速やかに通過させられるように急冷する点に意義がある。 Preferably, the quenching step is performed in the vicinity of a eutectoid transformation point at which the precipitation of ferrite ends in order to minimize the decarburization due to precipitation of ferrite in the wire conveyed on the conveyor after rolling. ie is to rapidly to near a 3 transformation finish temperature, it is not necessary to quench to below eutectoid transformation point, at least a portion of the decarburization region between a 3-wire and a 1 line quickly It is significant in that it is rapidly cooled so that it can be passed.

また、好適には、前記徐冷工程は、急冷工程により急冷された前記線材をその急冷工程の冷却速度よりも低い冷却速度で徐冷するものであるが、パーライト相中における時間を長くして、パーライト変態を促進する点に意義がある。すなわち、上記冷却工程は、共析変態点より低く且つパーライト変態終了温度Aよりも高い温度領域内において、パーライト変態を促進する必要かつ十分な時間だけ維持するものである。これにより、十分に軟化されて常温加工性が高められるので、軟質の冷間巻ばね用線材が得られる。 Preferably, the slow cooling step is to slowly cool the wire that has been rapidly cooled in the rapid cooling step at a cooling rate lower than the cooling rate of the rapid cooling step. It is significant in that it promotes pearlite transformation. That is, the cooling step, at a temperature in the region than and pearlite transformation finish temperature A 0 lower than the eutectoid transformation temperature, is to maintain a necessary and sufficient time to promote pearlite transformation. Thereby, since it is fully softened and the normal temperature workability is improved, a soft cold-wound spring wire is obtained.

また、好適には、前記急冷工程は、前記コンベア上の線材に対してブロアを用いて空気を吹きつけることにより前記線材を急冷させるものであるが、必ずしもこのようなブロアによる送風冷却構造に限られない。   Preferably, the rapid cooling step rapidly cools the wire rod by blowing air to the wire rod on the conveyor using a blower. However, the rapid cooling step is not necessarily limited to a blower cooling structure using such a blower. I can't.

また、好適には、前記急冷工程は、圧延後の線材がA線とA線との間の脱炭領域を速やかに通過させために、少なくともその脱炭領域において、2℃/秒以上、好ましくは3℃/秒以上、さらに好適には4℃/秒以上の冷却速度で、前記コンベア上の線材を急冷させる。冷却速度が高いほど、A線とA線との間の脱炭領域を速やかに通過させられるので、フェライトの析出すなわち表面脱炭層の形成が可及的に少なくされる。 Also, preferably, the rapid cooling step, in order quickly passed through a decarburization region between the wire after rolling and 3-wire and the A 1 line A, at least in its decarburization region, 2 ° C. / sec or higher The wire rod on the conveyor is rapidly cooled at a cooling rate of preferably 3 ° C./second or more, more preferably 4 ° C./second or more. As the cooling rate is high, since it is quickly passed through the decarburization region between A 3-wire and A 1 line, precipitation i.e. formation of a surface decarburized layer of the ferrite is as much as possible reduced.

また、好適には、前記徐冷工程は、フードで覆われた空間内においてヒータを用いて前記コンベア上の線材を常温放置よりも積極的に徐冷するものであるが、そのヒータは、輻射加熱を主体とする遠赤外線ヒータが好適に用いられるが、温風を発生させるセラミックヒータを用いるなど、常温放置よりも積極的に温度を保持して緩やかに徐冷させる種々の徐冷構造が用いられ得る。   Preferably, in the slow cooling step, the wire rod on the conveyor is more slowly cooled than in a room temperature by using a heater in a space covered with a hood. Far-infrared heaters mainly used for heating are preferably used, but various slow cooling structures are used, such as ceramic heaters that generate warm air, which keeps the temperature positively and slowly cools rather than standing at room temperature. Can be.

また、好適には、前記徐冷工程は、パーライト変態終了温度付近まで1.0/秒以下、好ましくは0.6℃/秒以下の冷却速度で前記線材を徐冷するものである。冷却速度が遅いほど、パーライト変態が促進されて機械的性質が軟質で常温加工すなわち、コイルばねの冷間での成形が容易な線材が得られる。   Preferably, the slow cooling step is to slowly cool the wire at a cooling rate of 1.0 / second or less, preferably 0.6 ° C./second or less, to near the end temperature of the pearlite transformation. The slower the cooling rate, the more the pearlite transformation is promoted, the softer the mechanical properties, and the room temperature processing, that is, the wire that can be easily formed in the cold coil spring can be obtained.

また、好適には、前記徐冷工程は、線材をパーライト変態終了点付近まで徐冷させるが、。必ずしもパーライト変態終了点を下回るまで徐冷する必要はなく、軟質であることを示す大きな絞り(Ra%)値が得られるまでパーライト相内で徐冷されればよい。   Preferably, the slow cooling step slowly cools the wire to the vicinity of the end point of the pearlite transformation. It is not always necessary to slowly cool the pearlite transformation end point, and it may be gradually cooled in the pearlite phase until a large drawing (Ra%) value indicating softness is obtained.

また、好適には、前記線材には、炭素Cが0.7質量%以下の低炭素鋼であって、珪素Siが1.0質量%以上の高Si鋼が好適に用いられる。たとえば、質量%で、C:0.40〜0.61%、Si:1.50〜2.20%、Mn:0.60〜1.00%、P:0〜0.035%、S:0〜0.035%、Cu:0〜0.30%を含有し、残部がFeおよび不可避的不純物から成るばね鋼が上記線材に好適に用いられるが、必ずしも、この化学成分に限られない。なお、必要に応じて、Niを1%以下、Crを0.60%以下、Vを0.30%以下の範囲で適宜添加しても良い。   Preferably, the wire is a low-carbon steel having carbon C of 0.7% by mass or less and high-Si steel having silicon Si of 1.0% by mass or more. For example, in mass%, C: 0.40 to 0.61%, Si: 1.50 to 2.20%, Mn: 0.60 to 1.00%, P: 0 to 0.035%, S: Spring steel containing 0 to 0.035%, Cu: 0 to 0.30%, the balance being Fe and inevitable impurities is preferably used for the wire, but not necessarily limited to this chemical component. If necessary, Ni may be added as appropriate within a range of 1% or less, Cr within 0.60% or less, and V within a range of 0.30% or less.

図1は、熱間圧延後の冷却装置を説明する図である。図1において、たとえば30〜70%、好ましくは50%程度の所定の減面率で圧延されて圧延装置12から出力された冷間巻ばね用線材(以下線材という)14は、傾斜した軸線まわりに回転させられるレーイングヘッド16によってループ状に巻回されつつ、コンベア18上に重ねた状態で展開される。コンベア18は、ループ状に巻回され且つ重ねられた線材14を搬送するように、僅かに傾斜した複数のループコンベアLC1乃至LC9が一列に連ねられることにより構成されている。   FIG. 1 is a diagram illustrating a cooling device after hot rolling. In FIG. 1, a cold-wound spring wire rod 14 (hereinafter referred to as a wire rod) 14 that has been rolled at a predetermined area reduction ratio of, for example, about 30 to 70%, preferably about 50%, and output from the rolling device 12 is around an inclined axis. It is unrolled on the conveyor 18 while being wound in a loop shape by the laying head 16 that is rotated in the same manner. The conveyor 18 is configured by a plurality of loop conveyors LC1 to LC9 that are slightly inclined and connected in a row so as to convey the wire 14 wound in a loop and stacked.

図1のコンベア18において、圧延装置12に隣接して配置されているループコンベアLC1乃至LC4の搬送区間には、複数台のブロア20が設けられ、空気がループコンベアLC1乃至LC4上の線材14を強制冷却するためにその線材14に対して空気(大気)が強制的に吹きつけられる。このループコンベアLC1乃至LC4上での搬送工程が、線材14を急冷するための急冷工程に対応している。   In the conveyor 18 of FIG. 1, a plurality of blowers 20 are provided in the conveyance section of the loop conveyors LC1 to LC4 arranged adjacent to the rolling device 12, and the air passes the wire 14 on the loop conveyors LC1 to LC4. Air (atmosphere) is forcibly blown against the wire 14 for forced cooling. The conveying process on the loop conveyors LC1 to LC4 corresponds to a rapid cooling process for rapidly cooling the wire 14.

上記ループコンベアLC1乃至LC4に続いて配置されたループコンベアLC5乃至LC8には、それらループコンベアLC5乃至LC8上の線材14を覆うフード22と、そのフード22の内壁面に取り付けられて、そのフード22で覆われた空間内において線材14を徐冷するために加熱する複数個のヒータ24とが設けられている。このフード22で覆われたループコンベアLC5乃至LC8上での線材14の搬送工程が、大気中放置のような自然冷却よりも積極的に線材14を保温しつつ徐冷する徐冷工程に対応している。   The loop conveyors LC5 to LC8 arranged subsequent to the loop conveyors LC1 to LC4 are attached to the hood 22 covering the wire 14 on the loop conveyors LC5 to LC8 and the inner wall surface of the hood 22, and the hood 22 A plurality of heaters 24 are provided to heat the wire 14 in order to gradually cool the wire 14 in the space covered with. The conveyance process of the wire 14 on the loop conveyors LC5 to LC8 covered with the hood 22 corresponds to a gradual cooling process in which the wire 14 is gradually cooled while keeping the temperature more positive than natural cooling such as being left in the air. ing.

上記フード22の入口および出口には、線材14の温度を検出するための入口温度センサ26および出口温度センサ28が設けられている。図示しない制御装置は、入口温度センサ26および出口温度センサ28により検出された線材14の温度を表示させるだけでなく、後述の徐冷工程P5における冷却曲線が得られるようにヒータ24の出力を制御し、ループコンベアLC5乃至LC8の速度を制御する。   An inlet temperature sensor 26 and an outlet temperature sensor 28 for detecting the temperature of the wire 14 are provided at the inlet and outlet of the hood 22. A control device (not shown) not only displays the temperature of the wire 14 detected by the inlet temperature sensor 26 and the outlet temperature sensor 28, but also controls the output of the heater 24 so as to obtain a cooling curve in the slow cooling process P5 described later. Then, the speed of the loop conveyors LC5 to LC8 is controlled.

図2は、上記線材14の製造工程の要部を説明する工程図である。図2において、鋼片整検工程P1では、たとえば、質量%で、C:0.48%、Si:2.00%、Mn:0.70%、Cu:0.20%、Ni:0.60%、V:0.20%を含有し、残部がFeおよび不可避的不純物から成るばね鋼の素材に対して、傷取りが施され且つ形状が整えられる。次いで、加熱工程P2では、上記素材に対して、所定の加熱炉内で900〜1250℃の加熱が施される。この加熱では、たとえば1000℃に上記素材が加熱される。熱間圧延工程P3では、前記圧延装置12において、全域で950℃以上の温度で素材に対して圧延が施され、所定の断面寸法の線材14とされる。急冷工程P4では、前記ループコンベアLC1乃至LC4上において複数台のブロア20からの送風により線材14が3.0℃/秒以上の冷却速度で、直ちに急冷が施される。そして、徐冷工程P5では、続くループコンベアLC5乃至LC8上において、フード22で覆われるとともにヒータ24により必要に応じて熱が供給されることにより、1.0℃/秒以下の冷却速度でパーライト変態終了点付近まで徐冷される。次いで、必要に応じて寸法や表面のキズの検査が行われる。   FIG. 2 is a process diagram illustrating the main part of the manufacturing process of the wire 14. In FIG. 2, in the steel piece inspection step P1, for example, in mass%, C: 0.48%, Si: 2.00%, Mn: 0.70%, Cu: 0.20%, Ni: 0.00. A spring steel material containing 60%, V: 0.20%, the balance being Fe and unavoidable impurities is scratched and shaped. Next, in the heating step P2, the material is heated at 900 to 1250 ° C. in a predetermined heating furnace. In this heating, the material is heated to 1000 ° C., for example. In the hot rolling process P3, in the rolling apparatus 12, the material is rolled at a temperature of 950 ° C. or more in the entire region to obtain a wire 14 having a predetermined cross-sectional dimension. In the rapid cooling process P4, the wire 14 is immediately cooled at a cooling rate of 3.0 ° C./second or more by air from the plurality of blowers 20 on the loop conveyors LC1 to LC4. In the slow cooling process P5, on the subsequent loop conveyors LC5 to LC8, pearlite is covered at the cooling rate of 1.0 ° C./second or less by being covered with the hood 22 and supplied with heat as required by the heater 24. It is gradually cooled to near the transformation end point. Subsequently, the inspection of the dimension and the surface flaw is performed as needed.

図3は、上記急冷工程P4および徐冷工程P5における線材14の温度変化を実線の冷却曲線で示している。破線は、従来のコンベア18上における線材14の等速冷却の冷却曲線を示す。また、図3において、二点鎖線は、オーステナイト相でフェライトの析出が開始されるA変態開始点の温度に対応するA線を示し、三点鎖線は、フェライトの析出が終了する共析変態点として知られるA変態終了点の温度に対応するA線を示し、一点鎖線は、パーライト変態終了点の温度に対応するA線を示している。図3において、破線は従来の工程で製造された線材14の等速冷却による冷却曲線を示し、実線は本実施例の工程P1乃至P5で製造された線材14の冷却曲線を示している。図3において、実線に示す冷却曲線の変曲点Sよりも高温側が急冷工程P4での冷却曲線であり、変曲点Sよりも低温側が徐冷工程P5での冷却曲線である。この変曲点Sは上記共析変態点(A変態終了点)に対応するA線上またはその近傍に位置している。 FIG. 3 shows a temperature change of the wire 14 in the rapid cooling step P4 and the slow cooling step P5 by a solid line cooling curve. A broken line shows a cooling curve of constant speed cooling of the wire 14 on the conventional conveyor 18. In FIG. 3, the two-dot chain line indicates the A 3 line corresponding to the temperature of the A 3 transformation start point where the precipitation of ferrite starts in the austenite phase, and the three-dot chain line indicates the eutectoid where the ferrite precipitation ends. indicates a 1 line corresponding to the temperature of a 3 transformation finish point, known as the transformation point, a chain line shows the a 0 line corresponding to the temperature of the pearlite transformation end point. In FIG. 3, the broken line shows the cooling curve by constant-speed cooling of the wire 14 manufactured by the conventional process, and the solid line shows the cooling curve of the wire 14 manufactured by the processes P1 to P5 of this embodiment. In FIG. 3, the higher temperature side than the inflection point S of the cooling curve shown by the solid line is the cooling curve in the rapid cooling step P4, and the lower temperature side than the inflection point S is the cooling curve in the slow cooling step P5. The inflection point S is located on A 1 line or near corresponding to the eutectoid transformation point (A 3 transformation finish point).

図4はFe−C系の平衡状態図のうち、炭素の割合が1.0%以下の領域を拡大して示す図である。この図4と対比して説明すると、上記図3の破線にて示される従来の工程で製造された線材14の冷却曲線によれば、A変態開始点から共析変態点温度Aまでのオーステナイト相とフェライト相との2相温度領域であるフェライト脱炭領域を速やかに通過させられるとともに、共析変態点温度Aからパーライト変態終了点Aまでのパーライト相温度領域も速やかに通過させられることから、表面フェライト層が少ないもののパーライト変態が不充分であるために充分な軟質な材料が得られなかった。これに対し、図3の実線に示す本実施例の工程P1乃至P5で製造された線材14の冷却曲線によれば、急冷工程P4により上記フェライト脱炭領域では速やかに通過させられるとともに、徐冷工程P5により上記パーライト相領域では緩やかに時間をかけて通過させられるので、表面フェライト層が少なくしかも充分なパーライト変態により常温加工に対して充分な軟質のばね用線材が得られた。 FIG. 4 is an enlarged view showing a region where the carbon ratio is 1.0% or less in the Fe—C equilibrium diagram. When described in comparison with FIG. 4, according to the conventional cooling curve of the wire 14 produced in the process shown by the broken line of FIG. 3, from A 3 transformation start point to the eutectoid transformation temperature A 1 together is caused to rapidly transit ferrite decarburization region is two-phase temperature region of an austenite phase and a ferrite phase, pearlite phase temperature region from eutectoid transformation temperature a 1 to pearlite transformation end point a 0 is also allowed to quickly pass Therefore, although the surface ferrite layer was small, the pearlite transformation was insufficient, so that a sufficiently soft material could not be obtained. On the other hand, according to the cooling curve of the wire 14 manufactured in the steps P1 to P5 of the present embodiment shown by the solid line in FIG. 3, the rapid cooling step P4 allows the ferrite decarburization region to pass quickly and gradually cools. Since the process P5 allows the pearlite phase region to pass slowly over time, the surface ferrite layer is small, and a sufficient pearlite transformation yields a soft spring wire that is sufficiently soft for normal temperature processing.

以下において、フェライト脱炭量D(F)(mm)、および機械的性質を示す絞りRa(%)について、上記従来と本実施例の工程で製造された線材14のそれぞれについて、本発明者等が行った測定結果を、図5乃至図8を用いて説明する。図5および図6は上記従来の工程で製造された線材14におけるフェライト脱炭量D(F)(mm)および絞りRa(%)を示す。これによれば、フェライト脱炭量D(F)(mm)については規格値0.02mmを超えるものがある程度存在するとともに、絞りRa(%)については規格値40%を下回るものもある程度存在した。しかしながら、本実施例の工程で製造された線材14では、図7および図8に示すように、フェライト脱炭量D(F)(mm)については規格値0.02mmよりも大幅に低いものばかりとなるとともに、絞りRa(%)については規格値40%を下回るものも皆無となった。   In the following, for the ferrite decarburization amount D (F) (mm) and the drawing Ra (%) indicating mechanical properties, the present inventors etc. The measurement results performed by will be described with reference to FIGS. 5 and 6 show the ferrite decarburization amount D (F) (mm) and the drawing Ra (%) in the wire 14 manufactured by the conventional process. According to this, some of the ferrite decarburization amount D (F) (mm) exceeds a standard value of 0.02 mm, and some of the aperture Ra (%) is below a standard value of 40%. . However, in the wire 14 manufactured in the process of this example, as shown in FIGS. 7 and 8, the ferrite decarburization amount D (F) (mm) is much lower than the standard value 0.02 mm. At the same time, there was no aperture Ra (%) below the standard value of 40%.

上述のように、本実施例によれば、熱間にて圧延された線材14をコイル状に巻回してコンベア18上に展開し且つ搬送する過程で冷却する冷却工程が、(a) 線材14の共析変態点付近まで急冷する急冷工程P4と、(b) その急冷工程P4により急冷された線材14をその急冷工程P4の冷却速度よりも低い冷却速度で徐冷する徐冷工程P5とを、含むことから、圧延後の線材14はA線とA線(共析変態点温度)との間の脱炭領域を速やかに通過させられることによりフェライトの析出すなわち表面脱炭層の形成が可及的に少なくされるとともに、徐冷工程P5による徐冷によって十分に軟化されて常温加工性が高められるので、表面脱炭層が少なく且つ軟質であるという相反する性質を備えた高品質の冷間巻ばね用線材14が得られる。この冷間巻ばね用線材は、高い冷間加工性を備えたものとなる。 As described above, according to the present embodiment, the cooling step of cooling the wire 14 rolled in the hot state in the process of winding it in a coil shape, developing it on the conveyor 18 and transporting it is (a) the wire 14. A rapid cooling step P4 for rapidly cooling to the vicinity of the eutectoid transformation point, and (b) a slow cooling step P5 for gradually cooling the wire 14 rapidly cooled by the rapid cooling step P4 at a cooling rate lower than the cooling rate of the rapid cooling step P4. , because they contain, the wire 14 after the rolling precipitation i.e. formation of a surface decarburized layer of the ferrite by being allowed to quickly pass through the decarburization region between a 3-wire and a 1 line (eutectoid transformation point temperature) Since it is reduced as much as possible and sufficiently softened by gradual cooling in the gradual cooling step P5 and the room temperature workability is improved, high-quality cooling with the contradictory property that the surface decarburized layer is small and soft. The interwinding spring wire 14 is obtained. . This cold wound spring wire has high cold workability.

また、本実施例によれば、急冷工程P4が、コンベア18上の線材に対してブロア20を用いて空気を吹きつけることにより線材14を急冷させるものであることから、比較的簡単な設備で容易に急速冷却が可能となる。   Further, according to the present embodiment, the rapid cooling process P4 is for rapidly cooling the wire 14 by blowing air to the wire on the conveyor 18 by using the blower 20, and therefore, with relatively simple equipment. Rapid cooling can be easily performed.

また、本実施例によれば、急冷工程P4が、線材14の少なくとも脱炭領域において2℃/秒以上の冷却速度で該線材を急冷させるものであることから、圧延後の線材14がA線とA線との間の脱炭領域を速やかに通過させられることによりフェライトの析出すなわち表面脱炭層の形成が可及的に少なくされる。 Moreover, according to the present Example, since the rapid cooling process P4 rapidly cools the wire at a cooling rate of 2 ° C./second or more in at least the decarburization region of the wire 14, the wire 14 after rolling is A 3. precipitation i.e. formation of a surface decarburized layer of the ferrite is as much as possible reduced by being allowed to quickly pass through the decarburization region between the lines and a 1 line.

また、本実施例によれば、徐冷工程P5が、フード22で覆われた空間内においてヒータ24を用いてコンベア18上の線材14を徐冷するものであることから、比較的簡単な設備で容易に急速冷却が可能となる。   Further, according to the present embodiment, since the slow cooling process P5 slowly cools the wire 14 on the conveyor 18 using the heater 24 in the space covered with the hood 22, relatively simple equipment. Quick cooling is possible easily.

また、本実施例によれば、徐冷工程P5が、すくなくともパーライト変態終了温度まで1.0℃/秒以下の冷却速度で前記線材を徐冷するものであることから、その徐冷によって十分に軟化されるので、線材の冷間加工性が高められる。   In addition, according to the present example, since the slow cooling step P5 slowly cools the wire at a cooling rate of 1.0 ° C./second or less to at least the pearlite transformation end temperature, the slow cooling is sufficient. Since it is softened, the cold workability of the wire is improved.

また、本実施例によれば、線材14が、質量%で、C:0.40〜0.61%、Si:1.50〜2.20%、Mn:0.60〜1.00%、P:0〜0.035%、S:0〜0.035%、Cu:0〜0.30%を含有し、残部がFeおよび不可避的不純物から成る化学組成内のものであるので、疲労寿命が長く、高い冷間加工性を備えたばね用鋼が得られる。   Moreover, according to the present Example, the wire 14 is the mass%, C: 0.40-0.61%, Si: 1.50-2.20%, Mn: 0.60-1.00%, F: 0 to 0.035%, S: 0 to 0.035%, Cu: 0 to 0.30%, with the balance being in the chemical composition consisting of Fe and inevitable impurities, fatigue life A spring steel with a long and high cold workability can be obtained.

その他、一々例示はしないが、本発明は、その趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。   In addition, although not illustrated one by one, the present invention is implemented with various modifications within a range not departing from the gist thereof.

熱間圧延後においてループ状に巻回されてコンベア上に展開された線材を冷却するための冷却装置を概略説明する図である。It is a figure which illustrates schematically the cooling device for cooling the wire wound by the loop shape after the hot rolling, and expand | deployed on the conveyor. 本発明の一実施例の製造方法の要部を説明する工程図である。It is process drawing explaining the principal part of the manufacturing method of one Example of this invention. 図2の急冷工程および徐冷工程における冷却曲線を、各変態点および従来の冷却曲線と対比して説明する図である。It is a figure explaining the cooling curve in the rapid cooling process and slow cooling process of FIG. 2 in contrast with each transformation point and the conventional cooling curve. 図2の構成により製造される線材の冷却過程における状態を説明する平衡状態図である。It is an equilibrium diagram explaining the state in the cooling process of the wire manufactured by the structure of FIG. 従来の製造工程で製造された線材のフェライト脱炭量D(F)(mm)のばらつきを示す図である。It is a figure which shows the dispersion | variation in the ferrite decarburization amount D (F) (mm) of the wire manufactured by the conventional manufacturing process. 従来の製造工程で製造された線材の絞りRa(%)のばらつきを示す図である。It is a figure which shows the dispersion | variation in aperture_diaphragm | restriction Ra (%) of the wire manufactured by the conventional manufacturing process. 図2の製造工程で製造された線材のフェライト脱炭量D(F)(mm)のばらつきを示す図である。It is a figure which shows the dispersion | variation in the ferrite decarburization amount D (F) (mm) of the wire manufactured by the manufacturing process of FIG. 図2の製造工程で製造された線材の絞りRa(%)のばらつきを示す図である。It is a figure which shows the dispersion | variation in aperture_diaphragm | restriction Ra (%) of the wire manufactured by the manufacturing process of FIG.

符号の説明Explanation of symbols

14:冷間巻ばね用線材(線材)
18:コンベア
20:ブロア
22:フード
24:ヒータ
P4:急冷工程
P5:徐冷工程
14: Cold winding spring wire (wire)
18: Conveyor 20: Blower 22: Hood 24: Heater P4: Rapid cooling process P5: Slow cooling process

Claims (4)

熱間圧延された線材をコイル状に巻回し、コンベア上に展開して搬送する過程で冷却する冷却工程を有する冷間巻ばね用線材の製造方法であって、該冷却工程は、
前記線材の共析変態点付近まで急冷する急冷工程と、
該急冷工程により急冷された前記線材を、該急冷工程における冷却速度よりも遅い冷却速度で徐冷する徐冷工程と
を、含むことを特徴とする冷間巻ばね用線材の製造方法。
A method of manufacturing a wire for a cold-wound spring having a cooling step of winding a hot-rolled wire in a coil shape and cooling it in a process of developing and transporting the wire on a conveyor, the cooling step comprising:
A quenching step of quenching to near the eutectoid transformation point of the wire,
A method of manufacturing a wire for a cold-wound spring, comprising: a slow cooling step of slowly cooling the wire that has been rapidly cooled in the rapid cooling step at a cooling rate lower than the cooling rate in the rapid cooling step.
前記急冷工程は、前記線材の少なくとも脱炭領域において2℃/秒以上の冷却速度で該線材を急冷させるものである請求項1の冷間巻ばね用線材の製造方法。 The method for producing a wire rod for a cold-wound spring according to claim 1, wherein the quenching step quenches the wire at a cooling rate of 2 ° C / second or more in at least a decarburized region of the wire. 前記徐冷工程は、すくなくともパーライト変態終了温度まで1.0℃/秒以下の冷却速度で該線材を徐冷するものである請求項1または2のいずれかの冷間巻ばね用線材の製造方法。 The method for producing a wire material for a cold-wound spring according to any one of claims 1 and 2, wherein the slow cooling step gradually cools the wire at a cooling rate of 1.0 ° C / second or less to at least a pearlite transformation end temperature. . 前記線材は、質量%で、C:0.40〜0.61%、Si:1.50〜2.20%、Mn:0.60〜1.00%、P:0〜0.035%、S:0〜0.035%、Cu:0〜0.30%を含有し、残部がFeおよび不可避的不純物から成るばね鋼である請求項1乃至3のいずれかの冷間巻ばね用線材の製造方法。

The said wire is the mass%, C: 0.40-0.61%, Si: 1.50-2.20%, Mn: 0.60-1.00%, P: 0-0.035%, The wire for a cold-wound spring according to any one of claims 1 to 3, wherein S is a spring steel containing 0 to 0.035%, Cu: 0 to 0.30%, and the balance being Fe and inevitable impurities. Production method.

JP2005194427A 2005-07-01 2005-07-01 Method for manufacturing cold-coiled wire rod for spring Pending JP2007009300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005194427A JP2007009300A (en) 2005-07-01 2005-07-01 Method for manufacturing cold-coiled wire rod for spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005194427A JP2007009300A (en) 2005-07-01 2005-07-01 Method for manufacturing cold-coiled wire rod for spring

Publications (1)

Publication Number Publication Date
JP2007009300A true JP2007009300A (en) 2007-01-18

Family

ID=37748177

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005194427A Pending JP2007009300A (en) 2005-07-01 2005-07-01 Method for manufacturing cold-coiled wire rod for spring

Country Status (1)

Country Link
JP (1) JP2007009300A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2017358A2 (en) 2007-07-20 2009-01-21 Kabushiki Kaisha Kobe Seiko Sho Steel wire material for spring and its producing method
JP2009068030A (en) * 2007-09-10 2009-04-02 Kobe Steel Ltd Spring steel wire rod excellent in decarburization resistance and wire drawing workability and method for producing the same
WO2010074544A3 (en) * 2008-12-26 2010-09-23 Posco Surface decarburization-restrained steel and manufacturing method thereof
KR101076199B1 (en) 2009-01-28 2011-10-21 현대제철 주식회사 Method for Manufacturing Thick Steel Plate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2017358A2 (en) 2007-07-20 2009-01-21 Kabushiki Kaisha Kobe Seiko Sho Steel wire material for spring and its producing method
EP2017358A3 (en) * 2007-07-20 2009-04-29 Kabushiki Kaisha Kobe Seiko Sho Steel wire material for spring and its producing method
EP2374904A1 (en) 2007-07-20 2011-10-12 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel wire material for spring and its producing method
US8382918B2 (en) 2007-07-20 2013-02-26 Kobe Steel, Ltd. Steel wire material for spring and its producing method
JP2009068030A (en) * 2007-09-10 2009-04-02 Kobe Steel Ltd Spring steel wire rod excellent in decarburization resistance and wire drawing workability and method for producing the same
US9005378B2 (en) 2007-09-10 2015-04-14 Kobe Steel, Ltd. Spring steel wire rod excellent in decarburization resistance and wire drawing workability and method for producing same
WO2010074544A3 (en) * 2008-12-26 2010-09-23 Posco Surface decarburization-restrained steel and manufacturing method thereof
KR101076199B1 (en) 2009-01-28 2011-10-21 현대제철 주식회사 Method for Manufacturing Thick Steel Plate

Similar Documents

Publication Publication Date Title
US20100263772A1 (en) Wire rods having superior strength and ductility for drawing and method for manufacturing the same
JP2004137597A (en) Hot rolled wire rod in which heat treatment before wire drawing can be eliminated, and having excellent wire drawability
JP2006524573A (en) Method for thermal processing control of steel
CN106605000B (en) Method for producing the steel spring of thermoforming
US20060065334A1 (en) High carbon steel wire with bainitic structure for spring and other cold-formed applications
JP2007009300A (en) Method for manufacturing cold-coiled wire rod for spring
JP5511067B2 (en) Coil spring manufacturing method
JP3598868B2 (en) Manufacturing method of hot rolled wire rod
JPH03240919A (en) Production of steel wire for wiredrawing
KR102224892B1 (en) Manufacturing method for steel wire rod having excellent drawability and steel wire rod manufactured using the same
JPS60114517A (en) Production of steel wire rod which permits omission of soft annealing treatment
JP2018059143A (en) Method for manufacturing high carbon steel strip with excellent workability
JP5313599B2 (en) Heat treatment method for steel wire
JP2017214621A (en) Manufacturing method of hyper-eutectoid steel wire
KR20210000022A (en) Manufacturing method of boron steel wire having excellent picking property and boron steel wire manufactured using the same
JP2007107032A (en) Method for producing steel pipe for hollow stabilizer, and producing method for producing hollow stabilizer
KR100516517B1 (en) A method for manufacturing a high carbon wire having homogeneous tensile strength
JP2002180200A (en) Steel wire rod for hard-drawn spring, wire drawing rod for hard-drawn spring, hard-drawn spring and method for producing the hard-drawn spring
JPH10183242A (en) Production of high strength steel wire
KR101125958B1 (en) Variable heat treatment apparatus and manufacturing method of high strength and high ductility wire rod using the same
JPS5831034A (en) Production of cold rolled steel plate for drawing
JPS58164731A (en) Direct heat treatment of wire rod
JPH0379719A (en) Manufacture of si-cr series spring wire rod having excellent wire drawability
JP2001192771A (en) Hot rolled wire rod with fine diameter
JP2003201540A (en) Steel wire rod and steel wire