JP2007009161A - Method for producing composite particle - Google Patents

Method for producing composite particle Download PDF

Info

Publication number
JP2007009161A
JP2007009161A JP2005195576A JP2005195576A JP2007009161A JP 2007009161 A JP2007009161 A JP 2007009161A JP 2005195576 A JP2005195576 A JP 2005195576A JP 2005195576 A JP2005195576 A JP 2005195576A JP 2007009161 A JP2007009161 A JP 2007009161A
Authority
JP
Japan
Prior art keywords
particles
child
mother
carbon dioxide
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005195576A
Other languages
Japanese (ja)
Inventor
Kazutomo Osaki
和友 大崎
Naoki Nojiri
尚材 野尻
Hideaki Kubo
英明 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2005195576A priority Critical patent/JP2007009161A/en
Publication of JP2007009161A publication Critical patent/JP2007009161A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing composite particles of firmly sticking small organic particles on the surface of organic or inorganic mother particles by simple production processes without using an organic solvent harmful to a human body. <P>SOLUTION: This method for producing the composite particles of sticking the small organic particles on the surface of the organic mother particles is provided by mixing the small organic particles with the organic mother particles, then in the presence of carbon dioxide at a critical temperature or higher and under ≥4 MPa pressure, plasticizing the small organic particles in a container and then removing carbon dioxide. Also, the method for producing the composite particles of sticking the small organic particles on the surface of the inorganic mother particles is provided by mixing the small organic particles with the inorganic mother particles, then in the presence of carbon dioxide at the critical temperature or higher and under ≥4 MPa pressure, plasticizing the small organic particles in the container and then removing carbon dioxide. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複合化粒子の製造方法に関する。更に詳しくは、撥水性、撥油性、光学特性、紫外線防御性、感触、安全性、活性、色調、分散安定性、耐候性が制御された、塗料、インクジェット型プリンター用インク、トナー、化粧品等に好適に使用しうる複合化粒子の製造方法に関する。   The present invention relates to a method for producing composite particles. More specifically, for paints, ink jet printer inks, toners, cosmetics, etc. with controlled water repellency, oil repellency, optical properties, UV protection, feel, safety, activity, color tone, dispersion stability, and weather resistance. The present invention relates to a method for producing composite particles that can be suitably used.

母粒子表面に微粒子を複合化させる方法としては、機械的混合によって複合化させるドライブレンド法(例えば、特許文献1参照)、粒子を有機溶媒に分散させ、得られるスラリーをスプレードライ法によって溶媒を蒸発させる溶媒揮散法(例えば、特許文献2参照)などが知られている。
しかしながら、ドライブレンド法では、母粒子への有機微粒子の固着性が弱いという欠点がある。また、溶媒揮散法や貧溶媒法では、使用される有機溶媒に引火の恐れがあり、得られた粒子に有機溶媒が残留し人体に有害であったり、においの悪化を招く恐れがある等の欠点があり、また加熱による脱溶媒操作が必要となる。さらに、溶媒が使用されることにより毛管凝縮作用が起き、得られる粒子が凝集するため、解砕・分級工程が必要とされる等、操作が煩雑であるという欠点がある。
特開平9-12430号公報 特開平9-48707号公報
As a method of compounding fine particles on the surface of the mother particle, a dry blend method (for example, refer to Patent Document 1) in which the fine particles are compounded by mechanical mixing, particles are dispersed in an organic solvent, and the resulting slurry is spray-dried. A solvent volatilization method for evaporating (for example, see Patent Document 2) is known.
However, the dry blend method has a drawback that the organic fine particles are poorly fixed to the mother particles. In addition, in the solvent volatilization method and the poor solvent method, there is a possibility that the organic solvent used may ignite, the organic solvent may remain in the obtained particles and may be harmful to the human body, or the smell may be deteriorated. It has drawbacks and requires a solvent removal operation by heating. Further, the use of a solvent causes a capillary condensation action, and the resulting particles agglomerate, so that there is a disadvantage that the operation is complicated, for example, a pulverization / classification step is required.
JP-A-9-12430 JP 9-48707 A

本発明は、人体に対して有害な有機溶媒を用いることなく、簡便な製造工程により、有機又は無機母粒子表面に有機子粒子が強固に固着した複合化粒子の製造方法を提供することを課題とする。   An object of the present invention is to provide a method for producing composite particles in which organic particles are firmly fixed on the surface of organic or inorganic mother particles by a simple production process without using an organic solvent harmful to the human body. And

本発明は、
〔1〕 有機子粒子を有機母粒子と混合した後、臨界温度以上かつ4MPa以上の圧力の二酸化炭素の存在下、該有機子粒子を容器内で可塑化し、二酸化炭素を除去する、有機子粒子が有機母粒子表面に固着した複合化粒子の製造方法、
ならびに
〔2〕 有機子粒子を無機母粒子と混合した後、臨界温度以上かつ4MPa以上の圧力の二酸化炭素の存在下、該有機子粒子を容器内で可塑化し、二酸化炭素を除去する、有機子粒子が無機母粒子表面に固着した複合化粒子の製造方法
に関する。
The present invention
[1] After mixing the organic particles with the organic mother particles, the organic particles are plasticized in the container to remove carbon dioxide in the presence of carbon dioxide at a critical temperature or higher and a pressure of 4 MPa or higher. Manufacturing method of composite particles fixed to the organic mother particle surface,
And [2] After mixing the organic particles with the inorganic mother particles, the organic particles are plasticized in a container in the presence of carbon dioxide at a pressure higher than the critical temperature and a pressure of 4 MPa or more to remove the carbon dioxide. The present invention relates to a method for producing composite particles in which particles are fixed to the surface of inorganic mother particles.

本発明の方法で製造された複合化粒子は、凝集が少なく、有機又は無機母粒子表面に有機子粒子が強固に固着しているため、攪拌・混合における機械的エネルギーによっても有機又は無機母粒子から有機子粒子の剥離が実質的になく、この複合化粒子を用いてさらなる工程を行っても、複合化粒子における高い性能が維持される。   The composite particles produced by the method of the present invention are less agglomerated and the organic particles are firmly fixed on the surface of the organic or inorganic mother particles. The organic particles are not substantially peeled off, and high performance in the composite particles is maintained even if the composite particles are used for further steps.

本明細書において、複合化粒子とは、有機子粒子(以下単に子粒子と記す)が有機又は無機母粒子(以下単に母粒子と記す)表面に固着しているものをいう。また、固着している子粒子は、塑性変形し、可塑化前の形状よりも偏平な形状で母粒子に密着した状態で固着したものである。また、固着した子粒子同士が母粒子表面上で互いに部分的に融着していてもよい。本発明において「固着」とは、子粒子が母粒子表面に接着し、剥離しにくい状態のものを意味する。   In the present specification, composite particles refer to particles in which organic particles (hereinafter simply referred to as child particles) are fixed to the surface of organic or inorganic mother particles (hereinafter simply referred to as mother particles). In addition, the child particles that are fixed are those that are plastically deformed and fixed in a state of being flat with respect to the shape before plasticization and in close contact with the mother particles. Further, the stuck child particles may be partially fused to each other on the surface of the mother particle. In the present invention, “adherence” means a state in which the child particles adhere to the surface of the mother particles and are difficult to peel off.

本発明の母粒子表面に子粒子が固着した複合化粒子の製造方法は、子粒子を母粒子と混合した後、臨界温度以上かつ4MPa以上の圧力の二酸化炭素の存在下、該子粒子を容器内で可塑化し、子粒子を母粒子表面に固着させ、該二酸化炭素を除去することに1つの大きな特徴を有する。本発明の方法を用いれば、子粒子は二酸化炭素に接触することで可塑化し、形状が変形するため、子粒子の母粒子表面への接触面積が大きくなり、子粒子の母粒子表面への固着力が向上する。また、可塑化条件によっては、固着した子粒子同士が互いに部分的に融着している複合化粒子、すなわち子粒子の少なくとも一部が互いに融着して母粒子上に固着している複合化粒子を得ることもできる。かかる複合化粒子は、子粒子が母粒子表面に強固に固着しているという優れたものである。   The method for producing composite particles in which the child particles are fixed to the surface of the mother particles of the present invention is obtained by mixing the child particles with the mother particles and then placing the child particles in a container in the presence of carbon dioxide at a critical temperature or higher and a pressure of 4 MPa or higher. It has one great feature in that it is plasticized inside, and the child particles are fixed to the surface of the mother particles to remove the carbon dioxide. When the method of the present invention is used, the child particles are plasticized by contact with carbon dioxide, and the shape is deformed. Therefore, the contact area of the child particles with the mother particle surface is increased, and the child particles are fixed on the mother particle surface. Wearing power is improved. Further, depending on the plasticization conditions, composite particles in which the fixed child particles are partially fused to each other, that is, composite in which at least some of the child particles are fused to each other and are fixed on the mother particle. Particles can also be obtained. Such composite particles are excellent in that the child particles are firmly fixed to the surface of the mother particles.

母粒子としては、臨界温度以上かつ4MPa以上の圧力の二酸化炭素に実質的に溶解せず、該二酸化炭素との接触においてもその形状及び形態が変化しないものを使用することができる。母粒子の平均粒径は、特に限定されないが、好ましくは0.1〜1,000μm、より好ましくは0.2〜500μm、更に好ましくは0.2〜100μmである。母粒子としては、特に限定されず、例えば、球状、板状、不定形の粒子が挙げられ、中でも、感触が良好である観点から、球状粒子が好ましい。   As the mother particles, particles that do not substantially dissolve in carbon dioxide at a critical temperature or higher and a pressure of 4 MPa or higher and whose shape and form do not change upon contact with the carbon dioxide can be used. The average particle size of the mother particles is not particularly limited, but is preferably 0.1 to 1,000 μm, more preferably 0.2 to 500 μm, and still more preferably 0.2 to 100 μm. The mother particle is not particularly limited, and examples thereof include spherical, plate-like, and amorphous particles. Among these, spherical particles are preferable from the viewpoint of good touch.

なお、本明細書にいう「平均粒径」とは、レーザー回折/散乱法で測定された体積基準粒度分布から算出される平均径を意味する。   As used herein, “average particle diameter” means an average diameter calculated from a volume-based particle size distribution measured by a laser diffraction / scattering method.

有機母粒子としては、高分子化合物が好ましく用いられる。高分子化合物としては、例えば、PMMA(ポリメチルメタクリレート)等のアクリル樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリスチレン、ポリ塩化ビニル、ポリエチレンテレフタレート等のポリエステル、ポリカーボネート、ナイロン等のポリアミド樹脂等の熱可塑性樹脂、ならびにエポキシ樹脂、フェノール樹脂、ウレタン樹脂等の熱硬化性樹脂等が挙げられる。   As the organic mother particle, a polymer compound is preferably used. Examples of the polymer compound include thermoplastic resins such as acrylic resins such as PMMA (polymethyl methacrylate), polyolefins such as polyethylene and polypropylene, polyesters such as polystyrene, polyvinyl chloride, and polyethylene terephthalate, and polyamide resins such as polycarbonate and nylon. And thermosetting resins such as epoxy resins, phenol resins, and urethane resins.

無機母粒子としては、例えば、酸化チタン、シリカ、マイカ、タルク、カオリン、セリサイト、酸化亜鉛、酸化マグネシウム、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸マグネシウム、無水ケイ酸、硫酸バリウム、ベンガラ、黄酸化鉄、黒酸化鉄、カーボンブラック、マンガンバイオレット、チタン被覆雲母(チタンマイカ)、ガラスビーズ、ゼオライト及びこれらの複合体等が挙げられる。中でも、シリカ、マイカ、チタンマイカ、タルク及び硫酸バリウムが好ましい。   Examples of inorganic mother particles include titanium oxide, silica, mica, talc, kaolin, sericite, zinc oxide, magnesium oxide, aluminum oxide, zirconium oxide, calcium carbonate, magnesium carbonate, magnesium silicate, anhydrous silicic acid, and barium sulfate. , Bengala, yellow iron oxide, black iron oxide, carbon black, manganese violet, titanium-coated mica (titanium mica), glass beads, zeolite and composites thereof. Of these, silica, mica, titanium mica, talc and barium sulfate are preferred.

有機又は無機母粒子は2種以上を混合して用いても良い。   Two or more kinds of organic or inorganic mother particles may be mixed and used.

子粒子としては、臨界温度以上かつ4MPa以上の圧力の二酸化炭素の存在下に膨潤し可塑化する有機物が用いられる。前記有機物としては、高分子化合物が好ましく用いられる。前記高分子化合物としては、例えば、PMMA(ポリメチルメタクリレート、ガラス転移点(Tg):72〜105℃)等のアクリル樹脂、ポリエチレン(融点(Tm):108〜136℃)、ポリプロピレン等のポリオレフィン、ポリスチレン(Tg:80〜100℃)、ポリ塩化ビニル(Tg:70〜87℃)、ポリエチレンテレフタレート(Tg:69℃)等のポリエステル、ポリカーボネート(Tg:145〜150℃)、ナイロン等のポリアミド樹脂等の熱可塑性樹脂、ならびにエポキシ樹脂、フェノール樹脂、ウレタン樹脂等の熱硬化性樹脂等が挙げられる。あるいは、フッ素系高分子化合物又はシリコーン系高分子化合物(例えば、特開2002-210356号公報の段落番号〔0035〕〜〔0046〕に記載のもの)を用いることもできる。なお、上記の物性は「プラスチックス」Vol.51, No.12(工業調査会発行)による。これらの高分子化合物の中では、Tg又はTmが50〜150℃の高分子化合物が好ましく、50〜130℃の高分子化合物がより好ましい。ここに、Tg及びTmはJIS K 7121:1987(プラスチックの転移温度測定方法)で測定した値である。   As the child particles, an organic substance that swells and plasticizes in the presence of carbon dioxide at a critical temperature or higher and a pressure of 4 MPa or higher is used. As the organic substance, a polymer compound is preferably used. Examples of the polymer compound include acrylic resins such as PMMA (polymethyl methacrylate, glass transition point (Tg): 72 to 105 ° C.), polyethylene (melting point (Tm): 108 to 136 ° C.), polyolefins such as polypropylene, Polyester such as polystyrene (Tg: 80-100 ° C.), polyvinyl chloride (Tg: 70-87 ° C.), polyethylene terephthalate (Tg: 69 ° C.), polyamide resin such as polycarbonate (Tg: 145-150 ° C.), nylon, etc. And thermosetting resins such as epoxy resins, phenol resins, and urethane resins. Alternatively, a fluorine-based polymer compound or a silicone-based polymer compound (for example, those described in paragraph numbers [0035] to [0046] of JP-A No. 2002-210356) can also be used. The above physical properties are based on “Plastics” Vol.51, No.12 (published by Industrial Research Council). Among these polymer compounds, polymer compounds having a Tg or Tm of 50 to 150 ° C. are preferable, and polymer compounds having a temperature of 50 to 130 ° C. are more preferable. Here, Tg and Tm are values measured by JIS K 7121: 1987 (plastic transition temperature measurement method).

子粒子の平均粒径は、母粒子への固着性の観点から、母粒子の平均粒径の1/5以下が好ましく、1/7以下がより好ましく、1/10以下が更に好ましい。また、子粒子の平均粒径は、子粒子の凝集性の観点から、母粒子の平均粒径の1/10000以上が好ましく、1/1000以上がより好ましく、1/500以上が更に好ましい。   The average particle size of the child particles is preferably 1/5 or less, more preferably 1/7 or less, and even more preferably 1/10 or less of the average particle size of the mother particles from the viewpoint of adhesion to the mother particles. Further, the average particle diameter of the child particles is preferably 1/10000 or more, more preferably 1/1000 or more, and further preferably 1/500 or more of the average particle diameter of the mother particles, from the viewpoint of cohesiveness of the child particles.

子粒子の平均粒径は、好ましくは0.01〜100μm、より好ましくは0.05〜50μm、更に好ましくは0.1〜20μm、特に好ましくは0.1〜3μmである。子粒子の形状は、球形であることが好ましいが、特に限定されない。   The average particle size of the child particles is preferably 0.01 to 100 μm, more preferably 0.05 to 50 μm, still more preferably 0.1 to 20 μm, and particularly preferably 0.1 to 3 μm. The shape of the child particles is preferably spherical, but is not particularly limited.

子粒子の量は、光学制御の観点から、母粒子1重量部に対して0.001重量部以上が好ましく、0.005重量部以上がより好ましく、0.01重量部以上が更に好ましい。また、子粒子のみの凝集を抑制するために、母粒子1重量部に対して3重量部以下が好ましく、2重量部以下がより好ましく、1重量部以下が更に好ましい。   From the viewpoint of optical control, the amount of the child particles is preferably 0.001 part by weight or more, more preferably 0.005 part by weight or more, and still more preferably 0.01 part by weight or more with respect to 1 part by weight of the base particle. In order to suppress aggregation of only the child particles, the amount is preferably 3 parts by weight or less, more preferably 2 parts by weight or less, and still more preferably 1 part by weight or less with respect to 1 part by weight of the base particles.

本発明では、臨界温度以上かつ4MPa以上の圧力の二酸化炭素の存在下、容器内で子粒子を可塑化させる。前記「子粒子の可塑化」とは、子粒子が粒子としての形状を維持しながら、変形していることを意味する。例えば、子粒子が可塑化前に真球であった場合、子粒子が母粒子と接触している部分は偏平になり、母粒子と面で接触するという態様が挙げられる。また、子粒子の母粒子と接触していない部分は概略球状を維持している態様が挙げられる。あるいは、子粒子同士が隣接している場合、可塑化により一部が互いに融着し、場合によっては網目状の形状になる態様が挙げられる。   In the present invention, the child particles are plasticized in a container in the presence of carbon dioxide at a critical temperature or higher and a pressure of 4 MPa or higher. The above-mentioned “plasticization of child particles” means that the child particles are deformed while maintaining the shape as particles. For example, in the case where the child particle is a true sphere before plasticization, a portion where the child particle is in contact with the mother particle becomes flat and comes into contact with the mother particle on the surface. Moreover, the aspect in which the part which is not contacting the mother particle of child particle | grains maintains substantially spherical shape is mentioned. Alternatively, in the case where the child particles are adjacent to each other, a part is fused to each other by plasticization, and in some cases, a mesh shape is used.

本発明では、可塑化工程の前にドライブレンド等により子粒子を母粒子と混合するが、ドライブレンドを行う際に、子粒子同士及び複合化粒子同士の凝集を防止するために、母粒子と子粒子に加えて無機子粒子を共存させてもよい。無機子粒子の平均粒径は、付着性の観点より子粒子の平均粒径よりも小さく、0.3μm以下が好ましく、0.1μm以下がより好ましい。また、無機子粒子としては、シリカ粒子等を好ましく用いることができる。   In the present invention, the child particles are mixed with the mother particles by dry blending or the like before the plasticizing step, but when dry blending is performed, in order to prevent aggregation between the child particles and the composite particles, In addition to the child particles, inorganic child particles may coexist. The average particle size of the inorganic particles is smaller than the average particle size of the child particles from the viewpoint of adhesion, is preferably 0.3 μm or less, and more preferably 0.1 μm or less. Further, silica particles or the like can be preferably used as the inorganic particles.

同様に、ドライブレンドを行う際に、子粒子同士及び複合化粒子同士の凝集を防止するために、母粒子と子粒子に加えて二酸化炭素により可塑化しない有機あるいは無機粒子を共存させてもよい。有機あるいは無機粒子の平均粒径は、母粒子の流動性を向上させる観点から、子粒子の平均粒径の5倍以上が好ましく、10倍以上がより好ましい。さらに、有機粒子及び無機粒子は、球状粒子であり、子粒子が付着しないことが好ましい。   Similarly, when dry blending is performed, organic or inorganic particles that are not plasticized by carbon dioxide in addition to the mother particles and the child particles may coexist in order to prevent aggregation between the child particles and the composite particles. . From the viewpoint of improving the fluidity of the mother particles, the average particle size of the organic or inorganic particles is preferably at least 5 times the average particle size of the child particles, and more preferably at least 10 times. Furthermore, the organic particles and the inorganic particles are spherical particles, and it is preferable that the child particles do not adhere.

なお、二酸化炭素を用いて子粒子の可塑化を行なう際に、フッ素系高分子化合物又はシリコーン系高分子化合物を容器内に共存させ、複合化粒子の一部又は全部を被覆してもよい。この場合、複合化粒子の原料となる母粒子及び/又は子粒子について、粒子表面の一部又は全部をあらかじめフッ素系高分子化合物及び/又はシリコーン系高分子化合物で被覆処理しておいてもよい。   In addition, when plasticizing the child particles using carbon dioxide, a fluorine-based polymer compound or a silicone-based polymer compound may coexist in the container to cover a part or all of the composite particles. In this case, with respect to the mother particles and / or the child particles that are the raw materials of the composite particles, a part or all of the particle surface may be previously coated with a fluorine-based polymer compound and / or a silicone-based polymer compound. .

フッ素系高分子化合物あるいはシリコーン系高分子化合物としては、例えば、特開2002-210356号公報の段落番号〔0035〕〜〔0046〕に記載のものが挙げられる。   Examples of the fluorine-based polymer compound or the silicone-based polymer compound include those described in paragraph numbers [0035] to [0046] of JP-A No. 2002-210356.

臨界温度以上かつ4MPa以上の圧力の二酸化炭素の存在下、子粒子を容器内で可塑化させる際に、子粒子の可塑化を促進するために、可塑剤を共存させてもよい。可塑剤は、超臨界二酸化炭素に溶解又は乳化可能なものが好ましい。   When plasticizing the child particles in the container in the presence of carbon dioxide at a critical temperature or higher and a pressure of 4 MPa or higher, a plasticizer may be present in order to promote the plasticization of the child particles. The plasticizer is preferably one that can be dissolved or emulsified in supercritical carbon dioxide.

可塑剤としては、例えば、p-メトキシ桂皮酸2-エチルヘキシル、フタル酸エステル、リン酸エステル、脂肪族一塩基酸エステル、脂肪族二塩基酸エステル、二価アルコールエステル、オキシ酸エステル等が挙げられる。   Examples of the plasticizer include p-methoxycinnamic acid 2-ethylhexyl, phthalic acid ester, phosphoric acid ester, aliphatic monobasic acid ester, aliphatic dibasic acid ester, dihydric alcohol ester, oxyacid ester, and the like. .

また、子粒子が二酸化炭素による可塑化を受けにくい物質の場合には、エントレーナとして人体に無害な助溶媒を加えて可塑化の促進を行ってもよい。助溶媒としては、極性溶媒が好ましく、例えば、アルコール、アセトン、酢酸エチル、メチルエチルケトン、水等が挙げられる。前記アルコールは、エタノール及び1-プロパノールが好ましく、エタノールがより好ましい。   In the case where the child particles are a substance that is difficult to be plasticized by carbon dioxide, the plasticization may be promoted by adding a co-solvent that is harmless to the human body as an entrainer. The cosolvent is preferably a polar solvent, and examples thereof include alcohol, acetone, ethyl acetate, methyl ethyl ketone, and water. The alcohol is preferably ethanol and 1-propanol, more preferably ethanol.

高圧の二酸化炭素は、高分子化合物に対して幅広い溶解度を示す。二酸化炭素の溶解(収着)によって子粒子は膨潤し、その結果、子粒子の可塑性が、その融点あるいはガラス転移温度(Tg)以下の温度であっても大幅に増大する。このため、子粒子を高圧、特に4MPa以上の二酸化炭素に接触させることで子粒子の可塑性を増大させることができ、子粒子を変形させることで母粒子表面への接触面積を増大させ、それらの強固な固着を実現することが可能となるのである。   High-pressure carbon dioxide exhibits a wide range of solubility in polymer compounds. The dissolution (sorption) of carbon dioxide causes the child particles to swell, and as a result, the plasticity of the child particles is greatly increased even at a temperature below its melting point or glass transition temperature (Tg). For this reason, it is possible to increase the plasticity of the child particles by bringing the child particles into contact with high pressure, particularly carbon dioxide of 4 MPa or more, and by increasing the contact area to the surface of the mother particles by deforming the child particles, It is possible to realize strong fixation.

これとは逆に、二酸化炭素の圧力を減少させると子粒子に対する二酸化炭素の溶解度を急激に低下させることができるので、減圧操作のみで子粒子と二酸化炭素との分離が可能となる。   On the contrary, if the pressure of carbon dioxide is decreased, the solubility of carbon dioxide in the child particles can be drastically lowered, so that the child particles and carbon dioxide can be separated only by a decompression operation.

本発明では、まず、子粒子を母粒子と混合する。例えば、高速流動型混合機等で母粒子と子粒子をあらかじめ混合し、攪拌力により物理的な固着を行なっておくことが好ましい。   In the present invention, first, the child particles are mixed with the mother particles. For example, it is preferable that the mother particles and the child particles are mixed in advance with a high-speed fluid mixer or the like and physically fixed by a stirring force.

二酸化炭素の仕込みに関して、二酸化炭素存在下での子粒子の融点又はガラス転移点以下の温度で母粒子が良好な流動状態となるまで二酸化炭素を導入する。二酸化炭素を導入した後、攪拌し、子粒子が可塑化する温度まで昇温することで粒子の凝集性を改善することができる。   Regarding the preparation of carbon dioxide, carbon dioxide is introduced until the mother particles are in a good fluid state at a temperature below the melting point of the child particles or the glass transition point in the presence of carbon dioxide. After introducing carbon dioxide, stirring is performed, and the temperature is raised to a temperature at which the child particles are plasticized, whereby the cohesiveness of the particles can be improved.

この二酸化炭素の存在下、子粒子を可塑化させる際の温度は、子粒子の可塑性に依存するが、可塑化を効率的に行う観点から、二酸化炭素の臨界温度以上である。   The temperature at which the child particles are plasticized in the presence of carbon dioxide depends on the plasticity of the child particles, but is higher than the critical temperature of carbon dioxide from the viewpoint of efficient plasticization.

また、二酸化炭素の存在下、子粒子を可塑化させる際の圧力は、子粒子の可塑性に依存するが、4MPa以上であり、10MPa以上がより好ましい。高圧においては二酸化炭素の密度が高くなるため、母粒子及び複合化粒子の流動性が良好となり、粒子の凝集性が改善されるという観点より、圧力は高い方が好ましい。圧力の上限は、設備のコストや二酸化炭素の除去や減圧を効率的に行う観点から、50MPa以下が好ましく、40MPa以下がより好ましい。   Further, the pressure when plasticizing the child particles in the presence of carbon dioxide depends on the plasticity of the child particles, but is 4 MPa or more, and more preferably 10 MPa or more. Since the density of carbon dioxide increases at high pressure, the pressure is preferably higher from the viewpoint of improving the fluidity of the mother particles and composite particles and improving the aggregability of the particles. The upper limit of the pressure is preferably 50 MPa or less, and more preferably 40 MPa or less, from the viewpoint of efficient equipment cost, carbon dioxide removal and decompression.

二酸化炭素の存在下、子粒子を可塑化させる時間は、子粒子の可塑性に依存するが、好ましくは1分〜20時間、更に好ましくは5分〜5時間、特に好ましくは15分〜3時間である。   The time for plasticizing the child particles in the presence of carbon dioxide depends on the plasticity of the child particles, but is preferably 1 minute to 20 hours, more preferably 5 minutes to 5 hours, particularly preferably 15 minutes to 3 hours. is there.

可塑化工程中に容器内を攪拌することで、母粒子及び複合化粒子の流動性が良好となり、粒子の凝集性を改善することができる。   By stirring the inside of the container during the plasticizing step, the fluidity of the mother particles and the composite particles becomes good, and the aggregation property of the particles can be improved.

母粒子表面に子粒子を固着させた後、二酸化炭素を除去する。   After the child particles are fixed to the surface of the mother particles, carbon dioxide is removed.

二酸化炭素を除去して複合化粒子を得る方法としては、容器内を減圧し容器内で複合化粒子を得る方法、得られた混合物を容器外に排出することにより、複合化粒子と二酸化炭素とを分離して、複合化粒子を得る方法等が挙げられる。   As a method of obtaining composite particles by removing carbon dioxide, a method of obtaining composite particles in the container by depressurizing the inside of the container, by discharging the resulting mixture outside the container, And a method for obtaining composite particles.

容器内を減圧し容器内で複合化粒子を得る方法では、母粒子表面に子粒子を固着させた後、例えば、容器に備えられているバルブ等を開放して容器内の圧力を大気圧まで減圧することにより、容器内の複合化粒子を二酸化炭素から分離することができる。   In the method in which the inside of the container is depressurized to obtain composite particles in the container, after the child particles are fixed to the surface of the mother particles, for example, the valve provided in the container is opened to reduce the pressure in the container to atmospheric pressure. By reducing the pressure, the composite particles in the container can be separated from the carbon dioxide.

粒子の凝集性を改善する観点から、二酸化炭素存在下での子粒子の融点又はガラス転移点以下に冷却した後に、容器内から二酸化炭素を排出し、大気圧まで減圧することが好ましい。   From the viewpoint of improving the cohesiveness of the particles, it is preferable to discharge the carbon dioxide from the container and reduce the pressure to atmospheric pressure after cooling to below the melting point or glass transition point of the child particles in the presence of carbon dioxide.

容器内の圧力を大気圧まで減圧するのに要する時間は、装置に依存するが2秒〜20時間が好ましく、5秒〜10時間がより好ましい。   The time required to reduce the pressure in the container to atmospheric pressure depends on the apparatus, but is preferably 2 seconds to 20 hours, and more preferably 5 seconds to 10 hours.

減圧工程中に二酸化炭素の液相を発生させてもよく、発生させなくてもよいが、使用する母粒子の平均粒径が20μm以下の場合は毛細管力による凝集が起こる可能性があるため、二酸化炭素の液相の発生を避けた方がよい。   The liquid phase of carbon dioxide may or may not be generated during the decompression step, but if the average particle size of the mother particles used is 20 μm or less, there is a possibility of aggregation due to capillary force, It is better to avoid generating a liquid phase of carbon dioxide.

得られた混合物を容器外に排出することにより、複合化粒子と二酸化炭素とを分離して、複合化粒子を得る方法では、容器内の混合物をノズル等を介して容器外に排出することにより、ノズル等を出て瞬時に混合物から二酸化炭素を分離除去するとともに、凝集のない複合化粒子を製造することができる。排出条件に特に限定はないが、排出後の温度が子粒子の融点又はガラス転移点以下が好ましい。   In the method of separating the composite particles and carbon dioxide by discharging the obtained mixture out of the container to obtain composite particles, the mixture in the container is discharged out of the container through a nozzle or the like. The carbon dioxide can be separated and removed from the mixture instantly after leaving the nozzle or the like, and composite particles without agglomeration can be produced. The discharge conditions are not particularly limited, but the temperature after discharge is preferably below the melting point or glass transition point of the child particles.

比較例1
球状のポリメタクリル酸メチル(以下、PMMAと略す)母粒子〔綜研化学(株)製、商品名:MX-3000、平均粒径:32μm〕50.0gと、球状の子粒子PMMA子粒子〔綜研化学(株)製、商品名:MP-2200、平均粒径0.3μm〕2.5gを高速流動型混合機スーパーミキサー〔(株)カワタ製、商品名:ピッコロSMP-2、内容量0.3L〕に充填し、3000r/minで10分間ドライブレンドし、混合粉体を得た。
Comparative Example 1
Spherical polymethyl methacrylate (hereinafter abbreviated as PMMA) mother particles (manufactured by Soken Chemical Co., Ltd., trade name: MX-3000, average particle size: 32 μm) 50.0 g, spherical child particles PMMA child particles [Soken Chemical Made by Co., Ltd., trade name: MP-2200, average particle size 0.3μm] 2.5g filled into a high-speed fluid mixer Supermixer [made by Kawata, trade name: Piccolo SMP-2, content 0.3L] Then, dry blending was performed at 3000 r / min for 10 minutes to obtain a mixed powder.

原料の母粒子及び子粒子の走査型電子顕微鏡(SEM)写真を各々図2(倍率:3000倍)及び図3(倍率:10000倍)に示す。また、得られた混合粉体の走査型電子顕微鏡写真を図4(倍率:3000倍)に示す。図4に示された顕微鏡写真から、比較例1の混合粉体は、PMMA子粒子がほぼ真球状のままで母粒子表面に付着していることがわかる。   Scanning electron microscope (SEM) photographs of raw material mother particles and child particles are shown in FIG. 2 (magnification: 3000 times) and FIG. 3 (magnification: 10000 times), respectively. Moreover, the scanning electron micrograph of the obtained mixed powder is shown in FIG. 4 (magnification: 3000 times). From the micrograph shown in FIG. 4, it can be seen that in the mixed powder of Comparative Example 1, the PMMA sub-particles remain in a substantially spherical shape and adhere to the surface of the base particles.

実施例1
図1に示される装置を用いて複合化粒子を以下の手順にて製造した。
オートクレーブ10〔内容量500mL、(株)AKICO製〕内に、比較例1で得られた混合粉体30.3gを充填した。
Example 1
Using the apparatus shown in FIG. 1, composite particles were produced by the following procedure.
In an autoclave 10 (with an internal volume of 500 mL, manufactured by AKICO), 30.3 g of the mixed powder obtained in Comparative Example 1 was filled.

充填後、ボンベ1より二酸化炭素ガス又は液化二酸化炭素を供給し、フィルター2に通して二酸化炭素中のゴミを除去した。次に、クーラー5から-5℃に制御された冷媒が通液されているコンデンサー3でこの二酸化炭素を凝縮し、ポンプヘッドが冷却された昇圧ポンプ4で昇圧した。昇圧時の圧力は、圧力計6aにより測定した。なお、安全性を確保するために、圧力計6aの下流部には、安全弁7aを配設した。圧力の調整は保圧弁V-1で行った。   After filling, carbon dioxide gas or liquefied carbon dioxide was supplied from the cylinder 1 and passed through the filter 2 to remove dust in the carbon dioxide. Next, the carbon dioxide was condensed by the condenser 3 through which the refrigerant controlled to −5 ° C. was passed from the cooler 5, and the pressure was increased by the booster pump 4 in which the pump head was cooled. The pressure at the time of pressure increase was measured by the pressure gauge 6a. In order to ensure safety, a safety valve 7a was disposed downstream of the pressure gauge 6a. The pressure was adjusted with a pressure holding valve V-1.

攪拌機9を100r/minで回転させながら、バルブV-2を開放して二酸化炭素を予熱器8に通して所定の温度まで予熱して送り、バルブV-3を介して安全弁7bが付属するオートクレーブ10にこの二酸化炭素を導入した。カートリッジヒーター12を使用し、温度調節器13によりオートクレーブ10内の温度調節を行い、温度計11及び圧力計6bにより、セル内の温度及び圧力をそれぞれ温度314K及び圧力12MPaに調節した。その後、更に温度調節器13によりオートクレーブ10内の温度調節を行い、排気バルブV-4及び温度計11、圧力計6bにより、セル内の温度及び圧力をそれぞれ温度353K及び圧力25MPaに調節した。攪拌機9を200r/minで回転させながら、この条件下で30分間保持し、PMMA子粒子を可塑化した。   While rotating the agitator 9 at 100 r / min, the valve V-2 is opened, carbon dioxide is passed through the preheater 8 and preheated to a predetermined temperature, and sent to the autoclave with the safety valve 7b via the valve V-3. This carbon dioxide was introduced into 10. Using the cartridge heater 12, the temperature in the autoclave 10 was adjusted by the temperature controller 13, and the temperature and pressure in the cell were adjusted to a temperature of 314K and a pressure of 12MPa by the thermometer 11 and the pressure gauge 6b, respectively. Thereafter, the temperature in the autoclave 10 was further adjusted by the temperature controller 13, and the temperature and pressure in the cell were adjusted to a temperature of 353 K and a pressure of 25 MPa by the exhaust valve V-4, the thermometer 11 and the pressure gauge 6b, respectively. While rotating the stirrer 9 at 200 r / min, this was held for 30 minutes under these conditions to plasticize the PMMA child particles.

排気バルブV-4を開放し、排気ライン15より排気し、12分間で大気圧まで減圧した。減圧操作時には二酸化炭素の液相が発生しないように温度を調節した。減圧途中の7MPaにおける温度は308Kであり、減圧終了時の容器内温度は292Kであった。また、排気ラインの凍結を防ぐために、ヒーター14により加熱した。また、排気ライン15から若干漏出してくる複合化粒子に関しては、バグフィルター16で捕捉した。オートクレーブ10内の容器圧を大気圧まで減圧した後、オートクレーブ10内から複合化粒子17を得た。   The exhaust valve V-4 was opened, exhausted from the exhaust line 15, and the pressure was reduced to atmospheric pressure in 12 minutes. The temperature was adjusted so that a liquid phase of carbon dioxide was not generated during the decompression operation. The temperature at 7 MPa during decompression was 308K, and the temperature in the container at the end of decompression was 292K. In addition, the heater 14 was heated to prevent the exhaust line from freezing. In addition, the composite filter that slightly leaked from the exhaust line 15 was captured by the bag filter 16. After reducing the container pressure in the autoclave 10 to atmospheric pressure, composite particles 17 were obtained from the autoclave 10.

得られた複合化粒子の走査型電子顕微鏡写真を図5(倍率:3000倍)に示す。図5に示された顕微鏡写真から、PMMA母粒子にPMMA子粒子が固着している複合化粒子が得られたことがわかる。また、固着前は球状であったPMMA子粒子が偏平化しており、また隣接したPMMA子粒子同士が融着しているものも見られることより、可塑化が起きたことが示される。   A scanning electron micrograph of the obtained composite particles is shown in FIG. 5 (magnification: 3000 times). From the photomicrograph shown in FIG. 5, it can be seen that composite particles in which PMMA child particles are fixed to PMMA mother particles were obtained. In addition, since the PMMA child particles that were spherical before fixation were flattened, and some of the adjacent PMMA child particles were fused, it was shown that plasticization occurred.

比較例2
比較例1と異なるPMMA母粒子〔松本油脂製薬(株)製、商品名:M-503B、平均粒径:20μm〕13.4gを用い、PMMA子粒子を0.96gに変更した以外は、比較例1と同様にして混合粉体を得た。原料のPMMA母粒子の走査型電子顕微鏡写真を図6(倍率:3000倍)に示す。得られた混合粉体の走査型電子顕微鏡写真を図7(倍率:3000倍)に示す。図7に示される顕微鏡写真から、PMMA子粒子がほぼ真球状のままで母粒子表面に付着していることがわかる。
Comparative Example 2
Comparative Example 1 except that 13.4 g of PMMA mother particles [Matsumoto Yushi Seiyaku Co., Ltd., trade name: M-503B, average particle size: 20 μm] different from Comparative Example 1 were used, and the PMMA child particles were changed to 0.96 g. In the same manner, a mixed powder was obtained. A scanning electron micrograph of the raw material PMMA mother particles is shown in FIG. 6 (magnification: 3000 times). A scanning electron micrograph of the obtained mixed powder is shown in FIG. 7 (magnification: 3000 times). From the micrograph shown in FIG. 7, it can be seen that the PMMA child particles are attached to the surface of the mother particles while remaining almost spherical.

実施例2
オートクレーブ10に、比較例2で得られた混合粉体12.3gを充填し、実施例1と同様にして表1に示す条件で、PMMA子粒子を可塑化した。その後、2分間で大気圧まで減圧して、複合化粒子を得た。減圧終了時の容器内温度は、298Kであった。得られた複合化粒子の走査型電子顕微鏡写真を図8(倍率:3000倍)に示す。図8に示される顕微鏡写真から、固着前はほぼ球状であったPMMA子粒子が可塑化により偏平化し、一部のPMMA子粒子については、隣接した粒子同士が融着しており、PMMA母粒子上に広い面積で固着していることがわかる。
Example 2
The autoclave 10 was filled with 12.3 g of the mixed powder obtained in Comparative Example 2, and the PMMA child particles were plasticized under the conditions shown in Table 1 in the same manner as in Example 1. Thereafter, the pressure was reduced to atmospheric pressure in 2 minutes to obtain composite particles. The temperature in the container at the end of the decompression was 298K. FIG. 8 (magnification: 3000 times) shows a scanning electron micrograph of the obtained composite particles. From the micrograph shown in FIG. 8, the PMMA child particles that were almost spherical before fixation were flattened by plasticization, and for some PMMA child particles, adjacent particles were fused together, and PMMA mother particles It can be seen that it is fixed on a large area.

比較例3
母粒子としてナイロン母粒子〔シントーファイン(株)製、商品名:HK-5000、平均粒径:10μm〕25.0gを用い、PMMA子粒子を3.8gに変更した以外は、比較例1と同様にして混合粉体を得た。原料のナイロン母粒子の走査型電子顕微鏡写真を図9(倍率:5000倍)に示す。得られた混合粉体の走査型電子顕微鏡写真を図10(倍率:5000倍)に示す。図10に示される顕微鏡写真から、PMMA子粒子がほぼ真球状のままでナイロン母粒子表面に付着していることがわかる。
Comparative Example 3
The same procedure as in Comparative Example 1 was conducted except that 25.0 g of nylon mother particles (manufactured by Shinto Fine Co., Ltd., trade name: HK-5000, average particle size: 10 μm) were used as the mother particles, and the PMMA child particles were changed to 3.8 g. To obtain a mixed powder. A scanning electron micrograph of the raw material nylon mother particles is shown in FIG. 9 (magnification: 5000 times). A scanning electron micrograph of the obtained mixed powder is shown in FIG. 10 (magnification: 5000 times). From the photomicrograph shown in FIG. 10, it can be seen that the PMMA child particles remain almost spherical and adhere to the surface of the nylon mother particles.

実施例3
オートクレーブ10に、比較例3で得られた混合粉体22.1gを充填し、実施例1と同様にして表1に示す条件で、PMMA粒子を可塑化した。その後11分間で大気圧まで減圧して、複合化粒子を得た。減圧終了時の容器内温度は、300Kであった。得られた複合化粒子の走査型電子顕微鏡写真を図11(倍率:3000倍)に示す。図11に示される顕微鏡写真から、固着前はほぼ球状であったPMMA子粒子が可塑化により偏平化し、一部のPMMA子粒子については、隣接した粒子同士が融着しており、ナイロン母粒子上に広い面積で固着していることがわかる。
Example 3
Autoclave 10 was filled with 22.1 g of the mixed powder obtained in Comparative Example 3, and PMMA particles were plasticized under the conditions shown in Table 1 in the same manner as in Example 1. Thereafter, the pressure was reduced to atmospheric pressure in 11 minutes to obtain composite particles. The temperature in the container at the end of the decompression was 300K. A scanning electron micrograph of the obtained composite particles is shown in FIG. 11 (magnification: 3000 times). From the micrograph shown in FIG. 11, the PMMA child particles, which were almost spherical before fixing, were flattened by plasticization, and some of the PMMA child particles were fused with each other. It can be seen that it is fixed on a large area.

比較例4
母粒子としてシリカ母粒子〔(株)日本触媒製、商品名:KE-P250、平均粒径:2.5μm〕25.0gを用い、PMMA子粒子を5.0gに変更した以外は、比較例1と同様にして混合粉体を得た。原料のシリカ母粒子の走査型電子顕微鏡写真を図12(倍率:10000倍)に示す。得られた混合粉体の走査型電子顕微鏡写真を図13(倍率:10000倍)に示す。図13に示される顕微鏡写真から、PMMA子粒子がほぼ真球状のままでシリカ母粒子表面に付着していることがわかる。
Comparative Example 4
The same as Comparative Example 1 except that 25.0 g of silica mother particles (manufactured by Nippon Shokubai Co., Ltd., trade name: KE-P250, average particle size: 2.5 μm) was used as the mother particles, and the PMMA child particles were changed to 5.0 g. Thus, a mixed powder was obtained. A scanning electron micrograph of the raw silica mother particles is shown in FIG. 12 (magnification: 10000 times). A scanning electron micrograph of the obtained mixed powder is shown in FIG. 13 (magnification: 10000 times). From the photomicrograph shown in FIG. 13, it can be seen that the PMMA child particles remain almost spherical and adhere to the surface of the silica mother particles.

実施例4
オートクレーブ10に、比較例4で得られた混合粉体24.4gを充填し、実施例1と同様にして表1に示す条件で、PMMA粒子を可塑化した。その後12分間で大気圧まで減圧して、複合化粒子を得た。減圧終了時の容器内温度は、298Kであった。得られた複合化粒子の走査型電子顕微鏡写真を図14(倍率:10000倍)に示す。図14に示される顕微鏡写真から、固着前はほぼ球状であったPMMA子粒子が可塑化により偏平化し、一部のPMMA子粒子については、隣接した粒子同士が融着しており、シリカ母粒子上に広い面積で固着していることがわかる。
Example 4
The autoclave 10 was filled with 24.4 g of the mixed powder obtained in Comparative Example 4, and PMMA particles were plasticized under the conditions shown in Table 1 in the same manner as in Example 1. Thereafter, the pressure was reduced to atmospheric pressure in 12 minutes to obtain composite particles. The temperature in the container at the end of the decompression was 298K. A scanning electron micrograph of the obtained composite particles is shown in FIG. 14 (magnification: 10000 times). From the micrograph shown in FIG. 14, the PMMA child particles that were almost spherical before fixation were flattened by plasticization, and for some PMMA child particles, adjacent particles were fused together, and the silica mother particles It can be seen that it is fixed on a large area.

上記実施例1〜4及び比較例1〜4の製造条件を、以下の表1にまとめる。なお、表1において、減圧開始時の温度が保持時の温度より低い実施例においては、減圧開始前に冷却を行った。   The production conditions of Examples 1 to 4 and Comparative Examples 1 to 4 are summarized in Table 1 below. In Table 1, in Examples where the temperature at the start of decompression was lower than the temperature at the time of holding, cooling was performed before the start of decompression.

実施例1〜4で得られた複合化粒子と比較例1〜4で得られた混合粉体の固着力を、以下のように評価した。   The adhesion of the composite particles obtained in Examples 1 to 4 and the mixed powders obtained in Comparative Examples 1 to 4 was evaluated as follows.

(固着力の評価方法)
10cm×5cmのポリウレタン製黒革人工皮革に、式(I):
(Adhesion strength evaluation method)
On a 10cm x 5cm polyurethane black leather artificial leather, the formula (I):

(式中、mは1341、nは5、xは27である)
で表されるオキサゾリン変性シリコーン(分子量:110000)の30%エタノール溶液を、50μmの膜厚で塗布する。塗布膜が乾燥した後、試料を5mg塗布し、走査型電子顕微鏡観察により複合化粒子または混合粉体の母粒子と子粒子の固着状況を確認する。
(In the formula, m is 1341, n is 5, and x is 27)
A 30% ethanol solution of oxazoline-modified silicone (molecular weight: 110000) represented by the formula is applied at a film thickness of 50 μm. After the coating film has dried, 5 mg of the sample is applied, and the state of fixation between the composite particles or the mixed powder mother particles and the child particles is confirmed by scanning electron microscope observation.

PMMA母粒子を使用して得られた比較例1、実施例1、比較例2及び実施例2の子粒子の固着状態を示す走査型電子顕微鏡写真(倍率:1000倍)を図15〜18に示す。ナイロン母粒子を使用して得られた比較例3及び実施例3の子粒子の固着状態を示す走査型電子顕微鏡写真(倍率:2000倍)を図19〜20に示す。またシリカ母粒子を使用して得られた比較例4及び実施例4の子粒子の固着状態を示す走査型電子顕微鏡写真(倍率:10000倍)を図21〜22に示す。   Scanning electron micrographs (magnification: 1000 times) showing the adhering state of the child particles of Comparative Example 1, Example 1, Comparative Example 2 and Example 2 obtained using PMMA mother particles are shown in FIGS. Show. Scanning electron micrographs (magnification: 2000 times) showing the adhering state of the child particles of Comparative Example 3 and Example 3 obtained using nylon mother particles are shown in FIGS. 21 to 22 show scanning electron micrographs (magnification: 10,000 times) showing the adhering state of the child particles of Comparative Example 4 and Example 4 obtained using the silica mother particles.

図15〜22に示される顕微鏡写真から、各比較例で得られた混合粉体は、黒革に塗布した後に母粒子表面から子粒子が剥離しているが、各実施例で得られた複合化粒子は、黒革に塗布した後も母粒子と子粒子が固着しており、それらが強い固着力を有していることがわかる。   From the micrographs shown in FIGS. 15 to 22, the mixed powder obtained in each comparative example is separated from the mother particle surface after being applied to black leather. It can be seen that the modified particles have the mother particles and the child particles fixed even after being applied to the black leather, and have a strong fixing force.

本発明によれば、撥水性、撥油性、光学特性、紫外線防御性、感触、安全性、活性、色調、分散安定性、耐候性が制御された、塗料、インクジェット型プリンターインク、トナー、化粧品等に好適に使用しうる複合化粒子を提供することができる。   According to the present invention, water repellency, oil repellency, optical properties, UV protection, touch, safety, activity, color tone, dispersion stability, weather resistance, paint, ink jet printer ink, toner, cosmetics, etc. It is possible to provide composite particles that can be suitably used for the above.

本発明の方法に使用された装置の一実施態様を示す概略説明図である。It is a schematic explanatory drawing which shows one embodiment of the apparatus used for the method of this invention. 比較例1及び実施例1に使用した原料のPMMA母粒子の粒子構造を示す走査型電子顕微鏡写真(倍率:3000倍)である。2 is a scanning electron micrograph (magnification: 3000 times) showing the particle structure of raw material PMMA mother particles used in Comparative Example 1 and Example 1. FIG. 実施例及び比較例で使用した原料のPMMA子粒子の粒子構造を示す走査型電子顕微鏡写真(倍率:10000倍)である。It is a scanning electron micrograph (magnification: 10000 times) which shows the particle structure of the raw material PMMA child particle used in the Example and the comparative example. 比較例1で得られた混合粉体の粒子構造を示す走査型電子顕微鏡写真(倍率:3000倍)である。3 is a scanning electron micrograph (magnification: 3000 times) showing the particle structure of the mixed powder obtained in Comparative Example 1. 実施例1で得られた複合化粒子の粒子構造を示す走査型電子顕微鏡写真(倍率:3000倍)である。2 is a scanning electron micrograph (magnification: 3000 times) showing the particle structure of the composite particles obtained in Example 1. FIG. 比較例2及び実施例2に使用した原料のPMMA母粒子の粒子構造を示す走査型電子顕微鏡写真(倍率:3000倍)である。4 is a scanning electron micrograph (magnification: 3000 times) showing the particle structure of raw material PMMA mother particles used in Comparative Example 2 and Example 2. FIG. 比較例2で得られた混合粉体の粒子構造を示す走査型電子顕微鏡写真(倍率:3000倍)である。4 is a scanning electron micrograph (magnification: 3000 times) showing the particle structure of the mixed powder obtained in Comparative Example 2. 実施例2で得られた複合化粒子の粒子構造を示す走査型電子顕微鏡写真(倍率:3000倍)である。3 is a scanning electron micrograph (magnification: 3000 times) showing the particle structure of the composite particles obtained in Example 2. FIG. 比較例3及び実施例3に使用した原料のナイロン母粒子の粒子構造を示す走査型電子顕微鏡写真(倍率:5000倍)である。4 is a scanning electron micrograph (magnification: 5000 times) showing the particle structure of the raw material nylon mother particles used in Comparative Example 3 and Example 3. 比較例3で得られた混合粉体の粒子構造を示す走査型電子顕微鏡写真(倍率:5000倍)である。4 is a scanning electron micrograph (magnification: 5000 times) showing the particle structure of the mixed powder obtained in Comparative Example 3. 実施例3で得られた複合化粒子の粒子構造を示す走査型電子顕微鏡写真(倍率:5000倍)である。4 is a scanning electron micrograph (magnification: 5000 times) showing the particle structure of the composite particles obtained in Example 3. FIG. 比較例4及び実施例4に使用した原料のシリカ母粒子の粒子構造を示す走査型電子顕微鏡写真(倍率:10000倍)である。4 is a scanning electron micrograph (magnification: 10000 times) showing the particle structure of the raw material silica mother particles used in Comparative Example 4 and Example 4. 比較例4で得られた混合粉体の粒子構造を示す走査型電子顕微鏡写真(倍率:10000倍)である。6 is a scanning electron micrograph (magnification: 10,000 times) showing the particle structure of the mixed powder obtained in Comparative Example 4. 実施例4で得られた複合化粒子の粒子構造を示す走査型電子顕微鏡写真(倍率:10000倍)である。4 is a scanning electron micrograph (magnification: 10000 times) showing the particle structure of the composite particles obtained in Example 4. 比較例1で得られた混合粉体を黒革に塗布した後の、母粒子上の子粒子の付着状態を示す走査型電子顕微鏡写真(倍率:1000倍)である。It is a scanning electron micrograph (magnification: 1000 times) which shows the adhesion state of the child particle | grains on a mother particle after apply | coating the mixed powder obtained by the comparative example 1 to black leather. 実施例1で得られた複合化粒子を黒革に塗布した後の、母粒子上の子粒子の付着状態を示す走査型電子顕微鏡写真(倍率:1000倍)である。It is a scanning electron micrograph (magnification: 1000 times) which shows the adhesion state of the child particle | grains on a mother particle after apply | coating the composite particle | grains obtained in Example 1 to black leather. 比較例2で得られた混合粉体を黒革に塗布した後の、母粒子上の子粒子の付着状態を示す走査型電子顕微鏡写真(倍率:1000倍)である。It is a scanning electron micrograph (magnification: 1000 times) which shows the adhesion state of the child particle | grains on a mother particle after apply | coating the mixed powder obtained by the comparative example 2 to black leather. 実施例2で得られた複合化粒子を黒革に塗布した後の、母粒子上の子粒子の付着状態を示す走査型電子顕微鏡写真(倍率:1000倍)である。It is a scanning electron micrograph (magnification: 1000 times) which shows the adhesion state of the child particle | grains on a mother particle after apply | coating the composite particle | grains obtained in Example 2 to black leather. 比較例3で得られた混合粉体を黒革に塗布した後の、母粒子上の子粒子の付着状態を示す走査型電子顕微鏡写真(倍率:2000倍)である。It is a scanning electron micrograph (magnification: 2000 times) which shows the adhesion state of the child particle | grains on a mother particle after apply | coating the mixed powder obtained in the comparative example 3 to black leather. 実施例3で得られた複合化粒子を黒革に塗布した後の、母粒子上の子粒子の付着状態を示す走査型電子顕微鏡写真(倍率:2000倍)である。It is a scanning electron micrograph (magnification: 2000 times) which shows the adhesion state of the child particle | grains on a mother particle after apply | coating the composite particle | grains obtained in Example 3 to black leather. 比較例4で得られた混合粉体を黒革に塗布した後の、母粒子上の子粒子の付着状態を示す走査型電子顕微鏡写真(倍率:10000倍)である。It is a scanning electron micrograph (magnification: 10000 times) which shows the adhesion state of the child particle on a mother particle after apply | coating the mixed powder obtained by the comparative example 4 to black leather. 実施例4で得られた複合化粒子を黒革に塗布した後の、母粒子上の子粒子の付着状態を示す走査型電子顕微鏡写真(倍率:10000倍)である。It is a scanning electron micrograph (magnification: 10000 times) which shows the adhesion state of the child particle | grains on a mother particle after apply | coating the composite particle | grains obtained in Example 4 to black leather.

符号の説明Explanation of symbols

1 ボンベ
2 フィルター
3 コンデンサー
4 昇圧ポンプ
5 クーラー
6a 圧力計
6b 圧力計
7a 安全弁
7b 安全弁
8 予熱器
9 攪拌機
10 オートクレーブ
11 温度計
12 カートリッジヒーター
13 温度調節器
14 ヒーター
15 排気ライン
16 バグフィルター
17 複合化粒子
V-1 保圧弁
V-2 バルブ
V-3 バルブ
V-4 排気バルブ
1 Cylinder 2 Filter 3 Condenser 4 Booster Pump 5 Cooler
6a Pressure gauge
6b pressure gauge
7a Safety valve
7b Safety valve 8 Preheater 9 Stirrer
10 Autoclave
11 Thermometer
12 Cartridge heater
13 Temperature controller
14 Heater
15 Exhaust line
16 Bug filter
17 Composite particles
V-1 Holding valve
V-2 valve
V-3 valve
V-4 Exhaust valve

Claims (10)

有機子粒子を有機母粒子と混合した後、臨界温度以上かつ4MPa以上の圧力の二酸化炭素の存在下、該有機子粒子を容器内で可塑化し、二酸化炭素を除去する、有機子粒子が有機母粒子表面に固着した複合化粒子の製造方法。   After the organic particles are mixed with the organic mother particles, the organic particles are plasticized in the container in the presence of carbon dioxide at a temperature higher than the critical temperature and a pressure of 4 MPa or more to remove the carbon dioxide. A method for producing composite particles fixed on a particle surface. 子粒子の平均粒径が母粒子の平均粒径の1/10000〜1/5である請求項1記載の複合化粒子の製造方法。   The method for producing composite particles according to claim 1, wherein the average particle diameter of the child particles is 1/10000 to 1/5 of the average particle diameter of the mother particles. 子粒子の量が母粒子1重量部に対して0.001〜3重量部である請求項1又は2記載の複合化粒子の製造方法。   The method for producing composite particles according to claim 1 or 2, wherein the amount of the child particles is 0.001 to 3 parts by weight with respect to 1 part by weight of the mother particles. 子粒子を可塑化させた後、容器内を減圧し容器内で複合化粒子を得る、請求項1〜3いずれか記載の複合化粒子の製造方法。   The method for producing composite particles according to any one of claims 1 to 3, wherein after the child particles are plasticized, the inside of the container is decompressed to obtain composite particles in the container. 母粒子が球状粒子である請求項1〜4いずれか記載の複合化粒子の製造方法。   The method for producing composite particles according to any one of claims 1 to 4, wherein the base particles are spherical particles. 有機子粒子を無機母粒子と混合した後、臨界温度以上かつ4MPa以上の圧力の二酸化炭素の存在下、該有機子粒子を容器内で可塑化し、二酸化炭素を除去する、有機子粒子が無機母粒子表面に固着した複合化粒子の製造方法。   After the organic particles are mixed with the inorganic matrix particles, the organic particles are plasticized in the container in the presence of carbon dioxide at a critical temperature or higher and a pressure of 4 MPa or higher to remove the carbon dioxide. A method for producing composite particles fixed on a particle surface. 子粒子の平均粒径が母粒子の平均粒径の1/10000〜1/5である請求項6記載の複合化粒子の製造方法。   The method for producing composite particles according to claim 6, wherein the average particle diameter of the child particles is 1/10000 to 1/5 of the average particle diameter of the mother particles. 子粒子の量が母粒子1重量部に対して0.001〜3重量部である請求項6又は7記載の複合化粒子の製造方法。   The method for producing composite particles according to claim 6 or 7, wherein the amount of the child particles is 0.001 to 3 parts by weight with respect to 1 part by weight of the mother particles. 子粒子を可塑化させた後、容器内を減圧し容器内で複合化粒子を得る、請求項6〜8いずれか記載の複合化粒子の製造方法。   The method for producing composite particles according to any one of claims 6 to 8, wherein, after the child particles are plasticized, the inside of the container is decompressed to obtain composite particles in the container. 母粒子が球状粒子である請求項6〜9いずれか記載の複合化粒子の製造方法。   The method for producing composite particles according to any one of claims 6 to 9, wherein the base particles are spherical particles.
JP2005195576A 2005-07-04 2005-07-04 Method for producing composite particle Pending JP2007009161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005195576A JP2007009161A (en) 2005-07-04 2005-07-04 Method for producing composite particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005195576A JP2007009161A (en) 2005-07-04 2005-07-04 Method for producing composite particle

Publications (1)

Publication Number Publication Date
JP2007009161A true JP2007009161A (en) 2007-01-18

Family

ID=37748063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005195576A Pending JP2007009161A (en) 2005-07-04 2005-07-04 Method for producing composite particle

Country Status (1)

Country Link
JP (1) JP2007009161A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065926A (en) * 2008-03-24 2014-04-17 Sanyo Chem Ind Ltd Resin particle and method for manufacturing the same

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126146A (en) * 1992-10-16 1994-05-10 Japan Synthetic Rubber Co Ltd Method for manufacturing colored composite particle
JPH0912430A (en) * 1995-06-29 1997-01-14 Noevir Co Ltd Powder cosmetic
JPH1147681A (en) * 1997-08-05 1999-02-23 Kira Keshohin Kk Method for coating fine particles by using supercritical fluid, and coated material
JP2001010929A (en) * 1999-07-02 2001-01-16 Shiseido Co Ltd Composite powder
JP2002210356A (en) * 2000-10-10 2002-07-30 Kao Corp Method for producing composite particle
JP2003160442A (en) * 2001-11-28 2003-06-03 Kao Corp Particles for cosmetic
JP2003300827A (en) * 2002-04-10 2003-10-21 Kao Corp Cosmetic
JP2004082089A (en) * 2001-08-10 2004-03-18 Kao Corp Manufacturing method of composite particles
JP2004130296A (en) * 2002-06-24 2004-04-30 Kao Corp Production method of composite particle
JP2005179349A (en) * 2003-11-26 2005-07-07 Kao Corp Method for producing composite particle
JP2006022161A (en) * 2004-07-06 2006-01-26 Sekisui Chem Co Ltd Method for producing surface-coated resin microparticle and surface-coated microparticle

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126146A (en) * 1992-10-16 1994-05-10 Japan Synthetic Rubber Co Ltd Method for manufacturing colored composite particle
JPH0912430A (en) * 1995-06-29 1997-01-14 Noevir Co Ltd Powder cosmetic
JPH1147681A (en) * 1997-08-05 1999-02-23 Kira Keshohin Kk Method for coating fine particles by using supercritical fluid, and coated material
JP2001010929A (en) * 1999-07-02 2001-01-16 Shiseido Co Ltd Composite powder
JP2002210356A (en) * 2000-10-10 2002-07-30 Kao Corp Method for producing composite particle
JP2004082089A (en) * 2001-08-10 2004-03-18 Kao Corp Manufacturing method of composite particles
JP2003160442A (en) * 2001-11-28 2003-06-03 Kao Corp Particles for cosmetic
JP2003300827A (en) * 2002-04-10 2003-10-21 Kao Corp Cosmetic
JP2004130296A (en) * 2002-06-24 2004-04-30 Kao Corp Production method of composite particle
JP2005179349A (en) * 2003-11-26 2005-07-07 Kao Corp Method for producing composite particle
JP2006022161A (en) * 2004-07-06 2006-01-26 Sekisui Chem Co Ltd Method for producing surface-coated resin microparticle and surface-coated microparticle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065926A (en) * 2008-03-24 2014-04-17 Sanyo Chem Ind Ltd Resin particle and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP6283456B1 (en) Resin hollow particles and use thereof
CA3091606C (en) Thermoplastic polymer particles and methods of production and uses thereof
EP3052300B1 (en) Use of powder material for three-dimensional object formation, three-dimensional object formation kit, and formation method of three-dimensional object
JP6256487B2 (en) Polyamide fine particles
TWI337893B (en) Modifying powder, liquid compositions and molded products containing the modifying powder, and method for producing the modifying powder
JPH08503721A (en) Manufacturing method of coating material
JP4697885B2 (en) Method for producing composite particles
JP2002210356A (en) Method for producing composite particle
BR112018077422B1 (en) CHEMICAL BLOWING AGENT, FOAMABLE POLYMER COMPOSITION, FOAMABLE PVC PLASTISOL COMPOSITION, PROCESSES FOR MANUFACTURING A POLYMER AND A PVC POLYMER, AND, FOAMED PVC
JP2002363443A (en) Surface-treated inorganic filler and resin composition containing the same compounded therewith
TW200307006A (en) Method for the production of coated, fine-particle, inorganic solids and use thereof
JP2021042360A (en) Polyamides with pendent optical absorbers and related methods
KR20210030214A (en) Thermoplastic polyester particles and methods of production and uses thereof
JP4804743B2 (en) Method for producing composite particles
WO2004090051A1 (en) Process for producing powder coating composition and powder coating composition obtained by the production process
JP5133478B2 (en) Method for producing biodegradable polyester resin fine particles
JP2007009161A (en) Method for producing composite particle
TW200302243A (en) Process for manufacturing a mixture based on a plastic
JP5192128B2 (en) Method for producing spherical thermoplastic resin particles
JPH11172112A (en) Photocatalytic ligneous synthetic material composition and its production, photocatalytic ligneous synthetic foam and its production, photocatalytic ligneous synthetic molded product using the same material composition and molded product using the same foam
JP7259140B1 (en) THERMALLY EXPANDABLE MICROSPHERES, COMPOSITION, AND MOLDED PRODUCT
JP2007321027A (en) Device of granulation and method of granulation
JP4419389B2 (en) Solid drawing material and method for producing the same
WO2000023503A1 (en) Resin mixtures and dispersions
CN115847809A (en) Polymer particles and related additive manufacturing methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101029

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110920