JP2007008256A - Power steering device - Google Patents

Power steering device Download PDF

Info

Publication number
JP2007008256A
JP2007008256A JP2005189524A JP2005189524A JP2007008256A JP 2007008256 A JP2007008256 A JP 2007008256A JP 2005189524 A JP2005189524 A JP 2005189524A JP 2005189524 A JP2005189524 A JP 2005189524A JP 2007008256 A JP2007008256 A JP 2007008256A
Authority
JP
Japan
Prior art keywords
annular member
shaft
input shaft
phase difference
raceway surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005189524A
Other languages
Japanese (ja)
Other versions
JP4622703B2 (en
Inventor
Masahiro Harada
昌寛 原田
Hiroshi Ueno
弘 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2005189524A priority Critical patent/JP4622703B2/en
Publication of JP2007008256A publication Critical patent/JP2007008256A/en
Application granted granted Critical
Publication of JP4622703B2 publication Critical patent/JP4622703B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Power Steering Mechanism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact power steering device having a novel structure without a torsion bar. <P>SOLUTION: This device comprises an electric motor 17 capable of assisting steering according to a torque given to an input shaft 11 on a steering wheel side. An input shaft 11 and an output shaft 12 are connected with each other via a connection part 5, and the connection part 5 has a shaft member 2 of the input shaft 11, and a shaft member 3 of the output shaft 12, and a cylindrical roller 4 rollably interposed so as to relatively rotate them. Trajectory faces with different shapes formed on an inner periphery of an annular member 3 and on an outer periphery of the shaft member 2 gradually narrows a nipping interval of the cylindrical roller 4 while rolling the cylindrical roller 4 when the annular member 3 and the shaft member 2 relatively rotate, so as to generate a rotary energizing force in a direction for solving a phase difference between the annular member 3 and the shaft member 2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、自動車などの車両に用いられ運転者の操舵動作を補助するパワーステアリング装置に関する。   The present invention relates to a power steering device that is used in a vehicle such as an automobile and assists a driver's steering operation.

自動車などの車両に用いられる従来のパワーステアリング装置としては、ステアリングホイールに連結される入力軸(操舵軸)と、自動車の車輪側とラックピニオン式伝達機構を介して連結される出力軸と、入力軸と出力軸とを連結しているトーションバーと、このトーションバーの捩れに応じて操舵補助を行う補助駆動機構とを備えているものがある。
補助駆動機構として油圧シリンダを有している油圧パワーステアリング装置においては、トーションバーの捩れ角に応じて開度調整されるロータリバルブを備えており、このバルブが油圧を制御することによって出力軸側に連結させた油圧シリンダを動作させ、その油圧力によって操舵補助を行っている。
補助駆動機構として電動モータを有している電動パワーステアリング装置においては、トーションバーに作用するトルク(捩れ)をトルクセンサにより検出し、検出したトルクの値に基づいて、出力軸側に連結させた電動モータを回転させ、電動モータの動力によって操舵補助を行っている。
つまり、従来のパワーステアリング装置は、ステアリングホイールから入力されたトルクがトーションバーに伝わってトーションバーが捩れ、その捩れに応じて油圧アクチュエータや電動モータを動作させ、出力軸側に対して操舵補助を行っている。
Conventional power steering devices used in vehicles such as automobiles include an input shaft (steering shaft) coupled to a steering wheel, an output shaft coupled to a vehicle wheel side via a rack and pinion transmission mechanism, and an input Some include a torsion bar that connects the shaft and the output shaft, and an auxiliary drive mechanism that assists steering according to the twist of the torsion bar.
A hydraulic power steering device having a hydraulic cylinder as an auxiliary drive mechanism includes a rotary valve whose opening is adjusted according to the torsion angle of the torsion bar, and this valve controls the hydraulic pressure to control the output shaft side. The hydraulic cylinder connected to the cylinder is operated, and the steering assist is performed by the hydraulic pressure.
In an electric power steering apparatus having an electric motor as an auxiliary drive mechanism, torque (torsion) acting on a torsion bar is detected by a torque sensor and connected to the output shaft side based on the detected torque value. The electric motor is rotated and steering assist is performed by the power of the electric motor.
In other words, in the conventional power steering device, the torque input from the steering wheel is transmitted to the torsion bar, and the torsion bar is twisted, and the hydraulic actuator and the electric motor are operated in accordance with the twist, thereby assisting the steering to the output shaft side. Is going.

電動パワーステアリング装置において、トーションバーに作用するトルクを検出するための従来のトルクセンサとしては、トーションバーの捩れを計測するために、歪みゲージや、磁気抵抗の変化を測定する磁気センサなどが用いられている。トルクセンサとして磁気センサが用いられているものとしては例えば特許文献1に示しているものがある。   As a conventional torque sensor for detecting torque acting on a torsion bar in an electric power steering device, a strain gauge or a magnetic sensor for measuring a change in magnetoresistance is used to measure torsion of the torsion bar. It has been. For example, Patent Document 1 discloses a magnetic sensor used as a torque sensor.

特開2005−3461号公報JP 2005-3461 A

特許文献1に記載されている従来の電動パワーステアリング装置はトーションバーを必要としており、トーションバーの捩れを磁気センサにより測定している。トーションバーの捩れを磁気センサにより検出する構成は、微小な捩れの変化に対して検出精度が低くなるため、繊細な操舵補助の制御が困難となる。そこで、トーションバーの捩れ角を大きくさせて検出精度を高めるためにトーションバーを長くしている。つまり、従来のパワーステアリング装置は軸方向に長いトーションバーを必要としている。これにより、パワーステアリング装置全体が軸方向に長くなり、大型化を招いている。   The conventional electric power steering device described in Patent Document 1 requires a torsion bar, and the torsion bar torsion is measured by a magnetic sensor. The configuration in which the torsion bar torsion is detected by the magnetic sensor has a low detection accuracy with respect to a minute change in torsion, and thus it is difficult to control delicate steering assistance. Therefore, the torsion bar is lengthened in order to increase the torsion angle of the torsion bar and increase the detection accuracy. That is, the conventional power steering apparatus requires a torsion bar that is long in the axial direction. As a result, the entire power steering apparatus becomes longer in the axial direction, leading to an increase in size.

また、油圧パワーステアリング装置においてもトーションバーを必要としており、前記ロータリバルブにおいて開度調整を行わせるためには、トーションバーにおいてある程度大きなねじれ(ねじれ角度)が必要であるため、トーションバーを長くする必要がある。これにより、油圧パワーステアリング装置においても全体が軸方向に長くなってしまう。
そこで、この発明は軸方向寸法を短くして小型化を図ることのできるパワーステアリング装置を提供することを目的とする。
Also, a hydraulic power steering device requires a torsion bar, and in order to adjust the opening degree of the rotary valve, a torsion bar requires a certain amount of torsion (twist angle), so the torsion bar is lengthened. There is a need. As a result, the entire hydraulic power steering apparatus is also elongated in the axial direction.
Accordingly, an object of the present invention is to provide a power steering apparatus that can be reduced in size by shortening the axial dimension.

前記目的を達成するためのパワーステアリング装置は、ステアリングホイール側の入力軸と、この入力軸と連結部を介して連結されている車輪側の出力軸と、前記入力軸に付与されるトルクに応じて操舵補助を行う補助駆動機構とを備え、前記連結部は、前記入力軸と前記出力軸のうちの一方と一体回転する環状部材と、前記環状部材の内周側に設けられて他方と一体回転する内側部材と、前記環状部材と前記内側部材とが相対回転可能となるように当該環状部材の内周面と当該内側部材の外周面との間に転動可能に介在した転動体とを有し、前記環状部材の内周面と前記内側部材の外周面の少なくとも一方が、前記環状部材と前記内側部材の相対回転に伴い前記転動体を転動させつつ当該転動体の挟持間隔を漸次狭くして、前記相対回転により生じた位相差を解消する方向の回動付勢力を当該環状部材と当該内側部材の間に生じさせる異形軌道面を少なくとも一部に有していることを特徴としている。   A power steering device for achieving the above object includes an input shaft on a steering wheel side, an output shaft on a wheel side connected to the input shaft via a connecting portion, and a torque applied to the input shaft. An auxiliary drive mechanism that assists in steering, and the coupling portion is provided with an annular member that rotates integrally with one of the input shaft and the output shaft, and an inner member that is provided on the inner peripheral side of the annular member. A rotating inner member, and a rolling element interposed between the inner circumferential surface of the annular member and the outer circumferential surface of the inner member so as to be relatively rotatable with respect to the annular member and the inner member. And at least one of the inner peripheral surface of the annular member and the outer peripheral surface of the inner member rolls the rolling member in association with relative rotation of the annular member and the inner member, and gradually increases the holding interval of the rolling member. Narrow the relative rotation Ri The resulting rotational biasing force in a direction to eliminate the phase difference is characterized in that it comprises at least in part deformed raceway surface which causes between the annular member and the inner member.

このような構成によれば、入力軸と出力軸とを連結している連結部において、入力軸に付与されたトルクが環状部材と内側部材の間に伝わって相互間にトルクが生じると、当該環状部材と当該内側部材が相対回転して、異形軌道面と転動体とにより、当該相対回転による位相差を解消する方向の回動付勢力を環状部材と内側部材の間に生じさせることができる。つまり、環状部材と内側部材との間にねじりばね性を持たせることができる。このため、入力軸を回転させると出力軸を共に回転させることが可能となって、車輪の操舵を行うことができると共に、入力軸と出力軸との間、つまり環状部材と内側部材の間に生じる位相差(捩れ角)に応じて補助駆動機構により操舵補助を行わせることができる。従って、従来必要であった軸方向に長いトーションバーを不要とできる。   According to such a configuration, when the torque applied to the input shaft is transmitted between the annular member and the inner member in the connecting portion that connects the input shaft and the output shaft, The annular member and the inner member rotate relative to each other, and the deformed raceway surface and the rolling element can generate a rotation biasing force in a direction to eliminate the phase difference due to the relative rotation between the annular member and the inner member. . That is, a torsion spring property can be provided between the annular member and the inner member. Therefore, when the input shaft is rotated, the output shaft can be rotated together, the wheel can be steered, and between the input shaft and the output shaft, that is, between the annular member and the inner member. Steering assistance can be performed by an auxiliary drive mechanism in accordance with the phase difference (torsion angle) that occurs. Accordingly, a torsion bar that is long in the axial direction, which is conventionally required, can be eliminated.

また、前記補助駆動機構は、操舵補助力を出力するモータと、前記環状部材と前記内側部材の相対回転により生じる位相差を検出するためのセンサと、このセンサによる検出結果に基づいて前記モータの出力を制御する制御手段とを備えている。
この場合、センサにより環状部材と内側部材の位相差を検出し、その検出結果に基づいて制御手段がモータの出力を制御できる。従って、位相差に応じた操舵補助が可能となる。
The auxiliary drive mechanism includes a motor that outputs a steering assist force, a sensor for detecting a phase difference caused by relative rotation of the annular member and the inner member, and a detection result of the motor based on a detection result by the sensor. And a control means for controlling the output.
In this case, the phase difference between the annular member and the inner member is detected by the sensor, and the control means can control the output of the motor based on the detection result. Therefore, steering assistance according to the phase difference is possible.

また、前記センサは、前記環状部材と前記内側部材との相対回転による当該環状部材と当該内側部材との間隔の変化を測定する変位センサであるのが好ましい。
この構成によれば、環状部材と内側部材との位相差と、この位相差における環状部材と内側部材との間隔の関係を予め求めておけば、変位センサで当該間隔の変化を測定することによって、環状部材と内側部材との位相差を求めることができる。このため、簡単な構成により環状部材と内側部材との位相差を求めることができる。
さらに、この変位センサを内側部材の外周部又は環状部材の内周部に取り付ければ、内側部材と環状部材との径方向の間においてセンサ部を構成させることができ、パワーステアリング装置をコンパクトにできる。
The sensor is preferably a displacement sensor that measures a change in a distance between the annular member and the inner member due to relative rotation between the annular member and the inner member.
According to this configuration, if the phase difference between the annular member and the inner member and the relationship between the interval between the annular member and the inner member in this phase difference are obtained in advance, the displacement sensor measures the change in the interval. The phase difference between the annular member and the inner member can be obtained. For this reason, the phase difference between the annular member and the inner member can be obtained with a simple configuration.
Furthermore, if this displacement sensor is attached to the outer peripheral portion of the inner member or the inner peripheral portion of the annular member, the sensor portion can be configured between the inner member and the annular member in the radial direction, and the power steering device can be made compact. .

本発明によれば、径方向内外に配設された内側部材と環状部材との間においてねじりばね性を持たせることができるため、軸方向寸法を短くすることができ、パワーステアリング装置のコンパクト化が可能となる。   According to the present invention, since the torsion spring property can be imparted between the inner member and the annular member disposed inside and outside in the radial direction, the axial dimension can be shortened, and the power steering device can be made compact. Is possible.

以下、この発明の実施の形態について図面を参照しながら説明する。
図1はこの発明の実施の一形態に係るパワーステアリング装置の概略を示す断面図であり、まず全体構成の概略を説明する。
このパワーステアリング装置は、例えば自動車に搭載され、ステアリングホイール10側と連結される入力軸11と、車輪(図示せず)を操舵するために車輪側とラックピニオン式伝達機構(図示せず)を介して連結される出力軸12とを備えている。
出力軸12はラックピニオン式伝達機構のピニオン軸と連結又は一体とされており、このピニオン軸のピニオンギヤがラック軸のラック歯に噛み合うように構成されており、ピニオン軸の回転によりラック軸が左右動し、ラック軸の両端部に連結されている車両の左右両側の車輪を操舵することができる。そして、このパワーステアリング装置はハウジング9を有しており、ハウジング9は車体フレーム(図示せず)に固定されている。入力軸11と出力軸12とは軸中心X上に同軸状とされ、双方ともこのハウジング9内において回転可能に支持されており、入力軸11の下部と出力軸12の上部が連結部5を介して連結されている。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view showing an outline of a power steering apparatus according to an embodiment of the present invention. First, an outline of the overall configuration will be described.
This power steering device is mounted on, for example, an automobile, and includes an input shaft 11 connected to the steering wheel 10 side, and a wheel side and a rack and pinion transmission mechanism (not shown) for steering the wheel (not shown). And an output shaft 12 connected to each other.
The output shaft 12 is connected to or integrated with the pinion shaft of the rack-and-pinion transmission mechanism, and the pinion gear of the pinion shaft is configured to mesh with the rack teeth of the rack shaft. It is possible to steer the left and right wheels of the vehicle connected to both ends of the rack shaft. The power steering apparatus has a housing 9, and the housing 9 is fixed to a vehicle body frame (not shown). The input shaft 11 and the output shaft 12 are coaxial on the shaft center X, and both are rotatably supported in the housing 9, and the lower portion of the input shaft 11 and the upper portion of the output shaft 12 connect the connecting portion 5. Are connected through.

さらにこのパワーステアリング装置は、入力軸11に付与されるトルク(操舵力)に応じて操舵補助を行う補助駆動機構14を備えている。図1に示すパワーステアリング装置は電動式のものであり、補助駆動機構14は電動モータ17を有しており、操舵補助力として電動モータ17による出力(動力)を出力軸12側へ付与することができる。さらに、ステアリングホイール10側から入力されて入力軸11に作用したトルクに応じた前記連結部5における挙動(位相差、トルク)を検出するためのセンサ7と、この検出結果に基づいて電動モータ17の出力を制御する制御手段18とを備えている。
前記センサ7は、入力軸11と出力軸12との間の連結部5において生じる位相差、及びその位相差から連結部5において作用しているトルクを検出するためのものであり、このセンサ7については後に詳しく説明する。
補助駆動機構14の構成をさらに説明すると、図1において、出力軸12に外嵌固定させたウォームホイール15と、これに噛み合うウォーム16とを有しており、このウォーム16に電動モータ17の出力軸が連結されている。そして、前記センサ7と電動モータ17が制御手段18にそれぞれ接続されており、センサ7の検出結果に応じて制御手段18の作用により電動モータ17を回転させ、電動モータ17の回転力による操舵補助力を出力軸12に付与している。なお、車両本体に設けられている制御ユニット(ECU)が前記制御手段18を備えている。
The power steering apparatus further includes an auxiliary drive mechanism 14 that performs steering assistance in accordance with torque (steering force) applied to the input shaft 11. The power steering apparatus shown in FIG. 1 is an electric type, and the auxiliary drive mechanism 14 has an electric motor 17 and applies output (power) from the electric motor 17 to the output shaft 12 side as a steering auxiliary force. Can do. Furthermore, a sensor 7 for detecting a behavior (phase difference, torque) in the connecting portion 5 according to the torque input from the steering wheel 10 side and acting on the input shaft 11, and an electric motor 17 based on the detection result. And a control means 18 for controlling the output.
The sensor 7 is for detecting a phase difference generated in the connecting portion 5 between the input shaft 11 and the output shaft 12, and a torque acting on the connecting portion 5 from the phase difference. Will be described in detail later.
The configuration of the auxiliary drive mechanism 14 will be further described. In FIG. 1, the auxiliary drive mechanism 14 includes a worm wheel 15 that is externally fixed to the output shaft 12 and a worm 16 that meshes with the worm wheel 15. The shafts are connected. The sensor 7 and the electric motor 17 are respectively connected to the control means 18, and the electric motor 17 is rotated by the action of the control means 18 according to the detection result of the sensor 7, and the steering assist by the rotational force of the electric motor 17 is performed. A force is applied to the output shaft 12. A control unit (ECU) provided in the vehicle body includes the control means 18.

入力軸11と出力軸12とを連結している連結部5の構成について説明する。図3は連結部5を軸方向から見た断面図であり、図1と図3において、連結部5は、環状部材3と、この環状部材3の内周側に設けられている内側部材としての軸部材2と、環状部材3の内周面と軸部材2の外周面との間に転動可能に介在した転動体としての円筒ころ4を備えている。環状部材3は出力軸12と一体回転するようにされており、出力軸12の上部に一体状として有している。軸部材2は入力軸11と一体回転するようにされており、入力軸11の下部に一体状として有している。
円筒ころ4は環状部材3の内周面と軸部材2の外周面に転動可能とされており、環状部材3と軸部材2とは相対回転可能となる。従って、環状部材3の内周面は円筒ころ4が転動可能となる外側軌道面31とされ、軸部材2の外周面は円筒ころ4が転動可能となる内側軌道面21とされている。
A configuration of the connecting portion 5 that connects the input shaft 11 and the output shaft 12 will be described. FIG. 3 is a cross-sectional view of the connecting portion 5 as viewed from the axial direction. In FIGS. 1 and 3, the connecting portion 5 is an annular member 3 and an inner member provided on the inner peripheral side of the annular member 3. And a cylindrical roller 4 as a rolling element interposed between the inner peripheral surface of the annular member 3 and the outer peripheral surface of the shaft member 2 so as to be able to roll. The annular member 3 is configured to rotate integrally with the output shaft 12 and is integrally formed on the upper portion of the output shaft 12. The shaft member 2 is configured to rotate integrally with the input shaft 11 and is integrally formed at the lower portion of the input shaft 11.
The cylindrical roller 4 can roll on the inner peripheral surface of the annular member 3 and the outer peripheral surface of the shaft member 2, and the annular member 3 and the shaft member 2 can rotate relative to each other. Accordingly, the inner peripheral surface of the annular member 3 is an outer raceway surface 31 on which the cylindrical roller 4 can roll, and the outer peripheral surface of the shaft member 2 is an inner raceway surface 21 on which the cylindrical roller 4 can roll. .

軸部材2と環状部材3とは、同軸状でかつ相互間に環状の空間部が形成されるように配設されており、その空間部に円筒ころ4が介在して、軸部材2と環状部材3とは相対的に回転可能とされている。軸部材2と環状部材3の共通する回転中心が入力軸11と出力軸12との共通軸中心Xと一致する。
図1において、連結部5におけるラジアル荷重を支持させるために、前記円筒ころ4と並列となるように別の転動体23(公知の転がり軸受により使用されているもの)が、軸部材2と環状部材3の間に設けられている。但し、前記円筒ころ4は、軸部材2と環状部材3との間におけるラジアル荷重を支持できるため、前記転動体23を省略して実施することができる。
The shaft member 2 and the annular member 3 are coaxial and are disposed so that an annular space is formed between them, and the cylindrical roller 4 is interposed in the space and the shaft member 2 and the annular member 3 are annular. The member 3 is rotatable relative to the member 3. The common rotation center of the shaft member 2 and the annular member 3 coincides with the common axis center X of the input shaft 11 and the output shaft 12.
In FIG. 1, in order to support the radial load in the connecting portion 5, another rolling element 23 (used by a known rolling bearing) is arranged in an annular manner with the shaft member 2 so as to be in parallel with the cylindrical roller 4. It is provided between the members 3. However, since the cylindrical roller 4 can support a radial load between the shaft member 2 and the annular member 3, the rolling element 23 can be omitted.

さらに、この連結部5は、後に詳しく説明するが、環状部材3と軸部材2の間にトルクが生じて両者が相対回転すると、この相対回転により生じた位相差に応じて当該位相差を解消する方向に所定の大きさの回動付勢力を、環状部材3と軸部材2の間に生じさせるように構成されている。つまり、連結部5は、環状部材3と軸部材2の間に位相差が生ずるとそれを解消する方向の回動付勢力を生じさせるため、環状部材3と軸部材2との間にねじりばね性(周方向の弾力性)を持たせることができると言える。
そして、この位相差と回動付勢力(ねじりばね力)との関係は、軸部材2の外周面と環状部材3の内周面の形状や転動体としての円筒ころ4の力学的性質などによって、予め設計的に求めたり、予め測定されて求めることができる。
Further, as will be described in detail later, the connecting portion 5 eliminates the phase difference according to the phase difference caused by the relative rotation when torque is generated between the annular member 3 and the shaft member 2 and both of them rotate relatively. A rotation biasing force having a predetermined magnitude is generated between the annular member 3 and the shaft member 2 in the direction of the rotation. That is, when the phase difference between the annular member 3 and the shaft member 2 is generated, the connecting portion 5 generates a rotational biasing force in a direction to cancel the phase difference, so that the torsion spring is provided between the annular member 3 and the shaft member 2. It can be said that it is possible to have the property (elasticity in the circumferential direction).
The relationship between the phase difference and the rotational biasing force (torsion spring force) depends on the shape of the outer peripheral surface of the shaft member 2 and the inner peripheral surface of the annular member 3, the mechanical properties of the cylindrical roller 4 as a rolling element, and the like. It can be determined in advance by design or measured in advance.

次に、図1の電動パワーステアリング装置における動作の概略について説明する。
ステアリングホイール10を操作することによって入力軸11にトルクが入力されると、入力軸11側の軸部材2と出力軸12側の環状部材3との間にトルクが生じる。これにより、環状部材3と軸部材2は、このトルクに反対向きの回動付勢力を発生(増加)させながら相対回転する。そして、入力されたトルクと回動付勢力とがつり合えば、環状部材3と軸部材2とは所定の位相差で相対的に静止状態となる。なお、後に詳しく説明するが、環状部材3と軸部材2が相対回転して位相差が生じると、後述する異形軌道面と転動体としての円筒ころ4により、当該位相差に応じて所定の大きさの回動付勢力を、環状部材3と軸部材2の間に生じさせるように連結部5は関連付けられている。
従って、センサ7が、前記つり合い状態となっている環状部材3と軸部材2の位相差を計測することで、位相差と回動付勢力との相関に基づいて、回動付勢力とつり合っているトルクを求めることができる。そして、このトルクの値に応じて電動モータ17を回転させ、出力軸12側に対して操舵補助力を作用させることができる。
または、センサ7が、環状部材3と軸部材2との位相差を計測し、その位相差に基づいて電動モータ14を回転させ、出力軸12側に対して操舵補助力を作用させることができる。
また、図1と図3において、入力軸11側が軸部材2を有し、出力軸12側が環状部材3を有している構成としているが、これとは逆に、図示しないが入力軸11側が環状部材3を有し、出力軸12側が軸部材2を有している構成であってもよい。つまり、入力軸11と出力軸12のうちの一方が環状部材3を有し、他方がこの環状部材3の内周側に設けられている軸部材2を有していればよい。
Next, an outline of the operation in the electric power steering apparatus of FIG. 1 will be described.
When torque is input to the input shaft 11 by operating the steering wheel 10, torque is generated between the shaft member 2 on the input shaft 11 side and the annular member 3 on the output shaft 12 side. As a result, the annular member 3 and the shaft member 2 rotate relative to each other while generating (increasing) a rotational biasing force in the opposite direction to this torque. If the input torque and the rotational biasing force are balanced, the annular member 3 and the shaft member 2 are relatively stationary with a predetermined phase difference. As will be described in detail later, when the annular member 3 and the shaft member 2 rotate relative to each other to cause a phase difference, a deformed raceway surface described later and a cylindrical roller 4 as a rolling element cause a predetermined magnitude according to the phase difference. The connecting portion 5 is associated so as to generate the rotational biasing force between the annular member 3 and the shaft member 2.
Therefore, the sensor 7 measures the phase difference between the annular member 3 and the shaft member 2 in the balanced state, and balances with the rotation biasing force based on the correlation between the phase difference and the rotation biasing force. Torque can be obtained. Then, the electric motor 17 is rotated according to the torque value, and a steering assist force can be applied to the output shaft 12 side.
Alternatively, the sensor 7 can measure the phase difference between the annular member 3 and the shaft member 2, rotate the electric motor 14 based on the phase difference, and apply the steering assist force to the output shaft 12 side. .
1 and 3, the input shaft 11 side has the shaft member 2, and the output shaft 12 side has the annular member 3. On the contrary, although not shown, the input shaft 11 side The structure which has the annular member 3 and has the shaft member 2 in the output-shaft 12 side may be sufficient. That is, it is only necessary that one of the input shaft 11 and the output shaft 12 has the annular member 3 and the other has the shaft member 2 provided on the inner peripheral side of the annular member 3.

連結部5の具体的な構成と、その構成によって生ずる回動付勢力について、図3により説明する。
軸部材2の外周面である前記内側軌道面21と環状部材3の内周面である前記外側軌道面31の形状は、軸中心(回転軸)Xを中心とした円周面とはされていない。つまり、内側軌道面21は、回転軸Xを中心とする円周面とは異なる異形軌道面、すなわち内側異形軌道面2kの連続により構成されている。外側軌道面31は、異形軌道面としての外側異形軌道面3kの連続により構成されている。内側軌道面21を構成する4個の内側異形軌道面2kはすべて同一形状であり、外側軌道面31を構成する4個の外側異形軌道面3kもすべて同一形状である。内側軌道面21は周方向に均等に(90度ごとに)4分割され、各分割部分がそれぞれ内側異形軌道面2kとされている。同様に、外側軌道面31も周方向に均等に(90度ごとに)4分割され、各分割部分がそれぞれ外側異形軌道面3kとされている。
そして、各異形軌道面2k,3k間に1個ずつ円筒ころ4が配置されている。内側異形軌道面2k及び外側異形軌道面3kにより、軸部材2と環状部材3の間には、円筒ころ4の周方向側方に、軌道面間隔が周方向に漸次狭くなる漸縮空間部(くさび状空間部)が形成されており、軸部材2と環状部材3の間にトルクが生じて両者が相対回転すると、軸部材2と環状部材3との相対回転に伴い所謂くさび効果によって円筒ころ4が圧縮弾性変形する。上記の如く、内側軌道面21及び外側軌道面31をそれぞれ異形軌道面2k、3kの連続により形成することで、内側軌道面21及び外側軌道面31はそれぞれ異形軌道面2k,3kのみによって占められている。しかも、各異形軌道面2k,3kは周方向に等配されている。よって、各異形軌道面2k,3kの周方向範囲はそれぞれ最大限に拡げられており、回動付勢力が得られる周方向範囲の拡大に寄与している。
A specific configuration of the connecting portion 5 and a rotational biasing force generated by the configuration will be described with reference to FIG.
The shapes of the inner raceway surface 21 that is the outer circumferential surface of the shaft member 2 and the outer raceway surface 31 that is the inner circumferential surface of the annular member 3 are circumferential surfaces around the axis center (rotation axis) X. Absent. That is, the inner raceway surface 21 is constituted by a continuous irregular raceway surface that is different from the circumferential surface around the rotation axis X, that is, the inner variant raceway surface 2k. The outer raceway surface 31 is composed of a continuous outer variant raceway surface 3k as a variant raceway surface. The four inner modified raceway surfaces 2k constituting the inner raceway surface 21 have the same shape, and the four outer variant raceway surfaces 3k constituting the outer raceway surface 31 are also identical in shape. The inner raceway surface 21 is equally divided into four in the circumferential direction (every 90 degrees), and each divided portion is an inner deformed raceway surface 2k. Similarly, the outer raceway surface 31 is also equally divided into four in the circumferential direction (every 90 degrees), and each divided portion is an outer deformed raceway surface 3k.
One cylindrical roller 4 is disposed between each of the irregular raceway surfaces 2k and 3k. Due to the inner deformed raceway surface 2k and the outer deformed raceway surface 3k, a space between the shaft member 2 and the annular member 3 is gradually reduced in the circumferential direction side of the cylindrical roller 4 so that the raceway surface interval gradually decreases in the circumferential direction ( When a torque is generated between the shaft member 2 and the annular member 3 and both of them rotate relative to each other, the cylindrical roller is caused by a so-called wedge effect with the relative rotation of the shaft member 2 and the annular member 3. 4 undergoes compression elastic deformation. As described above, the inner raceway surface 21 and the outer raceway surface 31 are formed by continuation of the deformed raceway surfaces 2k and 3k, respectively, so that the inner raceway surface 21 and the outer raceway surface 31 are occupied only by the deformed raceway surfaces 2k and 3k, respectively. ing. In addition, the deformed raceway surfaces 2k and 3k are equally arranged in the circumferential direction. Therefore, the circumferential direction ranges of the deformed raceway surfaces 2k and 3k are each expanded to the maximum, which contributes to the expansion of the circumferential range in which the rotational biasing force can be obtained.

各異形軌道面2k,3kについて説明すると、各異形軌道面2k,3kは、回転軸Xとは異なる位置に曲率中心を有する曲面とされている。
まず、外側軌道面31を構成する4個の外側異形軌道面3kは、それぞれ凹曲面とされている。具体的には、外側異形軌道面3kは軸中心Xよりも軌道面(当該外側異形軌道面3k)に近くなる側に位置する外側軌道曲率中心Coを中心とする円弧面(円周面)とされている。この外側異形軌道面3kの曲率半径groは、外側軌道面31の断面輪郭線に外接する円の半径(外側軌道面31と軸中心Xとの距離の最大値)である外側軌道基準半径Roよりも小さい。また、断面視において、4つの各外側異形軌道面3kのそれぞれに関し、外側軌道曲率中心Coは、軸中心Xからの距離が外側異形軌道面3k上において最大値となる外側最大径位置3mと、軸中心Xと、を含む直線p3上にある。
The deformed raceway surfaces 2k and 3k will be described. Each of the deformed track surfaces 2k and 3k is a curved surface having a center of curvature at a position different from the rotation axis X.
First, each of the four outer deformed track surfaces 3k constituting the outer track surface 31 is a concave curved surface. Specifically, the outer deformed track surface 3k is an arc surface (circumferential surface) centered on the outer track curvature center Co located closer to the track surface (the outer deformed track surface 3k) than the axis center X. Has been. The curvature radius gro of the outer deformed raceway surface 3k is based on the outer track reference radius Ro which is the radius of the circle circumscribing the cross-sectional outline of the outer raceway surface 31 (the maximum value of the distance between the outer raceway surface 31 and the axis center X). Is also small. Further, in a cross-sectional view, with respect to each of the four outer deformed track surfaces 3k, the outer track curvature center Co has an outer maximum radial position 3m at which the distance from the axial center X becomes a maximum value on the outer deformed track surface 3k, It is on a straight line p3 including the axis center X.

次に、内側軌道面21を構成する4個の内側異形軌道面2kは、それぞれ凸曲面とされている。具体的には、内側異形軌道面2kは軸中心Xよりも軌道面(当該内側異形軌道面2k)から遠くなる側に位置する内側軌道曲率中心Ciを中心とする円弧面(円周面)とされている。この内側異形軌道面2kの曲率半径griは、内側軌道面21の断面輪郭線に内接する円の半径(内側軌道面21と軸中心Xとの距離の最小値)である内側軌道基準半径Riよりも大きい。また、断面視において、4つの各内側異形軌道面2kのそれぞれに関し、内側軌道曲率中心Ciは、軸中心Xからの距離が内側異形軌道面2k上において最小値となる内側最小径位置2mと、軸中心Xと、を含む直線p2上にある。   Next, each of the four inner deformed track surfaces 2k constituting the inner track surface 21 is a convex curved surface. Specifically, the inner deformed raceway surface 2k is an arcuate surface (circumferential surface) centered on the inner orbital curvature center Ci located on the side farther from the track surface (the inner deformed track surface 2k) than the axis center X. Has been. The curvature radius gri of the inner deformed raceway surface 2k is based on the inner raceway reference radius Ri, which is the radius of the circle inscribed in the cross-sectional outline of the inner raceway surface 21 (the minimum value of the distance between the inner raceway surface 21 and the axis center X). Is also big. Further, in a cross-sectional view, for each of the four inner deformed raceway surfaces 2k, the inner track curvature center Ci has an inner minimum radial position 2m at which the distance from the axial center X becomes the minimum value on the inner deformed track surface 2k, It lies on a straight line p2 including the axis center X.

以上のような形状の内側軌道面21と外側軌道面31とを有することにより、軸部材2と環状部材3との間に周方向の回動付勢力を生じさせることができる回動付勢機能を有している。この点について説明する。
内側軌道面21及び外側軌道面31がいずれも軸中心Xを中心とする円周面ではないため、内側軌道面21と外側軌道面31との間の空間(転動空間)の形状は軸部材2と環状部材3との相対位相関係により変化するが、図3の状態は、外側軌道面31の外側最大径位置3mと内側軌道面21の内側最小径位置2mとが同位相とされた状態である。以下、この状態を基準状態ということとする。基準状態において、各円筒ころ4は、内側最小径位置2m及び外側最大径位置3mと接する周方向位置に配置される(図3参照)。この基準状態は、円筒ころ4の挟持間隔(円筒ころ4の接触位置における軌道面間隔)が最も広い状態である。よって、この基準状態では、両軌道面2k、3kから円筒ころ4に作用する圧縮力は最小値(たとえば0)となる。
なお、基準状態における内側最小径位置2mと外側最大径位置3mとの間の径方向距離は円筒ころ4の直径と略一致させるが、若干のラジアル隙間(プラス隙間又はマイナス隙間)を与えても良い。
By having the inner raceway surface 21 and the outer raceway surface 31 of the shape as described above, a rotation biasing function capable of generating a circumferential rotation biasing force between the shaft member 2 and the annular member 3. have. This point will be described.
Since neither the inner raceway surface 21 nor the outer raceway surface 31 is a circumferential surface centered on the axis center X, the shape of the space (rolling space) between the inner raceway surface 21 and the outer raceway surface 31 is a shaft member. 3 varies depending on the relative phase relationship between the ring member 3 and the annular member 3, but the state shown in FIG. 3 is a state where the outer maximum radial position 3 m of the outer raceway surface 31 and the inner minimum radial position 2 m of the inner raceway surface 21 are in phase. It is. Hereinafter, this state is referred to as a reference state. In the reference state, each cylindrical roller 4 is disposed at a circumferential position in contact with the inner minimum diameter position 2m and the outer maximum diameter position 3m (see FIG. 3). This reference state is a state in which the holding interval of the cylindrical rollers 4 (the track surface interval at the contact position of the cylindrical rollers 4) is the widest. Therefore, in this reference state, the compressive force acting on the cylindrical roller 4 from both the raceway surfaces 2k and 3k becomes a minimum value (for example, 0).
Note that the radial distance between the inner minimum diameter position 2m and the outer maximum diameter position 3m in the reference state is substantially the same as the diameter of the cylindrical roller 4, but even if a slight radial gap (plus gap or minus gap) is given. good.

次に、この基準状態から環状部材3が軸部材2に対して回転すると、円筒ころ4が両軌道面21,31を転動するとともに、当該円筒ころ4の挟持間隔は漸次狭くなる。よってこの回転に伴い円筒ころ4は内側軌道面21及び外側軌道面31により圧縮されて弾性圧縮変形する。これにより、前記回転によって生じた位相差に応じて当該位相差を解消する方向に所定の大きさのトルクが軸部材2と環状部材3との間に発生する。そして、このトルクが、軸部材2と環状部材3との間の回動付勢力として作用する。つまり、軸部材2と環状部材3とを回転方向に弾性的に連結していることとなる。   Next, when the annular member 3 rotates with respect to the shaft member 2 from this reference state, the cylindrical roller 4 rolls on both the raceway surfaces 21 and 31, and the holding interval of the cylindrical roller 4 gradually decreases. Therefore, with this rotation, the cylindrical roller 4 is compressed by the inner raceway surface 21 and the outer raceway surface 31 and elastically deformed. As a result, a torque having a predetermined magnitude is generated between the shaft member 2 and the annular member 3 in a direction to eliminate the phase difference according to the phase difference generated by the rotation. This torque acts as a rotational biasing force between the shaft member 2 and the annular member 3. That is, the shaft member 2 and the annular member 3 are elastically connected in the rotation direction.

回動付勢力が生じる点について更に詳細に説明する。図4は、発生するトルクについて説明するための断面図であり、理解しやすいように内側異形軌道面2kの一部、外側異形軌道面3kの一部、及び、円筒ころ4のそれぞれの輪郭線のみを示している。図4は、固定状態としている軸部材2に対して、環状部材3を反時計回りに角度θだけ回転させて静止させたつり合い状態を示している。基準状態では、外側最大径位置3mは図4のx軸上の位置3miに位置し、且つ内側最小径位置2mもx軸上にある。またこの基準状態では円筒ころ4の中心Prもx軸上にある。かかる基準状態から環状部材3を角度θだけ反時計回りに回転させると、円筒ころ4が図4に示す位置まで反時計回りに転動する。この転動による円筒ころ4の公転角度は、内側軌道曲率中心Ciに対して角度φiである。このとき、内側異形軌道面2kと円筒ころ4との接触位置の中心をPi、外側異形軌道面3kと円筒ころ4との接触位置の中心をPoとすると、PiとPoとの間の間隔は、基準状態における内側最小径位置2mと外側最大径位置3mとの間の間隔よりも狭くなっており、且つ、円筒ころ4の直径(円筒ころ4の半径Rrの2倍)よりも狭くなっている。よって、円筒ころ4は、内側軌道面21から垂直力Qiを受けるとともに、外側軌道面31から垂直力Qoを受けて圧縮弾性変形する。つり合って静止している状態では、円筒ころ4に接線力は殆ど働かず、図4に示すように点Ci,Co,Pi,Pr,Poは直線L1上に並ぶこととなる。そして、上記垂直力Qi及び垂直力Qoのベクトルの向きも直線L1と同じ向きとなり、軸部材2が円筒ころ4から受ける垂直力Qi′、及び、環状部材3が円筒ころ4から受ける垂直力Qo′も直線L1と同じ向きとなる。そして、環状部材3が円筒ころ4から受ける垂直力Qo′は、連結部5の径方向(円筒ころ4との接触位置の中心Poと軸中心Xとを結ぶ直線の方向)と相違しており、当該径方向の成分とともに時計回りの成分を有することとなる。このようにして、環状部材3は、回動付勢力として発生させる時計回り方向のモーメント(以下、回転付勢モーメントともいう)を受ける。回転付勢モーメントの大きさは、〔(ベクトルQo′の大きさ)×(軸中心Xから直線L1までの距離U1)〕となる。   The point where the rotational biasing force is generated will be described in more detail. FIG. 4 is a cross-sectional view for explaining the generated torque. For easy understanding, a part of the inner deformed raceway surface 2k, a part of the outer deformed raceway surface 3k, and the contour lines of the cylindrical rollers 4 are shown. Only shows. FIG. 4 shows a balanced state in which the annular member 3 is rotated counterclockwise by an angle θ with respect to the shaft member 2 in a fixed state. In the reference state, the outer maximum diameter position 3m is located at a position 3mi on the x axis in FIG. 4, and the inner minimum diameter position 2m is also on the x axis. In this reference state, the center Pr of the cylindrical roller 4 is also on the x axis. When the annular member 3 is rotated counterclockwise by an angle θ from such a reference state, the cylindrical roller 4 rolls counterclockwise to the position shown in FIG. The revolution angle of the cylindrical roller 4 due to this rolling is an angle φi with respect to the inner track curvature center Ci. At this time, if the center of the contact position between the inner deformed raceway surface 2k and the cylindrical roller 4 is Pi and the center of the contact position between the outer deformed track surface 3k and the cylindrical roller 4 is Po, the distance between Pi and Po is The distance between the inner minimum diameter position 2m and the outer maximum diameter position 3m in the reference state is narrower than the diameter of the cylindrical roller 4 (twice the radius Rr of the cylindrical roller 4). Yes. Therefore, the cylindrical roller 4 receives the vertical force Qi from the inner raceway surface 21 and also receives the vertical force Qo from the outer raceway surface 31 and undergoes compression elastic deformation. In a balanced and stationary state, almost no tangential force acts on the cylindrical roller 4, and the points Ci, Co, Pi, Pr, Po are aligned on the straight line L1 as shown in FIG. The directions of the vectors of the vertical force Qi and the vertical force Qo are also the same as the straight line L1. The vertical force Qi ′ received by the shaft member 2 from the cylindrical roller 4 and the vertical force Qo received by the annular member 3 from the cylindrical roller 4 'Also has the same direction as the straight line L1. The vertical force Qo ′ received by the annular member 3 from the cylindrical roller 4 is different from the radial direction of the connecting portion 5 (the direction of the straight line connecting the center Po of the contact position with the cylindrical roller 4 and the axis center X). And a clockwise component together with the radial component. In this way, the annular member 3 receives a clockwise moment (hereinafter also referred to as a rotation biasing moment) generated as a rotation biasing force. The magnitude of the rotation urging moment is [(size of vector Qo ′) × (distance U1 from axis center X to straight line L1)].

上述したように、内側異形軌道面2kは凸曲面であり、且つ、外側異形軌道面3kは凹曲面である。しかも、各内側異形軌道面2k及び各外側異形軌道面3kは滑らかに連続した曲面を構成している。内側軌道面21において滑らかに連続した曲面となっていないのは、隣り合った内側異形軌道面2k同士間の境界位置21bのみであり(図3参照)、外側軌道面31において滑らかに連続した曲面となっていないのは、隣り合った外側異形軌道面3k同士間の境界位置31bのみである(図3参照)。したがって、円筒ころ4の側方に形成されている漸縮空間部は、円筒ころ4と軌道面21,31との接触位置がこれら境界位置21b,31bのいずれかに達するまで、軸部材2と環状部材3との相対回転に伴う円筒ころ4接触位置における軌道面間隔は漸次(徐々に)変化する形状とされている。そして、図3を用いて説明した上記機構により、環状部材3の回転により生じた位相差を解消する方向の回動付勢力が軸部材2と環状部材3の間に付与される。   As described above, the inner deformed track surface 2k is a convex curved surface, and the outer deformed track surface 3k is a concave curved surface. In addition, each inner deformed track surface 2k and each outer deformed track surface 3k form a smoothly continuous curved surface. Only the boundary position 21b between the adjacent inner deformed raceway surfaces 2k is not a smoothly continuous curved surface in the inner raceway surface 21 (see FIG. 3), and the smoothly continuous curved surface in the outer raceway surface 31. Only the boundary position 31b between the adjacent outer deformed raceway surfaces 3k is not (see FIG. 3). Accordingly, the gradually reducing space portion formed on the side of the cylindrical roller 4 is connected to the shaft member 2 until the contact position between the cylindrical roller 4 and the raceway surfaces 21 and 31 reaches one of the boundary positions 21b and 31b. The space between the raceway surfaces at the contact position of the cylindrical roller 4 with relative rotation with the annular member 3 is a shape that gradually changes. Then, by the above-described mechanism described with reference to FIG. 3, a rotational biasing force in a direction to eliminate the phase difference caused by the rotation of the annular member 3 is applied between the shaft member 2 and the annular member 3.

このような連結部5によれば、ねじりコイルバネを用いることなく軸部材2と環状部材3との間に回動付勢力(ねじりばね性)を持たせることができ、その構成を簡素化できる。更に、この連結部5では、ねじり剛性(ばね定数)等の設計自由度が極めて高くされている。すなわち、異形軌道面2k,3kの設計(曲率、曲率中心の位置等)や円筒ころ4の剛性等によりねじり剛性等を自在に設計できる。従って、部材のサイズ(体格)を変えなくても、異形軌道面2k,3kの形状の変更により、ねじり剛性等の特性を広範囲に亘って設定することができる。更に、ねじりコイルバネを用いた場合では位相差(ねじれ角)とねじり剛性との関係は線形(一定)であるが、この連結部5によれば、異形軌道面2k,3kの形状の変更により、位相差(ねじれ角)に対してねじり剛性を非線形に変化させる等、位相差に応じてねじり剛性を自在に変化させることもできる。なお、環状部材3の軸部材2に対する回転角度をθとした場合に、その回転角度θとねじり剛性との関係を示した一例を図5に示している。このように、回転角度θ(位相差)とねじり剛性とは単調増加で非線形の関係にあり、位相差と回動付勢力とは所定の関係にある。   According to such a connecting portion 5, it is possible to give a rotational biasing force (torsion spring property) between the shaft member 2 and the annular member 3 without using a torsion coil spring, and the configuration can be simplified. Furthermore, in this connection part 5, the design freedom, such as torsional rigidity (spring constant), is extremely high. That is, the torsional rigidity and the like can be freely designed by designing the irregular raceway surfaces 2k and 3k (curvature, position of the center of curvature, etc.) and the rigidity of the cylindrical roller 4. Therefore, characteristics such as torsional rigidity can be set over a wide range by changing the shapes of the deformed raceway surfaces 2k and 3k without changing the size (physique) of the member. Furthermore, in the case of using a torsion coil spring, the relationship between the phase difference (twist angle) and the torsional rigidity is linear (constant). However, according to this connecting portion 5, by changing the shapes of the deformed raceway surfaces 2k and 3k, It is also possible to freely change the torsional rigidity according to the phase difference, such as changing the torsional rigidity non-linearly with respect to the phase difference (torsion angle). FIG. 5 shows an example of the relationship between the rotation angle θ and the torsional rigidity when the rotation angle of the annular member 3 with respect to the shaft member 2 is θ. Thus, the rotation angle θ (phase difference) and the torsional rigidity are monotonously increasing and have a non-linear relationship, and the phase difference and the rotational biasing force are in a predetermined relationship.

また図3に示している連結部5において、周方向に等配された4個の内輪異形軌道面2kの連続により構成された内輪軌道面21と、周方向に等配された4個の外輪異形軌道面3kの連続により構成された外輪軌道面31と、4個の円筒ころ4とを備え、環状部材3の回転に伴い全ての円筒ころ4において、円筒ころ4の挟持間隔はそれぞれ均等に変化する構成としている。これにより、軸部材2と環状部材3の間で生ずる回動付勢力の方向及び大きさを全円筒ころ4において均等とすることができ、周方向に均一に回動付勢力が生ずることとなる。   In addition, in the connecting portion 5 shown in FIG. 3, an inner ring raceway surface 21 constituted by a series of four inner ring deformed raceway surfaces 2k equally arranged in the circumferential direction, and four outer rings equally arranged in the circumferential direction. The outer ring raceway surface 31 formed by the continuous raceway surface 3k and the four cylindrical rollers 4 are provided, and the holding intervals of the cylindrical rollers 4 are equalized in all the cylindrical rollers 4 as the annular member 3 rotates. The structure is changing. Thereby, the direction and magnitude | size of the rotation urging | biasing force which generate | occur | produce between the shaft member 2 and the annular member 3 can be equalized in all the cylindrical rollers 4, and a rotation urging | biasing force will arise uniformly in the circumferential direction. .

また、図3では4個の円筒ころ4を等間隔で配設して構成した4等配型としたが、これに限らず、3個の円筒ころからなる3等配型や、5等配型以上であってもよい。
さらに、図3では異形軌道面を軸部材2の内側軌道面21と環状部材3の外側軌道面31の双方にそれぞれ形成したが、異形軌道面は、内側軌道面21と外側軌道面31の少なくとも一方に形成されていればよい。つまり、図示しないが、外輪軌道面31は図3と同様に4つの連続した外輪異形軌道面3kで構成されているが、内輪軌道面21は軸中心Xを中心とする円周面(真円)であってもよい。または、内輪軌道面21は図3と同様に4つの連続した内輪異形軌道面2kで構成されているが、外輪軌道面31は軸中心Xを中心とした円周面(真円)であってもよい。異形軌道面の成形を一方のみとすることにより加工が容易となる。
In FIG. 3, the four cylindrical rollers 4 are arranged at equal intervals. However, the present invention is not limited to this. It may be more than the mold.
Further, in FIG. 3, the deformed raceway surface is formed on both the inner raceway surface 21 of the shaft member 2 and the outer raceway surface 31 of the annular member 3, but the deformed raceway surface is at least of the inner raceway surface 21 and the outer raceway surface 31. It only has to be formed on one side. That is, although not shown, the outer ring raceway surface 31 is constituted by four continuous outer ring raceway surfaces 3k as in FIG. 3, but the inner ring raceway surface 21 is a circumferential surface (round circle) centered on the axis center X. ). Alternatively, the inner ring raceway surface 21 is composed of four continuous inner ring raceway surfaces 2k as in FIG. 3, but the outer ring raceway surface 31 is a circumferential surface (perfect circle) centered on the axis center X. Also good. By forming the deformed raceway surface on only one side, processing becomes easy.

次に、図1の電動パワーステアリング装置において、軸部材2と環状部材3の相対回転により生じる位相差を計測するためにセンサ7について説明する。このセンサ7は、例えば軸部材2と環状部材3の間の位相差を直接的に角度として検出するロータリエンコードなどの角度センサとすることができるが、図3の形態においては、軸部材2の内側軌道面21と環状部材3の外側軌道面31の間隔の変化を測定している非接触式の変位センサ7としている。
このような非接触式の変位センサ7により前記位相差を検出することができるのは、転動体としての円筒ころ4の周方向側方に形成されている漸縮空間部において、異形軌道面2k,3kの形状により、軸部材2と環状部材3とが相対回転すると異形軌道面上の周方向所定位置(例えば非接触センサ7の計測位置)における当該軸部材2の内側軌道面21と当該環状部材3の外側軌道面31との間隔が所定の関係で連続的に変化するようされているからであり、内側軌道面21と外側軌道面31の形状は前記のとおり予め所定の形状により設定されて形成されているからである。つまり、軸部材2と環状部材3との位相差と、内側軌道面21と外側軌道面31との間隔との関係が予め設定されているからである。
Next, the sensor 7 will be described in order to measure the phase difference caused by the relative rotation of the shaft member 2 and the annular member 3 in the electric power steering apparatus of FIG. The sensor 7 may be an angle sensor such as a rotary encode that directly detects the phase difference between the shaft member 2 and the annular member 3 as an angle, but in the form of FIG. The contactless displacement sensor 7 is used to measure a change in the distance between the inner raceway surface 21 and the outer raceway surface 31 of the annular member 3.
The non-contact displacement sensor 7 can detect the phase difference in the deformed raceway surface 2k in the gradually reducing space portion formed on the side in the circumferential direction of the cylindrical roller 4 as a rolling element. , 3k, when the shaft member 2 and the annular member 3 rotate relative to each other, the inner raceway surface 21 of the shaft member 2 and the annular shape at a predetermined circumferential position on the deformed raceway surface (for example, a measurement position of the non-contact sensor 7). This is because the distance between the member 3 and the outer raceway surface 31 is continuously changed in a predetermined relationship, and the shapes of the inner raceway surface 21 and the outer raceway surface 31 are set in advance according to a predetermined shape as described above. It is because it is formed. That is, the relationship between the phase difference between the shaft member 2 and the annular member 3 and the distance between the inner raceway surface 21 and the outer raceway surface 31 is set in advance.

すなわち、図3の変位センサ7は軸部材2の外周部に設けられており、対向している環状部材3の外側軌道面31までの距離を計測している。変位センサ7は隣り合う内側異形軌道面2k,2k間の境界位置に設けられており、基準状態において変位センサ7は外側軌道面31までの最小間隔寸法を計測する。そして、軸部材2と環状部材3とが相対回転して所定の位相差でつり合った状態となった際、変位センサ7がその計測位置における外側軌道面31までの距離を計測する。これにより、基準状態からの計測値(間隔)の変化(差)を検出することができ、その変化によって基準状態からの位相差を求めることができる。
また、図示しないが、非接触式の変位センサ7を環状部材3の内周部に設けて、軸部材2の内側軌道面21までの距離の変化を計測するようにしてもよい。この場合も同様に、軸部材2と環状部材3との位相差を求めることができる。
That is, the displacement sensor 7 of FIG. 3 is provided in the outer peripheral part of the shaft member 2, and measures the distance to the outer raceway surface 31 of the annular member 3 which opposes. The displacement sensor 7 is provided at the boundary position between the adjacent inner deformed track surfaces 2k, 2k, and the displacement sensor 7 measures the minimum distance dimension to the outer track surface 31 in the reference state. Then, when the shaft member 2 and the annular member 3 are relatively rotated and balanced with a predetermined phase difference, the displacement sensor 7 measures the distance to the outer raceway surface 31 at the measurement position. Thereby, the change (difference) of the measured value (interval) from the reference state can be detected, and the phase difference from the reference state can be obtained by the change.
Although not shown, a non-contact displacement sensor 7 may be provided on the inner periphery of the annular member 3 to measure a change in the distance to the inner raceway surface 21 of the shaft member 2. Similarly in this case, the phase difference between the shaft member 2 and the annular member 3 can be obtained.

以上のようなセンサ7によれば、センサ7が環状部材3と軸部材2との位相差を計測することができ、さらに、相互間における回動付勢力を求めることができ、これとつり合っているステアリングホイール10側から入力されたトルクを検出することができる。そして、計測した位相差や、トルクの大小に応じて補助駆動機構14の電動モータ17を動作させることで出力軸12側に対して操舵補助を行うことができる。
さらに、この連結部5において、軸部材2と環状部材3との間に前記ねじりばね性を持たせることができるため、これらの部材に作用するトルク変動を吸収することができ、さらに、過大なトルクが生じてもそれによる衝撃を緩和させることができる。
また、入力軸11と出力軸12との間の入力トルクが変化することで軸部材2と環状部材3とが相対回転し、前記センサ7がその位相差の変化を精度よく検出できるため、微小なトルクの変化を検出することができる。これにより、良好な操舵フィーリングを実現できる。
According to the sensor 7 as described above, the sensor 7 can measure the phase difference between the annular member 3 and the shaft member 2, and can determine the rotational biasing force between them, which is balanced with this. The torque input from the steering wheel 10 side can be detected. Then, the steering assist can be performed on the output shaft 12 side by operating the electric motor 17 of the auxiliary drive mechanism 14 according to the measured phase difference and the magnitude of the torque.
Furthermore, in this connection part 5, since the said torsion spring property can be given between the shaft member 2 and the annular member 3, the torque fluctuation | variation which acts on these members can be absorbed, and also excessively Even if torque is generated, the impact caused by the torque can be reduced.
Further, since the shaft member 2 and the annular member 3 rotate relative to each other when the input torque between the input shaft 11 and the output shaft 12 changes, the sensor 7 can accurately detect the change in the phase difference. Torque change can be detected. Thereby, a favorable steering feeling can be realized.

さらに、入力軸11と出力軸12とを連結している前記構成の連結部5を有するパワーステアリング装置によれば、入力軸11を回転させると前記回動付勢力の発生により出力軸12を共に回転させることが可能となって、ステアリングホイール10の動作に応じて車輪(図示せず)の操舵を行うことができると共に、入力軸11と出力軸12との間、つまり環状部材3と軸部材2の間に生じる位相差(捩れ角)に応じて補助駆動機構14により操舵補助を行わせることができる。従って、従来では必要であった長いトーションバーが不要となり、コンパクト化が可能となる。
また、図5において説明したように、回転角度θ(位相差)とねじり剛性とは単調増加の関係にあり、かつ、回転角度θが大きくなるにつれてねじり剛性の増加度(増加割合)が大きくなる関係(非線形の関係)にある。これにより、回転角度θが大きい場合は剛性のあるステアリングとでき、操舵フィーリングの良いものとできる。
Furthermore, according to the power steering apparatus having the connecting portion 5 configured as described above that connects the input shaft 11 and the output shaft 12, when the input shaft 11 is rotated, the output shaft 12 is moved together by the generation of the rotational biasing force. The wheel (not shown) can be steered according to the operation of the steering wheel 10 and can be rotated between the input shaft 11 and the output shaft 12, that is, the annular member 3 and the shaft member. Steering assistance can be performed by the auxiliary drive mechanism 14 in accordance with the phase difference (twist angle) generated between the two. Therefore, a long torsion bar that has been necessary in the prior art is not required, and a compact design is possible.
Further, as described in FIG. 5, the rotation angle θ (phase difference) and the torsional rigidity are in a monotonically increasing relationship, and the increase degree (increase rate) of the torsional rigidity increases as the rotation angle θ increases. There is a relationship (non-linear relationship). As a result, when the rotation angle θ is large, the steering can be made rigid and the steering feeling can be improved.

なお、本発明では、連結部5における円筒ころ4の形状等は特に限定されず、環状部材3と軸部材2との相対回転に伴い転動するものであればよい。よって、上述した実施形態のように円筒ころ4に限られず、例えば球や円すいころ等でもよく、従来の内輪と外輪とを有する転がり軸受で用いていた転動体を適宜応用することができる。また、ねじり剛性の設定自由度を高めるため、弾性圧縮変形しやすい中空の転動体(例えば中空の円筒ころや中空の球)等を用いることもできる。   In the present invention, the shape or the like of the cylindrical roller 4 in the connecting portion 5 is not particularly limited as long as it rolls with the relative rotation between the annular member 3 and the shaft member 2. Therefore, it is not limited to the cylindrical roller 4 as in the above-described embodiment, and may be, for example, a ball or a tapered roller, and a rolling element used in a conventional rolling bearing having an inner ring and an outer ring can be appropriately applied. In order to increase the degree of freedom in setting torsional rigidity, a hollow rolling element (for example, a hollow cylindrical roller or a hollow sphere) that is easily elastically compressed and deformed can be used.

図2は本発明の他の実施形態を示す概略断面図であり、油圧パワーステアリング装置を示している。この装置についても図1と同様に、ステアリングホイール10側の入力軸11と、この入力軸11と連結部5を介して連結されている車輪(図示せず)側の出力軸12と、入力軸11に付与されるトルクに応じて操舵補助を行う補助駆動機構(図示せず)とを備えている。そして、出力軸12は、図示しないが、車輪側とラックピニオン式伝達機構を介して連結される。
この補助駆動機構は、図外の油圧アクチュエータ(油圧シリンダ)と、入力軸11の回転(トルク)による位相差に応じて開度調整されるロータリバルブ19を備えている。そして、入力軸11の回転に応じてこのバルブ19の開度が変化し、このバルブ19が油圧(流量)を制御することによって出力軸12側に連結させた油圧アクチュエータを動作させ、油圧力によって操舵補助を行っている。なお、油圧アクチュエータは前記ラックピニオン式伝達機構のうちのラック側に対して操舵補助力を付与するよう構成することができる。
FIG. 2 is a schematic cross-sectional view showing another embodiment of the present invention, and shows a hydraulic power steering apparatus. As in FIG. 1, this apparatus also has an input shaft 11 on the steering wheel 10 side, an output shaft 12 on a wheel (not shown) side connected to the input shaft 11 via a connecting portion 5, and an input shaft. 11 is provided with an auxiliary drive mechanism (not shown) for assisting steering in accordance with the torque applied to the motor 11. The output shaft 12 is connected to the wheel side via a rack and pinion transmission mechanism (not shown).
The auxiliary drive mechanism includes a hydraulic actuator (hydraulic cylinder) (not shown) and a rotary valve 19 whose opening is adjusted according to the phase difference caused by the rotation (torque) of the input shaft 11. The opening degree of the valve 19 changes according to the rotation of the input shaft 11, and the hydraulic actuator connected to the output shaft 12 side is operated by controlling the hydraulic pressure (flow rate). Steering assistance is provided. The hydraulic actuator can be configured to apply a steering assist force to the rack side of the rack and pinion transmission mechanism.

入力軸11と出力軸12とを連結している連結部5の構成について説明する。この連結部5の構成は図1に示したものと同様であり、図2と図3において、連結部5は、環状部材3と、この環状部材3の内周側に設けられている内側部材としての軸部材2と、環状部材3の内周面と軸部材2の外周面との間に転動可能に介在した転動体としての円筒ころ4を備えている。環状部材3は出力軸12と一体回転するようにされており、出力軸12の上部に一体状として有している。軸部材2は入力軸11と一体回転するようにされており、入力軸11の下部に一体状として有している。
円筒ころ4は環状部材3の内周面と軸部材2の外周面に転動可能とされており、環状部材3と軸部材2とは相対回転可能となる。従って、環状部材3の内周面は円筒ころ4が転動可能となる外側軌道面31とされ、軸部材2の外周面は円筒ころ4が転動可能となる内側軌道面21とされている。
A configuration of the connecting portion 5 that connects the input shaft 11 and the output shaft 12 will be described. The structure of the connecting portion 5 is the same as that shown in FIG. 1. In FIGS. 2 and 3, the connecting portion 5 includes an annular member 3 and an inner member provided on the inner peripheral side of the annular member 3. And a cylindrical roller 4 as a rolling element interposed between the inner peripheral surface of the annular member 3 and the outer peripheral surface of the shaft member 2 so as to be able to roll. The annular member 3 is configured to rotate integrally with the output shaft 12 and is integrally formed on the upper portion of the output shaft 12. The shaft member 2 is configured to rotate integrally with the input shaft 11 and is integrally formed at the lower portion of the input shaft 11.
The cylindrical roller 4 can roll on the inner peripheral surface of the annular member 3 and the outer peripheral surface of the shaft member 2, and the annular member 3 and the shaft member 2 can rotate relative to each other. Accordingly, the inner peripheral surface of the annular member 3 is an outer raceway surface 31 on which the cylindrical roller 4 can roll, and the outer peripheral surface of the shaft member 2 is an inner raceway surface 21 on which the cylindrical roller 4 can roll. .

さらに、この連結部5は、図1の形態と同様に、環状部材3と軸部材2の間にトルクが生じて両者が相対回転すると、この相対回転により生じた位相差に応じて当該位相差を解消する方向に所定の大きさの回動付勢力を、環状部材3と軸部材2の間に生じさせるように構成されている。つまり、連結部5は、環状部材3と軸部材2の間に位相差が生ずるとそれを解消する方向の回動付勢力を生じさせるため、環状部材3と軸部材2との間にねじりばね性(周方向の弾力性)を持たせることができると言える。   Further, as in the embodiment of FIG. 1, when the torque is generated between the annular member 3 and the shaft member 2 and both of them rotate relative to each other, the connecting portion 5 corresponds to the phase difference corresponding to the phase difference generated by the relative rotation. A rotation biasing force having a predetermined magnitude is generated between the annular member 3 and the shaft member 2 in a direction to eliminate the above. That is, when the phase difference between the annular member 3 and the shaft member 2 is generated, the connecting portion 5 generates a rotational biasing force in a direction to cancel the phase difference, so that the torsion spring is provided between the annular member 3 and the shaft member 2. It can be said that it is possible to have the property (elasticity in the circumferential direction).

そして、図2の油圧パワーステアリング装置において、ステアリングホイール10を操作することによって入力軸11にトルクが入力されると、入力軸11側の軸部材2と出力軸12側の環状部材3との間にトルクが生じる。これにより、環状部材3と軸部材2は、このトルクに反対向きの回動付勢力を発生(増加)させながら相対回転することができる。つまり、入力軸11が出力軸12に対して回転することで、ロータリバルブ19の開度を変化させ、補助駆動機構が有する油圧アクチュエータ(図示せず)を動作させて操舵補助力を作用させることができる。   In the hydraulic power steering apparatus of FIG. 2, when torque is input to the input shaft 11 by operating the steering wheel 10, between the shaft member 2 on the input shaft 11 side and the annular member 3 on the output shaft 12 side. Torque is generated. As a result, the annular member 3 and the shaft member 2 can rotate relative to each other while generating (increasing) a rotational biasing force in the opposite direction to this torque. That is, when the input shaft 11 rotates with respect to the output shaft 12, the opening degree of the rotary valve 19 is changed, and a hydraulic actuator (not shown) included in the auxiliary drive mechanism is operated to apply a steering assist force. Can do.

連結部5の具体的な構成と、その構成によって生ずる回動付勢力についても、図1の形態によるものと同様であり、その説明は前記のとおりである。
以上のように、油圧パワーステアリング装置によれば、入力軸11を回転させると連結部5において前記回動付勢力の発生により出力軸12を共に回転させることが可能となって、ステアリングホイール10の動作に応じて車輪(図示せず)の操舵を行うことができると共に、入力軸11と出力軸12との間、つまり環状部材3と軸部材2の間に生じる位相差(捩れ角)に応じて油圧アクチュエータ(図示せず)により操舵補助を行わせることができる。従って、従来では必要であった長いトーションバーが不要となり、コンパクト化が可能となる。
なお、図1と図2の実施形態において、電動と油圧のそれぞれの補助駆動機構の構成はこれに限らず、従来知られているものを適用することができ、他の形態のものであってもよい。
The specific configuration of the connecting portion 5 and the rotational biasing force generated by the configuration are also the same as those according to the embodiment of FIG. 1, and the description thereof is as described above.
As described above, according to the hydraulic power steering apparatus, when the input shaft 11 is rotated, the output shaft 12 can be rotated together by the generation of the rotational biasing force in the connecting portion 5, and the steering wheel 10 can be rotated. The wheel (not shown) can be steered according to the operation, and according to the phase difference (torsion angle) generated between the input shaft 11 and the output shaft 12, that is, between the annular member 3 and the shaft member 2. Thus, steering assistance can be performed by a hydraulic actuator (not shown). Therefore, a long torsion bar that has been necessary in the prior art is not required, and a compact design is possible.
In the embodiment of FIGS. 1 and 2, the configuration of each of the electric and hydraulic auxiliary drive mechanisms is not limited to this, and a conventionally known configuration can be applied, and other configurations are possible. Also good.

本発明の実施の一形態に係るパワーステアリング装置の概略を示す断面図である。It is sectional drawing which shows the outline of the power steering apparatus which concerns on one Embodiment of this invention. 他の実施形態であるパワーステアリング装置の概略を示す断面図である。It is sectional drawing which shows the outline of the power steering apparatus which is other embodiment. 入力軸と出力軸との連結部を説明する断面図である。It is sectional drawing explaining the connection part of an input shaft and an output shaft. ねじりばね力が生ずる原理を説明するための図である。It is a figure for demonstrating the principle which a torsion spring force produces. 回転角度とねじり剛性の関係を示すグラフである。It is a graph which shows the relationship between a rotation angle and torsional rigidity.

符号の説明Explanation of symbols

2 軸部材(内側部材)
3 環状部材
4 円筒ころ(転動体)
5 連結部
7 センサ
11 入力軸
12 出力軸
14 補助駆動機構
21 内側軌道面(外周面)
2k 内側異形軌道面
31 外側軌道面(内周面)
3k 外側異形軌道面
X 軸中心
2 Shaft member (inner member)
3 Ring member 4 Cylindrical roller (rolling element)
DESCRIPTION OF SYMBOLS 5 Connection part 7 Sensor 11 Input shaft 12 Output shaft 14 Auxiliary drive mechanism 21 Inner track surface (outer peripheral surface)
2k Inner deformed raceway surface 31 Outer raceway surface (inner circumferential surface)
3k Outer profile surface X axis center

Claims (3)

ステアリングホイール側の入力軸と、この入力軸と連結部を介して連結されている車輪側の出力軸と、前記入力軸に付与されるトルクに応じて操舵補助を行う補助駆動機構と、を備え、
前記連結部は、前記入力軸と前記出力軸のうちの一方と一体回転する環状部材と、前記環状部材の内周側に設けられて他方と一体回転する内側部材と、前記環状部材と前記内側部材とが相対回転可能となるように当該環状部材の内周面と当該内側部材の外周面との間に転動可能に介在した転動体と、を有し、
前記環状部材の内周面と前記内側部材の外周面の少なくとも一方が、前記環状部材と前記内側部材の相対回転に伴い前記転動体を転動させつつ当該転動体の挟持間隔を漸次狭くして、前記相対回転により生じた位相差を解消する方向の回動付勢力を当該環状部材と当該内側部材の間に生じさせる異形軌道面を少なくとも一部に有していることを特徴とするパワーステアリング装置。
An input shaft on the steering wheel side, an output shaft on the wheel side connected to the input shaft via a connecting portion, and an auxiliary drive mechanism for assisting steering in accordance with torque applied to the input shaft. ,
The connecting portion includes an annular member that rotates integrally with one of the input shaft and the output shaft, an inner member that is provided on the inner peripheral side of the annular member and rotates integrally with the other, the annular member, and the inner member A rolling element interposed between the inner circumferential surface of the annular member and the outer circumferential surface of the inner member so as to be relatively rotatable with the member,
At least one of the inner peripheral surface of the annular member and the outer peripheral surface of the inner member rolls the rolling member with the relative rotation of the annular member and the inner member, and gradually narrows the holding interval of the rolling member. And a power steering characterized in that it has at least part of a deformed raceway surface that generates a rotational biasing force in a direction to eliminate a phase difference caused by the relative rotation between the annular member and the inner member. apparatus.
前記補助駆動機構は、操舵補助力を出力するモータと、前記環状部材と前記内側部材の相対回転により生じる位相差を検出するためのセンサと、このセンサによる検出結果に基づいて前記モータの出力を制御する制御手段と、を備えている請求項1に記載のパワーステアリング装置。   The auxiliary drive mechanism includes a motor that outputs a steering assist force, a sensor for detecting a phase difference caused by relative rotation of the annular member and the inner member, and an output of the motor based on a detection result by the sensor. The power steering apparatus according to claim 1, further comprising a control unit that controls the power steering apparatus. 前記センサは、前記環状部材と前記内側部材との相対回転による当該環状部材と当該内側部材との間隔の変化を測定する変位センサである請求項2に記載のパワーステアリング装置。   The power steering device according to claim 2, wherein the sensor is a displacement sensor that measures a change in a distance between the annular member and the inner member due to relative rotation between the annular member and the inner member.
JP2005189524A 2005-06-29 2005-06-29 Power steering device Expired - Fee Related JP4622703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005189524A JP4622703B2 (en) 2005-06-29 2005-06-29 Power steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005189524A JP4622703B2 (en) 2005-06-29 2005-06-29 Power steering device

Publications (2)

Publication Number Publication Date
JP2007008256A true JP2007008256A (en) 2007-01-18
JP4622703B2 JP4622703B2 (en) 2011-02-02

Family

ID=37747307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005189524A Expired - Fee Related JP4622703B2 (en) 2005-06-29 2005-06-29 Power steering device

Country Status (1)

Country Link
JP (1) JP4622703B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185644U (en) * 1983-05-27 1984-12-10 日産自動車株式会社 Steering force detection device for steering device
JPH06183356A (en) * 1987-10-09 1994-07-05 Ntn Corp Motor-driven power steering
JP2000346727A (en) * 1999-06-03 2000-12-15 Murata Mfg Co Ltd Torque sensor
JP2001281080A (en) * 2000-03-30 2001-10-10 Koyo Seiko Co Ltd Torque sensor
JP2003114157A (en) * 2001-10-05 2003-04-18 Showa Corp Torque sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59185644U (en) * 1983-05-27 1984-12-10 日産自動車株式会社 Steering force detection device for steering device
JPH06183356A (en) * 1987-10-09 1994-07-05 Ntn Corp Motor-driven power steering
JP2000346727A (en) * 1999-06-03 2000-12-15 Murata Mfg Co Ltd Torque sensor
JP2001281080A (en) * 2000-03-30 2001-10-10 Koyo Seiko Co Ltd Torque sensor
JP2003114157A (en) * 2001-10-05 2003-04-18 Showa Corp Torque sensor

Also Published As

Publication number Publication date
JP4622703B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
JP5822091B2 (en) Steering device
JP3653611B2 (en) Electric steering device
JP2007057258A (en) Wheel bearing with sensor
JP3747152B2 (en) Gear mechanism and electric power steering device
JP2007057259A (en) Wheel bearing with sensor
JP4622703B2 (en) Power steering device
JP5613642B2 (en) Electric power steering device
JP5594523B2 (en) Vehicle steering system
JP2019007534A (en) Worm reduction gear
JP2005161894A (en) Electric power steering device
JP4085878B2 (en) Electric power steering device
JP4720350B2 (en) Torque detection device
JP2007057257A (en) Wheel bearing with sensor
JP5257682B2 (en) Oscillating gear device, transmission ratio variable mechanism, and vehicle steering device
JP5472742B2 (en) Vehicle steering system
JP4114560B2 (en) Electric power steering device
JP2018194147A (en) Worm gear speed reducer
JP5251053B2 (en) Steering device
JP2003112635A (en) Electric power steering unit
JP2018070073A (en) Steering device
JP2023098292A (en) Electric power steering device and manufacturing method therefor
JP3818814B2 (en) Electric power steering device
JP2019124526A (en) Torque sensor and electric power steering device
JP2016142519A (en) Checkup method for power steering mechanisms
JP2007009976A (en) Rolling bearing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20101018

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20131112

LAPS Cancellation because of no payment of annual fees