JP2007003048A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2007003048A
JP2007003048A JP2005181749A JP2005181749A JP2007003048A JP 2007003048 A JP2007003048 A JP 2007003048A JP 2005181749 A JP2005181749 A JP 2005181749A JP 2005181749 A JP2005181749 A JP 2005181749A JP 2007003048 A JP2007003048 A JP 2007003048A
Authority
JP
Japan
Prior art keywords
way valve
cooling water
electric
engine
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005181749A
Other languages
Japanese (ja)
Other versions
JP4744201B2 (en
Inventor
Daigo Akaboshi
大吾 赤星
Haruhiko Konno
春彦 金野
Kiyoma Yamagishi
清磨 山岸
Taisei Noguchi
大成 野口
Ryota Hirata
亮太 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005181749A priority Critical patent/JP4744201B2/en
Publication of JP2007003048A publication Critical patent/JP2007003048A/en
Application granted granted Critical
Publication of JP4744201B2 publication Critical patent/JP4744201B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of using electric three-way valves different in use applications by effectively utilizing an output port of a control device. <P>SOLUTION: This air conditioner 10 comprising an engine 30 for driving a compressor 21 in a refrigerant circuit, and a cooling water circuit 40 for circulating the cooling water to the engine 50, further comprises the control device 50 having the output port P3 with which the electric three-way valve used in using a wax valve for distributing the cooling water into the engine 30, and heat exchangers 23, 47 in the cooling water circuit 40, and an electric cooler three-way valve 41A substitute for the wax valve are exclusively connected, and switching the control to the electric three-way valves in accordance with the electric three-way valve connected with the output port P3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、冷媒回路内の圧縮機を駆動するエンジンと、このエンジンに冷却水を循環させる冷却水回路とを備える空気調和装置に関する。   The present invention relates to an air conditioner including an engine that drives a compressor in a refrigerant circuit, and a cooling water circuit that circulates cooling water through the engine.

従来より、冷媒回路内の圧縮機を駆動するエンジンと、このエンジンに冷却水を循環させる冷却水回路と、冷却水回路中の冷却水と冷媒回路中の冷媒との間で熱交換させるプレート式熱交換器(冷媒加熱用熱交換器)とを備える空気調和装置が知られている。この種の空気調和装置には、冷却水回路内に、エンジンを通過した冷却水を、エンジンと冷却水回路中のプレート式熱交換器とに振り分けるワックス三方弁と、温水熱交換器を備え、この温水熱交換器を通過した冷却水をエンジンと熱交換器とに振り分ける電動温水取出三方弁とを備えるものがある(例えば特許文献1)。
特開2002−228294号公報
Conventionally, an engine that drives a compressor in a refrigerant circuit, a cooling water circuit that circulates cooling water in the engine, and a plate type that exchanges heat between the cooling water in the cooling water circuit and the refrigerant in the refrigerant circuit There is known an air conditioner including a heat exchanger (heat exchanger for heating a refrigerant). This type of air conditioner includes a wax three-way valve that distributes cooling water that has passed through the engine to the engine and a plate heat exchanger in the cooling water circuit, and a hot water heat exchanger in the cooling water circuit, Some include an electric hot water extraction three-way valve that distributes cooling water that has passed through the hot water heat exchanger to an engine and a heat exchanger (for example, Patent Document 1).
JP 2002-228294 A

ところで、従来の構成は、客先の要望に応じて温水取出三方弁と温水熱交換器とを省略する場合があり、かかる仕様では、制御装置の温水取出三方弁用の出力ポート(接続部)が空きポートとなってしまう。
一方、ワックス三方弁は、冷却水の温度が固定的な弁切替温度(例えば70℃)に達するまで弁が切り替わらないため、エンジンが起動してから弁切替温度に達するまでの間に冷媒の低温温度が低下してしまった際に、プレート熱交換器が冷媒で十分冷却された後でいきなり70℃以上の冷却水(熱水)が流れ、ヒートショックによるプレート熱交換器の耐久性の低下等を招くおそれがある。この種のヒートショック等を、制御装置の空きポートに接続した電動弁を使って回避できれば便利である。
By the way, the conventional configuration may omit the hot water extraction three-way valve and the hot water heat exchanger depending on the customer's request. In such a specification, the output port (connection part) for the hot water extraction three-way valve of the control device. Becomes an empty port.
On the other hand, the wax three-way valve does not switch until the temperature of the cooling water reaches a fixed valve switching temperature (for example, 70 ° C.). When the temperature drops, after the plate heat exchanger has been sufficiently cooled by the refrigerant, the cooling water (hot water) of 70 ° C or higher flows, and the durability of the plate heat exchanger decreases due to heat shock, etc. May be incurred. It would be convenient if this type of heat shock or the like could be avoided by using a motorized valve connected to an empty port of the control device.

本発明は、上述した事情に鑑みてなされたものであり、制御装置の出力ポートを有効利用して用途の異なる電動三方弁を使用できるようにした空気調和装置を提供することを目的とする。   This invention is made | formed in view of the situation mentioned above, and it aims at providing the air conditioning apparatus which enabled it to use the electric three-way valve from which an application differs using the output port of a control apparatus effectively.

上述した課題を解決するため、本発明は、冷媒回路内の圧縮機を駆動するエンジンと、このエンジンに冷却水を循環させる冷却水回路とを備える空気調和装置において、前記冷却水を前記エンジンと前記冷却水回路中の熱交換器とに振り分けるワックス弁使用時に使用される電動三方弁と、ワックス弁代替となる電動クーラ三方弁とが排他的に接続される接続部を備え、この接続部に接続された電動三方弁に応じて、電動三方弁に対する制御を切替可能な制御装置を備えることを特徴とする。この構成によれば、ワックス弁使用時に使用される電動三方弁と、ワックス弁代替となる電動クーラ三方弁とが排他的に接続される接続部を備え、この接続部に接続された電動三方弁に応じて、電動三方弁に対する制御を切替可能な制御装置を備えるので、制御装置の出力ポートを有効利用して用途の異なる電動三方弁を使用することができる。   In order to solve the above-described problems, the present invention provides an air conditioner including an engine that drives a compressor in a refrigerant circuit, and a cooling water circuit that circulates cooling water through the engine. An electric three-way valve used when using a wax valve that distributes to the heat exchanger in the cooling water circuit and an electric cooler three-way valve that replaces the wax valve are connected to each other. A control device capable of switching control over the electric three-way valve according to the connected electric three-way valve is provided. According to this configuration, the electric three-way valve that is used when the wax valve is used and the electric cooler three-way valve that replaces the wax valve are connected to each other, and the electric three-way valve that is connected to the connection part Accordingly, since the control device capable of switching the control over the electric three-way valve is provided, the electric three-way valve having a different application can be used by effectively using the output port of the control device.

また、本発明は、上記構成において、前記制御装置は、前記電動クーラ三方弁が接続される場合、エンジン起動時は、電動クーラ三方弁の開度を、前記エンジンを通過した冷却水を前記熱交換器側に流す開度に制御することが好ましい。また、上記構成において、前記制御装置は、前記電動クーラ三方弁が接続される場合、前記冷却水の温度が予め定めた条件を満足しない際に、前記電動クーラ三方弁を全開にする制御を含む位置だし制御を行うことが好ましい。
さらに、上記構成において、前記制御装置は、電動三方弁に対する制御の切替指示を入力する入力部を備えることが好ましく、また、ワックス弁使用時に使用される電動三方弁は、前記冷却水回路に温水熱交換器が配置された場合に、前記エンジンを通過した冷却水を選択的に前記温水熱交換器に供給するための温水取出三方弁であることが好ましい。
Further, according to the present invention, in the configuration described above, when the electric cooler three-way valve is connected, the control device determines the opening degree of the electric cooler three-way valve and the cooling water that has passed through the engine when the engine is started. It is preferable to control the opening to flow to the exchanger side. In the above configuration, when the electric cooler three-way valve is connected, the control device includes a control for fully opening the electric cooler three-way valve when the temperature of the cooling water does not satisfy a predetermined condition. It is preferable to perform position control.
Furthermore, in the above configuration, the control device preferably includes an input unit that inputs a control switching instruction for the electric three-way valve, and the electric three-way valve used when the wax valve is used is configured to supply hot water to the cooling water circuit. When a heat exchanger is arranged, it is preferably a hot water extraction three-way valve for selectively supplying cooling water that has passed through the engine to the hot water heat exchanger.

本発明は、ワックス弁使用時に使用される電動三方弁と、ワックス弁代替となる電動クーラ三方弁とが排他的に接続される接続部を備え、この接続部に接続された電動三方弁に応じて、電動三方弁に対する制御を切替可能な制御装置を備えるので、制御装置の出力ポートを有効利用して用途の異なる電動三方弁を使用することができる。   The present invention includes a connection part to which an electric three-way valve used when using a wax valve and an electric cooler three-way valve as an alternative to the wax valve are connected exclusively, and according to the electric three-way valve connected to this connection part In addition, since the control device capable of switching control over the electric three-way valve is provided, the electric three-way valve having a different application can be used by effectively using the output port of the control device.

以下、図面を参照して本発明の実施形態を詳述する。
図1は、本実施形態に係るガスヒートポンプ式空気調和装置(以下、空気調和装置)10の構成を示す図である。
この空気調和装置10は、室内ユニット11と室外ユニット12とを有し、室内ユニット11の室内冷媒配管13と、室外ユニット12の室外冷媒配管20とが連結されて構成されている。室内ユニット11は、被調和室に設置され、室内冷媒配管13には、室内熱交換器14と室内膨張弁15とが設けられ、また、室内ユニット11内には、室内熱交換器14に向けて被調和室内の空気を送風する室内ファン16が配置されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram illustrating a configuration of a gas heat pump type air conditioner (hereinafter, air conditioner) 10 according to the present embodiment.
The air conditioner 10 includes an indoor unit 11 and an outdoor unit 12, and is configured by connecting an indoor refrigerant pipe 13 of the indoor unit 11 and an outdoor refrigerant pipe 20 of the outdoor unit 12. The indoor unit 11 is installed in a conditioned room, the indoor refrigerant pipe 13 is provided with an indoor heat exchanger 14 and an indoor expansion valve 15, and the indoor unit 11 is directed to the indoor heat exchanger 14. An indoor fan 16 for blowing air in the conditioned room is disposed.

室外ユニット12は、室外に設置され、室外冷媒配管20には、圧縮機21、四方弁22、室外熱交換器23、室外膨張弁24が設けられ、また、室外ユニット12内には、室外熱交換器23に向けて外気を送風する室外ファン25が配置されている。上記圧縮機21は、動力伝達機構26を介してガスエンジン30に連結され、このガスエンジン30により圧縮機21が回転駆動される。上記冷媒配管13、20内には、冷媒が満たされ、この冷媒は、ガスエンジン30が駆動する圧縮機21により冷媒配管13、20内を循環する。すなわち、これら冷媒配管13、20及び冷媒配管13、20に配設された各部品によって冷媒回路が構成されている。   The outdoor unit 12 is installed outside, and the outdoor refrigerant pipe 20 is provided with a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, and an outdoor expansion valve 24. An outdoor fan 25 that blows outside air toward the exchanger 23 is disposed. The compressor 21 is connected to a gas engine 30 through a power transmission mechanism 26, and the compressor 21 is rotationally driven by the gas engine 30. The refrigerant pipes 13 and 20 are filled with refrigerant, and the refrigerant circulates in the refrigerant pipes 13 and 20 by the compressor 21 driven by the gas engine 30. In other words, a refrigerant circuit is constituted by the refrigerant pipes 13 and 20 and the components arranged in the refrigerant pipes 13 and 20.

また、室外ユニット12には、ガスエンジン30に冷却水を循環させてガスエンジン30の熱を回収するための冷却水回路40が配設され、この冷却水回路40には、ガスエンジン30の冷却水通路42の出口に配管接続される三方弁41が配置されている。
この三方弁41の2つの出口の一方には、冷却水ポンプ43と排ガス熱交換器44とが配管接続され、この排ガス熱交換器44の他端は、冷却水通路42の入口に配管接続されている。すなわち、この三方弁41、冷却水ポンプ43及び排ガス熱交換器44をつなぐ配管経路によって、ガスエンジン30を通過した冷却水をガスエンジン30に戻す第1経路(図中符号αで示す経路)が形成されている。ここで、排ガス熱交換器44は、ガスエンジン30の排気ガスと冷却水との間で熱交換させる熱交換器である。
Further, the outdoor unit 12 is provided with a cooling water circuit 40 for circulating the cooling water to the gas engine 30 and recovering the heat of the gas engine 30. The cooling water circuit 40 includes a cooling water circuit 40 for cooling the gas engine 30. A three-way valve 41 connected to the outlet of the water passage 42 is disposed.
The cooling water pump 43 and the exhaust gas heat exchanger 44 are connected to one of the two outlets of the three-way valve 41, and the other end of the exhaust gas heat exchanger 44 is connected to the inlet of the cooling water passage 42. ing. That is, a first path (path indicated by symbol α in the figure) for returning the coolant that has passed through the gas engine 30 to the gas engine 30 by a piping path connecting the three-way valve 41, the coolant pump 43, and the exhaust gas heat exchanger 44. Is formed. Here, the exhaust gas heat exchanger 44 is a heat exchanger that exchanges heat between the exhaust gas of the gas engine 30 and the cooling water.

また、三方弁41の他の出口には、冷却水電動三方弁45の入口が配管接続され、この冷却水電動三方弁45の一方の出口には、冷媒加熱用熱交換器46の一端が配管接続され、また、冷却水電動三方弁45の他方の出口には、ラジエータ47の一端が配管接続され、冷媒加熱用熱交換器46及びラジエータ47の他端は、上記第1経路に配管接続されている。つまり、本構成では、ガスエンジン30を通過した冷却水を、三方弁41、冷却水電動三方弁45及び冷媒加熱用熱交換器46を通過させて第1経路に戻す第2経路(図中符号βで示す経路)と、三方弁41、冷却水電動三方弁45及びラジエータ47を通過させて第1経路に戻す第3経路(図中符号γで示す経路)とを形成可能に構成されている。   Further, the other outlet of the three-way valve 41 is connected to the inlet of the cooling water electric three-way valve 45, and one end of the refrigerant heating heat exchanger 46 is connected to one outlet of the cooling water electric three-way valve 45. One end of the radiator 47 is connected to the other outlet of the cooling water electric three-way valve 45, and the other ends of the refrigerant heating heat exchanger 46 and the radiator 47 are connected to the first path. ing. That is, in this configuration, the second path (reference numeral in the drawing) returns the cooling water that has passed through the gas engine 30 to the first path through the three-way valve 41, the cooling water electric three-way valve 45, and the refrigerant heating heat exchanger 46. (path indicated by β) and a third path (path indicated by γ in the figure) that passes through the three-way valve 41, the cooling water electric three-way valve 45, and the radiator 47 and returns to the first path can be formed. .

ここで、冷媒加熱用熱交換器46は、冷媒回路内の冷媒と冷却水との間で熱交換させる熱交換器であり、例えば、プレート式熱交換器又は二重管が適用される。また、ラジエータ47は、室外ファン25の送風空気が供給されるように、室外熱交換器23に隣接して配置され、当該ラジエータ47を通過する冷却水を冷却させるものである。なお、このラジエータ47を室外熱交換器23に一体的に組み込んでもよい。   Here, the refrigerant heating heat exchanger 46 is a heat exchanger for exchanging heat between the refrigerant in the refrigerant circuit and the cooling water. For example, a plate heat exchanger or a double pipe is applied. The radiator 47 is disposed adjacent to the outdoor heat exchanger 23 so as to be supplied with the blown air of the outdoor fan 25, and cools the cooling water passing through the radiator 47. The radiator 47 may be integrated into the outdoor heat exchanger 23.

また、この室外ユニット12には、空気調和装置10を制御する制御装置50が配置される。この制御装置50は、ガスエンジン30の冷却水通路42の出口温度を計測する冷却水温度センサ51、外気温度を計測する外気温センサ52、室内ユニット11が配置された室内(被調和室内)の温度を計測する室温センサ53、各熱交換器14、23に配置された温度センサ(図示せず)、温水熱交換器61の出口温度を計測する出口温度センサ54(図2)等が接続される他、室内ユニット11の室内制御装置(図示せず)と通信可能に接続されている。   The outdoor unit 12 is provided with a control device 50 that controls the air conditioner 10. The control device 50 includes a cooling water temperature sensor 51 that measures the outlet temperature of the cooling water passage 42 of the gas engine 30, an outside air temperature sensor 52 that measures the outside air temperature, and a room (a conditioned room) in which the indoor unit 11 is disposed. A room temperature sensor 53 for measuring temperature, a temperature sensor (not shown) disposed in each of the heat exchangers 14 and 23, an outlet temperature sensor 54 (FIG. 2) for measuring the outlet temperature of the hot water heat exchanger 61, and the like are connected. In addition, it is communicably connected to an indoor control device (not shown) of the indoor unit 11.

そして、この制御装置50は、室内制御装置を介して室内リモコン(図示せず)に入力されたユーザ指示を取得し、冷房運転を行う場合には、図1に示すように、四方弁22を実線の位置(冷房運転の位置)に切り替え、ガスエンジン30の駆動により圧縮機21から吐出された冷媒を図に実線矢印で示す方向に流して、室外熱交換器23を凝縮器として機能させ、室内熱交換器14を蒸発器として機能させる一方、暖房運転を行う場合には、四方弁22を波線の位置(暖房運転の位置)に切り替え、圧縮機21から吐出された冷媒を図に波線矢印で示す方向に流して、室内熱交換器14を凝縮器として機能させ、室外熱交換器を蒸発器として機能させる。なお、空調運転時の各膨張弁15、24や送風ファン16、25の制御は従来とほぼ同様であるため、説明を省略する。   When the control device 50 acquires a user instruction input to an indoor remote controller (not shown) via the indoor control device and performs a cooling operation, as shown in FIG. Switch to the position of the solid line (cooling operation position), flow the refrigerant discharged from the compressor 21 by driving the gas engine 30 in the direction indicated by the solid line arrow in the figure, the outdoor heat exchanger 23 functions as a condenser, When the indoor heat exchanger 14 functions as an evaporator and heating operation is performed, the four-way valve 22 is switched to a wavy line position (heating operation position), and the refrigerant discharged from the compressor 21 is indicated by a wavy arrow in the figure. The indoor heat exchanger 14 functions as a condenser and the outdoor heat exchanger functions as an evaporator. In addition, since control of each expansion valve 15 and 24 and the ventilation fans 16 and 25 at the time of an air conditioning operation is substantially the same as the past, description is abbreviate | omitted.

また、制御装置50は、冷却水ポンプ43が配線接続されると共に(図示せず)、各種電動弁が配線接続される複数の出力ポート(接続部)P1、P2、P3、P4とを備えている。出力ポートP1は室外膨張弁24が接続されるポートであり、出力ポートP2は冷却水電動三方弁45が接続されるポートであり、出力ポートP4は、四方弁22が接続されるポートであり、出力ポートP3は、用途の異なる電動三方弁が排他的に接続されるポートであり、制御装置50は、各ポートを介して各電動弁の開度を制御するようになっている。   Further, the control device 50 includes a plurality of output ports (connection portions) P1, P2, P3, and P4 to which the cooling water pump 43 is connected by wiring (not shown) and various electric valves are connected by wiring. Yes. The output port P1 is a port to which the outdoor expansion valve 24 is connected, the output port P2 is a port to which the cooling water electric three-way valve 45 is connected, and the output port P4 is a port to which the four-way valve 22 is connected, The output port P3 is a port to which an electric three-way valve having a different application is exclusively connected, and the control device 50 controls the opening degree of each electric valve through each port.

ところで、この空気調和装置10には、図1に示すように、三方弁41に電動クーラ三方弁41Aを使用する仕様(以下、仕様Aという。)と、図2に示すように、三方弁41にワックス弁41Cを使用し、温水供給系60との間で熱交換を行う温水熱交換器61を配置すると共に、この温水熱交換器61に選択的に冷却水を供給するための電動温水取出三方弁41Bを配置する温水取出仕様(以下、仕様Bという。)とがあり、仕様Aの場合には、図1に示すように、電動クーラ三方弁41Aが出力ポートP3に接続され、仕様Bの場合には、図2に示すように、温水取出三方弁41Bが出力ポートP3に接続される。   By the way, in this air conditioning apparatus 10, as shown in FIG. 1, the specification (henceforth specification A) which uses the electric cooler three-way valve 41A for the three-way valve 41, and the three-way valve 41 as shown in FIG. In addition, a hot water heat exchanger 61 for exchanging heat with the hot water supply system 60 is disposed using a wax valve 41C, and an electric hot water take-out for selectively supplying cooling water to the hot water heat exchanger 61 is provided. There is a hot water extraction specification (hereinafter referred to as specification B) in which the three-way valve 41B is arranged. In the case of specification A, as shown in FIG. 1, the electric cooler three-way valve 41A is connected to the output port P3, In this case, as shown in FIG. 2, the hot water extraction three-way valve 41B is connected to the output port P3.

上記制御装置50は、図3に示すように、出力ポート(接続部)P1、P2、P3、P4を有する弁駆動部55と、CPU56と、各種情報を表示する表示機能及び操作子(例えば、基板上に設けられるスイッチ等)を有する表示・操作部(入力部)57と、各種情報が記憶されるEEPROM(不揮発性メモリ)58と、外部機器との間で通信を行う通信部(入力部)59とを備えており、仕様A、Bの設定指示は、表示・操作部57の操作、及び、通信部59を介して入力される指示で行われる。すなわち、CPU56は、表示・操作部57又は通信部59を介して仕様A又はBの設定指示を入力すると、EEPROM58に仕様の設定情報を書き込み、以前の設定情報が存在する場合には、設定情報を書き換える機能を具備している。そして、CPU56は、空気調和装置10の電源投入時等にEEPROM58から仕様の設定情報を読み出すことにより、設定された仕様に応じた制御を実行する。これによって、制御装置50は、仕様A又はBの設定指示を入力することによって、出力ポートP3に接続された電動三方弁(電動クーラ三方弁41A、温水取出三方弁41B)の制御を切り替えることが可能に構成されている。   As shown in FIG. 3, the control device 50 includes a valve drive unit 55 having output ports (connection units) P1, P2, P3, and P4, a CPU 56, and a display function and an operator (for example, various types of information). A display / operation unit (input unit) 57 having a switch or the like provided on a substrate, an EEPROM (nonvolatile memory) 58 in which various information is stored, and a communication unit (input unit) that communicates with an external device 59), the setting instructions for the specifications A and B are performed by the operation of the display / operation unit 57 and the instruction input via the communication unit 59. That is, when the CPU 56 inputs a setting instruction of the specification A or B via the display / operation unit 57 or the communication unit 59, the setting information of the specification is written in the EEPROM 58, and if the previous setting information exists, the setting information It has a function to rewrite The CPU 56 executes control according to the set specifications by reading the setting information of the specifications from the EEPROM 58 when the air conditioner 10 is turned on. Thereby, the control device 50 can switch the control of the electric three-way valve (electric cooler three-way valve 41A, hot water extraction three-way valve 41B) connected to the output port P3 by inputting the setting instruction of the specification A or B. It is configured to be possible.

次に、冷却水制御について説明する。制御装置50は、空調運転時(ガスエンジン運転時)は冷却水ポンプ43を駆動し、冷却水電動三方弁45については、原則的には、冷房運転時は冷却水をラジエータ47側に流すように切替制御し、暖房運転時は冷却水を冷媒加熱用熱交換器46に流すように切替制御するものであり、例えば、暖房運転時は、冷却水温度が所定温度(例えば70℃)以下では、ラジエータ47側に冷却水を流し、上記温度を超えると冷媒加熱用熱交換器46側に徐々に冷却水を流す制御を行う。但し、冷房運転時であっても、室内ユニット11が凍結温度の状況下にある場合等は、冷却水を冷媒加熱用熱交換器46に流すように冷却水電動三方弁45を制御する。   Next, the cooling water control will be described. The control device 50 drives the cooling water pump 43 during the air conditioning operation (when the gas engine is operating), and in principle, the cooling water electric three-way valve 45 causes the cooling water to flow to the radiator 47 side during the cooling operation. In the heating operation, the switching control is performed so that the cooling water flows through the refrigerant heating heat exchanger 46. For example, in the heating operation, when the cooling water temperature is equal to or lower than a predetermined temperature (for example, 70 ° C.). The cooling water is supplied to the radiator 47 side, and when the temperature is exceeded, the cooling water is gradually supplied to the refrigerant heating heat exchanger 46 side. However, even during the cooling operation, when the indoor unit 11 is in a freezing temperature state, the cooling water electric three-way valve 45 is controlled so that the cooling water flows into the refrigerant heating heat exchanger 46.

まず仕様Bの場合を説明する(図2参照)。ワックス弁41Cは、ガスエンジン30の起動後、冷却水の温度がワックス弁41Cの弁切替温度(例えば、70℃)に達するまでは冷却水を第1経路αに流し、弁切替温度を超えると、冷却水を少しずつ温水取出三方弁41Bに流すようになっている。
図4は、エンジン運転時における温水取出三方弁41B2の制御の一例を示すフローチャートである。以下の説明において、温水取出三方弁41B及び電動クーラ三方弁41Aの最大弁開度が2000stepの場合を例に説明する。
First, the case of specification B will be described (see FIG. 2). The wax valve 41C causes the cooling water to flow through the first path α until the temperature of the cooling water reaches the valve switching temperature (for example, 70 ° C.) of the wax valve 41C after the gas engine 30 is started. The cooling water is gradually fed to the hot water extraction three-way valve 41B.
FIG. 4 is a flowchart showing an example of control of the hot water extraction three-way valve 41B2 during engine operation. In the following description, the case where the maximum valve opening degree of the hot water extraction three-way valve 41B and the electric cooler three-way valve 41A is 2000 steps will be described as an example.

まず、制御装置50は、温水取出三方弁41Bの弁開度をエンジン停止時は1000stepに制御し、エンジン起動時は50step(冷却水電動三方弁45側が温水熱交換器61側より弁開度が大)に制御するのが前提である。
エンジン運転時、制御装置50は、制御間隔(2秒)毎に(ステップS1)、外気温センサ52が測定する外気温度を取得し(ステップS2)、外気温度が設定温度(例えば20℃)未満であって、かつ、冷却水電動三方弁45の弁開度が1000step超であれば(ステップS3)、温水取出三方弁41Bの弁開度調整値δを−100stepに設定し(ステップS4)、温水取出三方弁41Bのスキップ制御を行う(ステップS5)。ここで、スキップ制御は、温水取出三方弁41Bの弁開度が閾値以上或いは閾値以下になった時に弁開度をジャンプさせる制御である。
First, the control device 50 controls the valve opening degree of the hot water extraction three-way valve 41B to 1000 steps when the engine is stopped, and 50 steps when the engine is started (the opening degree of the cooling water electric three-way valve 45 side is higher than that of the hot water heat exchanger 61 side). It is premised on controlling to large).
During engine operation, the control device 50 acquires the outside air temperature measured by the outside air temperature sensor 52 (step S2) at every control interval (2 seconds) (step S1), and the outside air temperature is less than a set temperature (for example, 20 ° C.). If the opening degree of the cooling water electric three-way valve 45 exceeds 1000 steps (step S3), the valve opening adjustment value δ of the hot water extraction three-way valve 41B is set to -100 steps (step S4). Skip control of the hot water extraction three-way valve 41B is performed (step S5). Here, the skip control is a control for jumping the valve opening degree when the valve opening degree of the hot water extraction three-way valve 41B is equal to or greater than the threshold value.

一方、制御装置50は、外気温度が設定温度(例えば20℃)以上の場合、或いは、冷却水電動三方弁45の弁開度が1000step未満の場合には、冷却水温度センサ51が測定する冷却水温度を取得し(ステップS6)、冷却水温度が設定温度(例えば90℃)以上であれば、ステップS4に移行する一方、冷却水温度が設定温度(例えば90℃)未満であれば、エンジン起動時(完爆)から所定時間(例えば10分)が経過している場合に(ステップS7)、弁開度の制御周期(例えば20秒)のタイミングで(ステップS8)、出口温度センサ54が計測する温度(温水熱交換器出口温度)に基づき弁開度調整値δを設定し(ステップS9)、温水取出三方弁41Bのスキップ制御を行う(ステップS5)。   On the other hand, when the outside air temperature is equal to or higher than a set temperature (for example, 20 ° C.), or when the opening degree of the cooling water electric three-way valve 45 is less than 1000 steps, the control device 50 measures the cooling measured by the cooling water temperature sensor 51. If the water temperature is acquired (step S6) and the cooling water temperature is equal to or higher than the set temperature (for example, 90 ° C.), the process proceeds to step S4. When a predetermined time (for example, 10 minutes) has elapsed since the start (complete explosion) (step S7), at the timing of the valve opening control cycle (for example, 20 seconds) (step S8), the outlet temperature sensor 54 is A valve opening adjustment value δ is set based on the temperature to be measured (warm water heat exchanger outlet temperature) (step S9), and skip control of the hot water extraction three-way valve 41B is performed (step S5).

この場合、ステップS9の処理では、例えば、出口温度センサ54が計測する温度と、制御装置50内のEEPROM58に予め記憶された設定値(温水供給系60の温水目標温度に応じて設定される温度)Xとの差を求め、この差が−2deg以下であれば弁開度調整値δを+100stepに設定し、+2deg以上であれば弁開度調整値δを−100stepに設定し、それ以外であれば弁開度調整値δを0(零)に設定する処理が適用される。つまり、このステップS9の処理では、出口温度センサ54が計測する温度(温水熱交換器出口温度)が設定値Xより低ければ、温水熱交換器61に流す冷却水の流量を増やすように、温水取出三方弁41Bが制御される一方、設定値Xより高ければ、温水熱交換器61に流す冷却水の流量を減らすように、温水取出三方弁41Bが制御される。   In this case, in the process of step S9, for example, the temperature measured by the outlet temperature sensor 54 and the preset value stored in the EEPROM 58 in the control device 50 (the temperature set according to the hot water target temperature of the hot water supply system 60). ) If the difference is less than -2 deg, the valve opening adjustment value δ is set to +100 step. If the difference is +2 deg or more, the valve opening adjustment value δ is set to -100 step. If there is, processing for setting the valve opening adjustment value δ to 0 (zero) is applied. That is, in the process of step S9, if the temperature (hot water heat exchanger outlet temperature) measured by the outlet temperature sensor 54 is lower than the set value X, the hot water is supplied to increase the flow rate of the cooling water flowing to the hot water heat exchanger 61. While the extraction three-way valve 41B is controlled, if it is higher than the set value X, the hot water extraction three-way valve 41B is controlled so as to reduce the flow rate of the cooling water flowing to the hot water heat exchanger 61.

仕様Bの構成では、制御装置50が、上記ステップS1〜S9の処理を繰り返し実行することにより、温水熱交換器出口温度が設定値Xになるように温水取出三方弁41Bが制御され、ガスエンジン30によって加熱された冷却水によって温水供給系60の温水が温水目標温度に制御される。また、冷却水が、冷却水電動三方弁45を経由してラジエータ47及び又は冷媒加熱用熱交換器46に供給されるので、各熱交換器で冷却された冷却水によってガスエンジン30を冷却でき、また、暖房運転時は冷媒加熱用熱交換器46で冷媒加熱を促進して暖房能力を向上させることができる。   In the configuration of the specification B, the control device 50 repeatedly executes the processes of steps S1 to S9, whereby the hot water extraction three-way valve 41B is controlled so that the hot water heat exchanger outlet temperature becomes the set value X, and the gas engine The hot water of the hot water supply system 60 is controlled to the hot water target temperature by the cooling water heated by 30. Further, since the cooling water is supplied to the radiator 47 and / or the refrigerant heating heat exchanger 46 via the cooling water electric three-way valve 45, the gas engine 30 can be cooled by the cooling water cooled by each heat exchanger. Also, during heating operation, the refrigerant heating can be promoted by the refrigerant heating heat exchanger 46 to improve the heating capacity.

次に、仕様Aの場合を説明する。図5は、エンジン停止時とエンジン起動時の電動クーラ三方弁41Aの弁開度を示す図であり、図6は、エンジン運転時における電動クーラ三方弁41Aの制御の一例を示すフローチャートである。
制御装置50は、図5に示すように、エンジン停止時は電動クーラ三方弁41Aの弁開度を1000stepに制御し、エンジン起動時は、冷却水温度センサ51が測定する冷却水温度に比例する弁開度、つまり、冷却水温度が高い程、システム側(ラジエータ47側)に供給する冷却水を多くする弁開度に制御するのが前提である。つまり、仕様Bでは、ワックス弁41Cを用いるため、エンジン起動時はシステム側(ラジエータ47側)に冷却水が流れない構成であるのに対し、仕様Aではエンジン起動時からシステム側(ラジエータ47側)に冷却水が流れるように電動クーラ三方弁41Aが制御される。
Next, the case of specification A will be described. FIG. 5 is a diagram showing the valve opening degree of the electric cooler three-way valve 41A when the engine is stopped and when the engine is started, and FIG. 6 is a flowchart showing an example of control of the electric cooler three-way valve 41A during engine operation.
As shown in FIG. 5, the control device 50 controls the valve opening of the electric cooler three-way valve 41A to 1000 steps when the engine is stopped, and is proportional to the coolant temperature measured by the coolant temperature sensor 51 when the engine is started. It is premised on that the valve opening degree, that is, the valve opening degree that increases the cooling water supplied to the system side (radiator 47 side) is increased as the cooling water temperature is higher. That is, in the specification B, since the wax valve 41C is used, the cooling water does not flow to the system side (the radiator 47 side) when the engine is started, whereas in the specification A, the system side (the radiator 47 side) from the time the engine is started. ), The electric cooler three-way valve 41A is controlled so that the cooling water flows.

エンジン運転時、制御装置50は、図6に示すように、制御間隔(2秒)毎に(ステップS11)、冷却水温度センサ51が測定する冷却水温度を取得し(ステップS12)、冷却水温度が所定温度(例えば82℃)以上であれば、電動クーラ三方弁41Aの弁開度調整値δを−100stepに設定し(ステップS13)、電動クーラ三方弁41Aのスキップ制御を行う(ステップS14)。
一方、制御装置50は、冷却水温度が所定温度(例えば82℃)未満の場合、エンジン起動時(完爆)から所定時間(例えば5分)が経過している場合(ステップS15)、弁開度の制御周期(例えば4秒)のタイミングで(ステップS16)、冷却水温度に基づき弁開度調整値δを設定する(ステップS17)。この場合、制御装置50は、図6に示すように、冷却水温度が高い程、システム側(ラジエータ47側)に供給する冷却水を多くするように弁開度を設定する。
During engine operation, as shown in FIG. 6, the control device 50 acquires the coolant temperature measured by the coolant temperature sensor 51 (step S12) at every control interval (2 seconds) (step S11). If the temperature is equal to or higher than a predetermined temperature (for example, 82 ° C.), the valve opening adjustment value δ of the electric cooler three-way valve 41A is set to −100 steps (step S13), and skip control of the electric cooler three-way valve 41A is performed (step S14). ).
On the other hand, when the coolant temperature is lower than a predetermined temperature (for example, 82 ° C.), the control device 50 opens the valve when a predetermined time (for example, 5 minutes) has elapsed since the engine was started (complete explosion) (step S15). The valve opening adjustment value δ is set based on the coolant temperature (step S17) at the timing of the control cycle (for example, 4 seconds) (step S16). In this case, as shown in FIG. 6, the control device 50 sets the valve opening so that the coolant supplied to the system side (the radiator 47 side) increases as the coolant temperature increases.

次に、制御装置50は、電動クーラ三方弁制御時の応答性を向上させるために、弁開度調整値δが0(零)未満の場合(ステップS18)、或いは、弁開度調整値δが0(零)以上であって、かつ、現在の電動クーラ三方弁41Aの弁開度が1200step未満の場合には(ステップS19)、ステップS17の処理で設定した弁開度調整値δを所定倍(例えば3倍)の値にした後(ステップS20)、電動クーラ三方弁41Aのスキップ制御を行う(ステップS14)。一方、それ以外の場合は、電動クーラ三方弁41Aの制御範囲を超えて弁開度を制御してしまうのを回避すべく、ステップS17の処理で設定した弁開度調整値δで、電動クーラ三方弁41Aのスキップ制御を行う(ステップS14)。   Next, in order to improve the responsiveness at the time of controlling the electric cooler three-way valve, the control device 50 determines that the valve opening adjustment value δ is less than 0 (step S18) or the valve opening adjustment value δ. Is 0 (zero) or more and the current valve opening of the electric cooler three-way valve 41A is less than 1200 steps (step S19), the valve opening adjustment value δ set in the process of step S17 is set to a predetermined value. After the value is doubled (for example, 3 times) (step S20), the skip control of the electric cooler three-way valve 41A is performed (step S14). On the other hand, in other cases, in order to avoid controlling the valve opening beyond the control range of the electric cooler three-way valve 41A, the electric cooler is set with the valve opening adjustment value δ set in the process of step S17. Skip control of the three-way valve 41A is performed (step S14).

仕様Aの構成では、制御装置50が、エンジン起動時からシステム側(ラジエータ47側)に冷却水を流すように電動クーラ三方弁41Aを制御すると共に、上記ステップS11〜S20の処理を繰り返し実行するので、エンジン起動時からシステム側(ラジエータ47側)に冷却水を供給し、冷却水温度が高くなるほど、システム側(ラジエータ47側)に供給する冷却水を増やすように電動クーラ三方弁41Aが制御される。
このため、図7に示すように、仕様Bの場合(ワックス弁のとき)には、圧縮機出口の冷媒温度が低い状態(図示の例では−20℃)のときに高温の冷却水(70℃)が冷媒加熱用熱交換器(サブエバ)46に流れる場合があり、その大きい温度差TW(約90℃)によるヒートショックによって冷媒加熱用熱交換器46の耐久性の低下が生じるおそれがあるのに対し、仕様Aの場合(電動クーラ三方弁のとき)には、圧縮機出口の冷媒温度が比較的高い状態(図示の例では約10℃)で冷却水(70℃)が冷媒加熱用熱交換器(サブエバ)46が流れるので、温度差TC(約60℃)が小さく、ヒートショックによる冷媒加熱用熱交換器46の耐久性の低下を回避することができる。
In the configuration of the specification A, the control device 50 controls the electric cooler three-way valve 41A so that the cooling water flows from the start of the engine to the system side (radiator 47 side), and repeatedly executes the processing of steps S11 to S20. Therefore, the electric cooler three-way valve 41A is controlled so that the cooling water is supplied to the system side (the radiator 47 side) from the start of the engine, and the cooling water supplied to the system side (the radiator 47 side) is increased as the cooling water temperature increases. Is done.
For this reason, as shown in FIG. 7, in the case of the specification B (wax valve), when the refrigerant temperature at the compressor outlet is low (−20 ° C. in the illustrated example), the high-temperature cooling water (70 C) may flow to the refrigerant heating heat exchanger (sub-eva) 46, and the heat shock due to the large temperature difference TW (about 90 ° C) may cause a decrease in durability of the refrigerant heating heat exchanger 46. On the other hand, in the case of the specification A (in the case of an electric cooler three-way valve), the cooling water (70 ° C.) is used for heating the refrigerant in a state where the refrigerant temperature at the compressor outlet is relatively high (about 10 ° C. in the illustrated example). Since the heat exchanger (sub-eva) 46 flows, the temperature difference TC (about 60 ° C.) is small, and a decrease in the durability of the refrigerant heating heat exchanger 46 due to heat shock can be avoided.

また、仕様Aにおいても、冷却水が、冷却水電動三方弁45を経由してラジエータ47及び又は冷媒加熱用熱交換器46に供給されるので、各熱交換器で冷却された冷却水によってガスエンジン30を冷却でき、暖房運転時は冷媒加熱用熱交換器46で冷媒加熱を促進して暖房能力を向上させることができる。   Also in the specification A, since the cooling water is supplied to the radiator 47 and / or the refrigerant heating heat exchanger 46 via the cooling water electric three-way valve 45, gas is generated by the cooling water cooled by each heat exchanger. The engine 30 can be cooled, and during heating operation, the refrigerant heating can be promoted by the refrigerant heating heat exchanger 46 to improve the heating capacity.

また、仕様Aの構成では、電動クーラ三方弁41Aの位置だし制御を行っている。図8は、位置だし制御を示すフローチャートである。なお、本構成では、制御装置50が、冷却水温度を常時監視し、冷却水温度の異常発生(冷却水が目標温度に到達しない、冷却水と電動クーラ三方弁41Aの弁制御値との関係が異常等)を検知すると、ガスエンジン30の運転を停止させる処理を行うのが前提である。
制御装置50は、位置だし制御周期(例えば24時間)をカウントする位置だし遅延タイマ(減算タイマ)を備え、図7に示すように、この遅延タイマのカウント値が0でなければ遅延タイマのカウントを開始させると共に(ステップS21、ステップS22)、ガスエンジン30の運転が停止されているか否かを判定する(ステップS23)。
In the configuration of specification A, the position control of the electric cooler three-way valve 41A is performed. FIG. 8 is a flowchart showing the positioning control. In this configuration, the control device 50 constantly monitors the cooling water temperature, and an abnormal occurrence of the cooling water temperature (the relationship between the cooling water and the valve control value of the electric cooler three-way valve 41A where the cooling water does not reach the target temperature). It is premised that a process for stopping the operation of the gas engine 30 is performed when an abnormality is detected.
The control device 50 is provided with a position delay timer (subtraction timer) for counting a position control cycle (for example, 24 hours). As shown in FIG. 7, if the count value of this delay timer is not 0, the delay timer counts. Is started (step S21, step S22), and it is determined whether or not the operation of the gas engine 30 is stopped (step S23).

ガスエンジン30の運転が停止されている場合、制御装置50は、停止原因が冷却水温度の異常によるものか否か、つまり、冷却水温度が予め設定された上限閾値を超えたことによる運転停止か、冷却水温度が予め設定された下限閾値を下回ったことによる運転停止か否かを判定する(ステップS24、S25)。そして、停止原因が冷却水温度の異常によるものであった場合には、制御装置50は、遅延タイマのカウント値を0(零)に設定した後、ステップS27の処理に移行し、停止原因が冷却水温度の異常によるものでなければ(正常停止)、そのままステップS27の処理に移行する。   When the operation of the gas engine 30 is stopped, the control device 50 determines whether the cause of the stop is due to an abnormality in the cooling water temperature, that is, the operation is stopped due to the cooling water temperature exceeding a preset upper threshold. In addition, it is determined whether or not the operation is stopped because the cooling water temperature falls below a preset lower threshold (steps S24 and S25). If the cause of the stop is due to an abnormality in the cooling water temperature, the control device 50 sets the count value of the delay timer to 0 (zero), and then proceeds to the processing of step S27. If it is not due to an abnormality in the coolant temperature (normal stop), the process proceeds to step S27 as it is.

このステップS27の処理では、制御装置50は、遅延タイマのカウント値が0か否かを判定し、0でなければ位置だし制御を終了する一方、遅延タイマのカウント値が0であれば、位置だし制御を開始すると共に(ステップS28)、遅延タイマをリセットする(ステップS29)。この位置だし制御においては、制御装置50は、電動クーラ三方弁41Aを全開に制御した後に全閉に制御し、その後、元の弁開度(エンジン停止時の弁開度)に戻す。
これによって、電動クーラ三方弁41Aの実際の弁開度と、制御装置50が把握する弁開度との間にずれが生じていたとしても、このずれが解消され、また、電動クーラ三方弁41Aを一端全開にするため、ゴミ等の噛み込みが生じていたとしても、この噛み込みを解消することができ、電動クーラ三方弁41Aの異常を解消することができる。
なお、この位置だし制御は、上記制御に代えて、電動クーラ三方弁41Aの開度を一端全開となる2000stepとし、その後、通常制御範囲の上限値となる1950stepに設定した後になりゆき制御に復帰する簡易位置だし制御を適用してもよい。
In the process of step S27, the control device 50 determines whether or not the count value of the delay timer is 0. If the count value of the delay timer is 0, the control is terminated. However, the control is started (step S28), and the delay timer is reset (step S29). In this position adjustment control, the control device 50 controls the electric cooler three-way valve 41A to be fully open and then fully closed, and then returns to the original valve opening (the valve opening when the engine is stopped).
Thus, even if a deviation occurs between the actual valve opening of the electric cooler three-way valve 41A and the valve opening grasped by the control device 50, this deviation is eliminated, and the electric cooler three-way valve 41A Since the one end is fully opened, even if dust or the like is caught, this biting can be eliminated and the abnormality of the electric cooler three-way valve 41A can be eliminated.
In addition, in this position control, instead of the above control, the opening degree of the electric cooler three-way valve 41A is set to 2000 steps that is fully opened at one end, and then is set to 1950 steps that is the upper limit value of the normal control range, and then the control is returned to the subsequent control. Simple position reading control may be applied.

このように本実施の形態によれば、制御装置50が、表示・操作部57及び通信部59を備え、これらを介して入力した指示に基づき出力ポートP3に接続された電動三方弁(電動クーラ三方弁41A、温水取出三方弁41B)の制御を切り替えるので、出力ポートP3に温水取出三方弁41Bを接続しない場合は、この出力ポートP3に、ワックス弁41Cの代替としての電動クーラ三方弁41Aを接続して制御することができ、制御装置50の出力ポートを有効利用して用途の異なる電動三方弁を使用することができる。
しかも、電動クーラ三方弁41Aを接続した場合は、エンジン起動時からシステム側(ラジエータ47側)に冷却水を流すように電動クーラ三方弁41Aを制御するので、ワックス弁41Cを用いる場合に比して、ヒートショックによる冷媒加熱用熱交換器46の耐久性の低下を回避することができる。
As described above, according to the present embodiment, the control device 50 includes the display / operation unit 57 and the communication unit 59, and is connected to the output port P3 based on an instruction input via these units. Since the control of the three-way valve 41A and the hot water extraction three-way valve 41B) is switched, when the hot water extraction three-way valve 41B is not connected to the output port P3, an electric cooler three-way valve 41A as an alternative to the wax valve 41C is connected to the output port P3. It can be connected and controlled, and an electric three-way valve having a different application can be used by effectively using the output port of the control device 50.
In addition, when the electric cooler three-way valve 41A is connected, the electric cooler three-way valve 41A is controlled so that the cooling water flows from the start of the engine to the system side (radiator 47 side), so compared to the case where the wax valve 41C is used. Thus, it is possible to avoid a decrease in the durability of the heat exchanger 46 for heating the refrigerant due to the heat shock.

以上、本発明の一実施形態について説明したが、本発明はこれに限定されるものではなく、種々の変更実施が可能である。例えば、上記実施形態で示した構成部品及び配管構成はこれに限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。
また、上記実施形態では、制御装置50が、表示・操作部57及び通信部59を備える場合について説明したが、いずれか一方でもよい。また、制御装置50が、電動クーラ三方弁41Aと温水取出三方弁41Bとの間で制御を切替可能に構成された場合を説明したが、これ以外の電動弁間で制御を切替可能に構成してもよい。また、上記機能を、従来の機種のソフトウェア(制御プログラム)を変更することによって従来機種で実現することも可能である。
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to this, A various change implementation is possible. For example, the component parts and the piping configuration shown in the above embodiment are not limited to this, and can be appropriately changed without departing from the gist of the present invention.
In the above embodiment, the case where the control device 50 includes the display / operation unit 57 and the communication unit 59 has been described. Moreover, although the case where control device 50 was constituted so that control was switchable between electric cooler three-way valve 41A and warm water extraction three-way valve 41B was explained, it is constituted so that control can be switched between other electric valves. May be. In addition, the above functions can be realized by a conventional model by changing software (control program) of the conventional model.

本実施形態に係るガスヒートポンプ式空気調和装置の仕様Aを示す図である。It is a figure which shows the specification A of the gas heat pump type air conditioning apparatus which concerns on this embodiment. ガスヒートポンプ式空気調和装置の仕様Bを示す図である。It is a figure which shows the specification B of a gas heat pump type air conditioning apparatus. 制御装置の説明に供する図である。It is a figure where it uses for description of a control apparatus. 温水取出三方弁の制御の一例を示すフローチャートである。It is a flowchart which shows an example of control of a warm water extraction three-way valve. エンジン停止時とエンジン起動時の電動クーラ三方弁の弁開度を示す図である。It is a figure which shows the valve opening degree of the electric cooler three-way valve at the time of engine stop and engine start-up. 電動クーラ三方弁の制御の一例を示すフローチャートである。It is a flowchart which shows an example of control of an electric cooler three-way valve. 冷却水温度と冷媒の温度変化を示す図である。It is a figure which shows the cooling water temperature and the temperature change of a refrigerant | coolant. 位置だし制御を示すフローチャートである。It is a flowchart which shows position control.

符号の説明Explanation of symbols

10 空気調和装置
11 室内ユニット
12 室外ユニット
21 圧縮機
30 ガスエンジン
40 冷却水回路
41 三方弁
41A 電動クーラ三方弁
41B 温水取出三方弁
41C ワックス弁
44 排ガス熱交換器
45 冷却水電動三方弁
46 冷媒加熱用熱交換器
47 ラジエータ
50 制御装置
DESCRIPTION OF SYMBOLS 10 Air conditioning apparatus 11 Indoor unit 12 Outdoor unit 21 Compressor 30 Gas engine 40 Cooling water circuit 41 Three-way valve 41A Electric cooler three-way valve 41B Hot water extraction three-way valve 41C Wax valve 44 Exhaust gas heat exchanger 45 Cooling water electric three-way valve 46 Refrigerant heating Heat exchanger 47 Radiator 50 Control device

Claims (5)

冷媒回路内の圧縮機を駆動するエンジンと、このエンジンに冷却水を循環させる冷却水回路とを備える空気調和装置において、
前記冷却水を前記エンジンと前記冷却水回路中の熱交換器とに振り分けるワックス弁使用時に使用される電動三方弁と、ワックス弁代替となる電動クーラ三方弁とが排他的に接続される接続部を備え、この接続部に接続された電動三方弁に応じて、電動三方弁に対する制御を切替可能な制御装置を備えることを特徴とする空気調和装置。
In an air conditioner including an engine that drives a compressor in a refrigerant circuit, and a cooling water circuit that circulates cooling water through the engine,
An electric three-way valve used when using a wax valve that distributes the cooling water to the engine and a heat exchanger in the cooling water circuit and an electric cooler three-way valve that replaces the wax valve are connected exclusively. And an air conditioner comprising: a control device capable of switching control over the electric three-way valve in accordance with the electric three-way valve connected to the connection portion.
前記制御装置は、前記電動クーラ三方弁が接続される場合、エンジン起動時は、電動クーラ三方弁の開度を、前記エンジンを通過した冷却水を前記熱交換器側に流す開度に制御することを特徴とする請求項1に記載の空気調和装置。   When the electric cooler three-way valve is connected, the control device controls the opening degree of the electric cooler three-way valve so that the cooling water that has passed through the engine flows to the heat exchanger side when the engine is started. The air conditioner according to claim 1. 前記制御装置は、前記電動クーラ三方弁が接続される場合、前記冷却水の温度が予め定めた条件を満足しない際に、前記電動クーラ三方弁を全開にする制御を含む位置だし制御を行うことを特徴とする請求項1又は2に記載の空気調和装置。   When the electric cooler three-way valve is connected, the control device performs position control including control for fully opening the electric cooler three-way valve when the temperature of the cooling water does not satisfy a predetermined condition. The air conditioning apparatus according to claim 1 or 2, wherein 前記制御装置は、電動三方弁に対する制御の切替指示を入力する入力部を備えることを特徴とする請求項1乃至3のいずれかに記載の空気調和装置。   The said control apparatus is provided with the input part which inputs the switch instruction | indication of control with respect to an electric three-way valve, The air conditioning apparatus in any one of the Claims 1 thru | or 3 characterized by the above-mentioned. ワックス弁使用時に使用される電動三方弁は、前記冷却水回路に温水熱交換器が配置された場合に、前記エンジンを通過した冷却水を選択的に前記温水熱交換器に供給するための温水取出三方弁であることを特徴とする請求項1乃至4のいずれかに記載の空気調和装置。

The electric three-way valve used when the wax valve is used is a hot water for selectively supplying cooling water that has passed through the engine to the hot water heat exchanger when a hot water heat exchanger is arranged in the cooling water circuit. The air conditioner according to any one of claims 1 to 4, wherein the air conditioner is a take-out three-way valve.

JP2005181749A 2005-06-22 2005-06-22 Air conditioner Expired - Fee Related JP4744201B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005181749A JP4744201B2 (en) 2005-06-22 2005-06-22 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005181749A JP4744201B2 (en) 2005-06-22 2005-06-22 Air conditioner

Publications (2)

Publication Number Publication Date
JP2007003048A true JP2007003048A (en) 2007-01-11
JP4744201B2 JP4744201B2 (en) 2011-08-10

Family

ID=37688853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005181749A Expired - Fee Related JP4744201B2 (en) 2005-06-22 2005-06-22 Air conditioner

Country Status (1)

Country Link
JP (1) JP4744201B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044230A (en) * 2011-08-22 2013-03-04 Hitachi Automotive Systems Ltd Cooling control device of internal combustion engine
WO2017099065A1 (en) * 2015-12-11 2017-06-15 株式会社デンソー Vehicle control device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193981A (en) * 1992-12-22 1994-07-15 Hitachi Ltd Refrigerator
JPH0719172A (en) * 1993-06-30 1995-01-20 Kawamoto Seisakusho:Kk Automatic water supply system
JP2002115665A (en) * 2000-10-03 2002-04-19 Daikin Ind Ltd Control board
JP2002213799A (en) * 2001-01-22 2002-07-31 Sanyo Electric Co Ltd Air conditioner
JP2002228294A (en) * 2001-01-30 2002-08-14 Sanyo Electric Co Ltd Method and device for cooling engine and refrigerating device
JP2002286149A (en) * 2001-03-22 2002-10-03 Aisin Seiki Co Ltd Valve controlling method
JP2003035467A (en) * 2001-07-24 2003-02-07 Sanyo Electric Co Ltd Engine cooling equipment
JP2004036966A (en) * 2002-07-02 2004-02-05 Sanyo Electric Co Ltd Engine driving heat pump-type air conditioner comprising hot-water supply heating unit and its operation control method
JP2004211674A (en) * 2003-01-09 2004-07-29 Sanyo Electric Co Ltd Gas engine driving mechanism
JP2006125768A (en) * 2004-10-29 2006-05-18 Mitsubishi Heavy Ind Ltd Gas heat pump type air conditioner and control method thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06193981A (en) * 1992-12-22 1994-07-15 Hitachi Ltd Refrigerator
JPH0719172A (en) * 1993-06-30 1995-01-20 Kawamoto Seisakusho:Kk Automatic water supply system
JP2002115665A (en) * 2000-10-03 2002-04-19 Daikin Ind Ltd Control board
JP2002213799A (en) * 2001-01-22 2002-07-31 Sanyo Electric Co Ltd Air conditioner
JP2002228294A (en) * 2001-01-30 2002-08-14 Sanyo Electric Co Ltd Method and device for cooling engine and refrigerating device
JP2002286149A (en) * 2001-03-22 2002-10-03 Aisin Seiki Co Ltd Valve controlling method
JP2003035467A (en) * 2001-07-24 2003-02-07 Sanyo Electric Co Ltd Engine cooling equipment
JP2004036966A (en) * 2002-07-02 2004-02-05 Sanyo Electric Co Ltd Engine driving heat pump-type air conditioner comprising hot-water supply heating unit and its operation control method
JP2004211674A (en) * 2003-01-09 2004-07-29 Sanyo Electric Co Ltd Gas engine driving mechanism
JP2006125768A (en) * 2004-10-29 2006-05-18 Mitsubishi Heavy Ind Ltd Gas heat pump type air conditioner and control method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044230A (en) * 2011-08-22 2013-03-04 Hitachi Automotive Systems Ltd Cooling control device of internal combustion engine
WO2017099065A1 (en) * 2015-12-11 2017-06-15 株式会社デンソー Vehicle control device
JP2017106402A (en) * 2015-12-11 2017-06-15 株式会社デンソー Control device of vehicle

Also Published As

Publication number Publication date
JP4744201B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP5657110B2 (en) Temperature control system and air conditioning system
JP5481937B2 (en) Air conditioner
CN105402961A (en) Air conditioner and control method thereof
JP2011202833A (en) Air conditioner
JP2013119954A (en) Heat pump hot water heater
JP2018066518A (en) Heat pump water heater with cooling function
JP2012159255A (en) Heat pump type heat source device, and heating system
JP6141089B2 (en) Cold / hot water supply system and air conditioner
JP2010048447A (en) Air conditioner
JP6976878B2 (en) Heat pump air conditioning system
EP1813888A2 (en) Heat pump type air conditioner
JP4535933B2 (en) Air conditioner
GB2273763A (en) Air conditioning apparatus having a supercooling unit provided between an outdoor unit and a plurality of indoor units
JP6906865B2 (en) Air conditioning system
JP2008039388A (en) Multi-type air conditioner
JP4744201B2 (en) Air conditioner
JP5455338B2 (en) Cooling tower and heat source system
US20100043465A1 (en) Heat pump system and method of controlling the same
JP4105413B2 (en) Multi-type air conditioner
JP3267597B2 (en) Heating overload operation control method for multi-air conditioner combined with cooling and heating
JP7082756B2 (en) Air conditioner
JP3583792B2 (en) Hot water supply / air conditioning system
JP2007303698A (en) Hot water supply system
JP2016090174A (en) Hot water supply air-conditioning system
JP2020128858A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees