JP2007003043A - Compact incinerator with fluidized bed thermal decomposition chamber - Google Patents

Compact incinerator with fluidized bed thermal decomposition chamber Download PDF

Info

Publication number
JP2007003043A
JP2007003043A JP2005181469A JP2005181469A JP2007003043A JP 2007003043 A JP2007003043 A JP 2007003043A JP 2005181469 A JP2005181469 A JP 2005181469A JP 2005181469 A JP2005181469 A JP 2005181469A JP 2007003043 A JP2007003043 A JP 2007003043A
Authority
JP
Japan
Prior art keywords
combustion chamber
air
symbol
chamber
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005181469A
Other languages
Japanese (ja)
Inventor
Takehiro Takemasa
剛弘 武政
Yasuhiro Ishibashi
康弘 石橋
Yukio Fukaya
行男 深谷
Kenji Honda
賢士 本多
Takahiko Yamazaki
能彦 山崎
Aine Tejima
愛音 手嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005181469A priority Critical patent/JP2007003043A/en
Publication of JP2007003043A publication Critical patent/JP2007003043A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)
  • Incineration Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simplify a structure in an incinerator, to shorten a running time, to minimize unburned combustibles, and to easily take out ash. <P>SOLUTION: A residue fluidizing/thermally decomposing chamber is placed at a lowermost portion to thermally decompose the unburned combustibles in combustion residue of incinerated material, and a primary combustion chamber, an incineration material charging portion, a secondary combustion chamber and a chimney pipe are successively stacked toward an upper portion to simplify the structure, to achieve simple gas flow and to collect the combustion residue at one place. A furnace wall has a double wall structure of metallic thin plates, cooling air flows in a space of the double wall, and further a cooling water pipe is mounted therein. The cooling air is supplied into the double wall space of a side face of the residue fluidizing decomposing chamber having an ash taking-out door so that it flows upward while cooling the furnace wall, and reaches an upper end of the secondary combustion chamber while dividing the air into combustion air nozzles properly mounted on the way. Then the cooling air is supplied toward a high-temperature exhaust gas from a number of holes of a peripheral wall to cool the exhaust gas, thus the chimney pipe can be protected. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は例えば廃プラスチック系を多く有する医療並びに産業廃棄物、シュレッダダスト、農業用廃ビニ−ル、一般ごみ等の各種廃棄物を流動床熱分解焼却する廃棄物流動床熱分解室付き焼却装置に関するものである。 The present invention is, for example, an incinerator with a waste fluidized bed pyrolysis chamber for treating various wastes such as medical waste having many waste plastics and industrial waste, shredder dust, agricultural waste vinyl, general waste, etc. by fluidized bed pyrolysis incineration. It is about.

図1に従来の焼却炉の一例を示す。図1に於いて燃焼用空気送風機(P1)から送りだされた空気は燃焼用空気として一次燃焼室火格子(P5)の下側及び補助空気導入口(P2)に供給される。投入口(P3)より一次燃焼室(P4)に投入された焼却物は火格子(P5)の上で一次燃焼し,未燃ガスは補助空気導入口(P2)からの空気並びに二次燃焼室助燃バ−ナ(P6)により燃焼する。二次燃焼室(P7)を出た高温排ガス(P8)は排ガス冷却送風機(P9)からの空気による炉内負圧化のための誘引ノズル(P10)により混合減温し、煙突(P11)より放出される。一次燃焼室(P4)、二次燃焼室(P7)の各炉壁(P12)は耐火キャスタブル等による断熱が施工されケ−シングメタルが保護されている。一次燃焼室(P4)で発生した未燃残さ及び灰は火格子(P5)の下に落下し灰排出扉(P13)より外部に取り出される。 Fig. 1 shows an example of a conventional incinerator. In FIG. 1, the air sent from the combustion air blower (P1) is supplied as combustion air to the lower side of the primary combustion chamber grate (P5) and the auxiliary air inlet (P2). The incinerated product introduced into the primary combustion chamber (P4) from the input port (P3) undergoes primary combustion on the grate (P5), and the unburned gas is air from the auxiliary air inlet (P2) and the secondary combustion chamber. It burns with an auxiliary burner (P6). The high-temperature exhaust gas (P8) exiting the secondary combustion chamber (P7) is mixed and cooled by an induction nozzle (P10) for negative pressure in the furnace by air from the exhaust gas cooling blower (P9), and from the chimney (P11) Released. The furnace walls (P12) of the primary combustion chamber (P4) and the secondary combustion chamber (P7) are insulated by refractory castable or the like to protect the casing metal. Unburned residue and ash generated in the primary combustion chamber (P4) fall below the grate (P5) and are taken out from the ash discharge door (P13).

然るに本例においては次の様な欠点がある。(その1)一次燃焼室火格子(P5)の下が灰溜室になっているが、この落下した灰はその後の分解処理が成されないため残磋中の未燃分が多い。(その2)残さ未燃分を少なくしようとすると、火格子目開きを細かくする必要に迫られ、これが目詰まりを起こし燃焼を悪化させる。(その3)炉壁(P12)は一重でケ−シングメタル保護のため耐火断熱構造となっているので起動/停止に伴う温度静定時間が長く、起動/停止頻度の多い焼却炉には適さない。(その4)一次燃焼室(P4)と二次燃焼室(P7)とが横方向に並んでいるためガス流れが複雑で灰の堆積が2ヶ所に分かれている。また炉壁が耐火材のため据付時の重量が重くなるので運搬並びに吊り上げ重機が大型になる。(その5)送風機は燃焼用空気(P1)と排ガス冷却送風機(P9)の2台が必要である。また排ガスの冷却は誘引ノズルで吸引混合しているが誘引ノズル周辺の煙突メタルは冷却前の高温排ガスに曝されている。 However, this example has the following drawbacks. (Part 1) Although the bottom of the primary combustion chamber grate (P5) is an ash storage chamber, the fallen ash is not subjected to subsequent decomposition treatment, so there is much unburned content in the residue. (Part 2) When trying to reduce the unburned residue, it is necessary to make the grate opening finer, which causes clogging and worsens combustion. (Part 3) The furnace wall (P12) has a single layer and has a fireproof insulation structure to protect the casing metal, so it has a long temperature settling time for starting / stopping and is suitable for an incinerator with frequent starting / stopping. Absent. (Part 4) Since the primary combustion chamber (P4) and the secondary combustion chamber (P7) are arranged in the horizontal direction, the gas flow is complicated and ash accumulation is divided into two places. Moreover, since the furnace wall is refractory, the weight during installation becomes heavy, so that the heavy equipment for transportation and lifting becomes large. (No. 5) Two blowers are required: a combustion air (P1) and an exhaust gas cooling blower (P9). In addition, the exhaust gas is cooled and mixed by the attracting nozzle, but the chimney metal around the attracting nozzle is exposed to the high temperature exhaust gas before cooling.

本発明は上記の様な欠点を解決するために提案するものでその目的とするところは次の通りである。(その1)一次燃焼室の火格子下の未燃分を完全に分解燃焼させる。(その2)一次燃焼室、二次燃焼室を垂直方向に積層する方式とし、ガスの流れを垂直方向に単純化する。(その3)炉壁は耐火材を使用しない構造とし、壁面温度が短時間で常用域に到達し且つ材料の許容温度を超えない構造とする。
(その4)これらの冷却空気と燃焼空気を一台の送風機で可能にし、空気を二重壁に入れて二重壁から各部分に分配供給する。(その5)煙突を一重構造にするために冷却空気を活用して排ガス温度の低減をはかる。
The present invention is proposed in order to solve the above-mentioned drawbacks, and its object is as follows. (Part 1) The unburned portion under the grate in the primary combustion chamber is completely decomposed and burned. (Part 2) The primary combustion chamber and the secondary combustion chamber are stacked in the vertical direction, and the gas flow is simplified in the vertical direction. (Part 3) The furnace wall shall have a structure that does not use a refractory material, and the wall surface temperature will reach the normal range in a short time and will not exceed the allowable temperature of the material.
(Part 4) These cooling air and combustion air are made possible by a single blower, and the air is put into a double wall and distributed from the double wall to each part. (Part 5) The cooling air is utilized to reduce the exhaust gas temperature in order to make the chimney a single structure.

本発明の請求項1に関わる考案は、一次燃焼室から落下する灰中の未燃分を分解燃焼させるために最下部に残さ流動分解室を設け、焼却灰をすべて残さ流動分解室で受け止められること並びにガスの流れを単純化するために残さ流動分解室より上部に向かって一次燃焼室、廃棄物投入部、二次燃焼室、煙突の順に積層する構造とするものである。
請求項2に関わる考案は炉壁に耐火材を使用しない構造とするため、燃焼室は二重壁とし燃焼室壁面の冷却を行うために二重壁の空間に冷却空気を旋回して流し、且つ水冷冷却管を設ける構造とするものである。
請求項3に関わる考案は上記二重壁の冷却用空気と燃焼用空気を1台の送風機で実現するため二重壁中間に流入させた冷却空気の一部を分流して各燃焼室に燃焼用空気として供給できるように空気導入ノズルを適当数設けるものである。
請求項4に関わる考案は残さ流動分解室での攪拌熱分解を良好に行うために、燃焼ガスの一部又は加熱された冷却空気の一部を流動熱ガスとして活用するものである。
請求項5に関わる考案は上記二重壁構造の各部を積層するとき、各部の内筒を付き合わせて接続すると熱伸びが外筒により拘束され過大な応力が発生する。これを防止するため各部の内筒の直経を変えて微細な隙間を持った差込接続とし、且つその隙間を燃焼空気の供給通路として活用するものである。
請求項6に関わる考案は煙突に流入するガスの冷却を行う場合の冷却空気の供給方法として、上記二重壁の冷却に使用した空気を煙突入口の手前(二次燃焼室上端)で高温排ガスに対して周壁の多数の穴から吹き込む方法である。
請求項7に関わる考案は燃焼室で発生した未燃分を含む残さを、すべて残さ流動分解室に落とし、流動火格子上にて攪拌並びに熱分解を行って灰中未燃分を減少させる構成とするものである。
請求項8に関わる考案は灰の取り出しが流動分解室からの1ヶ所とし、この部分に灰の取り出し扉を設けること、並びにこの扉の冷却に水冷構造を組み込むと複雑になるのでこれを止めて、送風機の空気供給口を灰取出扉付近に設けて冷空気を強力に吹き付け、冷却を行うものである。
The invention according to claim 1 of the present invention is provided with a residual fluid decomposition chamber at the bottom to decompose and burn unburned components in the ash falling from the primary combustion chamber, and all the incinerated ash is received in the fluid decomposition chamber. In order to simplify the flow of the gas, the primary combustion chamber, the waste charging section, the secondary combustion chamber, and the chimney are stacked in this order from the residue fluid decomposition chamber to the upper part.
Since the invention related to claim 2 has a structure in which a refractory material is not used for the furnace wall, the combustion chamber is a double wall, and cooling air is swirled through the space of the double wall to cool the wall surface of the combustion chamber. In addition, a water-cooled cooling pipe is provided.
In order to realize the cooling air and the combustion air of the double wall with a single blower, the invention relating to claim 3 divides a part of the cooling air flowing into the middle of the double wall and burns it to each combustion chamber An appropriate number of air introduction nozzles are provided so that they can be supplied as working air.
The invention according to claim 4 uses part of the combustion gas or part of the heated cooling air as the flowing hot gas in order to satisfactorily carry out the stirring pyrolysis in the residual fluid decomposition chamber.
In the device according to claim 5, when the respective parts of the double wall structure are laminated, if the inner cylinders of the respective parts are connected together and connected, the thermal elongation is restricted by the outer cylinders and excessive stress is generated. In order to prevent this, the straight diameter of the inner cylinder of each part is changed to make a plug connection with a fine gap, and the gap is used as a supply passage for combustion air.
The invention according to claim 6 is a method of supplying cooling air when cooling the gas flowing into the chimney. The air used for cooling the double wall is heated in front of the chimney entrance (upper end of the secondary combustion chamber) at high temperature exhaust gas. In contrast, it is a method of blowing from a large number of holes in the peripheral wall.
The invention according to claim 7 is a configuration in which the residue including unburned matter generated in the combustion chamber is dropped into the residue fluid cracking chamber, and the unburned matter in ash is reduced by stirring and pyrolysis on the fluid grate. It is what.
The invention related to claim 8 is that the removal of ash is one place from the fluid decomposition chamber, and it is complicated to install an ash removal door in this part and to incorporate a water cooling structure to cool this door, so stop this. The air supply port of the blower is provided in the vicinity of the ash extraction door, and cool air is blown strongly to perform cooling.

本発明の請求項1に関わる考案では、上方に向かって積層された単純な構造の故に燃焼残さ並びに灰分は全て最下部の残さ流動分解室に落下し、残さ中の未燃分が完全に熱分解され、灰の取り出しも1ヶ所から行うことができる。また、ガス通路が単純であるため、通風抵抗が少なく誘引ノズルを使用しなくても自然通風力のみで燃焼室内を負圧に保つことができ有害ガスの噴出を防止できる。
本発明の請求項2に関わる考案では、燃焼室壁を金属薄板構造で形成しているので、壁温上昇が早く行われる。一方冷却空気と水冷管により冷却されているので、金属壁の温度は許容温度以下に保たれる。
本発明の請求項3に関わる考案では燃焼室空気は二重壁空間内の冷却空気を分流して供給できるので送風機は冷却送風機1台のみで良く、また空気の導入口位置並びに数は燃焼室内壁に比較的自由に設定でき、更に開口調節機構をを持ったノズルを使用すると空気量の適切な調整がし易い。
本発明の請求項4に関わる考案では、残さ流動熱分解ガスとして高温ガスを活用できるので、熱分解が効果的に行われる。
本発明の請求項5に関わる考案では、各燃焼室の内壁を適当な間隙の差込接続にしているので熱伸びを逃がすことができる。またこの間隙から燃焼空気の全周供給が可能となり、燃焼効率を高める。
本発明の請求項6に関わる考案では、煙突入口において、排ガスに対して冷却空気を外周から吹き込むので、高温ガスを煙突の中心部に押し寄せられること並びに冷却空気が一部煙突壁面に沿って流れるので、煙突壁面を低温に保つ効果が空気ノズル誘引混合方式に較べ大きい。
本発明請求項7に関わる考案では、未燃分を含む残さ即ち焼却灰は最下部の残さ流動分解室に集積し、更に熱分解によって未燃分を軽減するので、一次燃焼室で完全燃焼を期す必要が無く、従ってまた一次燃焼室の火格子の目開きも比較的大きくできる。このことは目詰まりによる燃焼悪化を防止できる上、火格子の製作を容易にする。
本発明請求項8に関わる考案は、灰の取出しは1ヶ所となり、灰取出扉は薄板一枚の軽量構造にすることができるので、灰取り出し作業が容易になる。
In the invention relating to claim 1 of the present invention, because of the simple structure laminated upward, all the combustion residue and ash fall into the bottom residual fluid decomposition chamber, and the unburned residue in the residue is completely heated. It is decomposed and ash can be taken out from one place. In addition, since the gas passage is simple, there is little ventilation resistance, and even without using an induction nozzle, the combustion chamber can be kept at a negative pressure with only natural ventilation, and harmful gas can be prevented from being ejected.
In the device according to the second aspect of the present invention, the wall of the combustion chamber is formed with a thin metal plate structure, so that the wall temperature is rapidly increased. On the other hand, since the cooling is performed by the cooling air and the water cooling pipe, the temperature of the metal wall is kept below the allowable temperature.
In the invention according to claim 3 of the present invention, the combustion chamber air can be supplied by diverting the cooling air in the double wall space, so that only one cooling blower is required, and the position and number of air inlets are in the combustion chamber. When a nozzle that can be set relatively freely on the wall and has an opening adjusting mechanism is used, it is easy to adjust the air amount appropriately.
In the device according to claim 4 of the present invention, since the high temperature gas can be utilized as the residual fluidized pyrolysis gas, the thermal decomposition is effectively performed.
In the device according to claim 5 of the present invention, since the inner wall of each combustion chamber is connected to be inserted with an appropriate gap, the thermal elongation can be released. Further, the entire circumference of the combustion air can be supplied from this gap, and the combustion efficiency is improved.
In the device according to claim 6 of the present invention, since the cooling air is blown from the outer periphery to the exhaust gas at the chimney entrance, the hot gas can be pushed toward the center of the chimney and the cooling air partially flows along the chimney wall surface. Therefore, the effect of keeping the chimney wall surface at a low temperature is greater than that of the air nozzle induced mixing method.
In the device according to claim 7 of the present invention, the residue containing incombustibles, that is, the incineration ash accumulates in the bottom residual fluid cracking chamber, and further reduces the unburned content by thermal decomposition. Therefore, the grate opening of the primary combustion chamber can also be made relatively large. This can prevent deterioration of combustion due to clogging and facilitate the production of a grate.
In the invention related to claim 8 of the present invention, the ash is taken out at one place, and the ash take-out door can be made of a lightweight structure with one thin plate, so that the ash removal work is facilitated.

以上の目的を達成するために本発明による焼却炉の構成例(第2図:本発明による焼却炉構成例)及び(図3:各部断面図)に示す。焼却炉の全体構成は円筒竪形形状となっており基板(記号D)、残さ流動分解室セクション(記号Sa)、一次燃焼室セクション(記号Sb)、焼却物投入部(記号Sc)、二次燃焼室セクション(記号Sd)、煙突(記号Se)、が下から順に積層された形で構成されている。残さ流動分解室(記号Sa)から二次燃焼室セクション(記号Sd)までは二重壁構造となっており、各々の外筒がフランジ(記号Ad、Ec、Ed)によって接続されて、組立てられている。
内筒はそれぞれの外筒に固定されている。
In order to achieve the above object, a configuration example of the incinerator according to the present invention (FIG. 2: configuration example of the incinerator according to the present invention) and (FIG. 3: cross-sectional view of each part) are shown. The entire structure of the incinerator has a cylindrical bowl shape, the substrate (symbol D), the residue fluid decomposition chamber section (symbol Sa), the primary combustion chamber section (symbol Sb), the incinerator input part (symbol Sc), the secondary The combustion chamber section (symbol Sd) and the chimney (symbol Se) are stacked in order from the bottom. The residual fluid cracking chamber (symbol Sa) to the secondary combustion chamber section (symbol Sd) have a double wall structure, and each outer cylinder is connected by a flange (symbol Ad, Ec, Ed) and assembled. ing.
The inner cylinder is fixed to each outer cylinder.

残さ流動分解室及び一次燃焼の内筒はその下端は基板(記号D)に全周で固定されその熱伸びは上方に向かって伸びる。二次燃焼室の内筒はその上端において、外筒フランジ(記号Ad)に固定され、その熱伸びは下方に向かって伸びる。焼却物投入部内筒(記号Ea)の下端は一次燃焼室の内筒(記号Da)との接続部は一定の深さ(δ)を以て重なり互いに伸びの拘束が発生しないように挿し込み構造となっている。焼却物投入口内筒(記号Ea)の上端は二次燃焼室の内筒(記号Aa)に一定の深さ(δ)を以て重なり互いに伸びの拘束が発生しないように挿し込み構造になっている。内筒の重なり部分は微細な隙間がありこれより冷却空気の一部が燃焼室内に流れ、重なり部分に溶融物が固着を防止すると共に燃焼用空気の全周供給を行っている。基板(記号D)は残さ流動分解セクション(記号Sa)及び一次燃焼室セクション(記号Sb)の内外筒を固定すると共に、本焼却炉全体の重量を受けるものである。基板(記号D)の中央には流動分解室形成ガス導入口(記号De)がある。
残さ流動分解セクション(記号Sa)は基板(記号D)から一次燃焼室火格子(記号Ba)までの部分で内筒、外筒、流動床作動媒体分散板(記号Dc)、流動層形成ガス導入口(記号De)、流動燃焼空気導入口(記号Bc)、焼却灰取出口(記号Dd)、が設けられている。一次燃焼室セクション(記号Sb)は火格子(記号Ba)、燃焼空気導入口(記号Bd)、点火バ−ナ挿入口(記号Bb)がある。火格子は内筒に取り付けられた金具により支持され、残さ流動分解室セクション(記号Sa)の内外筒を貫通して設けられた揺動レバ−(記号Be)により上下に揺動可能になっている。内筒と外筒の空間には冷却水管が(記号Wc)が設けられている。
焼却物投入部(記号Sc)は焼却物を一次燃焼室に投入シュ−ト(記号Ef)を有する部分で内筒(記号Ea)外筒(記号Eb)投入装置(記号Ef)から構成され、一次燃焼室の上に乗っている。内筒(記号Ea)は一次燃焼室(記号Da)内筒に挿込むため径は若干小さいが、ほぼ同等であり燃焼室スペ−スになっている。必要に応じ二重壁内の冷却空気が二次燃焼室に吹き出すように空気導入口(記号Ca)が取り付けられている。
二次燃焼室の内筒(記号Aa)は外筒(記号Ac)の上部フランジ(記号Ad)に固定され、内筒(記号Aa)の上端には二重壁内の冷却空気(記号Ab)が煙突入口内に吹き出すように適度の穴(記号Ae)が開いている。内筒と外筒の空間には冷却管(記号Wc)が設けられている。煙突(記号Se)は二次燃焼室内筒より小径で一重壁で構成され吹出速度と吹出高さを確保している。
本焼却炉の付属設備としては冷却空気及び燃焼用空気を纏めて送る送風機(記号Fa)冷却管に水を循環させるための冷却水タンク(記号Wa)及び循環水ポンプ(記号Wb)、助燃バ−ナに燃料を送るための燃料ボンベ(記号Ce)並びに燃料制御弁(記号Cf)があり、これが纏まって焼却設備を構成している。燃焼ガス温度の監視のため残さ流動分解室温度(記号Dg)、一次燃焼室温度(記号Bf)、二次燃焼室下部温度(記号Cc)、
二次燃焼室上部温度(記号Cd)、煙突ガス温度(記号Cg)、内部ガス取出しノズル(記号Ag)がある。
The lower end of the residual fluid decomposition chamber and the inner cylinder of the primary combustion are fixed to the substrate (symbol D) on the entire circumference, and the thermal expansion extends upward. The inner cylinder of the secondary combustion chamber is fixed at its upper end to the outer cylinder flange (symbol Ad), and its thermal extension extends downward. The lower end of the incinerator throwing portion inner cylinder (symbol Ea) has an insertion structure in which the connecting portion with the inner cylinder (symbol Da) of the primary combustion chamber overlaps with a certain depth (δ) so as not to cause elongation constraints. ing. The upper end of the incinerator inlet inner cylinder (symbol Ea) has an insertion structure that overlaps the inner cylinder (symbol Aa) of the secondary combustion chamber with a certain depth (δ) so as not to cause elongation constraints. The overlapping portion of the inner cylinder has a fine gap, and from this, a part of the cooling air flows into the combustion chamber, and the melt is prevented from adhering to the overlapping portion and the combustion air is supplied all around. The substrate (symbol D) fixes the inner and outer cylinders of the residual fluid decomposition section (symbol Sa) and the primary combustion chamber section (symbol Sb) and receives the weight of the entire incinerator. In the center of the substrate (symbol D) is a fluid decomposition chamber forming gas inlet (symbol De).
The remaining fluid decomposition section (symbol Sa) is the inner cylinder, outer cylinder, fluidized bed working medium dispersion plate (symbol Dc), and fluidized bed forming gas introduction from the substrate (symbol D) to the primary combustion chamber grate (symbol Ba). A mouth (symbol De), a fluid combustion air inlet (symbol Bc), and an incineration ash outlet (symbol Dd) are provided. The primary combustion chamber section (symbol Sb) includes a grate (symbol Ba), a combustion air inlet (symbol Bd), and an ignition burner insertion port (symbol Bb). The grate is supported by metal fittings attached to the inner cylinder, and can be swung up and down by a swinging lever (symbol Be) provided penetrating the inner and outer cylinders of the residual fluid decomposition chamber section (symbol Sa). Yes. A cooling water pipe (symbol Wc) is provided in the space between the inner cylinder and the outer cylinder.
The incinerator charging part (symbol Sc) is composed of an inner cylinder (symbol Ea), an outer cylinder (symbol Eb) and a charging device (symbol Ef) in a portion having a shunt (symbol Ef) for charging the incinerated material into the primary combustion chamber. It rides on the primary combustion chamber. Since the inner cylinder (symbol Ea) is inserted into the inner cylinder of the primary combustion chamber (symbol Da), the diameter is slightly smaller, but is almost the same and forms a combustion chamber space. An air inlet (symbol Ca) is attached so that the cooling air in the double wall blows out to the secondary combustion chamber as necessary.
The inner cylinder (symbol Aa) of the secondary combustion chamber is fixed to the upper flange (symbol Ad) of the outer cylinder (symbol Ac), and the cooling air in the double wall (symbol Ab) is located at the upper end of the inner cylinder (symbol Aa). A suitable hole (symbol Ae) is opened so as to blow out into the chimney entrance. A cooling pipe (symbol Wc) is provided in the space between the inner cylinder and the outer cylinder. The chimney (symbol Se) is configured with a single wall having a smaller diameter than the secondary combustion chamber cylinder, and ensures a blowing speed and a blowing height.
Attached to this incinerator are a blower (symbol Fa) that sends cooling air and combustion air together (symbol Fa), a cooling water tank (symbol Wa) for circulating water through the cooling pipe, a circulating water pump (symbol Wb), an auxiliary burner -There are a fuel cylinder (symbol Ce) and a fuel control valve (symbol Cf) for sending fuel to the fuel tank, and these constitute an incineration facility. Residual flow cracking chamber temperature (symbol Dg), primary combustion chamber temperature (symbol Bf), secondary combustion chamber lower temperature (symbol Cc) for monitoring combustion gas temperature,
There is a secondary combustion chamber upper temperature (symbol Cd), a chimney gas temperature (symbol Cg), and an internal gas extraction nozzle (symbol Ag).

以下図面に記載の実施の形態に基ずいて、この発明による作動及び効果を具体的に説明する。ここで図2は本発明による焼却炉構成図、図3は各断面図を示す。送風機(記号Fd)からの空気は流動分解室セクション(記号Sa)の内外筒の間に接線方向に送入され旋回しながら一次燃焼室内筒(記号Da)、燃焼物投入部内筒(記号Ea)二次燃焼室内筒(記号Sa)を冷却して上昇し、二次燃焼室内筒吹出し穴(記号Ae)より燃焼室上部に吹出し、そこで二次燃焼室で発生した燃焼ガスと混合し排ガスを減温して煙突へ排出される。 The operation and effect of the present invention will be specifically described below based on the embodiments described in the drawings. Here, FIG. 2 is a block diagram of an incinerator according to the present invention, and FIG. 3 is a sectional view. Air from the blower (symbol Fd) is sent in a tangential direction between the inner and outer cylinders of the fluid decomposition chamber section (symbol Sa) and swivels while swirling in the primary combustion chamber cylinder (symbol Da) and the combustor input part inner cylinder (symbol Ea). The secondary combustion chamber cylinder (symbol Sa) cools and rises, and blows out from the secondary combustion chamber cylinder outlet hole (symbol Ae) to the top of the combustion chamber, where it mixes with the combustion gas generated in the secondary combustion chamber to reduce exhaust gas. It is heated and discharged into the chimney.

燃焼用空気はまず残さ流動分解セクションの内筒下部にある流動燃焼用空気導入口(記号Df)より流動層火格子(記号Dc)の下部に供給される。
一次燃焼空気は流動燃焼室上部の空気導入口(記号Bc)及び一次燃焼室空気導入口(記号Bd)より供給される。一次燃焼室の上方では投入部内筒(記号Ea)一次、二次燃焼室の空気導入口(記号Ca)を通じて二次燃焼室へ供給される。 焼却物投入装置より一次燃焼室火格子(記号Ba)上に投入された廃棄物は点火バ−ナ(記号Bb)により点火され、火格子(記号Bb)下からの空気ならびに一次燃焼室空気導入口(記号Bd)によって一次燃焼する。
一次燃焼室で発生した燃焼ガス中の未燃ガスは内筒接続部(記号A,B)からの流入空気及び空気導入口(記号Ca)からの空気により二次燃焼室上部に到るまでに完全に燃焼する。一次燃焼室火格子(記号Ba)から落ちた未燃残さは残さ流動分解室(記号Sa)にて流動火格子(記号Dd)から吹き出す熱ガスにより熱分解し、流動分解室内、又は上方の燃焼室内にて燃焼する。
The combustion air is first supplied to the lower part of the fluidized bed grate (symbol Dc) from the fluid combustion air inlet (symbol Df) at the lower part of the inner cylinder of the residual fluid decomposition section.
The primary combustion air is supplied from an air inlet (symbol Bc) and a primary combustion chamber air inlet (symbol Bd) at the upper part of the fluidized combustion chamber. Above the primary combustion chamber, it is supplied to the secondary combustion chamber through the inlet cylinder (symbol Ea) through the air inlets (symbol Ca) of the primary and secondary combustion chambers. Waste introduced from the incineration device into the primary combustion chamber grate (symbol Ba) is ignited by an ignition burner (symbol Bb), and air from the bottom of the grate (symbol Bb) and primary combustion chamber air are introduced. Primary combustion occurs through the mouth (symbol Bd)
The unburned gas in the combustion gas generated in the primary combustion chamber reaches the upper part of the secondary combustion chamber by the inflow air from the inner cylinder connection part (symbol A, B) and the air from the air inlet (symbol Ca). Burn completely. The unburned residue dropped from the primary combustion chamber grate (symbol Ba) is thermally decomposed by the hot gas blown out from the flow grate (symbol Dd) in the residue fluid cracking chamber (symbol Sa), and burns in the fluid cracking chamber or above Burns indoors.

燃焼物の投入量は二次燃焼室下部温度(記号Cc)を目標温度(850℃以上)に保つように調整されるが、二次燃焼室の上部温度(記号Cd)の確保並びに未燃炭素の酸化促進のため要すれば助燃バ−ナ(記号Cb)で助燃を行う。二次燃焼室上部に達した燃焼ガスは冷却空気の吹出口からの冷空気と混合し減温されて煙突に流入するので煙突メタルが保護される。燃焼空気は各空気導入口の配分調整に加えて、全体的に送風機の回転数で調整し燃焼用空気を最小限に絞って燃焼温度を高めることが出来るのでかくして1台の送風機で運転が可能になる。流動火格子下に供給する熱ガスは加熱された冷却空気を二次燃焼室上部から煙突内排ガスと混合して供給するので熱分解が効果的に行われる。一次燃焼室火格子(記号Ba)から煙突出口までのガス通路は単純上向きで抵抗物がないので燃焼室内及び焼却物投入装置内が自然通風力のみで負圧になる。 The amount of combusted material is adjusted so that the lower temperature of the secondary combustion chamber (symbol Cc) is maintained at the target temperature (850 ° C. or higher), while ensuring the upper temperature of the secondary combustion chamber (symbol Cd) and unburned carbon If it is necessary to promote oxidation of the catalyst, auxiliary combustion is performed with an auxiliary combustion burner (symbol Cb). The combustion gas that has reached the upper part of the secondary combustion chamber is mixed with the cold air from the cooling air outlet and is reduced in temperature and flows into the chimney, so that the chimney metal is protected. In addition to adjusting the distribution of each air inlet, the combustion air can be adjusted by the overall rotation speed of the blower to minimize the combustion air and raise the combustion temperature, thus enabling operation with a single blower. become. The hot gas supplied under the fluid grate is supplied with the heated cooling air mixed with the exhaust gas in the chimney from the upper part of the secondary combustion chamber, so that the thermal decomposition is effectively performed. Since the gas passage from the primary combustion chamber grate (symbol Ba) to the smoke outlet is simply upward and there is no resistance, the combustion chamber and the incineration apparatus are negatively pressured only by natural wind power.

各セクションの内筒と外筒の間に設けた設けた冷却管(記号Wc)には冷却水タンク(記号Wa)から循環水ポンプ(記号Wb)により水を供給し、二次燃焼室上部より冷却水タンクに戻す。これにより高温燃焼ガスに触れる内筒を冷却している。冷却水は加熱されて約100℃となり、更に冷却管の中で一部が蒸発して気水混合体となり、約100℃を保持したまま冷却水タンクに戻る。この冷却管は内筒に接触していないので、冷却が過度に行われることなく内筒温度は適温(300〜400℃)に保つことができる。流動分解室の灰取出部(記号Dd)は水冷管はないが、冷却空気供給口から空気が強力に吹き付けられるので内扉の過熱・変形を防止できる。 Water is supplied to the cooling pipe (symbol Wc) provided between the inner cylinder and the outer cylinder of each section from the cooling water tank (symbol Wa) by the circulating water pump (symbol Wb), and from the upper part of the secondary combustion chamber Return to the cooling water tank. Thereby, the inner cylinder which touches high temperature combustion gas is cooled. The cooling water is heated to about 100 ° C., and further, a part of the cooling pipe evaporates to become an air-water mixture, and returns to the cooling water tank while maintaining about 100 ° C. Since this cooling pipe is not in contact with the inner cylinder, the inner cylinder temperature can be kept at an appropriate temperature (300 to 400 ° C.) without excessive cooling. The ash extraction part (symbol Dd) of the fluid decomposition chamber does not have a water-cooled tube, but air is strongly blown from the cooling air supply port, so that overheating and deformation of the inner door can be prevented.

本焼却炉の燃焼構造は残さを生じやすい燃料を燃焼して熱ガスを利用する設備の於いて、一般燃焼炉にも適用可能である。 The combustion structure of this incinerator can be applied to general combustion furnaces in facilities that use hot gas by burning fuel that tends to produce residue.

従来の焼却炉の一例を示す図Figure showing an example of a conventional incinerator 本発明による焼却炉の構成例を示す図The figure which shows the structural example of the incinerator by this invention 図2における各部断面を示す図The figure which shows each part cross section in FIG.

符号の説明Explanation of symbols

A :内筒接続部
B :内筒接続部
δ :重なり深さ
*1 :冷却水接続記号
*2 :流動層用熱ガス接続記号
Aa :二次燃焼室内筒
Ab :冷却空気
Ac :二次燃焼室外筒
Ad :上部フランジ
Ae :冷却空気噴出し穴
Af :冷却空気取出ノズル
Ag :煙突内部ガス取出ノズル
Ba :火格子
Bb :点火バ−ナ
Bc :流動燃焼空気ノズル
Bd :一次燃焼空気ノズル
Be :揺動レバ−
Bf :一次燃焼室温度計
Ca :二次燃焼室空気ノズル
Cb :助燃バ−ナ
Cc :二次燃焼室下部温度計
Cd :二次燃焼室上部温度計
Ce :助燃バ−ナ
Cf :燃料制御弁
Cg :煙突ガス温度計
D :基板
Da :残磋流動分解室及び一次燃焼室内筒
Db :残さ流動分解室及び一次燃焼室外筒
Dc :流動灰火格子
Dd :焼却灰取出口
De :流動層形成ガス導入口
Df :流動空気
Dg :残さ流動分解室温度計
Ea :焼却物投入部内筒
Eb :焼却物投入部外筒
Ec :焼却物投入部下部フランジ
Ed :焼却物投入部上部フランジ
Ef :焼却物投入シュ−ト
Fa :送風機
Sa :残さ流動分解室セクション
Sb :一次燃焼室セクション
Sc :焼却物投入部
Sd :二次燃焼室セクション
Se :煙突
Wa :冷却水タンク
Wb :循環ポンプ
Wc :冷却水管
P1 :燃焼用空気送風機
P2 :補助空気導入口
P3 :投入口
P4 :一次燃焼室
P5 :一次燃焼室火格子
P6 :助燃バ−ナ
P7 :二次燃焼室
P8 :高温排ガス
P9 :排ガス冷却送風機
P10:誘引ノズル
P11:煙突
P12:炉壁
P13:灰排出
A: Inner cylinder connection B: Inner cylinder connection δ: Overlap depth * 1: Cooling water connection symbol * 2: Hot gas connection symbol for fluidized bed Aa: Secondary combustion chamber cylinder Ab: Cooling air Ac: Secondary combustion Outdoor tube
Ad: Upper flange
Ae: Cooling air ejection hole
Af: Cooling air extraction nozzle
Ag: Chimney internal gas extraction nozzle
Ba: Grate
Bb: Ignition burner
Bc: Fluidized combustion air nozzle
Bd: Primary combustion air nozzle
Be: Swing lever
Bf: Primary combustion chamber thermometer
Ca: Secondary combustion chamber air nozzle
Cb: auxiliary burner
Cc: Secondary combustion chamber lower thermometer Cd: Secondary combustion chamber upper thermometer
Ce: Auxiliary burner
Cf: Fuel control valve
Cg: Chimney gas thermometer
D: Substrate
Da: residue flow cracking chamber and primary combustion chamber cylinder
Db: Residual fluid cracking chamber and primary combustion chamber outer cylinder Dc: Fluid ash grate Dd: Incineration ash outlet De: Fluidized bed forming gas inlet Df: Fluid air Dg: Residual fluid cracking chamber thermometer Ea: Incinerator inlet cylinder Eb: Incinerated material charging part outer cylinder Ec: Incinerated material charging part lower flange Ed: Incinerated material charging part upper flange Ef: Incinerated material charging shout Fa: Blower Sa: Residual fluid cracking chamber section Sb: Primary combustion chamber section Sc: Incinerator input section Sd: Secondary combustion chamber section Se: Chimney Wa: Cooling water tank Wb: Circulation pump Wc: Cooling water pipe P1: Combustion air blower P2: Auxiliary air inlet P3: Input port P4: Primary combustion chamber P5: Primary combustion chamber grate P6: auxiliary burner P7: secondary combustion chamber P8: high temperature exhaust gas
P9: Exhaust gas cooling blower
P10: Attraction nozzle P11: Chimney P12: Furnace wall P13: Ash discharge

Claims (8)

炉の構成は円筒直立形とし、下部より上部へ向かって残さ流動分解室、次燃焼室、廃棄物投入部、二次燃焼室、煙突の順に積層し、一次燃焼室の下部に残さ流動分解室を設けたことを特徴とする焼却炉。 The structure of the furnace is an upright cylinder, and the residual fluid decomposition chamber, the secondary combustion chamber, the waste input section, the secondary combustion chamber, and the chimney are stacked in this order from the bottom to the top, and the residual fluid decomposition chamber is located below the primary combustion chamber. An incinerator characterized by providing 各燃焼室の壁は2重壁とし、その中間に冷却空気を旋回させて流し、各燃焼室壁を冷却すること、また二重壁の中間には冷却管を設け、外部に設けた水タンクより水を循環させて、炉壁の冷却を更に強力に行い、且つ熱の回収を可能にしたこと、これにより耐火材、保温材の使用を皆無になし得ること。 The walls of each combustion chamber are double walls, cooling air is swirled between them, cooling each combustion chamber wall, and a cooling pipe is provided between the double walls, and a water tank provided outside The water was circulated more effectively to cool the furnace wall, and the heat could be recovered, thereby making it possible to eliminate the use of refractory materials and heat insulating materials. 燃焼用空気は二重壁中間に流入した冷却用空気の一部を適宜分流して供給することにより、一台の送風機で可能にしたこと、このため各燃焼室壁には空気導入ノズルを設けたこと。 Combustion air was made possible by a single blower by supplying a part of the cooling air that flowed into the middle of the double wall as needed, and therefore, each combustion chamber wall was provided with an air introduction nozzle. Was it. 残さ流動分解室の流動ガスとして、燃焼ガスまたは冷却空気を利用し、焼却物を流動攪拌し且つその熱によって分解を促進すること。 The combustion gas or cooling air is used as the fluid gas in the residual fluid decomposition chamber, and the incinerated product is fluidly stirred and decomposed by its heat. 焼却物投入部内筒は一次燃焼室内筒並びに二次燃焼室内筒に挿入し、スライド可能にし、各内筒の熱伸びを逃がす構造とする、またスライド部の微細な隙間より冷却空気が流れるようにし、スライド部の固着防止を計ると共に、炉内の全周に亘って、燃焼空気を送り込むことを可能にすること。 The incinerator throwing section inner cylinder is inserted into the primary combustion chamber cylinder and the secondary combustion chamber cylinder so as to be slidable so that the thermal expansion of each inner cylinder can be released, and cooling air can flow through the minute gaps in the slide section. Measure the prevention of sticking of the slide part, and allow the combustion air to be fed over the entire circumference of the furnace. 冷却空気を煙突入り口で排ガス側に混入し、煙突内のガス温度を下げ煙突の構成を一重壁としてもメタル焼損あるいは外部塗装の焼け防止を計れること。 Cooling air can be mixed into the exhaust gas at the chimney entrance to lower the gas temperature in the chimney and prevent the metal burnout or external paint from burning even if the chimney structure is a single wall. 焼却灰は一次燃焼室の火格子より残さ流動分解室に落下し、流動火格子上にて熱ガスにより攪拌並びに熱分解し灰中未燃分を減少させること。 The incinerated ash falls from the grate in the primary combustion chamber to the fluidized cracking chamber, and is stirred and pyrolyzed with hot gas on the fluidized grate to reduce unburned ash. 残さ流動分解室の壁には灰取出扉を設ける。またこの部分の二重炉壁には水冷管配置が難しいので、空冷を強化するため冷却空気の供給口を残さ流動分解室の側面に設けること。
Ash removal doors will be installed on the walls of the residual fluid decomposition chamber. Also, since it is difficult to place water-cooled pipes on the double furnace wall in this part, a cooling air supply port should be provided on the side of the flow cracking chamber to enhance air cooling.
JP2005181469A 2005-06-22 2005-06-22 Compact incinerator with fluidized bed thermal decomposition chamber Pending JP2007003043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005181469A JP2007003043A (en) 2005-06-22 2005-06-22 Compact incinerator with fluidized bed thermal decomposition chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005181469A JP2007003043A (en) 2005-06-22 2005-06-22 Compact incinerator with fluidized bed thermal decomposition chamber

Publications (1)

Publication Number Publication Date
JP2007003043A true JP2007003043A (en) 2007-01-11

Family

ID=37688850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005181469A Pending JP2007003043A (en) 2005-06-22 2005-06-22 Compact incinerator with fluidized bed thermal decomposition chamber

Country Status (1)

Country Link
JP (1) JP2007003043A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014013136A (en) * 2012-06-06 2014-01-23 Morihei Sugimura Magnetic field thermal decomposition furnace
JP5588045B1 (en) * 2013-05-17 2014-09-10 月島機械株式会社 Fluidized incinerator and method for incineration of processed materials using the fluidized incinerator
CN104197729A (en) * 2014-09-02 2014-12-10 高玉宗 Heat exchanger and garbage incinerator
CN104964270A (en) * 2015-07-28 2015-10-07 王海峰 Gasified combustion machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014013136A (en) * 2012-06-06 2014-01-23 Morihei Sugimura Magnetic field thermal decomposition furnace
JP5588045B1 (en) * 2013-05-17 2014-09-10 月島機械株式会社 Fluidized incinerator and method for incineration of processed materials using the fluidized incinerator
CN104197729A (en) * 2014-09-02 2014-12-10 高玉宗 Heat exchanger and garbage incinerator
CN104964270A (en) * 2015-07-28 2015-10-07 王海峰 Gasified combustion machine

Similar Documents

Publication Publication Date Title
JP4479655B2 (en) Grate-type waste incinerator and its combustion control method
KR100907269B1 (en) Continuous combustion apparatus with divided combustion space by the centrifugal force and the combustion method thereof
CN104913313B (en) Novel pyrolytic gasification and melting environment-friendly stove and the method that garbage is processed thereof
EP2921776B1 (en) Device for centrifugal combustion by area using flow of combustion air
JP3034467B2 (en) Direct-type incineration ash melting treatment equipment and treatment method
CN105541076B (en) A kind of municipal sludge vertical drying burning facility
KR100330814B1 (en) Centrifugal Combusting Method using the Air-flow in a Furnace
RU2451239C2 (en) Automated coal-fired boiler
JP2007003043A (en) Compact incinerator with fluidized bed thermal decomposition chamber
JP3426562B2 (en) Vertical waste incinerator for incineration of industrial waste
KR20110137915A (en) Centrifugal continuous combustion apparatus having function of division on fly ash
CN106051786A (en) Novel medical garbage pyrolysis incinerator
KR19980074713A (en) Cylindrical waste incinerator for both pyrolysis and multistage cyclone combustion
JP3525077B2 (en) Directly connected incineration ash melting equipment and its operation control method
JP2006023030A (en) Vertical refuse incinerator with primary combustion device, and operation control method thereof
JP4933134B2 (en) Vertical waste incinerator for industrial waste incineration
JP2002295817A (en) Gasification melting furnace for combustible refuse, and method for gasification melting
JP4589832B2 (en) Incinerator
CN214249633U (en) Integrated device of melting furnace of rotary kiln
JPH0882410A (en) Rotary kiln type incinerator
JP6888786B2 (en) Small incinerator
WO2010123444A1 (en) Method and plant for burning solid fuel
JP2008275180A (en) Waste melting treatment method and equipment
JP2005069542A (en) Vertical refuse incinerating furnace and combustion control method for higher heating value waste in furnace thereof
JP2007057113A (en) Vertical refuse incinerator provided with water tube wall