JP2007001810A - Manufacturing method of carbon material - Google Patents

Manufacturing method of carbon material Download PDF

Info

Publication number
JP2007001810A
JP2007001810A JP2005184119A JP2005184119A JP2007001810A JP 2007001810 A JP2007001810 A JP 2007001810A JP 2005184119 A JP2005184119 A JP 2005184119A JP 2005184119 A JP2005184119 A JP 2005184119A JP 2007001810 A JP2007001810 A JP 2007001810A
Authority
JP
Japan
Prior art keywords
carbon material
lignin
carbide
producing
compound containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005184119A
Other languages
Japanese (ja)
Other versions
JP4740659B2 (en
Inventor
Kazushiro Nakagawa
和城 中川
Yuji Tachibana
優治 橘
Kazumasa Yasuda
一誠 安田
Tsutomu Suzuki
勉 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KINOUSEI MOKUSHITSU SHINSOZAI
KINOUSEI MOKUSHITSU SHINSOZAI GIJUTSU KENKYU KUMIAI
Original Assignee
KINOUSEI MOKUSHITSU SHINSOZAI
KINOUSEI MOKUSHITSU SHINSOZAI GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KINOUSEI MOKUSHITSU SHINSOZAI, KINOUSEI MOKUSHITSU SHINSOZAI GIJUTSU KENKYU KUMIAI filed Critical KINOUSEI MOKUSHITSU SHINSOZAI
Priority to JP2005184119A priority Critical patent/JP4740659B2/en
Publication of JP2007001810A publication Critical patent/JP2007001810A/en
Application granted granted Critical
Publication of JP4740659B2 publication Critical patent/JP4740659B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a carbon material which can manufacture the carbon material having a large pore volume and high conductivity using lignin as a raw material. <P>SOLUTION: The manufacturing method of a carbon material comprises a carbonizing step for adding a compound containing at least one element selected from an iron group and a platinum group and a compound containing at least one element selected from alkali metals and alkaline earth metals to lignin and carbonizing it, and a pulverizing step for increasing the pore volume of the carbonized material obtained in the carbonizing step by a pulverizing treatment. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、炭素電極等に用いられる炭素材料の製造方法に関する。   The present invention relates to a method for producing a carbon material used for a carbon electrode or the like.

リグニンは植物細胞を構成するフェノール系ポリマーで、自然界ではセルロースに次ぐ量の約3×1011トンが蓄積され、毎年2×1013トンが生合成されている。しかしながら、この膨大な天然資源の有効利用法開発は古くから検討されているものの実用化に至っている例はまれである。特に、これらリグニンを原料とした炭素材料の性能、品質は、従来の石油原料の炭素材料と比較しても低いものであり十分ではなかった。 Lignin is a phenolic polymer that constitutes plant cells. In nature, about 3 × 10 11 tons after cellulose is accumulated, and 2 × 10 13 tons are biosynthesized every year. However, the development of effective utilization methods for such a vast amount of natural resources has been studied for a long time, but rarely has been put to practical use. In particular, the performance and quality of carbon materials using these lignins as raw materials were low and not sufficient as compared with conventional carbon materials of petroleum raw materials.

例えば、(特許文献1)には、リグノフェノールをNi塩及びNa塩を混合して炭化して炭素材料を製造する方法について開示している。   For example, Patent Document 1 discloses a method for producing a carbon material by mixing lignophenol with Ni salt and Na salt and carbonizing the mixture.

特開2002−344194号公報JP 2002-344194 A

しかしながら、上記のリグニンを原料とした炭素材料は導電性が十分でない等の問題点があった。また、電極としての用途を考えた場合にも細孔容積が十分でないという問題点があった。   However, the carbon material using lignin as a raw material has problems such as insufficient conductivity. Further, when considering the use as an electrode, there is a problem that the pore volume is not sufficient.

そこで、本発明では、上記従来の状況に鑑み、リグニンを原料として用いて細孔容積が大きく、かつ導電性の高い炭素材料を製造する炭素材料の製造方法を提供することを目的とする。   In view of the above-described conventional situation, an object of the present invention is to provide a carbon material production method for producing a carbon material having a large pore volume and high conductivity using lignin as a raw material.

上記課題を解決するため、本発明の炭素材料の製造方法は、請求項1として、鉄族及び白金族から選択される少なくとも一種の元素を含む化合物並びにアルカリ金属及びアルカリ土類金属から選択される少なくとも一種の元素を含む化合物をリグニンに添加して炭化する炭化工程と、前記炭化工程で得られた炭化物の細孔容積を微粉砕処理により増加させる微粉砕工程と、を含むことを特徴とする。   In order to solve the above-mentioned problems, the method for producing a carbon material according to the present invention is selected from compounds containing at least one element selected from the iron group and the platinum group, and alkali metals and alkaline earth metals. A carbonization step of adding and carbonizing a compound containing at least one element to lignin; and a pulverization step of increasing the pore volume of the carbide obtained in the carbonization step by pulverization. .

上記手段によれば、炭化工程により細孔容積が大きく、特にメソ孔に富んだ炭化物が製造され、得られた炭化物を微粉砕工程において微粉砕することにより炭化物の平均粒径が小さくなるとともに、細孔容積が大きい炭素材料を得ることができる。   According to the above means, a carbide having a large pore volume by the carbonization step, in particular, a carbide rich in mesopores is produced, and by pulverizing the obtained carbide in the pulverization step, the average particle size of the carbide is reduced, A carbon material having a large pore volume can be obtained.

また、請求項2に係る発明は、請求項1記載の炭素材料の製造方法において、微粉砕工程において得られた微粉砕炭化物中の金属元素を酸処理により除去する酸処理工程を含むことを特徴とする。   The invention according to claim 2 is characterized in that, in the method for producing a carbon material according to claim 1, the method includes an acid treatment step of removing the metal element in the finely pulverized carbide obtained in the fine pulverization step by an acid treatment. And

上記手段によれば、リグニンを炭化する際に混合した鉄族及び白金族から選択される少なくとも一種の元素を含む化合物並びにアルカリ金属及びアルカリ土類金属から選択される少なくとも一種の元素を含む化合物を除去するともに、さらには細孔容積が大きく、かつ結晶性が高い炭素材料を得ることができる。   According to the above means, a compound containing at least one element selected from the iron group and the platinum group mixed when carbonizing lignin and a compound containing at least one element selected from alkali metals and alkaline earth metals are mixed. In addition to removing the carbon material, a carbon material having a large pore volume and high crystallinity can be obtained.

また、請求項3に係る発明は、請求項1又は2記載の炭素材料の製造方法において、リグニンがリグノクレゾールであることを特徴とする。   The invention according to claim 3 is the method for producing a carbon material according to claim 1 or 2, wherein the lignin is lignocresol.

上記手段によれば、細孔容積が大きく、かつ結晶性の高い炭素材料を得るための最適な原料が選択される。   According to the above means, an optimum raw material for obtaining a carbon material having a large pore volume and high crystallinity is selected.

また、請求項4に係る発明は、請求項1又は2記載の炭素材料の製造方法において、リグニン100重量部に対する鉄族及び白金族から選択される少なくとも一種の元素並びにアルカリ金属及びアルカリ土類金属から選択される少なくとも一種の元素の割合をそれぞれ0.5〜5重量部及び0.2〜5重量部とすることを特徴とする。   The invention according to claim 4 is the method for producing a carbon material according to claim 1 or 2, wherein at least one element selected from an iron group and a platinum group with respect to 100 parts by weight of lignin, and an alkali metal and an alkaline earth metal. The ratio of at least one element selected from is 0.5 to 5 parts by weight and 0.2 to 5 parts by weight, respectively.

上記手段によれば、炭化工程における触媒の最適な添加量が選択される。   According to the above means, the optimum addition amount of the catalyst in the carbonization step is selected.

また、請求項5に係る発明は、請求項1〜4のいずれか記載の炭素材料の製造方法において、炭化工程における炭化の温度が800〜1000℃であることを特徴とする。   The invention according to claim 5 is the carbon material manufacturing method according to any one of claims 1 to 4, wherein the carbonization temperature in the carbonization step is 800 to 1000 ° C.

上記手段によれば、炭化工程における最適な炭化の温度が選択される。   According to the above means, the optimum carbonization temperature in the carbonization process is selected.

また、請求項6に係る発明は、請求項1〜5のいずれか記載の炭素材料の製造方法において、鉄族及び白金族から選択される少なくとも一種の元素を含む化合物がNi塩であり、アルカリ金属及びアルカリ土類金属から選択される少なくとも一種の元素を含む化合物がCa塩であることを特徴とする。   The invention according to claim 6 is the method for producing a carbon material according to any one of claims 1 to 5, wherein the compound containing at least one element selected from an iron group and a platinum group is a Ni salt, and an alkali The compound containing at least one element selected from metals and alkaline earth metals is a Ca salt.

上記手段によれば、炭化の工程における触媒として最適な化合物が選択される。   According to the above means, an optimum compound is selected as a catalyst in the carbonization step.

本発明の炭素材料の製造方法によれば、結晶性が高く、かつ細孔容積が大きい炭素材料が得られるため、導電性材料あるいは高分子吸着剤として使用することができるだけでなく、高い性能を有する炭素電極の材料として用いることができる。   According to the method for producing a carbon material of the present invention, a carbon material having high crystallinity and a large pore volume can be obtained, so that it can be used not only as a conductive material or a polymer adsorbent but also has high performance. It can use as a material of the carbon electrode which has.

以下、本発明を実施するための最良の形態について詳細に説明する。
まず、触媒担持工程においてリグニンに触媒の担持を行う。触媒としては、主触媒として鉄族元素及び白金族元素から選択される少なくとも一種の元素を含む化合物と、助触媒としてアルカリ金属及びアルカリ土類金属から選択される少なくとも一種の元素を含む化合物を添加する。添加方法としては、含浸法、平衡吸着法、蒸発乾固法等の種々の方法を用いることができるが、含浸法が特に好ましく用いられる。含浸法は、具体的にはリグニンを水あるいはテトラヒドロフラン等の溶媒に溶解し、続いて、鉄族元素及び白金族元素から選択される少なくとも一種の元素を含む化合物と、助触媒としてアルカリ金属及びアルカリ土類金属から選択される少なくとも一種の元素を含む化合物を添加する。そして、得られた溶液をフラスコ等の容器に移し、ロータリーエバポレータにセットして、減圧下で加熱を行い溶媒(水またはテトラヒドロフラン)をほぼ完全に留去して触媒担持リグニンを得る。なお、溶媒留去の際の圧力と温度は、特に限定されるものではないが、圧力20〜30mmHg=3〜4kPa,温度40〜50℃程度が好ましい。
Hereinafter, the best mode for carrying out the present invention will be described in detail.
First, a catalyst is supported on lignin in the catalyst supporting step. As a catalyst, a compound containing at least one element selected from iron group elements and platinum group elements as a main catalyst and a compound containing at least one element selected from alkali metals and alkaline earth metals as a co-catalyst are added. To do. As the addition method, various methods such as an impregnation method, an equilibrium adsorption method, and an evaporation to dryness method can be used, and the impregnation method is particularly preferably used. Specifically, the impregnation method involves dissolving lignin in a solvent such as water or tetrahydrofuran, followed by a compound containing at least one element selected from iron group elements and platinum group elements, and alkali metals and alkalis as promoters. A compound containing at least one element selected from earth metals is added. Then, the obtained solution is transferred to a container such as a flask, set in a rotary evaporator, and heated under reduced pressure to remove the solvent (water or tetrahydrofuran) almost completely to obtain catalyst-supported lignin. In addition, although the pressure and temperature in the case of solvent distillation are not specifically limited, The pressure of 20-30 mmHg = 3-4kPa and the temperature of about 40-50 degreeC are preferable.

リグニン化合物は、植物体の主成分の一つであり本発明の炭素材料を製造するにあたって原料となるもので、フェニルプロパン骨格とする構成単位体が縮合してできた網状高分子化合物のことを表す。植物の種類によって構造が異なるが、本発明においては、リグノ(リグニン)スルフォン酸以外(例えば、リグノ(リグニン)スルフォン酸カルシウムとナトリウム)の一般にリグニンと呼ばれているものを全て含む。また、本発明においては、クラフト法とソルボリシス法による木材パルプ製造廃液から回収したリグニンからフェノール/硫酸相分離システムによって回収されるリグノフェノールを用いることができ、特に木材パルプ製造廃液から回収したリグニンから硫酸/クレゾールを用いる相分離システムによって単離、回収されるリグノクレゾールを用いることが好ましい。   A lignin compound is one of the main components of a plant body and is a raw material for producing the carbon material of the present invention, and is a network polymer compound formed by condensing a structural unit having a phenylpropane skeleton. To express. Although the structure differs depending on the type of plant, in the present invention, all of what is generally called lignin other than ligno (lignin) sulfonic acid (for example, calcium and sodium ligno (lignin) sulfonate) are included. Further, in the present invention, lignophenol recovered by a phenol / sulfuric acid phase separation system can be used from lignin recovered from wood pulp manufacturing waste liquid by the Kraft method and solvolysis method, particularly from lignin recovered from wood pulp manufacturing waste liquid. It is preferred to use lignocresol which is isolated and recovered by a phase separation system using sulfuric acid / cresol.

リグニンの炭化の際に用いる触媒のうち主触媒は、リグニンから炭化物を生成させ炭化物炭素の結晶構造を発達させるためのものであり、鉄族及び白金族から選択される少なくとも一種の元素が用いられる。具体的には、鉄族元素であるニッケル、鉄、コバルト、白金族元素であるパラジウム、ロジウム、ルテニウム、白金、金が用いられる。なかでも、鉄族元素が好ましく用いられ、Niが特に好ましく用いられる。ただし、鉄やコバルトを用いる場合の所要量はニッケルより多いと考えられ、また貴金属を用いる場合にはごく少量の添加でよいが、触媒作用が強い(炭化物がガスになる)ので量の調節は難しいと考えられる。この元素を含む化合物としては、リグニンへの添加は水溶液含浸で行われるので水溶性でなければならず、酸化物や水酸化物よりも、塩の形態が好ましい。具体的には、水溶性塩のうち、塩化物や硫酸塩よりも、酢酸塩や硝酸塩が好ましく、酢酸ニッケル4水和物(CHCOO)Ni・4HOや硝酸ニッケル6水和物Ni(NO)2・6HOがより好ましい。なお、主触媒の添加量は、リグニン100重量部に対して通常0.1〜20重量部であり、0.5〜5重量部であることが好ましい。 Of the catalysts used for carbonization of lignin, the main catalyst is for generating carbide from lignin to develop the crystal structure of carbide carbon, and at least one element selected from the iron group and the platinum group is used. . Specifically, nickel, iron, cobalt that is an iron group element, palladium, rhodium, ruthenium, platinum, and gold that are platinum group elements are used. Among these, iron group elements are preferably used, and Ni is particularly preferably used. However, when iron or cobalt is used, the required amount is considered to be larger than that of nickel. When noble metal is used, only a small amount may be added, but the catalytic action is strong (carbide turns into gas), so the amount can be adjusted. It seems difficult. As a compound containing this element, addition to lignin is carried out by impregnation with an aqueous solution, so it must be water-soluble, and a salt form is preferable to an oxide or hydroxide. Specifically, among water-soluble salts, acetates and nitrates are preferable to chlorides and sulfates, and nickel acetate tetrahydrate (CH 3 COO) 2 Ni · 4H 2 O and nickel nitrate hexahydrate. Ni (NO 3) 2 · 6H 2 O are more preferred. In addition, the addition amount of a main catalyst is 0.1-20 weight part normally with respect to 100 weight part of lignin, and it is preferable that it is 0.5-5 weight part.

また、リグニンの炭化の際に用いる触媒のうち助触媒は、主触媒の活性低下を抑制するためのもので、アルカリ金属及びアルカリ土類金属から選択される少なくとも一種の元素が用いられる。アルカリ金属を選択した場合にはNa及びKが好ましく、Naが特に好ましく用いられる。また、アルカリ土類金属の場合にはCaが特に好ましい。この元素を含む化合物としては鉄族及び白金族から選択される一種の特に塩酸塩、硝酸塩等がより好ましく用いられる。具体的には、塩化ナトリウムや硝酸ナトリウムが有効であり、さらにこれら以外の一般の水溶性化合物(例えば、水酸化ナトリウム、酸化ナトリウム、硝酸ナトリウム等)や、水溶性のカルシウム化合物(水酸化カルシウム、酸化ルシウム、硝酸カルシウム)も好ましく用いられる。特に、カルシウム塩は、炭化工程中に原料であるリグニン等に含まれる硫黄分と結合して脱硫剤として機能するので、Ni触媒の活性低下を減少させることができる。なお、助触媒の添加量は、リグニン100重量部に対して通常0.1〜20重量部であり、0.2〜5重量部であることが好ましい。   Of the catalysts used for carbonization of lignin, the co-catalyst is for suppressing the decrease in the activity of the main catalyst, and at least one element selected from alkali metals and alkaline earth metals is used. When an alkali metal is selected, Na and K are preferable, and Na is particularly preferably used. In the case of an alkaline earth metal, Ca is particularly preferable. As the compound containing this element, one type of hydrochloride, nitrate, etc. selected from the iron group and platinum group are more preferably used. Specifically, sodium chloride and sodium nitrate are effective, and other general water-soluble compounds (for example, sodium hydroxide, sodium oxide, sodium nitrate, etc.) and water-soluble calcium compounds (calcium hydroxide, Lucium oxide and calcium nitrate) are also preferably used. In particular, the calcium salt combines with the sulfur content contained in the lignin as a raw material during the carbonization step and functions as a desulfurizing agent, so that the decrease in the activity of the Ni catalyst can be reduced. In addition, the addition amount of a co-catalyst is 0.1-20 weight part normally with respect to 100 weight part of lignin, and it is preferable that it is 0.2-5 weight part.

次に、触媒担持工程において得られた触媒担持リグニンは炭化工程において反応管にセットされ、窒素などの不活性ガスを流しながら所定の炭化温度まで昇温させ、昇温後一定時間保持することで触媒担持リグニンの炭化を行う。なお、昇温速度としては10〜50℃/minが好ましく、炭化温度としては、800〜1000℃が好ましい。そして、本発明において、この炭化工程において得られた炭化物は細孔容積が大きく、特に細孔径2−50nmのメソ孔に富むことが明らかとなった。炭化工程において得られた炭化物は、BJT法により測定した際にメソ孔の細孔容積の全細孔容積に対する割合が40%以上であることが好ましく、50%以上であることが特に好ましい。そして、炭化工程において得られた炭化物の全細孔容積に対するメソ孔及びマクロ孔の細孔容積の割合が90%以上であることが好ましい。   Next, the catalyst-supported lignin obtained in the catalyst support step is set in a reaction tube in the carbonization step, heated to a predetermined carbonization temperature while flowing an inert gas such as nitrogen, and held for a certain time after the temperature increase. The catalyst-supported lignin is carbonized. In addition, 10-50 degreeC / min is preferable as a temperature increase rate, and 800-1000 degreeC is preferable as carbonization temperature. And in this invention, it became clear that the carbide | carbonized_material obtained in this carbonization process has a large pore volume, and is especially rich in a mesopore with a pore diameter of 2-50 nm. When the carbide obtained in the carbonization step is measured by the BJT method, the ratio of the mesopore volume to the total pore volume is preferably 40% or more, and particularly preferably 50% or more. And it is preferable that the ratio of the pore volume of a mesopore and a macropore with respect to the total pore volume of the carbide | carbonized_material obtained in the carbonization process is 90% or more.

そして、炭化工程において得られた炭化物を、粗粉砕工程において粉砕して平均粒径10〜30μm程度の粗粉砕炭化物を得る。さらに、本発明では、粗粉砕工程において得られた粗粉砕炭化物をさらに微粉砕して微粉砕炭化物を得る微粉砕工程において、2〜10μm、好ましくは3〜6μm程度の平均粒径となるように微粉砕する。なお、粉砕の際に用いる機器類としては、粉砕できるものであれば特に限定されず、メノウ乳鉢、遊星型ボールミル、カッティングミル、ロータースピードミル等を用いることができる。この微細化工程により、粗粉砕炭化物の平均粒径が小さくなり細孔容積が著しく増大することが明らかとなった。そして、特に孔直径2−50μmのメソ孔、及び孔直径50μm以上のマクロ孔容積が著しく増大することが明らかとなった。   And the carbide | carbonized_material obtained in the carbonization process is grind | pulverized in a coarse pulverization process, and coarse pulverized carbide | carbonized_material with an average particle diameter of about 10-30 micrometers is obtained. Furthermore, in the present invention, the coarsely pulverized carbide obtained in the coarsely pulverized step is further finely pulverized to obtain a finely pulverized carbide so that the average particle size is about 2 to 10 μm, preferably about 3 to 6 μm. Finely pulverize. The equipment used for pulverization is not particularly limited as long as it can be pulverized, and an agate mortar, a planetary ball mill, a cutting mill, a rotor speed mill, and the like can be used. This refinement process revealed that the average particle size of the coarsely pulverized carbide was reduced and the pore volume was significantly increased. And it became clear that mesopores having a pore diameter of 2 to 50 μm and macropore volumes having a pore diameter of 50 μm or more remarkably increase.

続いて、微粉砕工程において得られた微粉砕炭化物を酸性溶液中で撹拌、浸漬することで酸処理を行い、担持した金属を留去する酸処理工程を行う。用いる酸性溶液としては、塩酸水溶液、硝酸水溶液、硫酸水溶液等を用いることができ、硝酸水溶液が特に好ましく用いられる。この酸処理工程により、細孔容積が増大することが明らかとなった。そして、特に細孔の中でも孔直径50μm以上のマクロ孔容積が著しく増大することが明らかとなった。また、この酸処理工程により、酸処理炭化物の(002)面すなわち炭素網面の厚さ方向の結晶性が大きく向上することが明らかとなった。得られる酸処理炭化物の結晶性としては、Cu−Kαを線源として用いたX線回折パターンにおいて2θ=22〜26°付近の(002)面を表す回折線ピーク強度RPIが、人造グラファイト(ロンザ, KS5−75)のそれを1としたときに15×10−2以上であることが好ましく、25×10−2以上であることが特に好ましい。 Subsequently, an acid treatment step is performed in which the finely pulverized carbide obtained in the fine pulverization step is stirred and immersed in an acidic solution to perform an acid treatment, and the supported metal is distilled off. As the acidic solution to be used, an aqueous hydrochloric acid solution, an aqueous nitric acid solution, an aqueous sulfuric acid solution or the like can be used, and an aqueous nitric acid solution is particularly preferably used. This acid treatment step has been shown to increase the pore volume. And it became clear that the macropore volume with a pore diameter of 50 μm or more increases particularly in the pores. In addition, it has been clarified that this acid treatment step greatly improves the crystallinity of the acid-treated carbide in the thickness direction of the (002) plane, that is, the carbon network plane. As for the crystallinity of the obtained acid-treated carbide, the diffraction line peak intensity RPI representing the (002) plane near 2θ = 22 to 26 ° in the X-ray diffraction pattern using Cu—Kα as a radiation source is artificial graphite (Lonza). , KS5-75) is preferably 15 × 10 −2 or more, and more preferably 25 × 10 −2 or more, when 1 is set.

以上のような工程を経て得られた炭化物は、結晶性が高いため導電性に優れているというだけではなく、細孔容積も大きく電極等の各種炭素材料として有用である。   The carbide obtained through the above steps is not only excellent in conductivity because of its high crystallinity but also has a large pore volume and is useful as various carbon materials such as electrodes.

上記実施の形態の炭素材料の製造方法によれば、炭化工程において得られた炭化物を粉砕して微細化することで細孔容積が大きく、特にメソ孔及びマクロ孔の細孔容積が大きい炭素材料が得られる。そして、さらに酸処理工程を行うことで、結晶性高くかつマクロ孔容積の大きい炭素材料が得られることがわかった。   According to the method for producing a carbon material of the above embodiment, a carbon material having a large pore volume by pulverizing and refining the carbide obtained in the carbonization step, particularly a large pore volume of mesopores and macropores. Is obtained. Further, it was found that a carbon material having high crystallinity and a large macropore volume can be obtained by further performing an acid treatment step.

次に、実施例を示して、本発明をさらに詳細に説明する。
(実施例1)
ヒノキリグノクレゾールをTHF(テトラヒドロフラン)に溶解し、ヒノキリグノクレゾール溶液を得る。そして、このヒノキリグノクレゾール溶液100−200gに(CHCOO)Ni・4HO+(CHCOO)Ca・HO水溶液を50−100g加えて、ロータリーエバポレータを用いて減圧を行った。
Next, an Example is shown and this invention is demonstrated further in detail.
Example 1
Hinokilignocresol is dissolved in THF (tetrahydrofuran) to obtain a hinokilignocresol solution. Then, in addition 50-100g of this cypress lignocresol solution 100-200g (CH 3 COO) 2 Ni · 4H 2 O + (CH 3 COO) 2 Ca · H 2 O aqueous solution, the pressure was reduced using a rotary evaporator .

減圧を行った後は、得られた試料3gをステンレス製の容器に採り、石英製の縦型反応管に移して窒素気流中で加熱(昇温速度10℃/分)し、900℃で1h保持して炭化処理を行った。得られた炭化物は、重量を測定した後に、粉砕処理工程にてメノウ乳鉢で手粉砕(粗粉砕)を行い粗粉末の粉砕炭化物を得た。そして、得られた粗粉末を微粉砕処理工程にてエタノールスラリーとした後に、遊星型ボールミルで微粉砕して微粉末の微粉砕炭化物を得た。   After depressurization, 3 g of the obtained sample was placed in a stainless steel container, transferred to a quartz vertical reaction tube, heated in a nitrogen stream (temperature increase rate 10 ° C./min), and heated at 900 ° C. for 1 hour. The carbonization treatment was carried out. After the weight of the obtained carbide was measured, it was manually pulverized (coarse pulverization) with an agate mortar in the pulverization process to obtain pulverized carbide of coarse powder. The obtained coarse powder was made into an ethanol slurry in the fine pulverization treatment step, and then finely pulverized with a planetary ball mill to obtain finely divided finely divided carbide.

(測定方法)
得られた微粉砕炭化物について、レーザー回折・散乱法(Fritch Japan, A-22COMPACT)を用いて平均粒径(50%メジアン径)を求めた。得られた微粉砕炭化物中に含まれるNi及びCaの含有量は、得られた酸処理炭化物をHCl−HNO−HFに溶解して得られた溶液を原子吸光分析装置(HITACHI, Z-8000形)にセットして原子吸光分析法により測定して求めた。また、得られた酸処理炭化物の表面を走査電子顕微鏡(JOEL, JSM-5800)及びエネルギー分散型X線分析装置(OXFORD, INCA-3.1)を用いて行った。
(Measuring method)
The average particle diameter (50% median diameter) of the finely pulverized carbide obtained was determined using a laser diffraction / scattering method (Fritch Japan, A-22COMPACT). The content of Ni and Ca contained in the finely pulverized carbide obtained was determined by analyzing the solution obtained by dissolving the obtained acid-treated carbide in HCl-HNO 3 -HF using an atomic absorption spectrometer (HITACHI, Z-8000). ) And measured by atomic absorption spectrometry. Moreover, the surface of the obtained acid-treated carbide was performed using a scanning electron microscope (JOEL, JSM-5800) and an energy dispersive X-ray analyzer (OXFORD, INCA-3.1).

また、得られた粉末状の酸処理炭化物の粉末X線回折パターン(線源:Cu−Kα)をX線回折装置(RIGAKU, RINT 1200)を用いて測定した。得られたX線回折のスペクトルから酸処理炭化物の平均結晶子径Lc、層間距離d002、及び比ピーク強度RPIを求めた。具体的には、得られたX線回折スペクトルの2θ=22〜26°におけるピークの半値幅から、(002)面すなわち炭素網面の厚さ方向における炭素の平均結晶サイズを計算した。なお、平均結晶子径Lc及び層間距離d002の算出は、それぞれ下式に基づいて行った。
Lc=0.9×λ/β1/2×cosθ
002=λ/2sinθ
また、比ピーク強度RPIは、人造グラファイト(ロンザ, KS5−75)のX線回折スペクトルにおける26°付近の回折強度を1とした場合の酸処理済微粉末のX線回折スペクトルにおける26°付近の回折強度の比である。なお、基準として用いた人造グラファイトの物性は、不純物が0.2wt%未満、平均結晶子径Lc>100nm、d002=0.3355、表面積6.0m/g、平均粒径約42μmである。
Further, the powder X-ray diffraction pattern (source: Cu-Kα) of the obtained powdered acid-treated carbide was measured using an X-ray diffractometer (RIGAKU, RINT 1200). The average crystallite diameter Lc, interlayer distance d 002 , and specific peak intensity RPI of the acid-treated carbide were determined from the obtained X-ray diffraction spectrum. Specifically, the average crystal size of carbon in the thickness direction of the (002) plane, that is, the carbon network plane was calculated from the half width of the peak at 2θ = 22 to 26 ° of the obtained X-ray diffraction spectrum. The average crystallite diameter Lc and the interlayer distance d 002 were calculated based on the following equations, respectively.
Lc = 0.9 × λ / β 1/2 × cos θ
d 002 = λ / 2sin θ
The specific peak intensity RPI is around 26 ° in the X-ray diffraction spectrum of the acid-treated fine powder when the diffraction intensity around 26 ° in the X-ray diffraction spectrum of artificial graphite (Lonza, KS5-75) is 1. It is the ratio of diffraction intensity. The properties of the artificial graphite used as a reference are as follows: impurities are less than 0.2 wt%, average crystallite diameter Lc> 100 nm, d 002 = 0.3355, surface area 6.0 m 2 / g, and average particle diameter of about 42 μm. .

また、得られた酸処理炭化物のN吸脱着等温線を窒素吸着装置(ThermoQuest, Sorptomatic)を用いて測定した。そして、得られたN吸脱着量からBET法による表面積(SBET)、BJH法による表面積(SBJH)、全細孔体積(V)、メソ孔体積(Vmes)、マクロ孔体積(Vmac)を算出した。 Further, the N 2 adsorption / desorption isotherm of the obtained acid-treated carbide was measured using a nitrogen adsorption device (ThermoQuest, Sorptomatic). Then, from the obtained N 2 adsorption / desorption amount, the surface area (S BET ) by the BET method, the surface area (S BJH ) by the BJH method, the total pore volume (V T ), the mesopore volume (V mes ), the macropore volume ( V mac ) was calculated.

(実施例2)
(実施例2)では(実施例1)において、微粉砕処理工程により得られた微粉末をさらに酸処理工程にて1mol/lの硝酸水溶液中に室温で24h撹拌、浸漬した後に水洗して酸処理炭化物を得た以外は同様に行った。
(Example 2)
(Example 2) In (Example 1), the fine powder obtained in the fine pulverization treatment step was further stirred and immersed in a 1 mol / l nitric acid aqueous solution at room temperature for 24 hours in the acid treatment step, and then washed with water and acidified. The same procedure was performed except that the treated carbide was obtained.

(比較例1)
(比較例1)では(実施例1)において、微粉砕処理工程を行わずに粉粉砕処理工程で得られた粉粉砕炭化物を得た以外は同様に行った。
(Comparative Example 1)
In (Comparative Example 1), the same procedure was carried out as in (Example 1) except that the finely pulverized carbide obtained in the finely pulverized treatment step was obtained without performing the finely pulverized treatment step.

(表1)は、(実施例1)、(実施例2)及び(比較例1)で得られた炭化物の平均粒径、Ni及びCaの含有量、結晶構造及び表面積に関する結果を示したものである。   (Table 1) shows the results regarding the average particle size, Ni and Ca contents, crystal structure and surface area of the carbides obtained in (Example 1), (Example 2) and (Comparative Example 1). It is.

(表1)に示すように、Ni及びCaの含有量は酸処理により減少しており、特にCaについては酸処理によりほぼ完全に除去されたことが分かる。また、図1に各実施例及び比較例で示されたX線回折スペクトルを示す。図1のスペクトルから(実施例1)及び(比較例)においてCaSが存在することが確認され、炭化中にCaが脱硫剤として働くことが明らかとなった。   As shown in (Table 1), it can be seen that the contents of Ni and Ca were reduced by the acid treatment, and in particular, Ca was almost completely removed by the acid treatment. Moreover, the X-ray-diffraction spectrum shown by each Example and the comparative example is shown in FIG. From the spectrum of FIG. 1, it was confirmed that CaS was present in (Example 1) and (Comparative Example), and it became clear that Ca works as a desulfurizing agent during carbonization.

また、図2に(実施例)及び(比較例)で得られた炭化物の孔径と累積表面積(SBJH)との関係を示す。表1及び図2に示すように、微粉砕処理により平均粒径が減少し、細孔容積が増大することが分かる。そして、細孔の中でもメソ孔及びマクロ孔が増大し、3−4μm以上の細孔径を有するメソ孔が特に増大することが分かる。 FIG. 2 shows the relationship between the pore diameter of the carbides obtained in (Example) and (Comparative Example) and the cumulative surface area (S BJH ). As shown in Table 1 and FIG. 2, it can be seen that the average particle size is decreased and the pore volume is increased by the pulverization treatment. And it turns out that mesopores and macropores increase among the pores, and mesopores having a pore diameter of 3-4 μm or more particularly increase.

そして、表1及び図1に示すように、酸処理を行うことで比ピーク強度RPIが向上し結晶性の高い炭化物が得られたことが分かる。また、表1及び図2に示すように、酸処理を行うことで平均粒径が大きくなるものの細孔容積が増大し、特にマクロ孔が増大することが分かった。なお、メソ孔及びマクロ孔は染料、ビタミン、多糖等の高分子物質を選択的に吸着・除去する、あるいは電解液の浸透を促進する等の役割を担っている。すなわち、(実施例2)で得られた酸処理炭化物は導電性と液相吸着能に優れていることが明らかである。   And as shown in Table 1 and FIG. 1, it turns out that the specific peak intensity | strength RPI improved and the carbide | carbonized_material with high crystallinity was obtained by performing acid treatment. Further, as shown in Table 1 and FIG. 2, it was found that the acid treatment increases the average particle diameter, but increases the pore volume, and in particular increases the macropores. The mesopores and macropores play a role of selectively adsorbing / removing high-molecular substances such as dyes, vitamins and polysaccharides, or promoting the penetration of the electrolyte. That is, it is clear that the acid-treated carbide obtained in (Example 2) is excellent in conductivity and liquid phase adsorption ability.

(実施例)及び(比較例)で得られた炭化物のX線回折のスペクトルである。It is a spectrum of the X-ray diffraction of the carbide | carbonized_material obtained by (Example) and (comparative example). (実施例)及び(比較例)で得られた炭化物の孔径と累積表面積(SBJH)との関係を示す図である。It is a figure which shows the relationship between the hole diameter of the carbide | carbonized_material obtained by (Example) and (comparative example), and the cumulative surface area (S BJH ).

Claims (6)

鉄族及び白金族から選択される少なくとも一種の元素を含む化合物並びにアルカリ金属及びアルカリ土類金属から選択される少なくとも一種の元素を含む化合物をリグニンに添加して炭化する炭化工程と、
前記炭化工程で得られた炭化物の細孔容積を微粉砕処理により増加させる微粉砕工程と、
を含む炭素材料の製造方法。
A carbonization step of adding a compound containing at least one element selected from an iron group and a platinum group and a compound containing at least one element selected from an alkali metal and an alkaline earth metal to lignin and carbonizing the lignin;
A fine grinding step for increasing the pore volume of the carbide obtained in the carbonization step by fine grinding,
The manufacturing method of the carbon material containing this.
請求項1記載の炭素材料の製造方法において、微粉砕工程において得られた微粉砕炭化物中の金属元素を酸処理により除去する酸処理工程を含むことを特徴とする炭素材料の製造方法。   2. The method for producing a carbon material according to claim 1, further comprising an acid treatment step of removing a metal element in the finely pulverized carbide obtained in the fine pulverization step by an acid treatment. 請求項1又は2記載の炭素材料の製造方法において、リグニンがリグノクレゾールであることを特徴とする炭素材料の製造方法。   3. The method for producing a carbon material according to claim 1, wherein the lignin is lignocresol. 請求項1〜3のいずれか記載の炭素材料の製造方法において、リグニン100重量部に対する鉄族及び白金族から選択される少なくとも一種の元素並びにアルカリ金属及びアルカリ土類金属から選択される少なくとも一種の元素の割合をそれぞれ0.5〜5重量部及び0.2〜5重量部とすることを特徴とする炭素材料の製造方法。   In the manufacturing method of the carbon material in any one of Claims 1-3, at least 1 type selected from the at least 1 element selected from the iron group and platinum group with respect to 100 weight part of lignins, and an alkali metal and an alkaline-earth metal. A method for producing a carbon material, wherein the ratio of elements is 0.5 to 5 parts by weight and 0.2 to 5 parts by weight, respectively. 請求項1〜4のいずれか記載の炭素材料の製造方法において、炭化工程における炭化の温度が800〜1000℃であることを特徴とする炭素材料の製造方法。   The method for producing a carbon material according to any one of claims 1 to 4, wherein the carbonization temperature in the carbonization step is 800 to 1000 ° C. 請求項1〜5のいずれか記載の炭素材料の製造方法において、鉄族及び白金族から選択される少なくとも一種の元素を含む化合物がNi塩であり、アルカリ金属及びアルカリ土類金属から選択される少なくとも一種の元素を含む化合物がCa塩であることを特徴とする炭素材料の製造方法。
6. The method for producing a carbon material according to claim 1, wherein the compound containing at least one element selected from the iron group and the platinum group is a Ni salt, and is selected from an alkali metal and an alkaline earth metal. A method for producing a carbon material, wherein the compound containing at least one element is a Ca salt.
JP2005184119A 2005-06-23 2005-06-23 Carbon material manufacturing method Expired - Fee Related JP4740659B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005184119A JP4740659B2 (en) 2005-06-23 2005-06-23 Carbon material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005184119A JP4740659B2 (en) 2005-06-23 2005-06-23 Carbon material manufacturing method

Publications (2)

Publication Number Publication Date
JP2007001810A true JP2007001810A (en) 2007-01-11
JP4740659B2 JP4740659B2 (en) 2011-08-03

Family

ID=37687747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005184119A Expired - Fee Related JP4740659B2 (en) 2005-06-23 2005-06-23 Carbon material manufacturing method

Country Status (1)

Country Link
JP (1) JP4740659B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072393A1 (en) * 2007-12-03 2009-06-11 National Institute Of Advanced Industrial Science And Technology Carbon microparticle produced from raw material lignin, and process for production thereof
JP2009190957A (en) * 2008-02-18 2009-08-27 Zukosha:Kk Method of manufacturing conductive carbon material and conductive body
JP2010150094A (en) * 2008-12-25 2010-07-08 Okayama Univ Porous carbon material and method for producing the same, and fuel cell
WO2014000185A1 (en) * 2012-06-27 2014-01-03 Empire Technology Development Llc Methods for manufacturing fullerenes
US8986838B2 (en) 2009-01-22 2015-03-24 National Institute Of Advanced Industrial Science And Technology Hollow carbon microparticle and method for producing same
JP2015197515A (en) * 2014-03-31 2015-11-09 大王製紙株式会社 Manufacturing method of carbon fine particles for electrophotographic toner

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108722A (en) * 1985-11-06 1987-05-20 Tonbo Enpitsu:Kk Carbonaceous composition having function of molecular sieve
JPS63129007A (en) * 1986-11-15 1988-06-01 Masaru Tanaka Production of novel activated carbon and its effective use for agriculture and forestry
JPH06183715A (en) * 1992-12-21 1994-07-05 Mitsubishi Kasei Corp Production of activated carbon
JPH07122300A (en) * 1993-10-26 1995-05-12 Sony Corp Non-aqueous electrolyte battery
JPH09155187A (en) * 1995-12-12 1997-06-17 Nippon Chem Ind Co Ltd Activated carbon for adsorbing acidic gas and production thereof
JPH09293507A (en) * 1996-04-26 1997-11-11 Kanebo Ltd Lithium ion secondary battery
JP2002344194A (en) * 2001-05-17 2002-11-29 Japan Science & Technology Corp Electromagnetic wave shielding material and its manufacturing method
JP2003047843A (en) * 2001-08-06 2003-02-18 Nippon Telegr & Teleph Corp <Ntt> Carbon material for hydrogen storage and method of producing the same
JP2003321215A (en) * 2002-04-26 2003-11-11 Hitachi Powdered Metals Co Ltd Graphite-based hydrogen-occluding material and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108722A (en) * 1985-11-06 1987-05-20 Tonbo Enpitsu:Kk Carbonaceous composition having function of molecular sieve
JPS63129007A (en) * 1986-11-15 1988-06-01 Masaru Tanaka Production of novel activated carbon and its effective use for agriculture and forestry
JPH06183715A (en) * 1992-12-21 1994-07-05 Mitsubishi Kasei Corp Production of activated carbon
JPH07122300A (en) * 1993-10-26 1995-05-12 Sony Corp Non-aqueous electrolyte battery
JPH09155187A (en) * 1995-12-12 1997-06-17 Nippon Chem Ind Co Ltd Activated carbon for adsorbing acidic gas and production thereof
JPH09293507A (en) * 1996-04-26 1997-11-11 Kanebo Ltd Lithium ion secondary battery
JP2002344194A (en) * 2001-05-17 2002-11-29 Japan Science & Technology Corp Electromagnetic wave shielding material and its manufacturing method
JP2003047843A (en) * 2001-08-06 2003-02-18 Nippon Telegr & Teleph Corp <Ntt> Carbon material for hydrogen storage and method of producing the same
JP2003321215A (en) * 2002-04-26 2003-11-11 Hitachi Powdered Metals Co Ltd Graphite-based hydrogen-occluding material and method for producing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072393A1 (en) * 2007-12-03 2009-06-11 National Institute Of Advanced Industrial Science And Technology Carbon microparticle produced from raw material lignin, and process for production thereof
JP2009155199A (en) * 2007-12-03 2009-07-16 National Institute Of Advanced Industrial & Technology Carbon microparticle using lignin as raw material, and method for producing the same
US9321649B2 (en) 2007-12-03 2016-04-26 National Institute Of Advanced Industrial Science And Technology Carbon microparticle having lignin as raw material and preparation method therefor
JP2009190957A (en) * 2008-02-18 2009-08-27 Zukosha:Kk Method of manufacturing conductive carbon material and conductive body
JP2010150094A (en) * 2008-12-25 2010-07-08 Okayama Univ Porous carbon material and method for producing the same, and fuel cell
US8986838B2 (en) 2009-01-22 2015-03-24 National Institute Of Advanced Industrial Science And Technology Hollow carbon microparticle and method for producing same
WO2014000185A1 (en) * 2012-06-27 2014-01-03 Empire Technology Development Llc Methods for manufacturing fullerenes
US9771265B2 (en) 2012-06-27 2017-09-26 Empire Technology Development Llc Methods for manufacturing fullerenes
JP2015197515A (en) * 2014-03-31 2015-11-09 大王製紙株式会社 Manufacturing method of carbon fine particles for electrophotographic toner

Also Published As

Publication number Publication date
JP4740659B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
JP4740659B2 (en) Carbon material manufacturing method
Ji et al. Green processing of plant biomass into mesoporous carbon as catalyst support
Rovani et al. Synthesis and characterisation of activated carbon from agroindustrial waste—Preliminary study of 17β-estradiol removal from aqueous solution
Mastuli et al. Catalytic gasification of oil palm frond biomass in supercritical water using MgO supported Ni, Cu and Zn oxides as catalysts for hydrogen production
JP6151691B2 (en) Activated carbon for precious metal adsorption, precious metal adsorption filter and precious metal recovery method
Rombi et al. CO methanation on Ni-Ce mixed oxides prepared by hard template method
Liu et al. Tunable and selective hydrogenation of furfural to furfuryl alcohol and cyclopentanone over Pt supported on biomass-derived porous heteroatom doped carbon
JPH10297912A (en) Mesoporous carbon and its production
Liu et al. Two-dimensional porous γ-AlOOH and γ-Al 2 O 3 nanosheets: hydrothermal synthesis, formation mechanism and catalytic performance
Yang et al. Fe (III)–Induced N enrichment in the surface of carbon materials derived from silk fibroins and its effect on electrocatalytic oxygen reduction
Chistyakov et al. Methods for preparing carbon sorbents from lignin
CN112341312B (en) Method for preparing cyclohexanol and derivative thereof by selective hydrogenolysis of lignin
Hou et al. Activated carbon aerogel supported copper catalysts for the hydrogenation of methyl acetate to ethanol: effect of KOH activation
Zhao et al. ZIF-derived hierarchical pore carbons as high-performance catalyst for methane decomposition
Li et al. Deactivation characteristics of Ce-modified Cu-based carbon materials for catalytic wet air oxidation of phenol wastewater
Serafin et al. An innovative and environmentally friendly bioorganic synthesis of activated carbon based on olive stones and its potential application for CO2 capture
Wang et al. Facile synthesis of MOF-5-derived porous carbon with adjustable pore size for CO2 capture
Liu et al. Plant polyphenol-derived ordered mesoporous carbon materials via metal ion cross-linking
Salamah et al. Synthesis and characterization of mesoporous silica from beach sands as silica source
CN106833697B (en) A kind of carbon composite preparation method
Grimm et al. Transition metal promoted combustion of rice husk and rice straw towards an energy optimized synthesis of biogenic silica
Szewczyk et al. Effect of the type of siliceous template and carbon precursor on physicochemical and catalytic properties of mesoporous nanostructured carbon-palladium systems
Ulfa et al. One-Step Condensation and Hydrogenation of Furfural-Acetone Using Mixed and Single Catalyst Based on Ni/M-Oxide [M= Al; Mg]
CN110668420B (en) Preparation method of lignin-based carbon material rich in mesopores or mesopores and macropores
Bukhari et al. Enhanced catalytic performance of Ni/SBA-15 towards CO2 methanation via P123-assisted method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees