JP2007000340A - Pressure swing adsorption type oxygen concentrator - Google Patents

Pressure swing adsorption type oxygen concentrator Download PDF

Info

Publication number
JP2007000340A
JP2007000340A JP2005183379A JP2005183379A JP2007000340A JP 2007000340 A JP2007000340 A JP 2007000340A JP 2005183379 A JP2005183379 A JP 2005183379A JP 2005183379 A JP2005183379 A JP 2005183379A JP 2007000340 A JP2007000340 A JP 2007000340A
Authority
JP
Japan
Prior art keywords
oxygen
oxygen concentration
adsorption
pressure swing
oxygen concentrator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005183379A
Other languages
Japanese (ja)
Other versions
JP5065581B2 (en
Inventor
Sumihiro Kobayashi
純大 小林
Matsusato Sugano
松佐登 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Pharma Ltd
Original Assignee
Teijin Pharma Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Pharma Ltd filed Critical Teijin Pharma Ltd
Priority to JP2005183379A priority Critical patent/JP5065581B2/en
Publication of JP2007000340A publication Critical patent/JP2007000340A/en
Application granted granted Critical
Publication of JP5065581B2 publication Critical patent/JP5065581B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen concentrator capable of keeping electric power consumption low without deteriorating its therapeutic effect. <P>SOLUTION: The pressure swing adsorption type oxygen concentrator to generate oxygen concentrated gas, at least comprises no less than an adsorption tube containing adsorption agent for adsorbing nitrogen rather than oxygen, a source air supply means for supplying the adsorption tube with source air, and a flow channel switching means for controlling gas volume flowing into or out of the adsorption tube. The oxygen concentrator includes an oxygen concentration measuring means 6 for measuring oxygen concentration in the oxygen concentrated gas, and a control means 9 for changing supply capacity of the source air supply means from a measured value at the oxygen concentration measuring means 6 so as to keep the measured value within the range of 85-91%. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、圧力スイング吸着式の酸素濃縮器に関する。特に医療用酸素濃縮器として提供するものであり、治療効果を保ったまま低電力で酸素を供給するための制御機能を備えた装置に関する。   The present invention relates to a pressure swing adsorption type oxygen concentrator. In particular, it is provided as a medical oxygen concentrator, and relates to an apparatus having a control function for supplying oxygen with low power while maintaining a therapeutic effect.

酸素濃縮器は、空気中の酸素を濃縮して供給する装置であり、それには酸素を選択的に透過する高分子酸素富化膜を用いた膜式酸素濃縮器と、窒素または酸素を優先的に吸着しうる吸着剤を用いた圧力スイング吸着式酸素濃縮器が主流になっている。   An oxygen concentrator is a device that concentrates and supplies oxygen in the air. To this, a membrane oxygen concentrator using a polymer oxygen-enriched membrane that selectively permeates oxygen and nitrogen or oxygen are given priority. Pressure swing adsorption oxygen concentrators using adsorbents that can be adsorbed on the mainstream are the mainstream.

圧力スイング吸着式酸素濃縮器には、吸着筒の数により一筒式、二筒式、或いはそれ以上の吸着筒を備えた多筒式の装置がある。図2のように二筒式の場合、窒素を優先的に吸着しうる吸着剤を充填した二本の吸着筒13に、加圧手段10を用いて圧縮空気を導入して加圧状態で窒素を吸着させ、未吸着の酸素を製品ガスとして得る吸着工程と、大気開放もしくは減圧手段11により吸着筒の内圧を減少させ、吸着剤が吸着した窒素を脱着させて吸着剤の再生を行う脱着工程を交互に行うことにより酸素を濃縮することができる。この時、二本の吸着筒13と加圧手段10及び減圧手段11の接続用の導管途中に切り替え弁12を備え、切り替え弁12の開閉により各吸着筒の吸着工程、脱着工程が制御される。
吸着筒13で濃縮された酸素は流量制御手段16に供給され、所定の一定流量に調節された後に、開放型酸素供給手段17を介して患者の鼻孔に導かれる。
The pressure swing adsorption type oxygen concentrator includes a single cylinder type, a double cylinder type, or a multi-cylinder type apparatus having one or more adsorption cylinders depending on the number of adsorption cylinders. In the case of the two-cylinder type as shown in FIG. 2, compressed air is introduced into the two adsorbing cylinders 13 filled with an adsorbent capable of preferentially adsorbing nitrogen by using the pressurizing means 10, and the nitrogen is pressurized. Adsorption process to obtain unadsorbed oxygen as product gas, and desorption process to regenerate the adsorbent by desorbing the nitrogen adsorbed by the adsorbent by reducing the internal pressure of the adsorption cylinder by opening to the atmosphere or depressurizing means 11. Oxygen can be concentrated by performing alternately. At this time, a switching valve 12 is provided in the middle of the conduit for connecting the two adsorption cylinders 13, the pressurizing means 10 and the decompression means 11, and the adsorption process and the desorption process of each adsorption cylinder are controlled by opening and closing the switching valve 12. .
The oxygen concentrated in the adsorption cylinder 13 is supplied to the flow rate control means 16, and after being adjusted to a predetermined constant flow rate, it is led to the patient's nostril via the open oxygen supply means 17.

一般的に加圧手段10から供給される原料空気が一定量であれば、患者に供給される酸素流量が少ないほど酸素濃度は高くなり、逆に酸素流量が多いほど生成される濃縮酸素ガスの酸素濃度は低くなる。また、患者に供給される酸素流量が一定の場合、加圧手段10から吸着筒13に供給される原料空気量が多いほど生成される濃縮酸素ガスの酸素濃度は高くなり、逆に原料空気量が少ないほど酸素濃度は低くなる。   In general, if the raw material air supplied from the pressurizing means 10 is a constant amount, the oxygen concentration increases as the oxygen flow rate supplied to the patient decreases, and conversely, the concentration of the concentrated oxygen gas generated increases as the oxygen flow rate increases. The oxygen concentration is lowered. In addition, when the oxygen flow rate supplied to the patient is constant, the oxygen concentration of the concentrated oxygen gas generated increases as the amount of raw material air supplied from the pressurizing means 10 to the adsorption cylinder 13 increases. The smaller the amount, the lower the oxygen concentration.

特開2002−253675号公報JP 2002-253675 A 特開2003−286009号公報JP 2003-286209 A

従来の多くの圧力スイング式酸素濃縮器に於いては、製品として取り出される濃縮酸素ガスの酸素濃度は直接的には制御されておらず、原料空気供給手段であるコンプレッサーの能力や、吸脱着工程切り替え手段の切り替え時間は製品の寿命を通じて一定であった。このため、製品として取り出される濃縮酸素ガス中の酸素濃度は、使用時間と共に低下していくことになる。   In many conventional pressure swing oxygen concentrators, the oxygen concentration of the concentrated oxygen gas taken out as a product is not directly controlled, and the capacity of the compressor that is the raw air supply means and the adsorption / desorption process The switching time of the switching means was constant throughout the life of the product. For this reason, the oxygen concentration in the concentrated oxygen gas taken out as a product decreases with the use time.

使用中に供給される濃縮酸素ガス中の酸素濃度が低下するということは、患者の治療効果が時間を追って低下していくということに繋がるため、これまでの酸素濃縮器に於いては原料空気供給手段の能力や、吸着筒に充填する吸着剤の量を必要最小限度から比較してかなり余裕をもって設計がされており、初期に於いては過剰な酸素生成能力で運転し、寿命が近づき酸素生成能力が低下したときでも基準値以上の酸素濃度を保つように設計されている。このため、初期から装置の寿命に至るまでの間、一定の高い消費電力で装置が動作することになり、それによって患者の経済的負担を必要以上に多くしていた。   The decrease in the oxygen concentration in the concentrated oxygen gas supplied during use leads to the patient's therapeutic effect decreasing with time, so in conventional oxygen concentrators, the feed air The capacity of the supply means and the amount of adsorbent to be filled in the adsorption cylinder are designed with a considerable margin compared to the minimum necessary, and in the initial stage, the engine is operated with an excessive oxygen production capacity and the life is approaching. It is designed to keep the oxygen concentration above the reference value even when the production capacity decreases. For this reason, the apparatus operates with a constant high power consumption from the beginning to the end of the life of the apparatus, thereby increasing the patient's economic burden more than necessary.

近年、特開2002−253675号公報や特開2003−286009号公報に見られるように、酸素濃度検出手段を備え、検出された製品酸素濃度に応じて原料空気供給手段の能力や吸脱着工程の加圧時間を変化させることによって一定の酸素濃度に制御するような装置が提案されている。このような装置は、酸素濃度を一定に保つように制御することによって、装置が新品で酸素生成能力が高いときは、コンプレッサーの能力を抑えて消費電力を低下させ、酸素生成能力が低下するにつれてコンプレッサーの能力を上げることによって、従来の酸素濃縮器より初期における消費電力を低下させることを実現したものである。   In recent years, as seen in Japanese Patent Application Laid-Open Nos. 2002-253675 and 2003-286209, an oxygen concentration detection means is provided, and the capability of the raw material air supply means and the adsorption / desorption process are determined according to the detected product oxygen concentration. An apparatus has been proposed that controls the oxygen concentration to be constant by changing the pressurization time. Such an apparatus controls the oxygen concentration to be constant, so that when the apparatus is new and has a high oxygen generation capacity, the compressor capacity is reduced to reduce power consumption, and as the oxygen generation capacity decreases. By increasing the capacity of the compressor, it is possible to reduce the power consumption in the initial stage compared to the conventional oxygen concentrator.

しかし、通常の酸素濃縮器に於いてはコンプレッサーの能力を上げ加圧空気の供給量を上げて酸素濃度を高くしようとすると消費電力が上昇し、消費電力を下げようとしてコンプレッサーの能力を低下させると酸素濃度が低下するという性質があり、患者に供給する濃縮酸素ガスの酸素濃度すなわち患者の治療効果と、酸素濃縮器の消費電力すなわち患者の経済的負担の軽減は両立できず、最も経済的に最適な酸素濃度についても明らかではなかった。   However, in an ordinary oxygen concentrator, increasing the compressor capacity and increasing the supply amount of pressurized air to increase the oxygen concentration increases the power consumption and decreases the compressor capacity in an attempt to reduce the power consumption. The oxygen concentration of the concentrated oxygen gas supplied to the patient, that is, the patient's therapeutic effect, and the power consumption of the oxygen concentrator, that is, the reduction of the patient's economic burden cannot be achieved at the same time. The optimum oxygen concentration was not clear.

本発明は上記の状況に鑑みなされたものであって、治療効果を損なうことなく酸素濃縮装置の消費電力量を低く保つために酸素濃縮装置を提供することを目的とする。   This invention is made | formed in view of said situation, Comprising: It aims at providing an oxygen concentrator in order to keep the power consumption of an oxygen concentrator low, without impairing a therapeutic effect.

上記の課題を解決するために鋭意検討した結果、本願発明者は図3に示すように、酸素濃度が91%以下の範囲では酸素濃度の変化に対する消費電力の変化が小さく、91%以上の範囲では酸素濃度の変化に対する消費電力の変化が急激に大きくなる、つまり酸素濃度を91%以上に制御しようとすると消費電力の大幅な増加を招き、また91%を大幅に下回る酸素濃度に制御しようとすると経済的利益に対して治療効果の低下が著しいということを見いだし、本願発明に到達したものである。すなわち、本発明は下記する1)〜5)に記載の各構成を有する圧力スイング吸着式酸素濃縮器を提供するものである。   As a result of diligent studies to solve the above problems, the inventors of the present application, as shown in FIG. 3, the change in power consumption with respect to the change in oxygen concentration is small when the oxygen concentration is 91% or less, and the range is 91% or more. Then, the change in power consumption with respect to the change in oxygen concentration suddenly increases. That is, if the oxygen concentration is controlled to 91% or more, the power consumption will increase significantly, and the oxygen concentration will be controlled to be significantly lower than 91%. Then, it has been found that the therapeutic effect is remarkably reduced with respect to economic benefits, and the present invention has been achieved. That is, this invention provides the pressure swing adsorption type oxygen concentrator which has each structure as described in 1) -5) mentioned below.

1)少なくとも酸素より窒素を吸着する吸着剤を収容した1個以上の吸着筒、該吸着筒に原料空気を供給する原料空気供給手段、該吸着筒へのガスの出入りを制御する流路切り替え手段を備えた圧力スイング吸着式酸素濃縮器において、製品ガスである酸素濃縮ガス中の酸素濃度を測定する酸素濃度測定手段を有し、該酸素濃度測定手段の測定値に基づいて該原料空気供給手段の供給能力を変化させ、該酸素濃度測定手段の測定値が85%以上、91%以下に制御する制御手段を有することを特徴とする圧力スイング吸着式酸素濃縮器。
2)該制御手段が、該酸素濃度測定手段の測定値が89%以上、91%以下に制御する制御手段を有することを特徴とする、上記1)に記載の圧力スイング吸着式酸素濃縮器。
3)該制御手段が、該原料空気供給手段の駆動モータの回転数を制御する手段であることを特徴とする、上記1)または2)に記載の圧力スイング吸着式酸素濃縮器。
4)該吸着剤がLi−LSX型ゼオライトであることを特徴とする上記1)〜3)記載の何れかに記載の圧力スイング吸着式酸素濃縮器。
1) One or more adsorption cylinders containing at least an adsorbent that adsorbs nitrogen from oxygen, raw material air supply means for supplying raw air to the adsorption cylinder, and flow path switching means for controlling the gas in and out of the adsorption cylinder In the pressure swing adsorption type oxygen concentrator provided with the oxygen concentration measuring means for measuring the oxygen concentration in the oxygen concentrated gas which is the product gas, the raw material air supply means based on the measured value of the oxygen concentration measuring means The pressure swing adsorption oxygen concentrator is characterized in that it has a control means for changing the supply capacity of the oxygen concentration measurement means so that the measured value of the oxygen concentration measuring means is 85% or more and 91% or less.
2) The pressure swing adsorption oxygen concentrator according to 1) above, wherein the control means has control means for controlling the measured value of the oxygen concentration measuring means to 89% or more and 91% or less.
3) The pressure swing adsorption oxygen concentrator according to 1) or 2) above, wherein the control means is means for controlling the number of revolutions of a drive motor of the raw material air supply means.
4) The pressure swing adsorption oxygen concentrator according to any one of 1) to 3) above, wherein the adsorbent is Li-LSX type zeolite.

本発明は、治療効果を損なうことなく、消費電力を低減した酸素濃縮器を提供することができる。   The present invention can provide an oxygen concentrator with reduced power consumption without impairing the therapeutic effect.

以下、図面参照して本発明の実施の形態を説明する。
図1は圧力スイング吸着式酸素濃縮器のフローを示す模式図であり、酸素濃縮手段3は圧力スイング吸着方式の酸素濃縮手段であって、窒素を選択的に吸着する吸着剤を充填した吸着筒にコンプレッサー等の加圧手段1で圧縮空気を導入して加圧状態で窒素を吸着させて濃縮酸素ガスを得る吸着工程と、大気開放もしくは真空ポンプなどの減圧手段2により吸着筒の内圧を減少させて吸着剤が吸着した窒素を脱着させて吸着剤の再生を行う脱着工程を交互に行うことにより酸素を濃縮することができる。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic diagram showing the flow of a pressure swing adsorption type oxygen concentrator. The oxygen concentrating means 3 is a pressure swing adsorption type oxygen concentrating means and is an adsorption cylinder filled with an adsorbent that selectively adsorbs nitrogen. Compressing means 1 such as a compressor to introduce compressed air and adsorb nitrogen in the pressurized state to obtain concentrated oxygen gas, and reducing the internal pressure of the adsorption cylinder by releasing the atmosphere or depressurizing means 2 such as a vacuum pump Thus, oxygen can be concentrated by alternately performing a desorption step of desorbing nitrogen adsorbed by the adsorbent and regenerating the adsorbent.

酸素濃縮手段3で生成された濃縮酸素ガスは、それを一時貯蔵するバッファータンク4に貯蔵される。バッファータンク4を用いることにより酸素濃縮手段3から吐出される濃縮酸素ガスの圧力変動が緩和され、供給酸素流量が安定する。バッファータンク4に貯蔵された濃縮酸素ガスは導管によって流量制御手段7に供給され、所定の一定流量に調節された後に、開放型酸素供給手段8を介して患者の鼻孔に導かれる。   The concentrated oxygen gas produced by the oxygen concentrating means 3 is stored in a buffer tank 4 that temporarily stores it. By using the buffer tank 4, the pressure fluctuation of the concentrated oxygen gas discharged from the oxygen concentrating means 3 is alleviated, and the supplied oxygen flow rate is stabilized. The concentrated oxygen gas stored in the buffer tank 4 is supplied to the flow rate control means 7 by a conduit, and after being adjusted to a predetermined constant flow rate, is led to the patient's nostril via the open oxygen supply means 8.

該導管の途中には圧力測定手段5、酸素濃度測定手段6が備えられており、該圧力測定手段は半導体式の圧力トランスデューサ等が用いることができ、該酸素濃度測定手段にはジルコニア式センサー、超音波式センサー、磁気式センサー等が用いることができる。該酸素濃度測定手段にはガルバニ電池式センサーが用いられることもあるが、測定精度が十分でないため、目的の酸素濃度の範囲に実際の酸素濃度を制御することが難しく、本発明の目的には適切ではない。   A pressure measuring means 5 and an oxygen concentration measuring means 6 are provided in the middle of the conduit, and the pressure measuring means can be a semiconductor pressure transducer or the like, and the oxygen concentration measuring means includes a zirconia sensor, An ultrasonic sensor, a magnetic sensor, or the like can be used. Although the galvanic cell type sensor may be used as the oxygen concentration measuring means, since the measurement accuracy is not sufficient, it is difficult to control the actual oxygen concentration within the target oxygen concentration range. Not appropriate.

ここで、酸素濃縮手段3によって連続的に生成された濃縮酸素が流量制御手段7によって所定の一定流量に調節され患者に供給されている状態において、圧力測定手段5で測定された圧力情報および酸素濃度測定手段6で測定された酸素濃度情報は制御部9に送られ、該圧力情報および該酸素濃度情報にもとづき制御部9が酸素濃縮手段3の窒素吸着および脱着の周期とコンプレッサー等の加圧手段1による供給空気量を調節することによって、導管内の圧力、酸素濃度を制御する。   Here, in the state where the concentrated oxygen continuously generated by the oxygen concentration means 3 is adjusted to a predetermined constant flow rate by the flow rate control means 7 and supplied to the patient, the pressure information and oxygen measured by the pressure measurement means 5 The oxygen concentration information measured by the concentration measuring means 6 is sent to the control unit 9, and based on the pressure information and the oxygen concentration information, the control unit 9 pressurizes the nitrogen concentration and desorption cycle of the oxygen concentrating means 3 and the compressor, etc. By adjusting the amount of air supplied by means 1, the pressure and oxygen concentration in the conduit are controlled.

すなわち、圧力変動型吸着方式の酸素濃縮手段から吐出される濃縮酸素の圧力は窒素吸着と脱着の周期を速くすれば低くなり、周期を遅くすれば高くなることから、圧力測定手段5により測定される導管内圧力が高くなれば吸脱着の周期を速くし、導管内圧力が低くなれば吸脱着の周期を遅くすることによって導管内圧力を所定の圧力に制御できる。また、圧力スイング吸着方式の酸素濃縮手段から吐出される濃縮酸素ガスの酸素濃度はコンプレッサー等の加圧手段1からの供給空気量を増加させれば高くなり、供給空気量を減少させれば低くなることから、酸素濃度測定手段6により測定される酸素濃度の値が高くなれば供給空気量を減少させ、酸素濃度が低くなれば供給空気量を増加させることによって、濃縮酸素濃度を85%〜91%の間に制御する。空気量の制御はコンプレッサーの駆動モータの回転数を制御することで行うことができる。   That is, the pressure of the concentrated oxygen discharged from the pressure fluctuation type adsorption type oxygen concentrating means is decreased by increasing the cycle of nitrogen adsorption and desorption, and is increased by decreasing the period. The pressure in the conduit can be controlled to a predetermined pressure by increasing the adsorption / desorption cycle when the pressure in the conduit increases, and by delaying the adsorption / desorption cycle when the pressure in the conduit decreases. Further, the oxygen concentration of the concentrated oxygen gas discharged from the pressure swing adsorption type oxygen concentrating means increases as the amount of air supplied from the pressurizing means 1 such as a compressor increases, and decreases as the amount of air supplied decreases. Therefore, if the value of the oxygen concentration measured by the oxygen concentration measuring means 6 is increased, the supply air amount is decreased, and if the oxygen concentration is decreased, the supply air amount is increased, whereby the concentrated oxygen concentration is increased from 85% to 85%. Control between 91%. The amount of air can be controlled by controlling the number of revolutions of the compressor drive motor.

圧力スイング吸着式酸素濃縮器として、4筒式の吸着式酸素濃縮装置を用い、製品ガスである酸素濃縮ガス中の酸素濃度と消費電力との関係を検討した。   As a pressure swing adsorption oxygen concentrator, a four-cylinder adsorption oxygen concentrator was used, and the relationship between the oxygen concentration in the oxygen enriched gas as the product gas and power consumption was examined.

図4に実施例で使用した酸素濃縮装置の実施態様を示す。吸着ユニットには、吸着筒、回転バルブおよびバルブ駆動機構が一体となって含まれており、原料空気供給口、排気口および製品取り出し口を持つ。原料空気供給口にはコンプレッサーが取り付けられ、大気圧よりも圧力が高い空気が供給できるようになっている。また、排気口には真空ポンプが取り付けられており、大気圧よりも低い圧力で排気している。製品取り出し口には製品タンクが取り付けられており、その下流側には圧力センサ、酸素濃度センサ、減圧弁、流量調節器が取り付けられ、製品酸素を必要な量だけ取り出すことができるようになっている。尚、プロセス制御の制御手段の図面記載は省略する。   FIG. 4 shows an embodiment of the oxygen concentrator used in the examples. The adsorption unit integrally includes an adsorption cylinder, a rotary valve, and a valve drive mechanism, and has a raw material air supply port, an exhaust port, and a product take-out port. A compressor is attached to the raw material air supply port so that air having a pressure higher than atmospheric pressure can be supplied. In addition, a vacuum pump is attached to the exhaust port, and exhausts at a pressure lower than atmospheric pressure. A product tank is attached to the product outlet, and a pressure sensor, oxygen concentration sensor, pressure reducing valve, and flow regulator are attached to the downstream side of the product outlet so that the product oxygen can be taken out as much as necessary. Yes. Note that illustration of process control means is omitted.

吸着ユニットの構造は図5のようになっている。吸着筒は4本有り、それぞれの一端はマニフォールドaに固定されており、マニフォールドa内の気体流通路によって、同じくマニフォールドaに固定されている回転バルブの固定子に接続されている。吸着筒の他端はマニフォールドbに固定されており、内部で4本の配管と接続されている。その配管はさらにマニフォールドaへと接続され、バルブ固定子のポート穴と接続される。   The structure of the adsorption unit is as shown in FIG. There are four adsorption cylinders, and one end of each is fixed to the manifold a, and is connected to a stator of a rotary valve fixed to the manifold a by a gas flow passage in the manifold a. The other end of the suction cylinder is fixed to the manifold b, and is connected to four pipes inside. The piping is further connected to manifold a and connected to the port hole of the valve stator.

吸着剤としては、Li−LSX型ゼオライトを使用し、流路の切り替え手段は上記の回転バルブで行った。装置の更なる詳細な構成は特開2005-81258号公報に記載に装置を参照して実施した。   Li-LSX type zeolite was used as the adsorbent, and the channel switching means was performed by the rotary valve described above. Further detailed configuration of the apparatus was carried out with reference to the apparatus described in JP-A-2005-81258.

図3に製品酸素濃度に対する電力の変化を示す。図に示されている通り、酸素濃度が87%から90%に増加した場合の電力の変化は5W程度であるが、90%から93%に変化した場合には電力は20W以上増加することが分かる。すなわち、本発明の制御方法を用い、酸素濃度を89%〜91%に制御することにより治療効果を損なうことなく電力を低減できる。   FIG. 3 shows the change in electric power with respect to the product oxygen concentration. As shown in the figure, the change in power when the oxygen concentration is increased from 87% to 90% is about 5W, but when the oxygen concentration is changed from 90% to 93%, the power may increase by 20W or more. I understand. That is, by using the control method of the present invention and controlling the oxygen concentration to 89% to 91%, power can be reduced without impairing the therapeutic effect.

本発明の酸素濃縮装置の実施態様の説明図。Explanatory drawing of the embodiment of the oxygen concentrator of this invention. 従来の圧力変動吸着型酸素濃縮装置の説明図。Explanatory drawing of the conventional pressure fluctuation adsorption type oxygen concentrator. 酸素濃度と消費電力の関係を表したグラフ。A graph showing the relationship between oxygen concentration and power consumption. 実施例で使用した酸素濃縮装置の構成図。The block diagram of the oxygen concentrator used in the Example. 実施例で使用した酸素濃縮装置の吸着ユニットの構成図。The block diagram of the adsorption | suction unit of the oxygen concentrator used in the Example.

符号の説明Explanation of symbols

1.加圧手段
2.減圧手段
3.酸素濃縮手段
4.バッファータンク
5.圧力測定手段
6.酸素濃度測定手段
7.流量制御手段
8.開放型酸素供給手段
9.制御部
10.加圧手段
11.減圧手段
12.切り替え弁
13.吸着筒
14.切り替え弁
15.調圧弁
16.流量制御手段
17.開放型酸素供給手段
1. Pressurizing means2. 2. Pressure reducing means Oxygen concentrating means 4. 4. Buffer tank Pressure measuring means 6. 6. Oxygen concentration measurement means Flow rate control means 8. 8. Open oxygen supply means Control unit 10. Pressurizing means 11. Pressure reducing means 12. Switching valve 13. Adsorption cylinder 14. Switching valve 15. Pressure regulating valve 16. Flow control means 17. Open oxygen supply means

Claims (4)

少なくとも酸素より窒素を吸着する吸着剤を収容した1個以上の吸着筒、該吸着筒に原料空気を供給する原料空気供給手段、該吸着筒へのガスの出入りを制御する流路切り替え手段を備え酸素濃縮ガスを生成する圧力スイング吸着式酸素濃縮器において、酸素濃縮ガス中の酸素濃度を測定する酸素濃度測定手段を有し、該酸素濃度測定手段の測定値に基づいて該原料空気供給手段の供給能力を変化させ、該酸素濃度測定手段の測定値が85%以上、91%以下に制御する制御手段を有することを特徴とする圧力スイング吸着式酸素濃縮器。   One or more adsorption cylinders containing at least an adsorbent that adsorbs nitrogen from oxygen, raw material air supply means for supplying raw air to the adsorption cylinder, and flow path switching means for controlling the flow of gas into and out of the adsorption cylinder The pressure swing adsorption type oxygen concentrator for generating the oxygen-enriched gas has an oxygen concentration measuring means for measuring the oxygen concentration in the oxygen-enriched gas, and based on the measured value of the oxygen concentration measuring means, A pressure swing adsorption type oxygen concentrator comprising control means for changing a supply capacity and controlling a measured value of the oxygen concentration measuring means between 85% and 91%. 該制御手段が、該酸素濃度測定手段の測定値が89%以上、91%以下に制御する制御手段を有することを特徴とする、請求項1に記載の圧力スイング吸着式酸素濃縮器。   2. The pressure swing adsorption type oxygen concentrator according to claim 1, wherein the control means has control means for controlling the measured value of the oxygen concentration measuring means to 89% or more and 91% or less. 該制御手段が、該原料空気供給手段の駆動モータの回転数を制御する手段であることを特徴とする、請求項1または2に記載の圧力スイング吸着式酸素濃縮器。   The pressure swing adsorption oxygen concentrator according to claim 1 or 2, wherein the control means is means for controlling the rotational speed of a drive motor of the raw material air supply means. 該吸着剤がLi−LSX型ゼオライトであることを特徴とする請求項1〜3の何れかに記載の圧力スイング吸着式酸素濃縮器。   The pressure swing adsorption type oxygen concentrator according to any one of claims 1 to 3, wherein the adsorbent is Li-LSX type zeolite.
JP2005183379A 2005-06-23 2005-06-23 Pressure swing adsorption oxygen concentrator Active JP5065581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005183379A JP5065581B2 (en) 2005-06-23 2005-06-23 Pressure swing adsorption oxygen concentrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005183379A JP5065581B2 (en) 2005-06-23 2005-06-23 Pressure swing adsorption oxygen concentrator

Publications (2)

Publication Number Publication Date
JP2007000340A true JP2007000340A (en) 2007-01-11
JP5065581B2 JP5065581B2 (en) 2012-11-07

Family

ID=37686483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005183379A Active JP5065581B2 (en) 2005-06-23 2005-06-23 Pressure swing adsorption oxygen concentrator

Country Status (1)

Country Link
JP (1) JP5065581B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009063938A1 (en) 2007-11-15 2009-05-22 Teijin Pharma Limited Oxygen concentrator
WO2011052803A1 (en) * 2009-11-02 2011-05-05 帝人ファーマ株式会社 Oxygen enrichment device
JP2015217211A (en) * 2014-05-20 2015-12-07 帝人ファーマ株式会社 Maintenance management system of oxygen concentrator
WO2016098180A1 (en) * 2014-12-16 2016-06-23 小林 照男 Oxygen concentration device
CN114950130A (en) * 2022-06-20 2022-08-30 济南嘉禾瑞丰科技开发有限公司 Middle-low concentration VOCS high saturation adsorption purification device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219176A (en) * 2001-01-25 2002-08-06 Fukuda Sangyo:Kk Oxygen concentrator for medical treatment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002219176A (en) * 2001-01-25 2002-08-06 Fukuda Sangyo:Kk Oxygen concentrator for medical treatment

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008321808B2 (en) * 2007-11-15 2014-01-23 Teijin Limited Oxygen concentrator
WO2009063938A1 (en) 2007-11-15 2009-05-22 Teijin Pharma Limited Oxygen concentrator
EP2500055A1 (en) 2007-11-15 2012-09-19 Teijin Pharma Limited Oxygen concentrator
US8377180B2 (en) 2007-11-15 2013-02-19 Teijin Pharma Limited Oxygen concentrator
US9011582B2 (en) 2009-11-02 2015-04-21 Teijin Pharma Limited Oxygen enrichment device
JP5357264B2 (en) * 2009-11-02 2013-12-04 帝人ファーマ株式会社 Oxygen concentrator
WO2011052803A1 (en) * 2009-11-02 2011-05-05 帝人ファーマ株式会社 Oxygen enrichment device
KR101756492B1 (en) * 2009-11-02 2017-07-10 데이진 화-마 가부시키가이샤 Oxygen enrichment device
JP2015217211A (en) * 2014-05-20 2015-12-07 帝人ファーマ株式会社 Maintenance management system of oxygen concentrator
WO2016098180A1 (en) * 2014-12-16 2016-06-23 小林 照男 Oxygen concentration device
JPWO2016098180A1 (en) * 2014-12-16 2017-06-15 小林 照男 Oxygen concentrator
CN114950130A (en) * 2022-06-20 2022-08-30 济南嘉禾瑞丰科技开发有限公司 Middle-low concentration VOCS high saturation adsorption purification device
CN114950130B (en) * 2022-06-20 2023-05-23 济南嘉禾瑞丰科技开发有限公司 High saturation volume adsorption purification device of well low concentration VOCS

Also Published As

Publication number Publication date
JP5065581B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5357264B2 (en) Oxygen concentrator
EP2210640B1 (en) Oxygen concentrator
CN101522246B (en) Oxygen concentrator
JP5864767B2 (en) Oxygen concentrator
JP2017510408A (en) Control of oxygen concentrator timing cycle based on flow rate of oxygen output
KR20100017660A (en) Oxygen enricher
JP5065581B2 (en) Pressure swing adsorption oxygen concentrator
JP2013052021A (en) Oxygen concentrator
JP5833358B2 (en) Oxygen concentrator
JP2010227517A (en) Oxygen concentrator
JP4922739B2 (en) Oxygen concentrator
JP2007054678A (en) Stabilization method for stabilizing concentration of gas and gas concentrator
JP2006296830A (en) Oxygen enricher
JP5242996B2 (en) Oxygen concentrator
US8500879B2 (en) Oxygen concentrator
JP2009061110A (en) Oxygen concentrator
JP2006062932A (en) Oxygen concentrator
JP2000060973A (en) Operation control equipment for oxygen concentrator
JP2002079030A (en) Oxygen concentrator
JP5524574B2 (en) Oxygen concentrator
JP2009273623A (en) Oxygen enricher
KR20230144060A (en) Oxygen enrichment device, control method and control program
JP2003040606A (en) Oxygen enricher
JP5065714B2 (en) Oxygen concentrator
JP2006061636A (en) Oxygen concentrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110711

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120810

R150 Certificate of patent or registration of utility model

Ref document number: 5065581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350