JP2006521665A - Composition comprising silver metal particles and metal salt - Google Patents

Composition comprising silver metal particles and metal salt Download PDF

Info

Publication number
JP2006521665A
JP2006521665A JP2006502530A JP2006502530A JP2006521665A JP 2006521665 A JP2006521665 A JP 2006521665A JP 2006502530 A JP2006502530 A JP 2006502530A JP 2006502530 A JP2006502530 A JP 2006502530A JP 2006521665 A JP2006521665 A JP 2006521665A
Authority
JP
Japan
Prior art keywords
metal
composition
silver
layer
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006502530A
Other languages
Japanese (ja)
Inventor
アー フェルスチューレン マルクス
ペー イェー ピータース マルティヌス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of JP2006521665A publication Critical patent/JP2006521665A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • C03C17/10Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the liquid phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0545Dispersions or suspensions of nanosized particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0466Alloys based on noble metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/251Al, Cu, Mg or noble metals
    • C03C2217/254Noble metals
    • C03C2217/256Ag
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making

Abstract

本発明は、銀金属粒子及び添加物を含む組成物であって、前記添加物が、金属をイットリウム若しくは周期表第2族の金属とした金属塩又は金属塩の混合物であり、且つ前記組成物が2原子%より少ない前記金属を含んでいることを特徴とする組成物に関するものである。前記金属塩は、マグネシウム酢酸塩とするのが好ましい。前記組成物は、例えばAMLCDに使用する耐熱性で導電性の銀含有層を形成するのに利用することができる。The present invention is a composition comprising silver metal particles and an additive, wherein the additive is a metal salt or a mixture of metal salts in which the metal is yttrium or a metal of Group 2 of the periodic table, and the composition Containing less than 2 atomic% of the metal. The metal salt is preferably magnesium acetate. The composition can be used, for example, to form a heat-resistant and conductive silver-containing layer used in AMLCDs.

Description

本発明は、銀金属粒子及び添加物を含む組成物と、耐熱性導電層と、この耐熱性導電層を有するアクティブマトリクス液晶ディスプレイ(AMLCD)と、製品の銀含有層の製造に上記組成物を使用する方法とに関するものである。   The present invention relates to a composition containing silver metal particles and additives, a heat-resistant conductive layer, an active matrix liquid crystal display (AMLCD) having this heat-resistant conductive layer, and the above composition for the production of a silver-containing layer of a product. And how to use it.

銀粒子を含む組成物は、他の成分を有するか否かに拘わらず当該技術分野において周知である。例えば、欧州特許出願公開第826415号明細書には、銀ゾルの調整方法が開示されている。これらの銀ゾルは、基板上に導電性薄膜を形成するのに用いられている。このような導電性薄膜は、基板上に銀ゾルをスピンコーティングすることにより形成され、その後これらを150℃で加熱している。   Compositions containing silver particles are well known in the art whether or not they have other components. For example, EP 826415 discloses a method for adjusting a silver sol. These silver sols are used to form a conductive thin film on a substrate. Such a conductive thin film is formed by spin-coating silver sol on a substrate, and then these are heated at 150 ° C.

欧州特許出願公開第276459号明細書には、陰極線管の製造方法が開示されている。この場合、少量の(特に)銀を含有する帯電防止用の二酸化シリコン薄膜が調整された。また、金属粒子を含有する溶液又はコロイド溶液に対し、溶液の安定性を増大させるための添加物としてカチオン性又はアニオン性界面活性剤が添加され、その後この材料が噴霧法、分散法又は浸漬法により基板上に設けられ、続いて200℃で15分間加熱されることにより帯電防止薄膜が形成された。   EP 276459 discloses a method of manufacturing a cathode ray tube. In this case, an antistatic silicon dioxide thin film containing a small amount (particularly) silver was prepared. In addition, a cationic or anionic surfactant is added to the solution containing metal particles or colloidal solution as an additive for increasing the stability of the solution, and then the material is sprayed, dispersed or dipped. The antistatic thin film was formed on the substrate by subsequent heating at 200 ° C. for 15 minutes.

銀含有層、特に80容積%以上の銀を含有する銀含有層は、不可逆的なヒロック、剥脱及びクリープのいずれか又は任意の組み合わせの重大な現象が現れないようにするには、250℃を超える温度で加熱し得ず、200℃よりも高い温度で加熱しないのが好ましいことを確かめた。クリープ現象とは、薄膜が、銀を含有する複数の小さな部分と、その間にある銀を含んでいない部分とに分かれるように劣化する過程を言う。クリープ現象が起こると表面が粗くなり、このことは、銀含有層の鏡面状の外観が失われることを意味する。剥脱及びクリープ現象の双方又はいずれか一方を受けた銀含有層(又は薄膜)は、もはや低い抵抗率を有さないものとなり、導電性が低くなることにより、このような銀含有層は、6μΩ・cm(マイクロオーム・センチメートル)より低い抵抗率を必要とする殆どの用途に対して適さないものとなる。銀含有層は、通常、有機結合材料又は安定剤のような有機材料も含む組成物から形成されるが、充分な導電性を有する銀含有層を形成するのに比較的低温(250℃未満、好ましくは200℃未満)の処理しか使用し得ないため、通常、このような銀含有層は、上記温度で充分に除去されないある量の有機材料を含んでいる。また、他の処理工程において、高温(250℃より高い温度)の処理が必要となる場合もある。例えば、CRTコーン部をスクリーンに固着するのは450℃で行われる。このような高温で銀を使用しうるようにするためには、銀ペースト中にポリマー結合剤及びフリットガラス粒子を混合することができる。しかし、フリットガラス粒子が存在すると導電性が著しく低下してしまう。更に、これらの添加する粒子は、ミクロンレンジの寸法を有しているため、このような混合ペーストは、もはや1μmより薄肉の銀含有層を形成するのに適したものとならない。アクティブマトリクス液晶ディスプレイ(AMLCD)に用いられるCorning(登録商標)1737ガラス上のような絶縁表面上に設けられる良導電性の銀薄肉層、又は赤外線反射積層体に用いられるガラス又はその他の何らかの基板上に設けられる良導電性の銀薄肉層は、無電解銀めっき処理を用いて形成することができるが、他の反応工程における最高温度は250℃に制限されてしまう。この温度では、Si34の堆積が起こるし、その上、無電解めっき処理は、速度の遅い非平衡処理であり、浴のポットライフを短くするため、いずれにせよ商業的に望ましいものではない。 A silver containing layer, especially a silver containing layer containing 80% or more by volume of silver, should be 250 ° C. to prevent the occurrence of any significant phenomenon of irreversible hillocks, exfoliation and creep, or any combination. It has been confirmed that it is not possible to heat at temperatures above, and it is preferable not to heat at temperatures above 200 ° C. The creep phenomenon is a process in which a thin film deteriorates so as to be divided into a plurality of small parts containing silver and a part not containing silver between them. When the creep phenomenon occurs, the surface becomes rough, which means that the specular appearance of the silver-containing layer is lost. A silver-containing layer (or thin film) that has been subjected to exfoliation and / or creep phenomenon no longer has a low resistivity, and due to its low electrical conductivity, such a silver-containing layer is 6 μΩ. • Unsuitable for most applications requiring resistivity below cm (microohms centimeters). The silver-containing layer is usually formed from a composition that also includes an organic material such as an organic binder or stabilizer, but at a relatively low temperature (less than 250 ° C., to form a silver-containing layer with sufficient conductivity. Usually, such silver-containing layers contain a certain amount of organic material that is not sufficiently removed at the above temperature, since preferably only a treatment of less than 200 ° C. can be used. In other processing steps, processing at a high temperature (temperature higher than 250 ° C.) may be required. For example, the CRT cone portion is fixed to the screen at 450 ° C. In order to be able to use silver at such a high temperature, a polymer binder and frit glass particles can be mixed in the silver paste. However, if frit glass particles are present, the conductivity is significantly reduced. Moreover, since these added particles have dimensions in the micron range, such mixed pastes are no longer suitable for forming a silver-containing layer having a thickness of less than 1 μm. On a conductive thin silver layer provided on an insulating surface such as on Corning® 1737 glass used for active matrix liquid crystal displays (AMLCD), or on glass or some other substrate used for infrared reflective laminates The thin layer of good electrical conductivity provided on the surface can be formed using electroless silver plating, but the maximum temperature in other reaction steps is limited to 250 ° C. At this temperature, Si 3 N 4 deposition occurs and, in addition, the electroless plating process is a slow, non-equilibrium process that shortens the pot life of the bath and is not commercially desirable anyway. Absent.

導電性及び鏡面状の外観を損なうことなく、250℃より高い温度で加熱し得る薄肉の導電性銀含有層を形成する方法が特に必要とされている。   There is a particular need for a method of forming a thin conductive silver-containing layer that can be heated at temperatures above 250 ° C. without compromising the electrical conductivity and specular appearance.

国際出願PCT/IB02/04461号の明細書においては、銀金属粒子と、少なくとも1つのメチル基及び少なくとも1つのアルコキシ基を有するシラン誘導体である添加物とを含む組成物が、極めて安定であり、基板上に被着して、450℃、通常は700℃の高温に、多くの例では1000℃もの高温に加熱しうることが確かめられている。更に、上記の高温にしたこれら組成物から形成した200nmの厚さの銀含有層の抵抗率は、2.5〜6μΩ・cmもの低さに維持されることが確かめられており、これら抵抗値は、3〜4μΩ・cmとなることが確かめられている250℃で銀を無電解堆積して得られた銀含有層の抵抗率に完全に匹敵しうるものである。上記国際出願の例によれば、スピンコーティングされたガラスプレートが、250℃で30分間硬化処理され、その後350℃、450℃、500℃及び550℃で30分間更に熱処理される。抵抗率及び層厚に関してこれらの銀含有層により得られた結果は、上記国際出願の図中に記載されている。これらの図から分かるように、上述した方法では、少なくとも約400℃の温度で加熱処理を行った場合にのみ抵抗率が4μΩ・cmより低くなる。このような温度の処理では、例えば、通常のLCDディスプレイを製造する必要がある場合に問題を生ずることが分かった。このようなディスプレイにおいて能動層に対する基板として通常使用されるガラスの加熱上限温度は、約350℃である。これより高温では、基板が変形するおそれがある。このことは、実際上充分な導電性を有する銀層を一般的なガラス基板上に形成し得ないことを意味する。従って、銀金属粒子及びシラン誘導体添加物を用いる従来の方法について、この方法と同様の耐クリープ特性を有するが、250℃〜400℃の温度で加熱可能な熱の影響を受けやすい基板上に被着しうる新たな添加物を探し出し、導電性及び鏡面状の外観を失わない層が得られるようにすることによりこの従来の方法を改良することが必要である。   In the specification of international application PCT / IB02 / 04461, a composition comprising silver metal particles and an additive which is a silane derivative having at least one methyl group and at least one alkoxy group is extremely stable, It has been found that it can be deposited on a substrate and heated to a high temperature of 450 ° C., usually 700 ° C., in many cases as high as 1000 ° C. Furthermore, it has been confirmed that the resistivity of the silver-containing layer having a thickness of 200 nm formed from the above-described high-temperature compositions is maintained as low as 2.5 to 6 μΩ · cm. Is completely comparable to the resistivity of the silver-containing layer obtained by electroless deposition of silver at 250 ° C., which has been confirmed to be 3-4 μΩ · cm. According to the example of the above international application, the spin-coated glass plate is cured at 250 ° C. for 30 minutes and then further heat treated at 350 ° C., 450 ° C., 500 ° C. and 550 ° C. for 30 minutes. The results obtained with these silver-containing layers in terms of resistivity and layer thickness are described in the figure of the above international application. As can be seen from these figures, in the method described above, the resistivity is lower than 4 μΩ · cm only when heat treatment is performed at a temperature of at least about 400 ° C. Such temperature processing has been found to cause problems when, for example, a conventional LCD display needs to be manufactured. The upper heating limit temperature of glass usually used as a substrate for the active layer in such a display is about 350 ° C. At higher temperatures, the substrate may be deformed. This means that a silver layer having practically sufficient conductivity cannot be formed on a general glass substrate. Therefore, the conventional method using silver metal particles and silane derivative additives has the same creep resistance as this method, but is coated on a substrate that is susceptible to heat that can be heated at a temperature of 250 ° C. to 400 ° C. There is a need to improve on this conventional method by looking for new additives that can be applied and obtaining a layer that does not lose its conductive and specular appearance.

銀金属粒子及び添加物を含む組成物であって、この添加物が、金属をイットリウム又は周期表第2族の金属とした金属塩又は金属塩の混合物であり、且つ前記組成物が2原子%より少ない前記金属を含んでいることを特徴とする組成物を用いることによって、上述した問題が解決されることを確かめた。従って、一般に使用することのできる金属塩は、Y、Mg、Ca、Sr及びBaの塩から選択する。金属塩はマグネシウム塩とするのが最も好ましい。   A composition comprising silver metal particles and an additive, the additive being a metal salt or a mixture of metal salts in which the metal is yttrium or a metal of Group 2 of the periodic table, and the composition is 2 atomic% It has been found that the above-mentioned problems are solved by using a composition characterized in that it contains less said metal. Therefore, generally usable metal salts are selected from Y, Mg, Ca, Sr and Ba salts. Most preferably, the metal salt is a magnesium salt.

また、本発明の銀含有層では、ガラスのような無機基板に対する接着性も増大する。更に、この組成物は、250℃〜450℃、より好ましくは250℃〜350℃の熱処理を適用する場合に特に有用であることを確かめた。これらの有利な特性により、本発明の組成物を有する銀含有薄膜は、AMLCD、受動集積素子、(高速インテリジェントトラッキング(FIT)に用いられるような)耐高温反射層、及び約350℃より高い温度に耐えられない基板を用いる反射型ディスプレイに用いるのに極めて適したものとなる。銀にマグネシウム塩を加えることは、2002年1 月に発行された“Journal of the Korean Physical Society” 40(1)の110〜114頁のLee氏等の論文に記載されている。しかし、この論文の著者は、スパッタリング処理を用いて銀に対して5原子%ものマグネシウムを加えている。本発明による銀層にこのような量のマグネシウムを加えると、得られる層は、結晶化したマグネシウム塩を含むものとなり、ディスプレイ等の銀層として被着するのに不適なものになる。本発明によれば、ディスプレイに使用しうる層を得るのに、銀に加える金属が2原子%より少なくなる層を形成するのが重要であることを確かめた。   Moreover, in the silver containing layer of this invention, the adhesiveness with respect to inorganic substrates like glass also increases. Furthermore, it has been found that this composition is particularly useful when applying heat treatments at 250 ° C to 450 ° C, more preferably 250 ° C to 350 ° C. Because of these advantageous properties, silver-containing thin films having the compositions of the present invention can be used in AMLCDs, passive integrated devices, high temperature reflective layers (such as used in fast intelligent tracking (FIT)), and temperatures above about 350 ° C. It is extremely suitable for use in a reflective display that uses a substrate that cannot withstand. The addition of a magnesium salt to silver is described in a paper by Mr. Lee et al. On pages 110-114 of the “Journal of the Korean Physical Society” 40 (1) published in January 2002. However, the author of this paper added as much as 5 atomic percent magnesium to silver using a sputtering process. When such an amount of magnesium is added to the silver layer according to the present invention, the resulting layer will contain a crystallized magnesium salt, making it unsuitable for deposition as a silver layer in displays and the like. In accordance with the present invention, it has been determined that it is important to form a layer with less than 2 atomic percent of metal added to silver to obtain a layer that can be used in a display.

金属塩は、金属酸化物塩、金属硝酸塩、金属炭酸塩、金属リン酸塩等のような無機塩や、金属酢酸塩、金属プロピオン酸塩、金属クエン酸塩、金属ステアリン酸塩、金属酒石酸塩等のような有機塩とすることができる。また、無機塩と有機塩との混合物を含む、これら塩の混合物も使用することができる。これら金属塩は、マグネシウム塩とするのが好ましく、マグネシウムの有機塩又はマグネシウム硝酸塩とするのがより好ましい。マグネシウム塩は、マグネシウム酢酸塩又はマグネシウム硝酸塩とするのが最も好ましい。この組成物が含む金属の量は、好ましくは1原子%より少なくし、最も好ましくは0.25〜0.5原子%にする。2原子%より高い濃度では、銀金属構造の乱れのために導電性が減少する。   Metal salts include inorganic salts such as metal oxide salts, metal nitrates, metal carbonates, metal phosphates, metal acetates, metal propionates, metal citrates, metal stearates, metal tartrate Or an organic salt thereof. Mixtures of these salts, including mixtures of inorganic and organic salts, can also be used. These metal salts are preferably magnesium salts, more preferably magnesium organic salts or magnesium nitrates. Most preferably, the magnesium salt is magnesium acetate or magnesium nitrate. The amount of metal contained in the composition is preferably less than 1 atomic%, most preferably 0.25 to 0.5 atomic%. At concentrations higher than 2 atomic%, the conductivity decreases due to the disorder of the silver metal structure.

本発明の最も一般的な組成物は、金属塩を含むコロイド状銀ゾルである。これらのゾルは、極めて安定で且つポットライフが長くなる。これらのゾルを基板上に被着するのは、当該技術分野で既知の方法、例えばスピンコーティング又は印刷処理により簡単に行うことができる。   The most common composition of the present invention is a colloidal silver sol containing a metal salt. These sols are extremely stable and have a long pot life. Depositing these sols on a substrate can be easily accomplished by methods known in the art, such as spin coating or printing processes.

通常、この組成物は、基板、一般的にはガラスのような無機基板上に設けられて耐熱性で導電性の銀含有層を形成する。これらの層は、特にアクティブマトリクス液晶ディスプレイ(AMLCD)に用いることができる。   Typically, the composition is provided on a substrate, typically an inorganic substrate such as glass, to form a heat-resistant and conductive silver-containing layer. These layers can be used in particular for active matrix liquid crystal displays (AMLCD).

一般に、これらの組成物は、銀含有層が250℃〜350℃の温度に曝されることになる装置に使用する当該銀含有層を形成するのにも極めて適している。このような導電層は、AMLCDや、有機エレクトロルミネッセント(ディスプレイ)装置や、若しくはプラズマディスプレイパネルのような製品や、又はIR反射性積層体にも適用することができる。
本発明を以下の例により説明する。
In general, these compositions are also very suitable for forming silver-containing layers for use in devices where the silver-containing layer is exposed to temperatures of 250 ° C to 350 ° C. Such a conductive layer can also be applied to products such as AMLCDs, organic electroluminescent (display) devices, or plasma display panels, or IR reflective laminates.
The invention is illustrated by the following examples.

マグネシウム酢酸塩を銀コロイド分散水(17重量%の銀及び13重量%の安定剤を含む日本ペイント社製のゾル)に加え、銀に加えるマグネシウムを0.25原子%にした。得られた混合物を水で希釈し所望の粘度にした。   Magnesium acetate was added to silver colloidal dispersion water (a sol made by Nippon Paint Co., Ltd. containing 17% by weight of silver and 13% by weight of stabilizer), so that magnesium added to silver was 0.25 atomic%. The resulting mixture was diluted with water to the desired viscosity.

比較例
前述の国際出願PCT/IB02/04461号の明細書に記載された方法に従って、MTMS(メチルトリメトキシシラン)と銀コロイド分散水(上述した日本ペイント社製)とを混合して、銀に加えて3原子%のシリコンを含む懸濁液を得ることでMTMS含有銀層を形成した。
Comparative Example According to the method described in the specification of the aforementioned international application PCT / IB02 / 04461, MTMS (methyltrimethoxysilane) and silver colloidal dispersion water (manufactured by Nippon Paint Co., Ltd.) were mixed to form silver. In addition, an MTMS-containing silver layer was formed by obtaining a suspension containing 3 atomic% silicon.

本発明の実施例及び比較例の層を、スピンコーティングによりCorning(登録商標)1737基板上に堆積し、80℃で5分間乾燥させた。サンプルを210℃の空気中で前硬化させた後、これを100%の酸素雰囲気とした管状炉中で硬化させた。加熱速度は25℃/分とし、サンプルを終点温度で30分間保持した。冷却後、4点接触式プローブを用いてシート抵抗を測定し、アルファステップ(型式)なる測定装置を用いて層厚を測定し、これらの値から抵抗値を計算した。RBS測定を用いて銀の量を測定した。抵抗率を硬化温度の関数として図1に示す。図2においては、銀層の相対密度を、硬化温度の関数として示す。   The layers of the inventive and comparative examples were deposited on a Corning® 1737 substrate by spin coating and dried at 80 ° C. for 5 minutes. The sample was precured in air at 210 ° C. and then cured in a tubular furnace with a 100% oxygen atmosphere. The heating rate was 25 ° C./min and the sample was held at the end point temperature for 30 minutes. After cooling, the sheet resistance was measured using a four-point contact probe, the layer thickness was measured using an alpha step (model) measuring device, and the resistance value was calculated from these values. The amount of silver was measured using RBS measurement. The resistivity is shown in FIG. 1 as a function of curing temperature. In FIG. 2, the relative density of the silver layer is shown as a function of the curing temperature.

金属塩Mg(NO3)2、Ca(NO3)2、Sr(NO3)2、Ba(NO3)2及びY(Ac)3によっても上述の代表的なマグネシウム塩の場合と同様の結果が得られた。Co(Ac)2 でも良好な結果が得られた。 The same results as in the case of the above-mentioned representative magnesium salts are also obtained with the metal salts Mg (NO 3 ) 2 , Ca (NO 3 ) 2 , Sr (NO 3 ) 2 , Ba (NO 3 ) 2 and Y (Ac) 3 . was gotten. Good results were also obtained with Co (Ac) 2 .

銅塩及びパラジウム塩の双方又はいずれか一方のような他の金属塩を加えることにより、耐腐食性を向上させることができる。例えば、スパッタリングの代わりに湿式堆積処理を用いて、0.9原子%のPdと1.7原子%のCuとを含む銀の「APC」被膜を得ることができる。   Corrosion resistance can be improved by adding other metal salts such as copper salts and / or palladium salts. For example, a wet deposition process can be used instead of sputtering to obtain a silver “APC” coating containing 0.9 atomic% Pd and 1.7 atomic% Cu.

図1は、本発明による銀層(三角記号)及び本発明によらない銀層(四角記号)の、硬化温度T(℃)に対する抵抗率R(μΩ・cm)を示すグラフである。FIG. 1 is a graph showing the resistivity R (μΩ · cm) with respect to the curing temperature T (° C.) of a silver layer (triangle symbol) according to the present invention and a silver layer (square symbol) not according to the present invention. 図2は、本発明による銀層(三角記号)及び本発明によらない銀層(四角記号)の、硬化温度T(℃)に対する相対密度d(無次元単位)を示すグラフである。FIG. 2 is a graph showing the relative density d (dimensionless unit) of the silver layer according to the present invention (triangle symbol) and the silver layer not according to the present invention (square symbol) with respect to the curing temperature T (° C.).

Claims (10)

銀金属粒子及び添加物を含む組成物において、
前記添加物が、金属をイットリウム、コバルト若しくは周期表第2族の金属とした金属塩又は金属塩の混合物であり、且つ前記組成物が2原子%より少ない前記金属を含んでいることを特徴とする組成物。
In a composition comprising silver metal particles and an additive,
The additive is a metal salt or a mixture of metal salts in which the metal is yttrium, cobalt, or a metal of Group 2 of the periodic table, and the composition contains less than 2 atomic% of the metal. Composition.
請求項1に記載の組成物において、
前記金属がマグネシウムである組成物。
The composition of claim 1, wherein
A composition wherein the metal is magnesium.
請求項2に記載の組成物において、
前記金属塩が、マグネシウム硝酸塩、又はマグネシウムと有機塩基との塩である組成物。
The composition of claim 2, wherein
A composition in which the metal salt is magnesium nitrate or a salt of magnesium and an organic base.
請求項3に記載の組成物において、
前記金属塩が、マグネシウム酢酸塩である組成物。
The composition of claim 3, wherein
A composition wherein the metal salt is magnesium acetate.
請求項1〜4のいずれか一項に記載の組成物において、
この組成物が、1原子%より少ない金属を含んでいる組成物。
In the composition as described in any one of Claims 1-4,
The composition wherein the composition contains less than 1 atomic percent metal.
請求項1〜5のいずれか一項に記載の組成物において、
前記銀金属粒子が、コロイド状銀ゾルである組成物。
In the composition as described in any one of Claims 1-5,
A composition in which the silver metal particles are a colloidal silver sol.
銀組成物含有層を有する導電層であって、前記組成物が、銀と、金属を周期表第2族の金属とした金属塩又は金属塩の混合物とを含んでおり、且つ前記組成物が2原子%より少ない前記金属を含んでいる導電層。   A conductive layer having a silver composition-containing layer, wherein the composition contains silver and a metal salt or a mixture of metal salts in which the metal is a metal of Group 2 of the periodic table, and the composition is A conductive layer containing less than 2 atomic percent of the metal. 請求項7に記載の前記導電層を有する製品。   A product comprising the conductive layer according to claim 7. 請求項7に記載の前記導電層を有するアクティブマトリクス液晶ディスプレイ。   An active matrix liquid crystal display having the conductive layer according to claim 7. 請求項1〜6のいずれか一項に記載の組成物を銀含有層の製造に使用する方法。

The method of using the composition as described in any one of Claims 1-6 for manufacture of a silver content layer.

JP2006502530A 2003-02-10 2004-01-20 Composition comprising silver metal particles and metal salt Withdrawn JP2006521665A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL1022637 2003-02-10
PCT/IB2004/050037 WO2004069452A2 (en) 2003-02-10 2004-01-20 Composition comprising silver metal particles and a metal salt

Publications (1)

Publication Number Publication Date
JP2006521665A true JP2006521665A (en) 2006-09-21

Family

ID=32844978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006502530A Withdrawn JP2006521665A (en) 2003-02-10 2004-01-20 Composition comprising silver metal particles and metal salt

Country Status (7)

Country Link
US (1) US20060075849A1 (en)
EP (1) EP1594996A2 (en)
JP (1) JP2006521665A (en)
KR (1) KR20050098908A (en)
CN (1) CN1748041A (en)
TW (1) TW200427532A (en)
WO (1) WO2004069452A2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4028063A (en) * 1974-11-11 1977-06-07 Gte Laboratories Incorporated Compacts for preparing silver-cadmium oxide alloys
US4318830A (en) * 1979-01-15 1982-03-09 E. I. Du Pont De Nemours And Company Thick film conductors having improved aged adhesion
USRE31846E (en) * 1979-08-20 1985-03-12 Square D Company Silver, cadmium oxide, lithium carbonate contact material and method of making the material
JPH088080B2 (en) 1986-12-24 1996-01-29 株式会社東芝 Cathode ray tube and method of manufacturing cathode ray tube
JPH0896643A (en) * 1994-09-28 1996-04-12 Matsushita Electric Works Ltd Electric contact point material
EP0733931B1 (en) * 1995-03-22 2003-08-27 Toppan Printing Co., Ltd. Multilayered conductive film, and transparent electrode substrate and liquid crystal device using the same
JP3429958B2 (en) 1996-08-28 2003-07-28 三井金属鉱業株式会社 Method for producing silver colloid liquid
JP3310234B2 (en) * 1999-02-25 2002-08-05 シャープ株式会社 Method of manufacturing reflection plate for reflection type liquid crystal display device
JP4183924B2 (en) * 2001-03-30 2008-11-19 日揮触媒化成株式会社 METAL PARTICLE, PROCESS FOR PRODUCING THE PARTICLE, COATING LIQUID FOR TRANSPARENT CONDUCTIVE FILM CONTAINING THE PARTICLE, SUBSTRATE WITH TRANSPARENT CONDUCTIVE COATING, DISPLAY DEVICE
US20040245507A1 (en) * 2001-09-06 2004-12-09 Atsushi Nagai Conductor composition and method for production thereof
KR20040068134A (en) * 2001-11-13 2004-07-30 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Colloidal solution comprising silver metal particles and a silane derivative

Also Published As

Publication number Publication date
WO2004069452A2 (en) 2004-08-19
KR20050098908A (en) 2005-10-12
US20060075849A1 (en) 2006-04-13
TW200427532A (en) 2004-12-16
WO2004069452A3 (en) 2004-10-14
CN1748041A (en) 2006-03-15
EP1594996A2 (en) 2005-11-16

Similar Documents

Publication Publication Date Title
Sahu et al. Deposition of Ag-based Al-doped ZnO multilayer coatings for the transparent conductive electrodes by electron beam evaporation
US20130323482A1 (en) Low Haze Transparent Conductive Electrodes and Method of Making the Same
CN106664805A (en) Electronic component and method for manufacturing same
JP5469107B2 (en) Method for producing aluminum-doped zinc oxide transparent conductive film containing metal nanoparticles
TW200523374A (en) Ag-base interconnecting film for flat panel display, ag-base sputtering target and flat panel display
Guzman et al. Transparent conducting sol–gel ATO coatings for display applications by an improved dip coating technique
JP2012136725A (en) Metal particulate dispersion liquid, metal particulate, and method for producing metal particulate dispersion liquid or the like
CN104540777B (en) For forming the core-shell nanoparticles of nesa coating and using its manufacture method of nesa coating
CN107682944A (en) A kind of semiconductor thermoelectric film and preparation method thereof
JP4646395B2 (en) Metal material for glass melting treatment and method for producing the same
KR100804003B1 (en) Process for preparing indium tin oxide film
CN109819535B (en) Preparation method of high-temperature service silver nanowire conductive film heater
JP2006521665A (en) Composition comprising silver metal particles and metal salt
Qin et al. Effect of copper nanoparticle addition on the electrical and optical properties of thin films prepared from silver nanoparticles
JPH01132004A (en) Light transmitting conductive substrate and its manufacture
Gan et al. Transparent conductive indium tin oxide film fabricated by dip-coating technique from colloid precursor
US7116381B2 (en) Colloidal solution comprising silver metal particles and a silane derivative
CN205810868U (en) A kind of complex is the calcium titanium ore bed light emitting diode of presoma
CN1200445C (en) Manufacturing method of plasma display screen up and down base plate component element
KR101008237B1 (en) Method of forming transparent conducting film
KR20100049304A (en) Anti-dew condensation product and preparing method thereof
JP2005530880A (en) Coating material
JP2022537316A (en) Aqueous Solution Precursors for Making Oxide Thin Films and Compositions and Methods for Making Conductive Oxide Thin Films Therefrom
JP2001303257A (en) Method for manufacturing thin film and method for manufacturing thin-film platinum temperature sensor
JPH06115946A (en) Method for forming thin film of manganese nickel-based oxide

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061221

A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070403