JP2006511047A - Electromagnetic drive device - Google Patents

Electromagnetic drive device Download PDF

Info

Publication number
JP2006511047A
JP2006511047A JP2004561056A JP2004561056A JP2006511047A JP 2006511047 A JP2006511047 A JP 2006511047A JP 2004561056 A JP2004561056 A JP 2004561056A JP 2004561056 A JP2004561056 A JP 2004561056A JP 2006511047 A JP2006511047 A JP 2006511047A
Authority
JP
Japan
Prior art keywords
movable part
restraint
electromagnetic drive
permanent magnet
drive device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004561056A
Other languages
Japanese (ja)
Inventor
ベッチャー、マルチン
カンプフ、マルクス
プロッツエ、カルステン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JP2006511047A publication Critical patent/JP2006511047A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H33/6662Operating arrangements using bistable electromagnetic actuators, e.g. linear polarised electromagnetic actuators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/066Electromagnets with movable winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/121Guiding or setting position of armatures, e.g. retaining armatures in their end position
    • H01F7/122Guiding or setting position of armatures, e.g. retaining armatures in their end position by permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/14Pivoting armatures
    • H01F7/145Rotary electromagnets with variable gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/26Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor
    • H01H2003/268Power arrangements internal to the switch for operating the driving mechanism using dynamo-electric motor using a linear motor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H53/00Relays using the dynamo-electric effect, i.e. relays in which contacts are opened or closed due to relative movement of current-carrying conductor and magnetic field caused by force of interaction between them
    • H01H53/01Details
    • H01H53/015Moving coils; Contact-driving arrangements associated therewith

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnets (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

空隙を画定する少なくとも1つの磁石装置(2、3)と、空隙(4)内に配置され、磁石に対し動くように案内される可動部(5)と、少なくとも1つの永久磁石と、電流を流し得る少なくとも1つの導体(6)とを備え、可動部(5)の運動により、導体(6)が永久磁石により発生された磁界内に少なくとも部分的に達する、開閉器、特に中電圧領域における開閉器用の電磁駆動装置(1)を、可動部(5)の終端位置に簡単な方法で固定可能とし、駆動動作の簡単な制御を維持するように構成すべく、可動部(5)を少なくとも1つの軟磁性拘束体(7)に固定し、永久磁石(3)で発生した磁束を可動部(5)の終端位置で拘束体(7)を経て流し、かつ空隙(4)を磁束に対し拘束体(7)により分路する。At least one magnet device (2, 3) defining a gap, a movable part (5) arranged in the gap (4) and guided to move relative to the magnet, at least one permanent magnet, A switch, in particular in the medium voltage region, comprising at least one conductor (6) capable of flowing, wherein the movement of the movable part (5) causes the conductor (6) to at least partially reach the magnetic field generated by the permanent magnet The electromagnetic drive device (1) for the switch can be fixed to the end position of the movable part (5) by a simple method, and at least the movable part (5) is configured to maintain simple control of the driving operation. Fixed to one soft magnetic restraint (7), the magnetic flux generated by the permanent magnet (3) flows through the restraint (7) at the terminal position of the movable part (5), and the air gap (4) is applied to the magnetic flux. The shunt is made by the restraint (7).

Description

本発明は、空隙を画定する少なくとも1つの磁石装置と、空隙内に配置され、磁石装置に対し可動に案内される可動部と、少なくとも1つの永久磁石と、電流を流し得る少なくとも1つの導体とを備え、可動部の運動により、導体が永久磁石で発生される磁界内に少なくとも部分的に達する、開閉器、特に中電圧領域の開閉器用の電磁駆動装置に関する。   The present invention includes at least one magnet device that defines a gap, a movable portion that is disposed in the gap and is movably guided with respect to the magnet device, at least one permanent magnet, and at least one conductor that can conduct current. And an electromagnetic drive for a switch, in particular a switch in the intermediate voltage range, wherein the conductor reaches at least partly in the magnetic field generated by the permanent magnet by the movement of the movable part.

この種電磁駆動装置は、例えば独国特許出願公開第19815538号明細書により公知である。そこに開示されている駆動装置は、複数のモータモジュールから組み立てた三相リニアモータを備えている。モータモジュールは、所定数の固定配置モータコイルと、その長手方向に駆動案内される永久磁石付可動部とを備えている。モータコイルを励磁することで磁界が発生し、該磁界内に可動部の永久磁石が配置される。発生するローレンツ力に基づき、開閉ロッドを経て開閉器の可動接点に接続された可動部が駆動される。真空スイッチを投入すべく、開閉器の可動接点は三相リニアモータにより固定接点に向けて押圧される。その結果可動部は終端位置に達する。   Such an electromagnetic drive is known, for example, from DE 198 15 538 A1. The drive device disclosed therein includes a three-phase linear motor assembled from a plurality of motor modules. The motor module includes a predetermined number of fixedly arranged motor coils and a movable part with a permanent magnet that is driven and guided in the longitudinal direction thereof. A magnetic field is generated by exciting the motor coil, and the permanent magnet of the movable part is disposed in the magnetic field. Based on the generated Lorentz force, the movable part connected to the movable contact of the switch via the switching rod is driven. In order to turn on the vacuum switch, the movable contact of the switch is pressed toward the fixed contact by a three-phase linear motor. As a result, the movable part reaches the end position.

国際公開第95/07542号パンフレットにより、軟磁性材料からなりフレーム状の閉磁路を形成するヨークを備えた電磁駆動装置が公知である。ヨークは渦電流の発生を防ぐべく、成層体をなしている。該ヨークは中空室を形成し、その中で、軟磁性材料からなる接極子が2つの終端位置の間で変位する。接極子は各終端位置でその端面が軟磁性ヨークに接触する。その際、接触位置と反対側の他方の接極子端面と閉磁路ヨークの間に空隙が生ずる。ヨークの中空室内には、更に各接極子の一方の端面を取り囲む2つのコイルが取り付けられている。両コイル間に磁束発生用の永久磁石がある。接極子は空隙に基づき各終端位置に固定される。空隙側の端面を取り囲むコイルを励磁することで、空隙に、磁気抵抗の減少のために接極子がヨークから開離し、空隙を閉じてその第2の安定終端位置に到達させる強い磁界が生ずる。その終端位置で、当初の空隙を画定していた接極子の他方の端面がヨークに接する。そうなったらコイルの励磁電流は切断してもよい。と言うのは、接極子はその終端位置でも固定されるからである。   From International Publication No. 95/07542, an electromagnetic drive device having a yoke made of a soft magnetic material and forming a frame-like closed magnetic path is known. The yoke forms a stratified body to prevent the generation of eddy currents. The yoke forms a hollow chamber in which an armature made of a soft magnetic material is displaced between two end positions. The end face of the armature contacts the soft magnetic yoke at each end position. At that time, a gap is formed between the other armature end face opposite to the contact position and the closed magnetic circuit yoke. Two coils surrounding one end face of each armature are attached to the hollow chamber of the yoke. There is a permanent magnet for generating magnetic flux between both coils. The armature is fixed at each end position based on the air gap. Exciting the coil that surrounds the end face on the air gap side generates a strong magnetic field in which the armature is separated from the yoke to reduce the magnetic resistance and close the air gap to reach its second stable termination position. At the terminal position, the other end face of the armature that originally defined the air gap contacts the yoke. When that happens, the exciting current of the coil may be cut off. This is because the armature is also fixed at its end position.

上記公知の2つの電磁駆動装置は異なる物理効果を利用している。独国特許出願公開第19815538号明細書による電磁駆動装置は、駆動作用を生じさせるべく、磁界中を荷電部材が運動することで発生する、所謂ローレンツ力を利用する。国際出願公開第95/07542号パンフレットによる電磁駆動装置の作用は、磁界が特に高透磁率、換言すれば低磁気抵抗の材料中で振る舞うという物理効果に帰着する。接極子の変位に伴いシステム全体が、高い磁気的ポテンシャルを有するエネルギ的に好ましくない状態から、空隙が閉じられ、殆ど低磁気抵抗の材料中のみを磁束が通るエネルギ的に好ましい状態に移行する。エネルギ的に好ましい状態へシステムを移行させる力は、勾配により生ずる。かかる効果に基づく駆動方式は、リラクタンス駆動方式とも称される。   The two known electromagnetic drives utilize different physical effects. The electromagnetic drive device according to DE 198 15 538 uses a so-called Lorentz force generated by the movement of a charging member in a magnetic field to produce a drive action. The action of the electromagnetic drive according to WO 95/07542 results in a physical effect that the magnetic field behaves in a particularly high permeability, in other words low magnetic resistance material. With the displacement of the armature, the entire system transitions from an energetically unfavorable state with a high magnetic potential to an energetically favorable state in which the air gap is closed and the magnetic flux passes almost exclusively in the low reluctance material. The force to move the system to an energetically favorable state is caused by the gradient. A drive system based on this effect is also referred to as a reluctance drive system.

ローレンツ力による電磁駆動装置は高度の動特性を備え、更に簡単な方法、即ち磁界により導かれる電流で制御される。しかし欠点も存在する。それは、この駆動装置が安定な終端位置又は中間位置をとることができず、必要に応じ各終端位置に付加的な手段で固定せねばならないことである。そのため、通常はバネやラッチ等が用いられるが、エネルギ消費を伴う欠点がある。リラクタンス駆動方式は、通常安定した終端位置固定という点で優れるものの、ストローク対力特性線が強度に非直線性であるという欠点を持つ。この特性線は終端位置での保持力の負担、又は構造空間の負担に大きく影響される。   An electromagnetic drive with Lorentz force has a high degree of dynamic characteristics and is controlled in a simpler way, i.e. a current guided by a magnetic field. However, there are drawbacks. That is, the drive cannot take a stable end position or intermediate position and must be fixed to each end position by additional means as required. For this reason, a spring, a latch, or the like is usually used, but there is a drawback with energy consumption. Although the reluctance driving method is usually excellent in terms of stable end position fixing, it has a drawback that the stroke-force characteristic line is nonlinear in strength. This characteristic line is greatly influenced by the burden of the holding force at the end position or the burden of the structure space.

従って本発明の課題は、冒頭に述べた型の電磁駆動装置を、終端位置に簡単な方法で固定でき、しかも駆動運動の簡単な制御は維持できるように構成することである。   The object of the invention is therefore to configure an electromagnetic drive of the type mentioned at the outset in such a way that it can be fixed in the end position in a simple manner and that simple control of the drive movement can be maintained.

この課題は、可動部が少なくとも1つの軟磁性拘束体に固定され、永久磁石によって発生された磁束が可動部の終端位置で拘束体を通して流れ、しかも、空隙が磁束に対し拘束体によって分路されることによって解決される。   The problem is that the movable part is fixed to at least one soft magnetic restraint, the magnetic flux generated by the permanent magnet flows through the restraint at the end of the movable part, and the gap is shunted by the restraint with respect to the magnetic flux. It is solved by doing.

本発明の電磁駆動装置はローレンツ力を利用し、かつ磁気抵抗の減少に伴い生ずる力作用、即ちリラクタンス力も利用する。そのため、少なくとも一方の終端位置で拘束体により空隙が分路され、空隙は磁束に対する磁気抵抗を高める。従って可動部にとりエネルギ的に好ましい状態となる。拘束体が終端位置から解放された後、磁束は磁石装置に形成された空隙、又は磁石装置と拘束体との間に形成された大きな空隙を経て流れるように強制され、磁気抵抗が高まる。かくして、終端位置に関し磁気的に好ましくない状態が解消する。解放に逆作用する磁気力が生ずるからである。可動部は適切な機構、例えば駆動ロッドと伝動レバーを経て開閉器、特に真空スイッチの可動接点に連結させ得る。その際、駆動装置の終端位置で、可動接点は開閉器の固定接触子に強固に接触する。   The electromagnetic drive device of the present invention uses the Lorentz force, and also uses a force action, that is, a reluctance force generated with a decrease in magnetic resistance. Therefore, the air gap is shunted by the restraint at at least one terminal position, and the air gap increases the magnetic resistance against the magnetic flux. Therefore, it will be in a state energetically favorable for the movable part. After the restraint is released from the end position, the magnetic flux is forced to flow through a gap formed in the magnet device or a large gap formed between the magnet device and the restraint, and the magnetic resistance is increased. Thus, a magnetically unfavorable state with respect to the terminal position is eliminated. This is because a magnetic force is generated that acts against release. The movable part may be connected to a movable contact of a switch, in particular a vacuum switch, through an appropriate mechanism, for example, a drive rod and a transmission lever. At that time, the movable contact firmly contacts the fixed contact of the switch at the terminal position of the driving device.

開閉器の接点を経て電流が流れると、接点に形成した狭小部により互いに突き放す力が生ずる。駆動装置の終端位置への拘束により接点相互の開離を防ぎ、それによって特に短絡時の、エネルギ量の多いアークの発生を防止できる。   When an electric current flows through the contact of the switch, a force that pushes it out is generated by a narrow portion formed in the contact. The restraint on the terminal position of the driving device prevents the contacts from being separated, thereby preventing the generation of an arc having a large amount of energy, particularly during a short circuit.

磁束に対する磁気抵抗の減少に伴う力作用は、著しい非直線性を示す。と言うのは、磁石装置から拘束体迄の間隔が小さい場合、大きな力が発生するからである。拘束体がヨークからより大きく離れた中間ストローク位置では、駆動は専らローレンツ力で行う。そのため本発明による電磁駆動装置では、可動部の中間ストローク位置では簡単な方法、即ち導体に電流を流し又はコイルにより電磁的に発生する磁束を変化させることで制御する。しかし、終端位置では、短絡時に可動接点が対向固定接点から開離するのを防止すべく、同時に十分大きな拘束力を提供する。   The force action associated with the decrease in reluctance to magnetic flux exhibits significant non-linearity. This is because a large force is generated when the distance from the magnet device to the restraint is small. At an intermediate stroke position where the restraining body is further away from the yoke, the driving is performed exclusively by Lorentz force. Therefore, in the electromagnetic driving device according to the present invention, the control is performed by a simple method at the intermediate stroke position of the movable part, that is, by passing a current through the conductor or changing the magnetic flux generated electromagnetically by the coil. However, at the end position, a sufficiently large restraining force is provided at the same time to prevent the movable contact from being separated from the opposing fixed contact in the event of a short circuit.

その際分路のために、拘束体が磁石装置の空隙を画定する領域に接する必要はない。むしろ、拘束体をその領域迄僅かな間隔をもって保持してもよい。その場合、例えば開閉器の固定接点に対する開閉接点用の永久的押圧力を発生できる。しかし、終端位置における磁気抵抗は、起こり得る他のストローク位置に対し最小化するのが基本である。   In this case, because of the shunting, it is not necessary for the restraint to contact the area that defines the air gap of the magnet device. Rather, the restraint may be held at a slight distance to the area. In this case, for example, a permanent pressing force for the switching contact with respect to the fixed contact of the switch can be generated. However, the reluctance at the end position is basically minimized with respect to other possible stroke positions.

可動部に、例えば永久磁石を取り付ける。その際、磁路全体の磁気抵抗を終端位置で最小とすべく、永久磁石で発生した磁束を、できれば導体で発生した磁束と共に、拘束体の終端位置で部分的に拘束体を介して流すようにする。 For example, a permanent magnet is attached to the movable part. At that time, in order to minimize the reluctance of the entire magnetic path at the terminal position, the magnetic flux generated by the permanent magnet is preferably flowed partially through the constraint body at the terminal position of the constraint body together with the magnetic flux generated by the conductor. To.

その代わりに、可動部に導体を巻き付けた巻枠を持つ少なくとも1つのコイルを設け、各拘束体をコイルの端面に結合することもできる。本発明のこの好ましい実施形態では、電磁駆動装置はピストン型駆動装置であり、該装置のストロークはコイルの長さにほぼ対応する。拘束体はコイルの一側又は両側に配置できる。可動部が例えば2つの拘束体と1つのコイルを備えるなら、それを2つの終端位置に取り付ける。拘束体が駆動装置のストローク対力特性曲線に及ぼす影響は、拘束体の変形によって高まる。   Instead, at least one coil having a winding frame in which a conductor is wound around the movable portion may be provided, and each restraint body may be coupled to the end face of the coil. In this preferred embodiment of the invention, the electromagnetic drive is a piston type drive, the stroke of which corresponds approximately to the length of the coil. The restraint can be placed on one or both sides of the coil. If the movable part includes, for example, two restraints and one coil, it is attached to two terminal positions. The influence of the restraint on the stroke vs. force characteristic curve of the drive device is enhanced by deformation of the restraint.

本発明の好適な実施形態では、磁石装置は永久磁石と軟磁性ヨークを含み、各永久磁石で発生した磁束がヨークを通流する。磁束を導くためにヨークを使用することでコストを低減できる。と言うのは、空隙を大きくて費用の嵩む永久磁石内に形成せずともよいからである。むしろ、より小さな永久磁石で十分である。ヨークは、リング状又はフレーム状に形成するとよい。その場合、例えば四角形のフレームを用い、磁束通路となるフレームを中断する空隙によってのみ中断される磁路を形成できる。渦電流の発生を防止すべく、ヨークを成層型に構成できる。磁石装置、即ち永久磁石は可動部に対し固定する。駆動運動の発生時、可動部が空隙内に潜入する故、本発明のこの実施形態は、潜入コイル原理に基づく駆動方式と称し得る。この駆動装置は、三相リニアモータ原理による駆動装置に対し、三相系統の1相のみから得られる直流電圧で間に合う。   In a preferred embodiment of the present invention, the magnet device includes a permanent magnet and a soft magnetic yoke, and the magnetic flux generated by each permanent magnet flows through the yoke. Cost can be reduced by using a yoke to guide the magnetic flux. This is because the gap does not have to be formed in a permanent magnet which is large and expensive. Rather, a smaller permanent magnet is sufficient. The yoke may be formed in a ring shape or a frame shape. In that case, for example, a rectangular frame can be used to form a magnetic path that is interrupted only by a gap that interrupts the frame serving as a magnetic flux path. In order to prevent the generation of eddy currents, the yoke can be configured as a stratified type. The magnet device, that is, the permanent magnet is fixed to the movable part. This embodiment of the present invention can be referred to as a drive system based on the submerged coil principle because the movable part infiltrates into the gap when the driving motion occurs. This drive device is in time with a DC voltage obtained from only one phase of a three-phase system, compared to a drive device based on the principle of a three-phase linear motor.

好ましい実施態様では、各拘束体が終端位置で軟磁性ヨークに接する。従って終端位置での拘束体と磁石装置との間の空隙が回避できる。磁束は磁石装置から直接に拘束体へ移行し、磁路の磁気抵抗が最小になる。従って可動部を終端位置で特に強固に拘束できる。   In a preferred embodiment, each restraint contacts the soft magnetic yoke at the end position. Therefore, the space | gap between the restraint body and magnet apparatus in a terminal position can be avoided. The magnetic flux is transferred directly from the magnet device to the restraint, and the magnetic resistance of the magnetic path is minimized. Therefore, the movable part can be restrained particularly firmly at the end position.

可動部を終端位置から解放するためのバネを設けるとよい。各終端位置での保持力はコイルへの適切な電流供給により減少させ、又は無くし得る。しかもバネは可動部が終端位置から開離するのを支援する。バネとして、例えば圧縮バネが適する。圧縮バネの一端を固定配置のバネ座で支持し、他端を拘束装置の、コイルとは反対側端で支持するとよい。   A spring for releasing the movable part from the end position may be provided. The holding force at each end position can be reduced or eliminated by supplying an appropriate current to the coil. In addition, the spring assists in moving the movable part away from the end position. As the spring, for example, a compression spring is suitable. One end of the compression spring may be supported by a fixedly arranged spring seat, and the other end may be supported by an end of the restraining device opposite to the coil.

本発明の他の実施形態では、可動部が軸上に回転可能に支持され、各拘束体が可動部の終端位置で、磁石装置に接続されたストッパに接する。本発明のこの実施形態では、電磁駆動装置はリニアモータではなく、軸を経て回転運動の形で外部へ出力される回転運動を発生する。この実施形態では、磁石装置は、移動磁界を発生する電磁石を備える。   In another embodiment of the present invention, the movable portion is rotatably supported on the shaft, and each restraining body is in contact with a stopper connected to the magnet device at the end position of the movable portion. In this embodiment of the present invention, the electromagnetic drive device is not a linear motor, but generates a rotational motion that is output to the outside through a shaft in the form of a rotational motion. In this embodiment, the magnet device includes an electromagnet that generates a moving magnetic field.

しかし磁石装置が永久磁石を有するヨークを備えると好ましい。その場合、永久磁石で発生した磁束は磁石装置内に形成した切欠き部、即ち空隙を通流する。可動部を中空シリンダ状の空隙にほぼ適合するように形成し、該空隙内に軸によって回転自在に支持する。可動部の導体を励磁することで回転運動が生ずる。導体は、例えば単相電圧を供給される巻線として構成する。しかし、導体は移動磁界を発生するように多相交流で励磁される複数巻線により実現してもよい。終端位置は磁石装置に固定された2つのストッパによる位置決めにより特定する。終端位置領域では、終端位置でストッパの分路を拘束体により行うべく、例えばロッド状に形成した拘束体をその反対側の終端領域でストッパに突き当たらせ得る。そうすることで、磁束は空隙を通流することを強制されるのではなく、ストッパから、より小さな磁気抵抗の拘束体を介して流れるようになる。   However, it is preferred that the magnet device comprises a yoke having a permanent magnet. In that case, the magnetic flux generated by the permanent magnet flows through the notch formed in the magnet device, that is, the air gap. The movable part is formed so as to substantially fit in the hollow cylindrical gap, and is rotatably supported by the shaft in the gap. Exciting the conductor of the movable part causes rotational movement. The conductor is configured as a winding supplied with a single-phase voltage, for example. However, the conductor may be realized by a plurality of windings excited by polyphase alternating current so as to generate a moving magnetic field. The end position is specified by positioning with two stoppers fixed to the magnet device. In the terminal position region, in order to perform the shunting of the stopper at the terminal position by the restraining body, for example, a rod-shaped restraining body can be brought into contact with the stopper in the terminal region on the opposite side. By doing so, the magnetic flux is not forced to flow through the air gap, but flows from the stopper through a smaller magnetoresistive restraint.

可動部を回転対称とし、導体は少なくとも1つの巻線として可動部に設けるとよい。   The movable part may be rotationally symmetric and the conductor may be provided on the movable part as at least one winding.

本発明の他の好ましい実施態様及び利点を、図面を参照して行う以下の実施例に基づいて説明する。なお、対応する構造部分には同一符号を付している。   Other preferred embodiments and advantages of the invention will be described on the basis of the following examples which are made with reference to the drawings. In addition, the same code | symbol is attached | subjected to the corresponding structure part.

図1は、本発明による電磁駆動装置1の第1実施例を示す。図示の電磁駆動装置は、ヨーク2と永久磁石3からなる磁石装置を備え、該磁石装置内に空隙4を設けている。磁石装置2、3と空隙4は、永久磁石3が発生する磁束に対する磁路を形成する。その際、空隙4は磁石装置2、3に比べて高い磁気抵抗を持つ領域となる。磁束又は磁界が貫通する空隙4内に、コイル6と拘束体7からなる可動部5が突出している。コイル6は、例えばプラスチック製の、非導電性のコイル巻枠を備える。巻枠に、互いに接触し、外部に対し絶縁された複数の導体を巻き付けている。コイル6の、空隙4内に突出する部分は、永久磁石3により発生された磁界に曝され、その結果、電流によりコイルを励磁することでローレンツ力が発生し、電流方向に応じて可動部5を空隙4内に引き入れたり、そこから引き出したりするように駆動できる。かくして、例えば中電圧領域の電力開閉装置における遮断ユニット用の駆動運動として適用可能なストローク運動が生ずる。   FIG. 1 shows a first embodiment of an electromagnetic drive device 1 according to the present invention. The illustrated electromagnetic drive device includes a magnet device including a yoke 2 and a permanent magnet 3, and a gap 4 is provided in the magnet device. The magnet devices 2 and 3 and the air gap 4 form a magnetic path for the magnetic flux generated by the permanent magnet 3. At that time, the air gap 4 is a region having a higher magnetic resistance than the magnet devices 2 and 3. A movable part 5 including a coil 6 and a restraint 7 protrudes into a gap 4 through which a magnetic flux or a magnetic field penetrates. The coil 6 includes a non-conductive coil winding frame made of, for example, plastic. A plurality of conductors that are in contact with each other and insulated from the outside are wound around the winding frame. A portion of the coil 6 that protrudes into the gap 4 is exposed to a magnetic field generated by the permanent magnet 3, and as a result, a Lorentz force is generated by exciting the coil with a current, and the movable portion 5 according to the current direction. Can be driven into and out of the gap 4. Thus, for example, a stroke motion that can be applied as a drive motion for the interrupting unit in a power switchgear in the medium voltage range occurs.

可動部5がローレンツ力に基づき空隙4内に引き込まれ、拘束体7とヨーク2との間の間隔の2倍が空隙4の直径より小さくなると、磁路の磁気抵抗が低下し、空隙4が拘束体7によって分路される。拘束体7が軟磁性ヨーク2に完全に接すると、磁束は専ら、高透磁率、即ち小磁気抵抗の材料を経て閉磁路を形成する。この状態は空隙を有する磁路に対しエネルギ的に支援するものである。そのため拘束体7がヨーク2から離れている位置での可動部5の変位に力勾配が逆作用し、拘束体7はヨーク2に拘束される。   When the movable part 5 is drawn into the gap 4 based on the Lorentz force, and the double of the distance between the restraint 7 and the yoke 2 becomes smaller than the diameter of the gap 4, the magnetic resistance of the magnetic path is lowered, and the gap 4 becomes It is shunted by the restraint 7. When the restraint 7 is completely in contact with the soft magnetic yoke 2, the magnetic flux exclusively forms a closed magnetic path through a material having a high magnetic permeability, that is, a small magnetic resistance. This state energetically assists the magnetic path having the air gap. Therefore, the force gradient acts against the displacement of the movable portion 5 at a position where the restraining body 7 is away from the yoke 2, and the restraining body 7 is restrained by the yoke 2.

拘束体7をヨーク2から引き離すべく、図1では模式的に示すバネ8を設けている。バネ8は、例えばコイルバネとして構成し、その一端をヨーク2、他端をコイル6で各々支持している。拘束体7がヨーク2に接すると、バネ8が蓄勢される。コイル6に電流を供給することで、バネ8が可動部5を終端位置から開離させるべく保持力を発生する永久磁石磁界が大きく弱まる。バネ8は更に真空バルブの可動接点に対し固定配置の固定接点に接触する継続的押圧力を発生する。その際、可動部の運動を可動接点に伝えるべく、可動接点を、ロッド装置とレバー装置を経て可動部5に機械的に結合させるとよい。   In order to pull the restraint 7 away from the yoke 2, a spring 8 schematically shown in FIG. 1 is provided. The spring 8 is configured as a coil spring, for example, and has one end supported by the yoke 2 and the other end supported by the coil 6. When the restraint 7 contacts the yoke 2, the spring 8 is stored. By supplying current to the coil 6, the permanent magnet magnetic field that generates a holding force for the spring 8 to separate the movable portion 5 from the end position is greatly weakened. The spring 8 further generates a continuous pressing force that contacts the fixed contact of the fixed arrangement with respect to the movable contact of the vacuum valve. At that time, the movable contact may be mechanically coupled to the movable portion 5 via the rod device and the lever device in order to transmit the movement of the movable portion to the movable contact.

図2は本発明による電磁駆動装置1の第2実施例を示す。図示の実施例では、2つのヨーク片2a、2bからなるヨーク2が2つの空隙4を備えている。ここでは、可動部5は2つのコイル6が各空隙4内に1つずつ位置している。このようにして力作用に対するローレンツ力の負担分が磁気抵抗の減少により高まる。   FIG. 2 shows a second embodiment of the electromagnetic drive device 1 according to the present invention. In the illustrated embodiment, the yoke 2 composed of two yoke pieces 2 a and 2 b includes two gaps 4. Here, in the movable portion 5, two coils 6 are positioned one by one in each gap 4. In this way, the share of the Lorentz force with respect to the force action increases due to the decrease in magnetic resistance.

図3は、本発明による電磁駆動装置1の第3実施例を示す。図1のものと同様に軟磁性ヨーク2に唯一の空隙4を設けている。しかし、図1に示す実施例と異なり、可動部5はコイル6の両側に配置した2つの拘束体7を備えている。そのため、一方の拘束体7が軟磁性ヨーク2に接し、可動部5が拘束位置にある2つの終端位置が特定されるように、可動部5の運動を両側で限定する。両拘束体を引き離すべく、可動部5の運動方向に対し互いに逆向きに作用するよう配置した2つのバネ8を設けており、バネ8は、各一端が対応する拘束体7で、他端はヨーク2に設けたバネ座で支持される。   FIG. 3 shows a third embodiment of the electromagnetic drive device 1 according to the present invention. As in the case of FIG. 1, the soft magnetic yoke 2 is provided with a single gap 4. However, unlike the embodiment shown in FIG. 1, the movable portion 5 includes two restraining bodies 7 disposed on both sides of the coil 6. Therefore, the movement of the movable part 5 is limited on both sides so that one of the restricting bodies 7 is in contact with the soft magnetic yoke 2 and two terminal positions where the movable part 5 is in the restricting position are specified. In order to separate the two restraining bodies, two springs 8 arranged so as to act in opposite directions to the movement direction of the movable portion 5 are provided. The springs 8 are restraining bodies 7 corresponding to one ends, and the other ends are It is supported by a spring seat provided on the yoke 2.

図4は本発明による電磁駆動装置の第4実施例を示す。図2と同様に軟磁性ヨーク2は2つのヨーク片2a、2bからなり、2つの空隙4を備える。可動部5は対応する各空隙内に延びる2つのコイル6を持つ。しかし図2と異なり、図4の可動部5は3つの拘束体7を備える。そのため可動部5は2つの終端位置間でのみ変位可能であり、該位置で各2つの拘束体7が軟磁性ヨーク2に接し、両空隙4を分路する。ここでも拘束体7を引き離すべく、可動部5の運動方向に互いに逆向きに作用する2つの圧力バネ8を設けている。両バネ8は各々一端が拘束体7、他端が図示しない固定配置のバネ座に支持されている。   FIG. 4 shows a fourth embodiment of the electromagnetic drive device according to the present invention. As in FIG. 2, the soft magnetic yoke 2 includes two yoke pieces 2 a and 2 b and includes two gaps 4. The movable part 5 has two coils 6 extending into the corresponding gaps. However, unlike FIG. 2, the movable part 5 of FIG. 4 includes three restraining bodies 7. Therefore, the movable portion 5 can be displaced only between the two end positions, and at each of these positions, the two restraining bodies 7 are in contact with the soft magnetic yoke 2 and shunt the both gaps 4. Again, two pressure springs 8 are provided that act in opposite directions to the direction of movement of the movable part 5 in order to separate the restraint 7. Both springs 8 are supported at one end by a restraint 7 and at the other end by a fixedly arranged spring seat (not shown).

図4は更に真空スイッチ9を示す。該スイッチ9は非導電性で中空シリンダ状のセラミック部10と金属製の端板11、12を備える。端板11を固定配置の固定接点13が貫通しており、該接点13に軸方向に駆動される可動接点14を対向配置している。可動接点14は導電性の開閉ロッド15で保持している。開閉ロッド15は金属製のベローズ16を貫通しており、可動接点は軸方向に自由に運動可能である。セラミック部10、端板11、12並びに金属ベローズ16の間に、真空状態の真空室17を形成している。外部との接続のために模式的にのみ示す端子18を設けている。駆動装置の運動は、レバー19と非導電性材料製の伝動ロッド20を経て真空スイッチ9に伝わる。レバー19は模式的に示す伝動手段21を経て駆動装置1に結合している。接点に対し必要な押圧力を発生すべく、例えば伝動ロッド20に配置した接点押圧バネを設ける。   FIG. 4 further shows a vacuum switch 9. The switch 9 includes a non-conductive hollow cylindrical ceramic portion 10 and metal end plates 11 and 12. A fixed contact 13 arranged in a fixed manner passes through the end plate 11, and a movable contact 14 driven in the axial direction is disposed opposite to the contact 13. The movable contact 14 is held by a conductive opening / closing rod 15. The open / close rod 15 penetrates the metal bellows 16, and the movable contact can freely move in the axial direction. A vacuum chamber 17 in a vacuum state is formed between the ceramic portion 10, the end plates 11 and 12, and the metal bellows 16. A terminal 18 shown only schematically for connection to the outside is provided. The movement of the driving device is transmitted to the vacuum switch 9 through the lever 19 and the transmission rod 20 made of a non-conductive material. The lever 19 is coupled to the driving device 1 through a transmission means 21 schematically shown. In order to generate a necessary pressing force against the contact, for example, a contact pressing spring disposed on the transmission rod 20 is provided.

図4は開閉過程の中間位置での真空スイッチ9を示す。それに対して図示しない接触位置(閉成位置)では、可動接点14が固定接点13に接触して電流の通流を可能にする。その場合、最下端の拘束体7及び中間の拘束体7はヨーク2に接し、もって真空スイッチ9を接触位置に拘束する。従って狭小部に生ずる力に基づき、可動接点14が固定接点13から開離するのを防止できる。しかし最後に開離位置では、上部拘束体7及び中間拘束体7が下部フレーム部でヨーク2に接する。   FIG. 4 shows the vacuum switch 9 at an intermediate position in the opening and closing process. On the other hand, at a contact position (closed position) not shown, the movable contact 14 contacts the fixed contact 13 to allow current to flow. In that case, the lowermost restraint 7 and the middle restraint 7 are in contact with the yoke 2, thereby restraining the vacuum switch 9 at the contact position. Therefore, the movable contact 14 can be prevented from being separated from the fixed contact 13 based on the force generated in the narrow portion. However, finally, in the open position, the upper restraint body 7 and the intermediate restraint body 7 are in contact with the yoke 2 at the lower frame portion.

図3と4に示す実施例では、拘束体7の影響、即ちリラクタンス力成分がローレンツ力に対して増大する。   In the embodiment shown in FIGS. 3 and 4, the influence of the restraint 7, that is, the reluctance force component increases with respect to the Lorentz force.

図5は本発明による電磁駆動装置1の第5実施例を示す。ここに示す電磁駆動装置1は軟磁性ヨーク2と2つの永久磁石3からなる磁石装置を備える。磁石装置は略フレーム状をなし、打抜き楔状の、互いに対向位置に配置された2つの突出部22を備える。両突出部22は空隙4を画定する。可動部5は図5には示さない軸で空隙4内に回転自在に支持され、巻線として構成された導体、即ちコイル6を備えている。コイル6は、ここでは三相電源のうちの1相のみによって励磁される。   FIG. 5 shows a fifth embodiment of the electromagnetic drive device 1 according to the present invention. The electromagnetic drive device 1 shown here includes a magnet device composed of a soft magnetic yoke 2 and two permanent magnets 3. The magnet device has a substantially frame shape, and is provided with two protrusions 22 in a punched wedge shape and arranged at positions facing each other. Both protrusions 22 define a gap 4. The movable portion 5 is rotatably supported in the gap 4 by an axis not shown in FIG. 5 and includes a conductor configured as a winding, that is, a coil 6. Here, the coil 6 is excited by only one phase of the three-phase power source.

更に可動部5に、上記と同様の打抜き楔状の2つの拘束体7を設け、それを可動部5の互いに反対側で可動部5に強固に結合している。   Furthermore, the movable part 5 is provided with two punched wedge-like restraints 7 similar to those described above, and these are firmly coupled to the movable part 5 on opposite sides of the movable part 5.

永久磁石3で発生した磁束は極小磁気抵抗通路を選択し、突出部22から可動部5とコイル6を通って流れる。コイル6を励磁することで、ローレンツ力に基づき可動部5が回転運動を開始し、かくして電気開閉設備の真空スイッチバルブのための駆動力を生ずる。真空スイッチバルブの開閉接点の接触位置では、互いに反対側に位置する拘束体7が突出部22に接し、その結果磁束が突出部22、拘束体7及び可動部5を通流する。この際、空隙4の分路に対する磁気抵抗を減少すべく拘束体7を強磁性材料で作る。その結果電磁駆動装置1の終端位置がリラクタンス力によって拘束される。   The magnetic flux generated by the permanent magnet 3 selects the minimal magnetoresistive path and flows from the protruding portion 22 through the movable portion 5 and the coil 6. Exciting the coil 6 causes the movable part 5 to start rotating based on the Lorentz force, thus generating a driving force for the vacuum switch valve of the electrical switching equipment. At the contact position of the open / close contact of the vacuum switch valve, the restraining body 7 located on the opposite side contacts the projecting portion 22, and as a result, the magnetic flux flows through the projecting portion 22, the restraining body 7 and the movable portion 5. At this time, the restraint 7 is made of a ferromagnetic material so as to reduce the magnetic resistance with respect to the shunt of the gap 4. As a result, the terminal position of the electromagnetic drive device 1 is restrained by the reluctance force.

本発明による電磁駆動装置の第1実施例を側面方向から見た配置図である。It is the layout which looked at 1st Example of the electromagnetic drive device by this invention from the side surface direction. 本発明による電磁駆動装置の第2実施例を側面方向から見た配置図である。It is the layout which looked at 2nd Example of the electromagnetic drive device by this invention from the side surface direction. 本発明による電磁駆動装置の第3実施例を側面方向から見た配置図である。It is the layout which looked at 3rd Example of the electromagnetic drive device by this invention from the side surface direction. 本発明による電磁駆動装置の第4実施例を側面方向から見た配置図である。It is the layout which looked at 4th Example of the electromagnetic drive device by this invention from the side surface direction. 本発明による電磁駆動装置の第5実施例を上面方向から見た配置図である。It is the layout which looked at 5th Example of the electromagnetic drive device by this invention from the upper surface direction.

符号の説明Explanation of symbols

1 電磁駆動装置、2 ヨーク、2a、2b ヨーク片、3 永久磁石、4 空隙、5 可動部、6 コイル、7 拘束体、8 バネ、9 真空スイッチ、10 セラミックス部、11、12 端板、13 固定接点、14 可動接点、15 開閉ロッド、16 ベローズ、17 真空室、18 端子、19 レバー、20 伝動ロッド、21 伝動手段、22 突出部 DESCRIPTION OF SYMBOLS 1 Electromagnetic drive device, 2 yoke, 2a, 2b yoke piece, 3 permanent magnet, 4 space | gap, 5 movable part, 6 coil, 7 restraint body, 8 spring, 9 vacuum switch, 10 ceramic part, 11, 12 end plate, 13 Fixed contact, 14 Movable contact, 15 Open / close rod, 16 Bellows, 17 Vacuum chamber, 18 Terminal, 19 Lever, 20 Transmission rod, 21 Transmission means, 22 Projection

Claims (7)

空隙を画定する少なくとも1つの磁石装置(2、3)と、該空隙(4)内に配置され、前記磁石装置に対して動くように案内される可動部(5)と、少なくとも1つの永久磁石と、電流を流し得る少なくとも1つの導体(6)とを備え、前記可動部(5)の運動により、前記導体(6)が前記永久磁石によって発生される磁界内に少なくとも部分的に達する開閉器用の電磁駆動装置(1)において、
前記可動部(5)が少なくとも1つの軟磁性拘束体(7)に固定され、前記永久磁石(3)によって発生された磁束が前記可動部(5)の終端位置で前記拘束体(7)を通して流れ、しかも前記空隙(4)が前記磁束に対し前記拘束体(7)によって分路されることを特徴とする電磁駆動装置。
At least one magnet device (2, 3) defining a gap, a movable part (5) arranged in the gap (4) and guided to move relative to the magnet device, and at least one permanent magnet And at least one conductor (6) capable of carrying an electric current, and for the switch that the conductor (6) reaches at least partially in the magnetic field generated by the permanent magnet by the movement of the movable part (5) In the electromagnetic drive device (1) of
The movable part (5) is fixed to at least one soft magnetic restraint (7), and the magnetic flux generated by the permanent magnet (3) passes through the restraint (7) at the terminal position of the movable part (5). An electromagnetic driving device characterized in that the flow (4) is shunted by the restraint (7) with respect to the magnetic flux.
前記可動部(5)が導体を巻き付けた巻枠を有する少なくとも1つのコイル(6)を備え、前記各拘束体が前記コイル(6)の端面に結合されたことを特徴とする請求項1記載の電磁駆動装置。   The said movable part (5) is provided with the at least 1 coil (6) which has the winding frame which wound the conductor, and each said restraint body was couple | bonded with the end surface of the said coil (6). Electromagnetic drive device. 前記磁石装置が前記永久磁石(3)と軟磁性ヨーク(2)を含み、各永久磁石(3)により発生された磁束が前記ヨーク(2)を通流することを特徴とする請求項1又は2記載の電磁駆動装置。   The magnet device includes the permanent magnet (3) and a soft magnetic yoke (2), and the magnetic flux generated by each permanent magnet (3) flows through the yoke (2). 2. The electromagnetic drive device according to 2. 前記各拘束体(7)がその終端位置で前記軟磁性ヨーク(2)に接することを特徴とする請求項3記載の電磁駆動装置。   The electromagnetic drive device according to claim 3, wherein each of the restraining bodies (7) is in contact with the soft magnetic yoke (2) at a terminal position thereof. 前記可動部(5)を終端位置から解放するために少なくとも1つのバネ(8)が設けられたことを特徴とする請求項1から4の1つに記載の電磁駆動装置。   5. Electromagnetic drive according to one of claims 1 to 4, characterized in that at least one spring (8) is provided to release the movable part (5) from the end position. 前記可動部(5)が軸上に支持されて回転可能であり、前記各拘束体が前記可動部の終端位置で、前記磁石装置に結合されたストッパに接することを特徴とする請求項1記載の電磁駆動装置。   The said movable part (5) is supported on an axis | shaft, is rotatable, and each said restraint body contacts the stopper couple | bonded with the said magnet apparatus in the terminal position of the said movable part. Electromagnetic drive device. 前記可動部(5)が回転対称に形成され、前記導体が少なくとも1つの巻線として前記可動部(5)に設けられたことを特徴とする請求項6記載の電磁駆動装置。

The electromagnetic drive device according to claim 6, wherein the movable part (5) is formed rotationally symmetrically, and the conductor is provided on the movable part (5) as at least one winding.

JP2004561056A 2002-12-19 2003-12-18 Electromagnetic drive device Pending JP2006511047A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10261811A DE10261811B4 (en) 2002-12-19 2002-12-19 Electromagnetic drive
PCT/DE2003/004205 WO2004057637A1 (en) 2002-12-19 2003-12-18 Electromagnetic actuator

Publications (1)

Publication Number Publication Date
JP2006511047A true JP2006511047A (en) 2006-03-30

Family

ID=32519554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004561056A Pending JP2006511047A (en) 2002-12-19 2003-12-18 Electromagnetic drive device

Country Status (7)

Country Link
US (1) US20060049901A1 (en)
EP (1) EP1573766B1 (en)
JP (1) JP2006511047A (en)
CN (1) CN100334670C (en)
DE (2) DE10261811B4 (en)
RU (1) RU2322724C2 (en)
WO (1) WO2004057637A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877762B1 (en) * 2004-11-08 2007-07-13 Schneider Electric Ind Sas ELECTROMAGNETIC ACTUATOR WITH MOBILE COIL
DE202008015980U1 (en) * 2008-12-03 2010-04-29 Eto Magnetic Gmbh Electromagnetic actuator device
DE102011053289A1 (en) * 2011-09-06 2013-03-07 Contitech Vibration Control Gmbh actuator
CN103715009B (en) * 2013-12-12 2016-08-17 库柏爱迪生(平顶山)电子科技有限公司 A kind of bistable-state permanent magnet mechanism
KR101547029B1 (en) * 2013-12-27 2015-08-24 순천향대학교 산학협력단 Electro magnetic force driving device
KR101541226B1 (en) * 2013-12-27 2015-08-03 순천향대학교 산학협력단 Electro magnetic force driving device
WO2016120881A1 (en) * 2015-02-01 2016-08-04 K.A. Advertising Solutions Ltd. Electromagnetic actuator
CN105129719B (en) * 2015-07-06 2017-02-01 中国科学院半导体研究所 Bidirectionally tandem MEMS actuator based on Lorentz force
JP6421745B2 (en) * 2015-12-11 2018-11-14 オムロン株式会社 relay
JP6575343B2 (en) 2015-12-11 2019-09-18 オムロン株式会社 relay
US10726985B2 (en) * 2018-03-22 2020-07-28 Schaeffler Technologies AG & Co. KG Multi-stage actuator assembly
FR3079341B1 (en) 2018-03-23 2023-01-27 Etna Ind ELECTROMECHANICAL ACTUATOR FOR A HIGH VOLTAGE ELECTRICAL INSTALLATION CIRCUIT BREAKER

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1019861A (en) * 1964-05-01 1966-02-09 Creed & Co Ltd Improvements in transducer arrangements
US4751487A (en) * 1987-03-16 1988-06-14 Deltrol Corp. Double acting permanent magnet latching solenoid
FR2625382A1 (en) * 1987-12-23 1989-06-30 Aerospatiale MAGNETIC LOCKED STOP
GB9318876D0 (en) * 1993-09-11 1993-10-27 Mckean Brian A bistable permanent magnet actuator for operation of circuit breakers
DE19815538A1 (en) * 1998-03-31 1999-10-07 Siemens Ag Drive devices for interrupter units of switching devices for energy supply and distribution
JP2000268683A (en) * 1999-01-14 2000-09-29 Toshiba Corp Operating device for switch
FR2793944B1 (en) * 1999-05-20 2001-07-13 Schneider Electric Ind Sa OPENING AND / OR CLOSING CONTROL DEVICE, PARTICULARLY FOR A BREAKING APPARATUS SUCH AS A CIRCUIT BREAKER, AND CIRCUIT BREAKER PROVIDED WITH SUCH A DEVICE
JP4223657B2 (en) * 2000-02-10 2009-02-12 株式会社東芝 Rotating operation mechanism of switch

Also Published As

Publication number Publication date
DE10261811A1 (en) 2004-07-15
CN100334670C (en) 2007-08-29
EP1573766B1 (en) 2009-02-25
DE10261811B4 (en) 2005-01-20
DE50311231D1 (en) 2009-04-09
RU2322724C2 (en) 2008-04-20
WO2004057637A1 (en) 2004-07-08
RU2005122646A (en) 2006-02-10
CN1729548A (en) 2006-02-01
US20060049901A1 (en) 2006-03-09
EP1573766A1 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
US9595411B2 (en) Electromagnetic relay
KR101396609B1 (en) Electromagnetic relay
JP4066040B2 (en) Electromagnet and operation mechanism of switchgear using the same
CN105720777B (en) Electromagnetic actuator and method of use
KR101362009B1 (en) Hybrid electromagnetic actuator
JP2006511047A (en) Electromagnetic drive device
JP4667664B2 (en) Power switchgear
JP2012151114A (en) Electric switch device
JP2006222438A (en) Electromagnet and operating mechanism of switching device using the same
JP2006520517A (en) Magnetic linear drive
CN103189939B (en) There is the magnetic actuator of non magnetic insert
US20210125796A1 (en) Medium voltage circuit breaker with vacuum interrupters and a drive and method for operating the same
US6906605B2 (en) Electromagnet system for a switch
KR20110012272A (en) Electro magnetic actuator using permanent magnetics and driving apparatus with the same
JP4158876B2 (en) Power switchgear operating device
JP4629271B2 (en) Operation device for power switchgear
JP2002217026A (en) Electromagnet and operating mechanism of switchgear using the electromagnet
JP2008166392A (en) Electromagnetic actuator and switch
JP2006294449A (en) Switching device and electromagnetic actuator
RU2324252C2 (en) Electromagnetic drive for switching devices
EP3900003B1 (en) Electromagnetic drive unit for a switching device and switching device
CN110748690B (en) Valve with energy-saving electric actuator
JP2003016882A (en) Operating device for power switchgear
JP2016025169A (en) Operating unit or power switching device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080821