JP2006503879A - Method for obtaining a cell line in a protein-free medium and the cell line thus obtained - Google Patents

Method for obtaining a cell line in a protein-free medium and the cell line thus obtained Download PDF

Info

Publication number
JP2006503879A
JP2006503879A JP2004545689A JP2004545689A JP2006503879A JP 2006503879 A JP2006503879 A JP 2006503879A JP 2004545689 A JP2004545689 A JP 2004545689A JP 2004545689 A JP2004545689 A JP 2004545689A JP 2006503879 A JP2006503879 A JP 2006503879A
Authority
JP
Japan
Prior art keywords
protein
protein concentration
cell line
cells
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004545689A
Other languages
Japanese (ja)
Other versions
JP4674087B2 (en
Inventor
ペレス・ロドリゲス,ロランド
カステイロ・ビトロシユ,アドルフ
ビトレス・サラゾラ,スビエタ
ボジヤノ・アヨ,タミー
ロハス・デル・カルボ,ルイス
Original Assignee
セントロ・デ・インミユノロジア・モレキユラー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントロ・デ・インミユノロジア・モレキユラー filed Critical セントロ・デ・インミユノロジア・モレキユラー
Publication of JP2006503879A publication Critical patent/JP2006503879A/en
Application granted granted Critical
Publication of JP4674087B2 publication Critical patent/JP4674087B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2803Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
    • C07K16/2809Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2896Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0693Tumour cells; Cancer cells
    • C12N5/0694Cells of blood, e.g. leukemia cells, myeloma cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2500/00Specific components of cell culture medium
    • C12N2500/90Serum-free medium, which may still contain naturally-sourced components
    • C12N2500/95Protein-free medium and culture conditions
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • C12N2510/02Cells for production

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Oncology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Cell Biology (AREA)
  • Hematology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本発明は血清および蛋白質非含有培地中で増殖するように適応される哺乳動物細胞を得る方法に関する。本発明の方法はその間に細胞が蛋白質非含有培地中で生存する能力を獲得しなければならない臨界蛋白質濃度範囲を含んで成る2適応段階から成る方法を含む。各細胞株に対し特定の臨界蛋白質濃度範囲が存在する。本発明は更に、少なくとも40世代にわたり血清および蛋白質非含有培地中で安定な方法で増殖する哺乳動物の細胞株に関する。本発明は更に、抗−CD6T1hTおよびEGFhR抗受容体ヒト化抗体および抗−CDQキメラ抗体並びに前記抗体の断片を発現するクローンに関する。The present invention relates to a method for obtaining mammalian cells adapted to grow in serum and protein free media. The method of the present invention includes a method consisting of two adaptation steps comprising a critical protein concentration range during which the cells must acquire the ability to survive in protein-free medium. There is a specific critical protein concentration range for each cell line. The invention further relates to mammalian cell lines that grow in a stable manner in serum and protein free media for at least 40 generations. The invention further relates to anti-CD6T1hT and EGFhR 3 anti-receptor humanized antibodies and anti-CD 3 T 3 Q chimeric antibodies and clones expressing fragments of said antibodies.

Description

本発明はバイオテクノロジー、特に2段階適応方法による、血清−および蛋白質−非含有培地に適応された安定な細胞クローンを回収する方法に関する。   The present invention relates to a method for recovering stable cell clones adapted to serum- and protein-free media by biotechnology, in particular a two-step adaptation method.

哺乳動物細胞のインビトロの培養の開発以来、それらがもたらす多数の製品の診断的および治療的可能性のために、これらの細胞の大規模な生産の需要が増加した。これらの有用な物質にはモノクロナール抗体、ヒト成長ホルモン、リンホカイン、エリスロポイエチン、血液凝固因子および組織プラスミノーゲン活性化物質が含まれる。   Since the development of in vitro cultures of mammalian cells, the demand for large-scale production of these cells has increased due to the diagnostic and therapeutic potential of the numerous products they provide. These useful substances include monoclonal antibodies, human growth hormone, lymphokine, erythropoietin, blood clotting factor and tissue plasminogen activator.

異なる疾患の治療およびインビボ診断のための組換えモノクロナール抗体(rMab)の使用は多数の場合、高用量の処置の使用を意味する。この事実が非常に高い純度をもつ大量の問題のrMabの生産を必要にさせる。   The use of recombinant monoclonal antibodies (rMab) for the treatment of different diseases and in vivo diagnosis often means the use of high dose treatments. This fact necessitates the production of large quantities of problematic rMabs with very high purity.

癌および自己免疫疾患の治療および診断における可能な使用を伴う幾つかの組換えモノクロナール抗体が分子免疫学センター(Center of Molecular Immunology)においてNSO骨髄腫細胞中に発現されてきた。特許文献1は前記受容体を発現する腫瘍の診断および治療に有用な表皮成長因子受容体(EGF−R)に対するキメラおよびヒト化抗体の獲得につき記載している(特許文献1参照)。特許文献2は乾癬を罹患する患者の診断および治療に有用な抗−CD6モノクロナール抗体につき記載している(特許文献2参照)。Gavilondo等はIOR−T3aと呼ばれる抗−CD3モノクロナール抗体を報告した(非特許文献1参照)。   Several recombinant monoclonal antibodies with possible use in the treatment and diagnosis of cancer and autoimmune diseases have been expressed in NSO myeloma cells at the Center of Molecular Immunology. Patent Document 1 describes the acquisition of chimeric and humanized antibodies against epidermal growth factor receptor (EGF-R) useful for diagnosis and treatment of tumors expressing the receptor (see Patent Document 1). Patent Document 2 describes an anti-CD6 monoclonal antibody useful for diagnosis and treatment of patients suffering from psoriasis (see Patent Document 2). Gavilondo et al. Reported an anti-CD3 monoclonal antibody called IOR-T3a (see Non-Patent Document 1).

蛋白質非含有培養状態については、様々な技術が開発されてきた。従って、蛋白質非含有条件下で細胞増殖を可能にする、具体的に定義された完全に蛋白質非含有培地が開発されてきた。   Various techniques have been developed for protein-free culture conditions. Thus, specifically defined completely protein-free media have been developed that allow cell growth under protein-free conditions.

特許文献3は蛋白質非含有条件下における組換え蛋白質の発現につき記載している(特許文献3参照)。   Patent Document 3 describes the expression of a recombinant protein under protein-free conditions (see Patent Document 3).

特許文献4は宿主細胞の産生能力を増加するために非イオン性界面活性剤もしくはシクロデキストリンを添加することによるCHO細胞中の第VIII因子の産生のための蛋白質非含有培地の使用につき記載している(特許文献4参照)。これらの添加剤の効果を増強するために、例えばブチレートおよびリチウムの添加が推奨されている。   U.S. Patent No. 6,057,031 describes the use of a protein-free medium for the production of factor VIII in CHO cells by adding a nonionic surfactant or cyclodextrin to increase the production capacity of the host cell. (See Patent Document 4). In order to enhance the effect of these additives, for example, addition of butyrate and lithium is recommended.

特許文献5はその遊離アミノ酸含量が蛋白質の総重量の15%未満であり、そのペプチドが44kD未満の分子量を有するグルタミン含有蛋白質加水分解物を含有する培地中での細胞培養につき記載している(特許文献5参照)。細胞培養のための培地としては、それにはとりわけ、胎児コウシ血清、ゲンタマイシンおよびメルカプト−エタノールが蛋白質加水分解物に加えて添加されている基礎培地として、合成の最少の培地が使用される。血液因子の組換え産生のためのこの血清含有培地の使用は言及されなかった。   Patent Document 5 describes cell culture in a medium containing a glutamine-containing protein hydrolyzate whose free amino acid content is less than 15% of the total weight of the protein and whose peptide has a molecular weight of less than 44 kD ( (See Patent Document 5). As a medium for cell culture, a minimally synthetic medium is used as a basal medium in which fetal calf serum, gentamicin and mercapto-ethanol are added in addition to the protein hydrolyzate, among others. The use of this serum-containing medium for recombinant production of blood factors was not mentioned.

特許文献6は蛋白質非含有条件下で付着性細胞の増殖を可能にする特別な合成表面につき記載している(特許文献6参照)。   Patent Document 6 describes a special synthetic surface that enables the growth of adherent cells under protein-free conditions (see Patent Document 6).

細胞増殖を刺激するために、ヒトインスリンを過剰発現するCHO細胞が、インスリンがそれに共有結合される人工的基質上で増殖された(非特許文献2参照)。   To stimulate cell proliferation, CHO cells overexpressing human insulin were grown on an artificial substrate to which insulin is covalently bound (see Non-Patent Document 2).

Reiter等は、担体上の高密度の血清含有培地中で最初に増殖されたr−CHO細胞の固定化および、細胞培養上澄み液中への蛋白質の連続的放出が認められる産生相中の、蛋白質非含有培地中での固定化細胞のその後の潅流培養につき記載している(非特許文献3参照)。そこで、細胞は蛋白質非含有培地中に10世代未満維持された。   Reiter et al. Described a protein in a production phase in which immobilization of r-CHO cells initially grown in a high-density serum-containing medium on a carrier and continuous release of the protein into the cell culture supernatant were observed. It describes the subsequent perfusion culture of immobilized cells in a non-containing medium (see Non-Patent Document 3). Thus, cells were maintained in a protein-free medium for less than 10 generations.

連続細胞株、とりわけVERO細胞に対する、蛋白質非含有条件下の大規模細胞培養物の有効な調製の先行方法が記載されている(特許文献7参照)。そこでは細胞が最初のアンプルから工業的な大規模の1200リットルまでの血清および蛋白質非含有条件下で増殖される。   Prior methods for the effective preparation of large-scale cell cultures under protein-free conditions for continuous cell lines, especially VERO cells, have been described (see Patent Document 7). There, cells are grown under serum and protein free conditions from the original ampoule to industrial large scale 1200 liters.

当初、血清含有条件下で増殖された細胞を蛋白質非含有培地に適応させることは通常、長時間を要する、むしろ面倒な過程であり、更に、発現蛋白質の収率および組換えCHO細胞の産生率は血清含有条件に比較して蛋白質非含有培地中への適応後に著しく低下することが繰り返し認められた(非特許文献4参照)。これは変化した培養条件による組換えクローンの不安定性もしくは増殖低下の結果である。安定な最初のクローンの使用にもかかわらず、変化された発酵条件のために大部分の細胞は繰り返して、減少した発現を伴う細胞もしくは非産生細胞になり、それが産生過程中に産生細胞を駆逐し、それにより発酵細胞の培養体は最終的に、大部分、非産生細胞もしくは低い発現を有するような細胞から成る。
米国特許第5,891,996号明細書 国際公開第97/19111号パンフレット 国際公開第97/05240号パンフレット 特開平2−696001号公報 国際公開第96/26266号パンフレット 米国特許第5,393,668号明細書 国際公開第96/15231号パンフレット Gavilondo et al.Hybridoma 9 No.5,1999 Ito et al.1996 PNAS U.S.A.93:3598−3601 Reiter et al.,1992,Cytotechnology 9:247−253 Paterson et al.1994.Appl.Microbiol.Biotechnol.40:691−658
Initially, adapting cells grown under serum-containing conditions to a protein-free medium is usually a time-consuming rather rather tedious process, and also the yield of expressed protein and the production rate of recombinant CHO cells. Was repeatedly observed to be significantly reduced after adaptation to a protein-free medium as compared to serum-containing conditions (see Non-Patent Document 4). This is a result of instability or reduced growth of recombinant clones due to altered culture conditions. Despite the use of a stable initial clone, due to the altered fermentation conditions, most cells will repeatedly become cells with reduced expression or non-producing cells, which produce cells during the production process. Expelled so that the culture of fermented cells finally consists mostly of non-producing cells or cells with low expression.
US Pat. No. 5,891,996 International Publication No. 97/19111 Pamphlet International Publication No. 97/05240 Pamphlet JP-A-2-696001 International Publication No. 96/26266 Pamphlet US Pat. No. 5,393,668 International Publication No. 96/15231 Pamphlet Gavilondo et al. Hybridoma 9 No. 5,1999 Ito et al. 1996 PNAS U. S. A. 93: 3598-3601 Reiter et al. , 1992, Cytotechnology 9: 247-253. Paterson et al. 1994. Appl. Microbiol. Biotechnol. 40: 691-658

本発明において、血清および蛋白質非含有培地に適応された安定な細胞株を開発する方法が確立された。この方法に従って、幾つかのクローンが蛋白質非含有培地中で単離された。
蛋白質非含有培地への細胞株の2段階の適応
本方法は血清を補助添加されたもしくは血清非含有培地から蛋白質非含有培地への適応の直接的方法を実施することができない哺乳動物の細胞株を含んで成る。
In the present invention, a method for developing a stable cell line adapted to serum and protein-free medium has been established. According to this method, several clones were isolated in protein-free medium.
Two-step adaptation of cell lines to protein-free medium This method is a mammalian cell line that is not able to carry out the direct method of adaptation from serum-free medium to protein-free medium with serum supplementation Comprising.

本発明の方法は蛋白質非含有培地(PFM)への細胞株の適応中の2段階の過程から成る。   The method of the invention consists of a two-step process during the adaptation of the cell line to protein-free medium (PFM).

非臨界段階と考えられる第1段階:蛋白質含量の減少が細胞生存率の喪失を伴わずに起り、蛋白質濃度の各段階における集団倍加時間の重大な減少はない。非臨界段階は通常5〜0.5mg/mLの間の培地中蛋白質濃度で認められ、培養物は最初の培地中とほとんど同様な増殖速度を示す。   First stage, considered a non-critical stage: The decrease in protein content occurs without loss of cell viability, and there is no significant reduction in population doubling time at each stage of protein concentration. The non-critical stage is usually observed at protein concentrations in the medium between 5 and 0.5 mg / mL, and the culture shows a growth rate almost similar to that in the original medium.

この第1段階は80〜100%の間の細胞株生存率を伴って開始し、細胞は、細胞生存率が0%に低下する臨界蛋白質濃度まで、連続的な蛋白質濃度減少を伴う培地中で増殖される。この蛋白質濃度が次の段階の出発点である。   This first phase begins with a cell line viability between 80-100%, and the cells are in a medium with a continuous protein concentration reduction to a critical protein concentration at which the cell viability drops to 0%. Proliferated. This protein concentration is the starting point for the next step.

臨界段階と考えられる第2段階:この段階においては、細胞生存率および細胞の集団倍加時間の減少がおこり、蛋白質濃度の1段階からもう1つの段階に適応するために時間がよりかかるであろう。適応過程中にバイパスできない培地中の臨界蛋白質濃度が存在する。これらの臨界蛋白質濃度は各組換え細胞株に特異的であるが、通常、0.6mg/mL未満である。細胞が一旦これらの臨界蛋白質濃度で最初の生存率および増殖速度を回復した後は、より低い蛋白質濃度をもつ(follow)条件に継代培養することができる。   Second stage, considered critical stage: In this stage, cell viability and cell population doubling time will decrease, and it will take more time to adapt from one stage of protein concentration to another . There are critical protein concentrations in the medium that cannot be bypassed during the adaptation process. These critical protein concentrations are specific for each recombinant cell line, but are usually less than 0.6 mg / mL. Once cells have recovered their initial viability and growth rate at these critical protein concentrations, they can be subcultured to conditions with lower protein concentrations.

一旦臨界蛋白質濃度が固定されると、細胞の増殖を支持する閉じられた(closed)より高い蛋白質濃度が臨界前蛋白質濃度と考えられる。臨界前蛋白質濃度から出発して、それは細胞が最初の生存率および増殖速度を回復するまで緩徐に低下される。   Once the critical protein concentration is fixed, a protein concentration higher than the closed that supports cell growth is considered the pre-critical protein concentration. Starting from the pre-critical protein concentration, it is slowly lowered until the cells recover their initial viability and growth rate.

臨界段階において蛋白質濃度を減少させる段階の選択される組み合わせは、次の関係:
adapt.=Δ蛋白質濃度/ΔTadapt.
として計算される、この段階における総適応時間および適応速度(Vadapt.)を決定するであろう。しかし、この段階の組み合わせは臨界濃度を含む各蛋白質濃度に対する適応に要する時間に対しては影響をもたないであろう。非臨界段階の最後および臨界蛋白質濃度を決定するためには、毎回蛋白質濃度を2倍に減少することにより、所望の蛋白質非含有培地中の細胞培養物の連続的希釈による、段階的適応を実施することが必要である(表1)。この減少は血清濃度の減少もしくは異なるレベルの何か蛋白質濃度の高い血清代用物を基礎培地に補助添加することにより実施することができる。
The selected combination of steps to reduce the protein concentration in the critical step has the following relationship:
V adapt. = Δ protein concentration / ΔT adapt.
Will determine the total adaptation time and adaptation speed (V adapt. ) At this stage. However, this combination of steps will not affect the time required to adapt to each protein concentration, including the critical concentration. To determine the end of the non-critical stage and the critical protein concentration, stepwise adaptation is performed by serial dilution of the cell culture in the desired protein-free medium by doubling the protein concentration each time It is necessary to do (Table 1). This reduction can be accomplished by reducing serum concentration or supplementing the basal medium with a serum substitute with a different protein level at a different level.

Figure 2006503879
Figure 2006503879

適応法を開始する前に、細胞は通常細胞を培養するために使用される標準培地中でT−フラスコ中で80%を超える生存率を伴って維持されなければならない。   Before initiating the adaptation method, the cells must be maintained with a viability in excess of 80% in the T-flask in the standard medium normally used to culture the cells.

適応法は下記の段階に従って段階毎に実施される。   The adaptation method is carried out step by step according to the following steps.

i.標準細胞培地(最初の蛋白質濃度をもつ)を使用する組換え細胞株で6−ウェルの培養プレート中の3ウェルに播種する。細胞密度は1〜5×10細胞/mLの範囲内になければならない。48時間後に、上澄み液の半分を新鮮な、蛋白質非含有培地により置き換え、それにより出発状態の50%の最終蛋白質濃度を与える。 i. Seed in 3 wells in a 6-well culture plate with recombinant cell line using standard cell culture medium (with initial protein concentration). The cell density should be in the range of 1-5 × 10 5 cells / mL. After 48 hours, half of the supernatant is replaced with fresh, protein-free medium, thereby giving a starting protein concentration of 50%.

ii.48時間毎に、上澄み液を出発状態の50%の蛋白質濃度をもつ新鮮な培地により完全に置き換える。   ii. Every 48 hours, the supernatant is completely replaced with fresh medium with a starting protein concentration of 50%.

iii.細胞をこの蛋白質濃度下で集密状態まで増殖させる。   iii. Cells are grown to confluence under this protein concentration.

iv.段階iii.からの細胞を出発状態の50%の蛋白質濃度をもつ培地中1〜5×10細胞/mLの範囲内の密度で少なくとも3ウェルに播種する。48時間後に、上澄み液の半分を新鮮な、蛋白質非含有培地により置き換え、それにより前の状態の50%の最終蛋白質濃度を与える。 iv. Stage iii. Are seeded in at least 3 wells at a density in the range of 1-5 × 10 5 cells / mL in medium with a starting 50% protein concentration. After 48 hours, half of the supernatant is replaced with fresh, protein-free medium, thereby giving a final protein concentration of 50% of the previous state.

v.48時間毎に、上澄み液を前の状態の50%の蛋白質濃度をもつ新鮮な培地により完全に置き換える。   v. Every 48 hours, the supernatant is completely replaced with fresh medium with a protein concentration of 50% of the previous state.

vi..細胞をこの蛋白質濃度下で集密状態まで増殖させる。   vi. . Cells are grown to confluence under this protein concentration.

vii.(iv)〜(vi)の段階を繰り返し、各サイクル中蛋白質濃度を前のサイクルの濃度の50%まで減少させる。細胞死をもたらす蛋白質濃度に到達するまでこの方法を繰り返す。   vii. Repeat steps (iv)-(vi) to reduce the protein concentration during each cycle to 50% of the concentration of the previous cycle. This method is repeated until a protein concentration that results in cell death is reached.

viii.2〜6×10細胞/mLの範囲内の密度で、少なくとも3ウェル中に、臨界前蛋白質濃度中に増殖する、80%以上の生存率を伴う細胞培養物からの細胞を播種する。細胞は臨界前蛋白質濃度中で増殖し、48時間後に上澄み液の25%を新鮮な、蛋白質非含有培地により置き換え、これによりそれを臨界前蛋白質濃度の75%の最終蛋白質濃度にさせる。 viii. Seed cells from a cell culture with a viability of 80% or higher, growing in a pre-critical protein concentration, in at least 3 wells at a density in the range of 2-6 × 10 5 cells / mL. The cells grow in the pre-critical protein concentration and after 48 hours, 25% of the supernatant is replaced with fresh, protein-free medium, which brings it to a final protein concentration of 75% of the pre-critical protein concentration.

ix.48時間毎に上澄み液を臨界前蛋白質濃度の75%の蛋白質濃度をもつ新鮮な培地により完全に置き換える。   ix. Every 48 hours, the supernatant is completely replaced with fresh medium with a protein concentration of 75% of the precritical protein concentration.

x.細胞をこの蛋白質濃度下で集密状態まで増殖させる。
xi.段階(x)からの細胞を臨界前蛋白質濃度の75%の蛋白質濃度をもつ培地中に2〜6×10細胞/mLの範囲内の密度で少なくとも3ウェル中に播種する。48時間後に上澄み液の25%を新鮮な、蛋白質非含有培地により置き換え、これによりそれを前段階の濃度の75%の最終蛋白質濃度にさせる。
x. Cells are grown to confluence under this protein concentration.
xi. Cells from step (x) are seeded in at least 3 wells at a density in the range of 2-6 × 10 5 cells / mL in a medium having a protein concentration of 75% of the precritical protein concentration. After 48 hours, 25% of the supernatant is replaced with fresh, protein-free medium, which brings it to a final protein concentration of 75% of the previous concentration.

xii.48時間毎に上澄み液を段階(x)の濃度の75%の蛋白質濃度をもつ新鮮な培地により完全に置き換える。   xii. Every 48 hours the supernatant is completely replaced with fresh medium with a protein concentration of 75% of the concentration of step (x).

xiii.細胞をこの蛋白質濃度下で集密状態まで増殖させる。
xiv.(xi)〜(xiii)の段階を繰り返し、各サイクル中、蛋白質濃度を前のサイクルの濃度の75%まで減少させ、次にこの方法を、細胞生存率のあらゆる喪失および集団倍加時間の減少を引き起こさない蛋白質濃度に到達するまで繰り返す。細胞をより低い蛋白質濃度をもつ培地に移し、それらは細胞生存率のあらゆる喪失および第1継代培養前の集団培養時間の減少を伴わずに増殖することができる時に、細胞は再度、非臨界段階に到達したと考えられ、蛋白質非含有培地(0mg/mLの蛋白質濃度)中にそれを直接播種する。
xiii. Cells are grown to confluence under this protein concentration.
xiv. Repeat steps (xi)-(xiii) and during each cycle reduce the protein concentration to 75% of the concentration of the previous cycle, then use this method to reduce any loss of cell viability and population doubling time. Repeat until a protein concentration that does not cause it is reached. When the cells are transferred to a medium with a lower protein concentration and they can grow without any loss of cell viability and a decrease in population culture time prior to the first passage, the cells are again non-critical. The stage is considered reached and is seeded directly in protein-free medium (0 mg / mL protein concentration).

本発明の方法において、最初の培地は5〜10%の間の範囲の胎児コウシ血清を含有する。   In the method of the present invention, the initial medium contains fetal calf serum in the range between 5-10%.

蛋白質非含有培地中での増殖に適応された哺乳動物の細胞株は骨髄腫、特にNSO細胞である。   Mammalian cell lines adapted for growth in protein-free medium are myeloma, especially NSO cells.

本発明はまた、ポリペプチドもしくは組換え蛋白質でトランスフェクトされたNSO細胞株を使用する時、特にそれらが組換え抗体もしくはその断片をエンコードする配列でトランスフェクトされる時に有用であることができると考えられる。蛋白質非含有培地中で増殖する本発明の方法により修飾される哺乳動物の細胞株も開示される。   The invention can also be useful when using NS0 cell lines transfected with a polypeptide or recombinant protein, particularly when they are transfected with a sequence encoding a recombinant antibody or fragment thereof. Conceivable. Also disclosed are mammalian cell lines that are modified by the methods of the invention to grow in protein-free media.

本発明の異なる態様において、蛋白質非含有培地中で増殖する抗−EGF受容体hR3、抗−CD6 T1hT、抗−CD3 T3Q抗体もしくはそれらの断片から成る群から選択されるヒト化もしくはキメラ抗体を発現するあらゆる哺乳動物の細胞株、従ってこの細胞株により分泌される抗体が開示される。   In a different embodiment of the invention, expressing a humanized or chimeric antibody selected from the group consisting of anti-EGF receptor hR3, anti-CD6 T1hT, anti-CD3 T3Q antibody or fragments thereof growing in protein-free medium Any mammalian cell line, and thus antibodies secreted by this cell line, is disclosed.

本発明の方法により得られる細胞株は少なくとも40世代に対して蛋白質非含有培地中で安定に増殖する。   The cell line obtained by the method of the present invention stably grows in a protein-free medium for at least 40 generations.

蛋白質非含有培地への組換え細胞株hR3の適応。
ヒト化抗−EGFヒト受容体hR3モノクロナール抗体の軽鎖および重鎖を発現するためのベクトル構造をもつ骨髄腫NSO細胞株のトランスフェクションにより、組換え細胞株hR3を得た。この細胞株の蛋白質非含有培地への適応は培地の蛋白質含量の2段階の減少により前記の方法に従って実施した。
Adaptation of recombinant cell line hR3 to protein-free medium.
Recombinant cell line hR3 was obtained by transfection of a myeloma NSO cell line with a vector structure to express the light and heavy chains of the humanized anti-EGF human receptor hR3 monoclonal antibody. Adaptation of this cell line to a protein-free medium was performed according to the method described above by a two-step decrease in the protein content of the medium.

これらの細胞を10%のFBSを補助添加されたRPMI−1640培地中で培養した。蛋白質濃度が0.15mg/mLである時にRPMI−1640蛋白質非含有培地に蛋白質到達補助添加剤のNutridoma NS(Boheringer Manheinn)を添加することによりFBSを置き換えた。最初の培地中の蛋白質含量の減少をRFHM−II蛋白質非含有培地(Gibco)による連続希釈により実施した。   These cells were cultured in RPMI-1640 medium supplemented with 10% FBS. When the protein concentration was 0.15 mg / mL, FBS was replaced by adding Nutridoma NS (Boheringer Manheimn), a protein reaching auxiliary additive, to the RPMI-1640 protein-free medium. Reduction of the protein content in the initial medium was performed by serial dilution with RFHM-II protein-free medium (Gibco).

図1および2はそれぞれ、臨界濃度および適応速度Vadapt.の計算の結果を示す。 1 and 2 show the critical concentration and the adaptation rate V adapt. The result of calculation is shown.

組換え最初株T1hTの蛋白質非含有培地への適応。
組換え細胞株T1hTをエピトープT抑制法によりヒト化された抗−ヒトCD6モノクロナール抗体の軽鎖および重鎖を発現するためのベクトル構造をもつ骨髄腫NSO細胞株のトランスフェクションにより得た。
Adaptation of recombinant first strain T1hT to protein-free medium.
Recombinant cell line T1hT was obtained by transfection of a myeloma NSO cell line with a vector structure to express the light and heavy chains of an anti-human CD6 monoclonal antibody that was humanized by epitope T inhibition.

蛋白質/非含有培地へのこの細胞株の適応を培地の蛋白質含量の2段階減少によりポイント2に記載された方法に従って実施した。   Adaptation of this cell line to protein / free medium was performed according to the method described in point 2 by a two-step decrease in the protein content of the medium.

これらの細胞は最初に10%のFBSを補助添加されたRPMI−1640培地中で培養した。蛋白質含量の減少はGibcoからのPFHM−II蛋白質非含有培地による最初の培地の連続的希釈により実施した。   These cells were initially cultured in RPMI-1640 medium supplemented with 10% FBS. Reduction of protein content was performed by serial dilution of the initial medium with PFHM-II protein-free medium from Gibco.

臨界濃度および適応速度Vadapt.の計算結果はそれぞれ、図3および4に示す。 Critical concentration and adaptation speed V adapt. The calculation results are shown in FIGS. 3 and 4, respectively.

組換え細胞株T3Qの蛋白質非含有培地への適応。
組換え細胞株T3Qを、ヒトリンパ球上のCD3受容体を認識するヒト化モノクロナール抗体T3Qの軽鎖および重鎖を発現するためのベクトル構造をもつ骨髄腫NSO細胞株のトランスフェクションにより得た。
Adaptation of recombinant cell line T3Q to protein-free medium.
Recombinant cell line T3Q was obtained by transfection of a myeloma NSO cell line with a vector structure to express the light and heavy chains of humanized monoclonal antibody T3Q that recognizes the CD3 receptor on human lymphocytes.

蛋白質/非含有培地へのこの細胞株の適応を培地の蛋白質含量の2段階減少によりポイント2に記載された方法に従って実施した。   Adaptation of this cell line to protein / free medium was performed according to the method described in point 2 by a two-step decrease in the protein content of the medium.

これらの細胞を最初に10%のFBSを補助添加されたRPMI−1640培地中で培養した。蛋白質含量の減少をGibcoからのRFHM−II蛋白質非含有培地中への連続希釈により実施した。   These cells were initially cultured in RPMI-1640 medium supplemented with 10% FBS. Reduction of protein content was performed by serial dilutions into Gibco's RFHM-II protein-free medium.

臨界濃度および適応速度Vadapt.の計算の結果を図5および6それぞれに示す。 Critical concentration and adaptation speed V adapt. The calculation results are shown in FIGS. 5 and 6, respectively.

蛋白質濃度の逆数の自然対数との、各蛋白質濃度にhR3細胞を適応するために要する(生存率および倍加時間の回復までの)時間の関係。h−R3細胞株の臨界濃度値:−0.32および0.11mg/mLの総蛋白質濃度。The relationship between the natural logarithm of the reciprocal of protein concentration and the time required to adapt hR3 cells to each protein concentration (until recovery of viability and doubling time). Critical concentration values for h-R3 cell line: -0.32 and 0.11 mg / mL total protein concentration. h−R3細胞株の蛋白質濃度の逆数の自然対数との、適応法の開始からの総合時間の関係。臨界段階中のh−R3細胞株の適応速度の値−0.0053mg/日。The relationship of the total time from the start of the adaptation method to the natural logarithm of the reciprocal of the protein concentration of the h-R3 cell line. Adaptation rate value of the h-R3 cell line during the critical phase-0.0053 mg / day. 蛋白質濃度の逆数の自然対数との、各蛋白質濃度にT1hT細胞を適応させるために要する(生存率および倍加時間を回復するまでの)時間の関係。T1hT細胞株の臨界濃度の値−0.12および0.01mg/mLの総蛋白質濃度。Relationship between the natural logarithm of the reciprocal of protein concentration and the time required to adapt T1hT cells to each protein concentration (until recovery of viability and doubling time). Values for critical concentration of T1hT cell line -total protein concentration of 0.12 and 0.01 mg / mL. T1hT細胞株の蛋白質濃度の逆数の自然対数との、適応法の開始からの総時間の関係。T1hT細胞株の適応速度の値−0.0014mg/日。The relationship of the total time from the start of the adaptation method to the natural logarithm of the reciprocal of the protein concentration of the T1hT cell line. Adaptation rate value of T1hT cell line-0.0014 mg / day. 蛋白質濃度の逆数の自然対数との、各蛋白質濃度にT3Q細胞を適応させるために要する(生存率および倍加時間を回復するまでの)時間の関係。T3Q細胞株の臨界濃度の値−0.63mg/mLの総蛋白質濃度。Relationship between the natural logarithm of the reciprocal of protein concentration and the time required to adapt T3Q cells to each protein concentration (until recovery of viability and doubling time). T3Q cell line critical concentration value-0.63 mg / mL total protein concentration. T3Q細胞株の蛋白質濃度の逆数の自然対数との、適応法の開始からの総時間の関係。T3Q細胞株の適応速度の値−0.00172mg/日。The relationship of the total time from the start of the adaptation method to the natural logarithm of the reciprocal of the protein concentration of the T3Q cell line. Adaptation rate value for the T3Q cell line-0.00172 mg / day.

Claims (20)

2段階:
I.細胞株生存率が80〜100%の間であり、細胞生存率が0%に低下する臨界蛋白質濃度まで連続的蛋白質濃度減少を伴う培地中で細胞が増殖される第1段階、
II.一旦臨界濃度が前以て決定された後、次に細胞増殖が可能で、かつそれが細胞培養物まで蛋白質濃度を緩徐に減少させる開始地点であるような蛋白質濃度が最初の細胞生存率および集団倍加時間に到達するように、臨界前濃度が固定される第2段階、
を含んで成る、血清および蛋白質非含有培地中での増殖に適応された哺乳動物の細胞株の取得方法。
Two steps:
I. A first stage in which the cells are grown in a medium with a continuous protein concentration reduction to a critical protein concentration where the cell line viability is between 80-100% and the cell viability is reduced to 0%;
II. Once the critical concentration has been determined in advance, the protein concentration is such that the next cell growth is possible and that is the starting point for a gradual decrease in protein concentration to the cell culture. A second stage in which the pre-critical concentration is fixed to reach the doubling time;
A method of obtaining a mammalian cell line adapted for growth in a serum- and protein-free medium comprising
第1段階が以下の段階:
i.標準細胞培地(最初の蛋白質濃度をもつ)を使用する組換え細胞株で6ウェルの培養プレート中の3ウェルに播種する。細胞密度は1〜5×10細胞/mLの範囲内になければならない。48時間後に、上澄み液の半分を新鮮な、蛋白質非含有培地により置き換え、それにより出発状態の50%の最終蛋白質濃度を与える。
ii.48時間毎に、上澄み液を出発状態の50%の蛋白質濃度をもつ新鮮な培地により完全に置き換える。
iii.細胞をこの蛋白質濃度下で集密状態まで増殖させる。
iv.段階iii.からの細胞を出発状態の50%の蛋白質濃度をもつ培地中1〜5×10細胞/mLの範囲内の密度で少なくとも3ウェルに播種する。48時間後に、上澄み液の半分を新鮮な、蛋白質非含有培地により置き換え、それにより前の状態の50%の最終蛋白質濃度を与える。
v.48時間毎に、上澄み液を前の状態の50%の蛋白質濃度をもつ新鮮な培地により完全に置き換える。
vi.細胞をこの蛋白質濃度下で集密状態まで増殖させる。
vii.(iv)〜(vi)の段階を繰り返し、各サイクル中に、前のサイクルの濃度の50%まで蛋白質濃度を減少させる。細胞死をもたらす蛋白質濃度に到達するまでこの方法を繰り返す。
により構成される請求項1記載の方法。
The first stage is as follows:
i. Seed in 3 wells in a 6 well culture plate with recombinant cell line using standard cell culture medium (with initial protein concentration). The cell density should be in the range of 1-5 × 10 5 cells / mL. After 48 hours, half of the supernatant is replaced with fresh, protein-free medium, thereby giving a starting protein concentration of 50%.
ii. Every 48 hours, the supernatant is completely replaced with fresh medium with a starting protein concentration of 50%.
iii. Cells are grown to confluence under this protein concentration.
iv. Stage iii. Are seeded in at least 3 wells at a density in the range of 1-5 × 10 5 cells / mL in medium with a starting 50% protein concentration. After 48 hours, half of the supernatant is replaced with fresh, protein-free medium, thereby giving a final protein concentration of 50% of the previous state.
v. Every 48 hours, the supernatant is completely replaced with fresh medium with a protein concentration of 50% of the previous state.
vi. Cells are grown to confluence under this protein concentration.
vii. Steps (iv)-(vi) are repeated and the protein concentration is reduced to 50% of the concentration of the previous cycle during each cycle. This method is repeated until a protein concentration that results in cell death is reached.
The method of claim 1 comprising:
第2段階が以下の段階:
viii.2〜6×10細胞/mLの範囲内の密度で少なくとも3ウェル中に臨界前蛋白質濃度中に増殖する、80%以上の生存率を伴う細胞培養物からの細胞を播種する。細胞は臨界前蛋白質濃度中で増殖し、48時間後に上澄み液の25%を新鮮な、蛋白質非含有培地により置き換え、これによりそれを臨界前蛋白質濃度の75%の最終蛋白質濃度にさせる。
ix.48時間毎に上澄み液を臨界前蛋白質濃度の75%の蛋白質濃度をもつ新鮮な培地により完全に置き換える。
x.細胞をこの蛋白質濃度下で集密状態まで増殖させる。
xi.段階(x)からの細胞を臨界前蛋白質濃度の75%の蛋白質濃度をもつ培地中に2〜6×10細胞/mLの範囲内の密度で少なくとも3ウェル中に播種する。48時間後に上澄み液の25%を新鮮な、蛋白質非含有培地により置き換え、これによりそれを前段階の濃度の75%の最終蛋白質濃度にさせる。
xii.48時間毎に上澄み液を段階(x)の濃度の75%の蛋白質濃度をもつ新鮮な培地により完全に置き換える。
xiii.細胞をこの蛋白質濃度下で集密状態まで増殖させる。
xiv.(xi)〜(xiii)の段階を繰り返し、各サイクル中、蛋白質濃度を前のサイクルの濃度の75%まで減少させ、次にこの方法を、細胞生存率のあらゆる喪失および集団倍加時間の減少を引き起こさない蛋白質濃度に到達するまで繰り返す。細胞をより低い蛋白質濃度をもつ培地に移し、それらは細胞生存率のあらゆる喪失および第1継代培養の前の集合培養時間の減少を伴わずに増殖することができる時に、細胞は再度、非臨界段階に到達したと考えられ、蛋白質非含有培地(0mg/mLの蛋白質濃度)中に直接播種する。
により構成される、請求項1記載の方法。
The second stage is:
viii. Seed cells from a cell culture with a viability of 80% or higher, growing in a pre-critical protein concentration in at least 3 wells at a density in the range of 2-6 × 10 5 cells / mL. The cells grow in the pre-critical protein concentration and after 48 hours, 25% of the supernatant is replaced with fresh, protein-free medium, which brings it to a final protein concentration of 75% of the pre-critical protein concentration.
ix. Every 48 hours, the supernatant is completely replaced with fresh medium with a protein concentration of 75% of the precritical protein concentration.
x. Cells are grown to confluence under this protein concentration.
xi. Cells from step (x) are seeded in at least 3 wells at a density in the range of 2-6 × 10 5 cells / mL in a medium having a protein concentration of 75% of the precritical protein concentration. After 48 hours, 25% of the supernatant is replaced with fresh, protein-free medium, which brings it to a final protein concentration of 75% of the previous concentration.
xii. Every 48 hours the supernatant is completely replaced with fresh medium with a protein concentration of 75% of the concentration of step (x).
xiii. Cells are grown to confluence under this protein concentration.
xiv. Repeat steps (xi)-(xiii) and during each cycle reduce the protein concentration to 75% of the concentration of the previous cycle, then use this method to reduce any loss of cell viability and population doubling time. Repeat until a protein concentration that does not cause it is reached. When the cells are transferred to a medium with a lower protein concentration and they can grow without any loss of cell viability and a decrease in the assembly time before the first passage, the cells are again non- It is considered that the critical stage has been reached, and seeded directly in protein-free medium (protein concentration of 0 mg / mL).
The method of claim 1, comprising:
細胞が最初に播種される血清および蛋白質含有培地が5%〜10%の間の胎児ウシ血清を含んで成る請求項1〜3に記載の方法。   4. The method according to claims 1 to 3, wherein the serum and the protein-containing medium on which the cells are initially seeded comprise between 5% and 10% fetal bovine serum. 血清および蛋白質非含有培地中での増殖に適応された哺乳動物の細胞株が骨髄腫である請求項1〜4に記載の方法。   The method according to claims 1 to 4, wherein the mammalian cell line adapted for growth in serum- and protein-free medium is myeloma. 骨髄腫がNSO細胞株である請求項5記載の方法。   6. The method of claim 5, wherein the myeloma is an NSO cell line. 前記NSO細胞株が組換えポリペプチドもしくは組換え蛋白質をエンコードする配列を含む請求項6記載の方法。   7. The method of claim 6, wherein said NSO cell line comprises a sequence encoding a recombinant polypeptide or protein. 組換えポリペプチドもしくは組換え蛋白質をエンコードする配列が組換え抗体もしくはその断片をコード化する請求項7記載の方法。   8. The method of claim 7, wherein the sequence encoding the recombinant polypeptide or protein encodes a recombinant antibody or fragment thereof. 前記細胞株が血清および蛋白質非含有培地中での増殖に適応されている、請求項1〜8の方法により得られる哺乳動物の細胞株。   A mammalian cell line obtained by the method of claims 1-8, wherein the cell line is adapted for growth in serum and protein-free medium. 前記細胞株が骨髄腫である請求項9記載の哺乳動物の細胞株。   The mammalian cell line according to claim 9, wherein the cell line is myeloma. 前記細胞株がNSO細胞株である請求項10記載の哺乳動物の細胞株。   The mammalian cell line according to claim 10, wherein the cell line is an NSO cell line. NSO細胞株が組換えポリペプチドもしくは組換え蛋白質をエンコードする配列を含む請求項11記載の哺乳動物の細胞株。   12. The mammalian cell line of claim 11, wherein the NSO cell line comprises a sequence encoding a recombinant polypeptide or protein. 組換えポリペプチドもしくは組換え蛋白質をエンコードする配列が組換え抗体もしくはその断片をコード化する請求項12記載の哺乳動物細胞株。   The mammalian cell line of claim 12, wherein the sequence encoding the recombinant polypeptide or protein encodes a recombinant antibody or fragment thereof. 配列がヒト化組換え抗体抗−EGF−R hR3もしくはその断片をコード化する請求項13記載の哺乳動物細胞株。   14. The mammalian cell line of claim 13, wherein the sequence encodes a humanized recombinant antibody anti-EGF-R hR3 or a fragment thereof. 配列がヒト化組換え抗−CD6抗体T1hTもしくはその断片をコード化する請求項13記載の哺乳動物細胞株。   14. The mammalian cell line of claim 13, wherein the sequence encodes a humanized recombinant anti-CD6 antibody T1hT or a fragment thereof. 配列がキメラ組換え抗−CD3抗体T3Qもしくはその断片をコード化する請求項13記載の哺乳動物細胞株。   14. The mammalian cell line of claim 13, wherein the sequence encodes a chimeric recombinant anti-CD3 antibody T3Q or a fragment thereof. 血清および蛋白質非含有培地中での増殖に適応された哺乳動物細胞株を取得するための請求項1〜8記載の方法の使用。   Use of the method according to claims 1 to 8 for obtaining mammalian cell lines adapted for growth in serum and protein-free medium. 請求項1〜8の方法により得られる細胞株により分泌されるEGF−R hR3もしくはその断片に対するヒト化モノクロナール抗体。   A humanized monoclonal antibody against EGF-R hR3 or a fragment thereof secreted by a cell line obtained by the method of claims 1-8. 請求項1〜8の方法により得られる細胞株により分泌されるCD6抗原T1hTもしくはその断片に対するヒト化モノクロナール抗体。   A humanized monoclonal antibody against CD6 antigen T1hT or a fragment thereof secreted by a cell line obtained by the method of claims 1-8. 請求項1〜8の方法により得られる細胞株により分泌されるCD3抗原T3Qもしくはその断片に対するキメラモノクロナール抗体。   A chimeric monoclonal antibody against CD3 antigen T3Q or a fragment thereof secreted by a cell line obtained by the method of claims 1-8.
JP2004545689A 2002-10-23 2003-10-22 Method for obtaining a cell line in a protein-free medium and the cell line thus obtained Expired - Lifetime JP4674087B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CU20020239A CU23097A1 (en) 2002-10-23 2002-10-23 METHOD FOR OBTAINING CELLULAR LINES IN PROTEIN FREE MEDIA AND CELL LINES OBTAINED BY THIS METHOD
PCT/CU2003/000012 WO2004038010A1 (en) 2002-10-23 2003-10-22 Method of obtaining cell lines in a protein-free medium and cell lines thus obtained

Publications (2)

Publication Number Publication Date
JP2006503879A true JP2006503879A (en) 2006-02-02
JP4674087B2 JP4674087B2 (en) 2011-04-20

Family

ID=40134843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004545689A Expired - Lifetime JP4674087B2 (en) 2002-10-23 2003-10-22 Method for obtaining a cell line in a protein-free medium and the cell line thus obtained

Country Status (27)

Country Link
US (2) US20060036082A1 (en)
EP (2) EP2363418B1 (en)
JP (1) JP4674087B2 (en)
KR (1) KR101186048B1 (en)
CN (1) CN1714147B (en)
AR (1) AR041645A1 (en)
AT (1) ATE502103T1 (en)
AU (1) AU2003273727B2 (en)
CA (1) CA2503315C (en)
CU (1) CU23097A1 (en)
DE (1) DE60336415D1 (en)
DK (1) DK1564285T3 (en)
EA (1) EA007465B1 (en)
EC (1) ECSP055740A (en)
ES (2) ES2360049T3 (en)
GE (1) GEP20084444B (en)
HK (1) HK1084414A1 (en)
HR (1) HRP20050760A2 (en)
LT (1) LT5354B (en)
LV (1) LV13361B (en)
MY (1) MY144088A (en)
NZ (1) NZ540171A (en)
PE (1) PE20040552A1 (en)
PT (1) PT1564285E (en)
TN (1) TNSN05116A1 (en)
UY (1) UY28037A1 (en)
WO (1) WO2004038010A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104673754B (en) * 2015-02-14 2018-03-02 百泰生物药业有限公司 Recombinate the screening technique of myeloma cell clone and thus obtained antibody molecule
CN104651314B (en) * 2015-02-14 2018-06-19 百泰生物药业有限公司 Obtain the method for high and stable yields expression cell clone and thus obtained antibody molecule

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3694263A (en) * 1970-10-23 1972-09-26 Joseph J Korn Sr Swimming pool cleaning methods and apparatus therefor
CU22545A1 (en) * 1994-11-18 1999-03-31 Centro Inmunologia Molecular OBTAINING A CHEMICAL AND HUMANIZED ANTIBODY AGAINST THE RECEPTOR OF THE EPIDERMAL GROWTH FACTOR FOR DIAGNOSTIC AND THERAPEUTIC USE
US3886616A (en) * 1972-12-06 1975-06-03 Fay A Hayes Hand propelled swimming pool cleaner
US4275474A (en) * 1979-04-30 1981-06-30 Woodard Randle C Vacuum head for swimming pool cleaning system
US4240174A (en) * 1979-07-30 1980-12-23 Scott Jeffrey L Self-contained mobile pool cleaning apparatus
US4430214A (en) * 1982-09-15 1984-02-07 Baker Marvin E Strainer mill for swimming pool pump intake
AU2986484A (en) * 1983-06-27 1985-01-03 Monash University Leptospira strains grown in protein free medium
US4558479A (en) * 1984-01-26 1985-12-17 Alopex Industries, Inc. Pool cleaner
US4683599A (en) * 1984-03-30 1987-08-04 Fahet Nv Automatic pool cleaner fitting
US4581075A (en) * 1985-03-15 1986-04-08 Maxi-Sweep, Inc. Self-propelled water borne pool cleaner
US5170064A (en) 1989-09-29 1992-12-08 Atomic Energy Of Canada Limited Infrared-based gas detector using a cavity having elliptical reflecting surface
JP2696001B2 (en) 1991-04-15 1998-01-14 財団法人化学及血清療法研究所 Medium for recombinant protein production
EP0531562A1 (en) 1991-09-11 1993-03-17 Doerr, Hans-Wilhelm, Prof. Dr. med. Culturing of mammalian cells
EP0784684B8 (en) * 1994-09-16 2008-03-26 Cancer Research Institute of Contra Costa RECOMBINANT PEPTIDES DERIVED FROM THE Mc3 ANTI-BA46 ANTIBODY, METHODS OF USE THEREOF, AND METHODS OF HUMANIZING ANTIBODY PEPTIDES
DK0791055T3 (en) 1994-11-10 2012-04-16 Baxter Healthcare Sa Process for the preparation of biological products in protein-free culture
JP3649249B2 (en) 1995-02-23 2005-05-18 クエスト・インターナショナル・サービシーズ・ビー・ブイ Peptides for tissue and cell culture
AUPN442295A0 (en) 1995-07-26 1995-08-17 Commonwealth Scientific And Industrial Research Organisation Regulated autocrine growth of mammalian cells
CU22584A1 (en) 1995-11-17 1999-11-03 Centro Inmunologia Molecular PHARMACEUTICAL COMPOSITIONS CONTAINING A MONOCLONAL ANTIBODY THAT RECOGNIZES THE CD6 HUMAN LEUKOCYTARY DIFFERENTIATION ANTIGEN AND ITS USES FOR THE DIAGNOSIS AND TREATMENT OF PSORIASIS
AT407255B (en) * 1997-06-20 2001-02-26 Immuno Ag RECOMBINANT CELL CLONE WITH INCREASED STABILITY IN SERUM- AND PROTEIN-FREE MEDIUM AND METHOD FOR OBTAINING THE STABLE CELL CLONE

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JPN6009043000, Cancer Res., vol. 61, pages 5090−5101 (2001) *
JPN6009043002, Immunotechnol., vol. 3, pages 71−81 (1997) *
JPN6010015526, Cytotechnology, vol. 17, pages 203−211 (1995) *
JPN7009003896, Mol. Biotechnol., vol. 15, pages 249−257 (2000) *

Also Published As

Publication number Publication date
CN1714147B (en) 2011-01-12
MY144088A (en) 2011-08-15
PE20040552A1 (en) 2004-10-26
ATE502103T1 (en) 2011-04-15
CA2503315A1 (en) 2004-05-06
EA200500695A1 (en) 2005-10-27
BR0315565B1 (en) 2022-01-25
LV13361B (en) 2006-02-20
CN1714147A (en) 2005-12-28
AU2003273727B2 (en) 2008-04-03
EP1564285A1 (en) 2005-08-17
EP2363418A2 (en) 2011-09-07
NZ540171A (en) 2008-04-30
KR101186048B1 (en) 2012-09-25
EP1564285B1 (en) 2011-03-16
EP2363418A3 (en) 2011-11-16
ES2624279T3 (en) 2017-07-13
WO2004038010A1 (en) 2004-05-06
HK1084414A1 (en) 2006-07-28
EA007465B1 (en) 2006-10-27
AU2003273727A1 (en) 2004-05-13
KR20050088403A (en) 2005-09-06
LT5354B (en) 2006-07-25
GEP20084444B (en) 2008-08-10
ECSP055740A (en) 2005-09-20
DE60336415D1 (en) 2011-04-28
DK1564285T3 (en) 2011-05-16
US20100197011A1 (en) 2010-08-05
HRP20050760A2 (en) 2006-08-31
CU23097A1 (en) 2005-11-18
JP4674087B2 (en) 2011-04-20
ES2360049T3 (en) 2011-05-31
EP2363418B1 (en) 2017-02-08
TNSN05116A1 (en) 2007-05-14
US20060036082A1 (en) 2006-02-16
PT1564285E (en) 2011-04-20
CA2503315C (en) 2014-02-18
AR041645A1 (en) 2005-05-26
BR0315565A (en) 2005-08-23
UY28037A1 (en) 2004-04-30
LT2005053A (en) 2006-04-25

Similar Documents

Publication Publication Date Title
JP4231862B2 (en) Bispecific trigger molecule that recognizes lymphocyte antigen CD2 and tumor antigen
RU2491347C2 (en) Method of production proteins using compounds that prevent aging
DK2702164T3 (en) METHOD FOR REDUCING heterogeneity OF ANTIBODIES AND METHOD OF PRODUCING THESE ANTIBODIES
CN110072533A (en) The method and combinations thereof of selective amplification gamma delta T cells group
JP2017532046A (en) Method for shifting the isoelectric profile of a protein product and use thereof
JP2017516484A (en) Cell culture process for protein production
JP2019500876A (en) Regulation of afucosylated species in monoclonal antibody compositions.
CN108350415A (en) The method for adjusting recombinant protein production overview in fill-up mode
JP4674087B2 (en) Method for obtaining a cell line in a protein-free medium and the cell line thus obtained
CN113518624A (en) Methods and compositions for selective in vivo expansion of γ δ T cell populations
CN109705225A (en) A kind of Chimeric antigen receptor and its application of anti-human CAIX antigen
AU646875B2 (en) Beta-alethine use in cell culture and therapy
EP0251107A2 (en) Improved fusion products
EP0251106A2 (en) Improved fusion method
BRPI0315565B1 (en) METHOD FOR OBTAINING A NSO MYELOMA CELL LINE THAT CONTAINS A SEQUENCE THAT ENCODES A RECOMBINANT POLYPEPTIDE OR A RECOMBINANT PROTEIN ADAPTED TO GROW IN WHEAT AND PROTEIN FREE MEDIUM, AND, USE OF THE METHOD
CN113416701B (en) NK cell culture medium and culture method
AU2021329034A1 (en) Cell culture processes
TW200533754A (en) Preparation method of cytokine-induced killer cells and the application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061011

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091125

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100630

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4674087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term