JP2006349226A - Cold utilization system for deep sea water - Google Patents

Cold utilization system for deep sea water Download PDF

Info

Publication number
JP2006349226A
JP2006349226A JP2005173823A JP2005173823A JP2006349226A JP 2006349226 A JP2006349226 A JP 2006349226A JP 2005173823 A JP2005173823 A JP 2005173823A JP 2005173823 A JP2005173823 A JP 2005173823A JP 2006349226 A JP2006349226 A JP 2006349226A
Authority
JP
Japan
Prior art keywords
heat
water
deep
pipe
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005173823A
Other languages
Japanese (ja)
Inventor
Mitsuo Wakamatsu
光夫 若松
Chikako Iwaki
智香子 岩城
Tatsumi Ikeda
達實 池田
Hideo Komita
秀雄 小見田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005173823A priority Critical patent/JP2006349226A/en
Publication of JP2006349226A publication Critical patent/JP2006349226A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24VCOLLECTION, PRODUCTION OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24V50/00Use of heat from natural sources, e.g. from the sea

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cold utilization system for deep sea water with an inexpensive operation cost and a high operation ratio by reducing electric power consumption and fouling due to sea water. <P>SOLUTION: The cold utilization system for deep sea water is provided with a heat pipe 4 having a working liquid 16 in an interior, with one end dipped into deep sea water 3 in the sea, and another end connected to thermal load systems 1, 6 and 8 to be cooled provided on water or on ground. It is composed to transfer heat of the thermal load systems 1, 6 and 8 to be cooled by evaporation, condensation and flowing of the working liquid 16 to the deep sea water 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、海洋深層水の冷熱を利用して住居の冷房や食物の保冷等を行う海洋深層水の冷熱利用システムに関する。   TECHNICAL FIELD The present invention relates to a deep ocean water cooling system that cools a house, keeps food cold, and the like by using the cold ocean water.

一般に、住居の冷房や食物の保冷等を行う冷却装置では電気動力を使ったコンプレッサーが用いられており、コンプレッサーを駆動するために大量の電力を消費している。また、火力発電システムや原子力発電システムでは海面近くの海水を復水器の冷却に用いているが、長期にわたる運転で海水によって伝熱管が汚損されて圧損が増大しポンプ動力が増加する。また伝熱管の汚損に伴い熱交換性能が低下する。さらに伝熱管の洗浄頻度が高く経費がかさむ上に、発電システムの運転稼働率の低下を招くという問題がある。   In general, a compressor using electric power is used in a cooling apparatus that cools a house, keeps food cold, and the like, and consumes a large amount of electric power to drive the compressor. Moreover, in thermal power generation systems and nuclear power generation systems, seawater near the sea surface is used for cooling the condenser, but heat transfer pipes are contaminated by seawater over a long period of operation, pressure loss increases, and pump power increases. Moreover, the heat exchange performance is reduced with the contamination of the heat transfer tubes. Furthermore, there is a problem that the cleaning frequency of the heat transfer tube is high and the cost is high, and the operation rate of the power generation system is lowered.

一方、近年、海洋深層水の有する各種の特長が注目されており、上記のような熱負荷系を海洋深層水によって冷却するという発明が公開されている(下記特許文献1,2,3参照)。
特開平7−99862号公報 特開2000−87579号公報 特開2004−183967号公報
On the other hand, in recent years, various features of deep ocean water have attracted attention, and the invention of cooling the heat load system as described above with ocean deep water has been disclosed (see Patent Documents 1, 2, and 3 below). .
JP-A-7-99862 JP 2000-87579 A JP 2004-183967 A

上述の諸発明においては海洋深層水の低温性をおもに利用しているが、海洋深層水をポンプ等によって汲み上げる構成であるので相変らず多くの動力を消費するという問題がある。   In the above-mentioned various inventions, the low-temperature property of deep ocean water is mainly used. However, since the ocean deep water is pumped up by a pump or the like, there is a problem that much power is consumed as usual.

本発明は上記従来技術の課題を解決するためになされたものであり、電力消費量と海水による汚損を低減して運転コストが安く稼働率の高い海洋深層水の冷熱利用システムを提供することを目的とする。   The present invention has been made to solve the above-described problems of the prior art, and provides a deep-sea water cooling / utilizing system with low operating cost and high operating rate by reducing power consumption and pollution caused by seawater. Objective.

上記課題を解決するために請求項1の発明は、内部に作動液を保有し一端が海中の海洋深層水に浸漬され他端が海上または地上に設けられた冷却すべき熱負荷系に接続されたヒートパイプを備え、前記作動液の蒸発と凝縮および流動によって前記冷却すべき熱負荷系の熱を前記海洋深層水に移動させるようにした構成とする。   In order to solve the above-mentioned problems, the invention of claim 1 is characterized in that a hydraulic fluid is stored therein, one end is immersed in deep sea water in the sea, and the other end is connected to a heat load system to be cooled provided on the sea or on the ground. A heat pipe, and heat of the heat load system to be cooled is transferred to the deep ocean water by evaporation, condensation and flow of the hydraulic fluid.

請求項5の発明は、内部に毛細管作用物体を保有し一端が海中の海洋深層水に浸漬され他端が海上または地上に設けられた熱交換器に接続された吸上げ配管を備え、前記毛細管作用物体の毛細管作用によって前記海洋深層水を吸い上げて前記熱交換器に供給するようにした構成とする。   The invention of claim 5 includes a suction pipe having a capillary action body therein, one end immersed in deep sea water in the sea and the other end connected to a heat exchanger provided on the sea or on the ground. The deep ocean water is sucked up and supplied to the heat exchanger by the capillary action of the working object.

請求項7の発明は、海洋深層水によって冷却する熱交換器を備え、前記熱交換器に海洋深層水を流す配管にバイパス管と弁を設けて前記弁の開閉切替操作によって前記熱交換器の伝熱管を逆洗するようにした構成とする。
請求項8の発明は、地上に設けられた冷却すべき負荷系に海洋深層水を供給する取水管を地中敷設した構成とする。
The invention of claim 7 includes a heat exchanger that is cooled by deep ocean water, and is provided with a bypass pipe and a valve in a pipe through which the deep ocean water flows to the heat exchanger, and the heat exchanger of the heat exchanger is operated by switching the valve. The heat transfer tube is configured to be backwashed.
The invention of claim 8 is configured such that a water intake pipe for supplying deep sea water to a load system to be cooled provided on the ground is laid underground.

本発明によれば、電力消費量と海水による汚損を低減して運転コストが安く稼働率の高い海洋深層水の冷熱利用システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the cold energy utilization system of the deep sea water which can reduce the power consumption and the contamination | pollution | contamination by seawater, a low operating cost and a high operation rate can be provided.

以下、本発明の第1ないし第13の実施の形態の海洋深層水の冷熱利用システムを図面を参照して説明する。   The deep ocean water cooling and heat utilization system according to the first to thirteenth embodiments of the present invention will be described below with reference to the drawings.

(第1の実施の形態)
本実施の形態の海洋深層水の冷熱利用システムは図1に示すように、地上または海上に設けられた常用水タンク1と、上端が常用水タンク1内に突出し下端が海洋の表層水2を貫通して海洋深層水3中に浸漬して設けられたヒートパイプ4と、前記常用水タンク1に一次配管5によって接続された熱交換器6と、この熱交換器6に二次配管7によって接続されたファンコイルユニット8とを備えている。ファンコイルユニット8は、二次配管7に設けられたコイルに対しファン17による冷風18を得るものである。
(First embodiment)
As shown in FIG. 1, the deep ocean water cooling and heat utilization system according to the present embodiment includes a service water tank 1 provided on the ground or the sea, and an upper end projecting into the service water tank 1 and a lower end serving the ocean surface water 2. A heat pipe 4 penetrating and immersed in the deep ocean water 3, a heat exchanger 6 connected to the regular water tank 1 by a primary pipe 5, and a secondary pipe 7 connected to the heat exchanger 6 And a connected fan coil unit 8. The fan coil unit 8 obtains cold air 18 from the fan 17 for the coil provided in the secondary pipe 7.

常用水タンク1は壁面に断熱材11を備え、内部に常用水12を貯留している。ヒートパイプ4は断熱材13とウィック14を備え、上端と下端は端栓15a,15bによって封止され、内部に作動液16を保有している。作動液16としては水、アルコール、フロン等を用いる。   The regular water tank 1 is provided with a heat insulating material 11 on a wall surface and stores regular water 12 therein. The heat pipe 4 includes a heat insulating material 13 and a wick 14, and an upper end and a lower end are sealed by end plugs 15 a and 15 b, and the working fluid 16 is held inside. As the hydraulic fluid 16, water, alcohol, chlorofluorocarbon, or the like is used.

このように構成された本実施の形態の海洋深層水の冷熱利用システムにおいて、ファンコイルユニット8によって冷却される熱量Qxが熱交換器6を介して常用水タンク1内の常用水12に移行する。ヒートパイプ4内の作動液16は上部の端栓15aを介して常用水12の熱を受けて蒸発し、蒸気はヒートパイプ4内を下降し下部の端栓15bを介して海洋深層水3によって冷却される。図では、ヒートパイプ4の上部端栓15aにおける常用水からの吸収熱量をQi、下部端栓15bにおける放出熱量をQoとそれぞれ表記している。凝縮し液体となった作動液16はウィック14の毛細管現象でヒートパイプ4の上部に戻る。このようにして、ファンコイルユニット8によって冷却される熱量はヒートパイプ4を介して海洋深層水3に放出される。   In the deep sea water cold energy utilization system of the present embodiment configured as described above, the heat quantity Qx cooled by the fan coil unit 8 is transferred to the regular water 12 in the regular water tank 1 via the heat exchanger 6. . The hydraulic fluid 16 in the heat pipe 4 evaporates by receiving the heat of the service water 12 through the upper end plug 15a, and the vapor descends in the heat pipe 4 and is deep by the deep sea water 3 through the lower end plug 15b. To be cooled. In the figure, the amount of heat absorbed from normal water in the upper end plug 15a of the heat pipe 4 is expressed as Qi, and the amount of heat released from the lower end plug 15b is expressed as Qo. The hydraulic fluid 16 condensed into a liquid returns to the upper part of the heat pipe 4 by the capillary action of the wick 14. In this way, the amount of heat cooled by the fan coil unit 8 is released to the deep ocean water 3 through the heat pipe 4.

本実施の形態の海洋深層水の冷熱利用システムは電気で駆動するコンプレッサーや海水を循環する熱交換器を用いないので、電力消費量と機器の海水による汚損を低減することができる。海底1000mからの湧昇流として得られる無尽蔵にある海洋深層水を低熱源として利用するので、清浄性のため伝熱管への付着物は無く伝熱性能の低下が小さい。また、表層水に比べ低温性のため冷却性能が高い。また、海水を使用した場合の高濃度塩分による熱交換器の腐食を防ぐことができるため熱交換器は高価で製作性の悪いチタン材を使わなくて良い。ヒートパイプの作動液と真空度を適正に選定することにより熱交換性能を良好に維持し熱交換器の洗浄頻度を下げることができる。   Since the deep ocean water cooling system of the present embodiment does not use a compressor driven by electricity or a heat exchanger that circulates seawater, it is possible to reduce power consumption and contamination of the equipment by seawater. Since infinitely deep ocean water obtained as an upwelling flow from the seabed 1000 m is used as a low heat source, there is no deposit on the heat transfer tube for cleanliness, and the heat transfer performance is less deteriorated. In addition, the cooling performance is high because of its low temperature compared to surface water. Moreover, since the corrosion of the heat exchanger due to high-concentration salinity when seawater is used can be prevented, the heat exchanger need not use a titanium material that is expensive and has poor productivity. By appropriately selecting the working fluid and the degree of vacuum of the heat pipe, it is possible to maintain good heat exchange performance and reduce the frequency of cleaning the heat exchanger.

なお、ここでファンコイルユニット8は冷風18を得る一手段として熱交換器6の二次配管7側に配置したものとして説明したが、二次配管7の構成はこれに限定されず、熱交換器6により二次配管7側に設置される熱負荷系が冷却される構成であればよい。   Here, the fan coil unit 8 has been described as being arranged on the secondary pipe 7 side of the heat exchanger 6 as one means for obtaining the cold air 18, but the configuration of the secondary pipe 7 is not limited to this, and heat exchange is performed. What is necessary is just the structure by which the heat load system installed in the secondary piping 7 side by the vessel 6 is cooled.

(第2の実施の形態)
図2は本実施の形態の海洋深層水の冷熱利用システムを示し、常用水タンク1とファンコイルユニット8の間に熱交換器を備えず、配管19で接続した構成である。その他の構成は第1の実施の形態におけると同じである。
(Second Embodiment)
FIG. 2 shows a deep ocean water cooling / utilizing system according to the present embodiment, in which a heat exchanger is not provided between the regular water tank 1 and the fan coil unit 8 and is connected by a pipe 19. Other configurations are the same as those in the first embodiment.

このように構成された本実施の形態の海洋深層水の冷熱利用システムにおいて、ファンコイルユニット8によって冷却される熱量Qxが配管19を介して常用水タンク1内の常用水12に移行する。ヒートパイプ4内の作動液16は上部の端栓15aを介して常用水12の熱を受けて蒸発し、蒸気はヒートパイプ4内を下降し下部の端栓15bを介して海洋深層水3によって冷却される。凝縮し液体となった作動液16はウィック14の毛細管現象でヒートパイプ4の上部に戻る。このようにして、ファンコイルユニット8によって冷却される熱量はヒートパイプ4を介して海洋深層水3に放出される。   In the deep sea water cold energy utilization system of the present embodiment configured as described above, the amount of heat Qx cooled by the fan coil unit 8 is transferred to the ordinary water 12 in the ordinary water tank 1 via the pipe 19. The hydraulic fluid 16 in the heat pipe 4 evaporates by receiving the heat of the service water 12 through the upper end plug 15a, and the vapor descends in the heat pipe 4 and is deep by the deep sea water 3 through the lower end plug 15b. To be cooled. The hydraulic fluid 16 condensed into a liquid returns to the upper part of the heat pipe 4 by the capillary action of the wick 14. In this way, the amount of heat cooled by the fan coil unit 8 is released to the deep ocean water 3 through the heat pipe 4.

本実施の形態の海洋深層水の冷熱利用システムは電気で駆動するコンプレッサーや海水を循環する熱交換器を用いないので、電力消費量と機器の海水による汚損を低減することができる。   Since the deep ocean water cooling system of the present embodiment does not use a compressor driven by electricity or a heat exchanger that circulates seawater, it is possible to reduce power consumption and contamination of the equipment by seawater.

(第3の実施の形態)
本実施の形態の海洋深層水の冷熱利用システムは図3に示すように、陸地21に設けられた住宅22と、上端が住宅22内に突出し下端が海洋の表層水2を貫通して海洋深層水3中に浸漬して設けられたヒートパイプ4を備えている。ヒートパイプ4は断熱材13とウィック14を備え、上端と下端は端栓15a,15bによって封止され、内部に作動液16を保有している。
(Third embodiment)
As shown in FIG. 3, the deep ocean water cooling and heat utilization system of the present embodiment has a house 22 provided on the land 21, and an upper end protruding into the house 22 and a lower end penetrating the ocean surface water 2. A heat pipe 4 provided by being immersed in water 3 is provided. The heat pipe 4 includes a heat insulating material 13 and a wick 14, and an upper end and a lower end are sealed by end plugs 15 a and 15 b, and the working fluid 16 is held inside.

このように構成された本実施の形態の海洋深層水の冷熱利用システムにおいては、住宅22から吸収された熱量Qiが上部の端栓15aを通してヒートパイプ4に流入する。ヒートパイプ4内では第1の実施の形態におけると同様の現象を生じ、下部の端栓15bを通して海洋深層水に熱量Qoが放出される。このようにして住宅22が冷却される。   In the deep sea water cold energy utilization system of the present embodiment configured as described above, the amount of heat Qi absorbed from the house 22 flows into the heat pipe 4 through the upper end plug 15a. A phenomenon similar to that in the first embodiment occurs in the heat pipe 4, and the amount of heat Qo is released to the deep ocean water through the lower end plug 15b. In this way, the house 22 is cooled.

本実施の形態の海洋深層水の冷熱利用システムは電気で駆動するコンプレッサーや海水を循環する熱交換器を用いないので、電力消費量と機器の海水による汚損を低減することができる。   Since the deep ocean water cooling system of the present embodiment does not use a compressor driven by electricity or a heat exchanger that circulates seawater, it is possible to reduce power consumption and contamination of the equipment by seawater.

(第4の実施の形態)
図4は本実施の形態の海洋深層水の冷熱利用システムを示し、魚介類保冷庫25を備えた船舶23の客室24内にヒートパイプ4の上部の端栓15aを設けた構成である。その他の構成は第3の実施の形態におけると同じである。
(Fourth embodiment)
FIG. 4 shows a deep ocean water cooling system according to the present embodiment, in which an end plug 15 a at the top of the heat pipe 4 is provided in a cabin 24 of a ship 23 having a seafood cooler 25. Other configurations are the same as those in the third embodiment.

このように構成された本実施の形態の海洋深層水の冷熱利用システムにおいては、客室24や保冷庫25から吸収された熱量Qiが上部の端栓15aを通してヒートパイプ4に流入する。ヒートパイプ4内では第1の実施の形態におけると同様の現象を生じ、下部の端栓15bを通して海洋深層水に熱量Qoが放出される。このようにして客室24と保冷庫25が冷却される。   In the deep ocean water cooling utilization system of the present embodiment configured as described above, the amount of heat Qi absorbed from the cabin 24 or the cold storage 25 flows into the heat pipe 4 through the upper end plug 15a. A phenomenon similar to that in the first embodiment occurs in the heat pipe 4, and the amount of heat Qo is released to the deep ocean water through the lower end plug 15b. In this way, the guest room 24 and the cool box 25 are cooled.

本実施の形態の海洋深層水の冷熱利用システムは電気で駆動するコンプレッサーや海水を循環する熱交換器を用いないので、電力消費量と機器の海水による汚損を低減することができる。   Since the deep ocean water cooling system of the present embodiment does not use a compressor driven by electricity or a heat exchanger that circulates seawater, it is possible to reduce power consumption and contamination of the equipment by seawater.

(第5の実施の形態)
本実施の形態の海洋深層水の冷熱利用システムは、図5に示すように、ヒートパイプ4の上部の端栓15aを野菜や高山植物28を低温栽培する低温栽培ハウス26内に設けた構成である。ヒートパイプ4の構成および下部の端栓15bの配置は第1、第2の実施の形態におけると同じである。
本実施の形態によれば、低減された電力消費量とメンテナンスで低温栽培野菜あるいは高山植物を栽培する海洋深層水の冷熱利用システムを提供することができる。
(Fifth embodiment)
As shown in FIG. 5, the deep ocean water cooling system of the present embodiment has a configuration in which an end plug 15 a at the top of the heat pipe 4 is provided in a low temperature cultivation house 26 for low temperature cultivation of vegetables and alpine plants 28. is there. The configuration of the heat pipe 4 and the arrangement of the lower end plug 15b are the same as in the first and second embodiments.
According to the present embodiment, it is possible to provide a deep sea water cold energy utilization system for cultivating low temperature cultivated vegetables or alpine plants with reduced power consumption and maintenance.

(第6の実施の形態)
図6は本実施の形態の海洋深層水の冷熱利用システムを示し、ヒートパイプ4の上端に端栓15aを包囲する冷却材タンク29を設け、この冷却材タンク29から野菜や高山植物28を栽培する土壌27中に伝熱管32を設けて、冷却材タンク29内の冷却材30を循環ポンプ31によって伝熱管32内に循環させるようにした構成である。その他の構成は第5の実施の形態におけると同じである。
本実施の形態によれば、低減された電力消費量とメンテナンスで低温栽培野菜あるいは高山植物を栽培する海洋深層水の冷熱利用システムを提供することができる。
(Sixth embodiment)
FIG. 6 shows a deep ocean water cooling system of the present embodiment, in which a coolant tank 29 surrounding the end plug 15a is provided at the upper end of the heat pipe 4, and vegetables and alpine plants 28 are cultivated from the coolant tank 29. The heat transfer tube 32 is provided in the soil 27 to be circulated, and the coolant 30 in the coolant tank 29 is circulated in the heat transfer tube 32 by the circulation pump 31. Other configurations are the same as those in the fifth embodiment.
According to the present embodiment, it is possible to provide a deep sea water cold energy utilization system for cultivating low temperature cultivated vegetables or alpine plants with reduced power consumption and maintenance.

(第7の実施の形態)
本実施の形態の海洋深層水の冷熱利用システムは図7に示すように、地上に設けられた常用水タンク1と、上端が常用水タンク1内に突出し下端が海洋の表層水2を貫通して海洋深層水3中に浸漬して設けられたヒートパイプ4と、前記常用水タンク1に一次配管5によって接続された熱交換器6と、この熱交換器6に二次配管7によって接続された蒸気発生器36およびタービン37を備えている。蒸気発生器36には地熱源34との間にヒートパイプ35が設けられ、タービン37には発電機38が接続されている。
(Seventh embodiment)
As shown in FIG. 7, the deep ocean water cooling and heat utilization system of the present embodiment has a service water tank 1 provided on the ground, an upper end protruding into the service water tank 1, and a lower end penetrating the surface water 2 of the ocean. A heat pipe 4 immersed in the deep ocean water 3, a heat exchanger 6 connected to the regular water tank 1 by a primary pipe 5, and a secondary pipe 7 connected to the heat exchanger 6. A steam generator 36 and a turbine 37. A heat pipe 35 is provided between the steam generator 36 and the geothermal source 34, and a generator 38 is connected to the turbine 37.

本実施の形態の海洋深層水の冷熱利用システムにおいては、ヒートパイプ4によって常用水タンク1内の常用水の温度は海洋深層水3の温度近くまで低温に保たれる。ヒートパイプ35は地中深くの地熱源34の熱を地表に取り出し、蒸気発生器36においてこの高温を利用して低沸点流体を沸騰させ蒸気を発生させる。発生した蒸気によってタービン37を回転させて発電機38によって発電を行う。熱交換器6は、二次配管7を流れる蒸気と熱交換することによって蒸気を凝縮させる。   In the deep ocean water cooling and heat utilization system of the present embodiment, the temperature of the ordinary water in the ordinary water tank 1 is kept low by the heat pipe 4 to near the temperature of the deep ocean water 3. The heat pipe 35 takes the heat of the geothermal source 34 deep in the ground to the ground surface, and uses the high temperature in the steam generator 36 to boil the low boiling point fluid and generate steam. The turbine 37 is rotated by the generated steam and the generator 38 generates power. The heat exchanger 6 condenses the steam by exchanging heat with the steam flowing through the secondary pipe 7.

本実施の形態の海洋深層水の冷熱利用システムは、熱交換器6の冷却のために海洋深層水3を用いることによって、表層水2を用いるのに比べて低温であるため熱交換器6の冷却性能が向上すると同時に、熱交換器6の配管の汚損や腐食を抑制することができる。また冷却水の低温源として海洋深層水の冷熱を、蒸気発生のための高温源として地熱を、それぞれヒートパイプ4および35で地上にて取り出して利用するため、発電コストを低減することができる。   Since the deep ocean water cooling system of the present embodiment uses the ocean deep water 3 for cooling the heat exchanger 6, the temperature of the heat exchanger 6 is lower than that of the surface water 2. The cooling performance is improved, and at the same time, the fouling and corrosion of the piping of the heat exchanger 6 can be suppressed. Further, since the cold heat of deep ocean water is used as a low-temperature source of cooling water and geothermal heat is used as a high-temperature source for generating steam on the ground with the heat pipes 4 and 35, respectively, power generation costs can be reduced.

(第8の実施の形態)
本実施の形態の海洋深層水の冷熱利用システムは図8に示すように、火力、原子力等の発電設備に設けられた蒸気発生器36において発生しタービン37を回転させた後の蒸気を凝縮させる復水器39に冷却配管40が設けられており、この冷却配管40は海中深くの海洋深層部まで導かれており、低温の海洋深層水3を地上までくみ上げて復水器39の冷却水として用いる。
(Eighth embodiment)
As shown in FIG. 8, the deep ocean water cooling system of the present embodiment condenses steam generated in a steam generator 36 provided in power generation facilities such as thermal power and nuclear power, and after rotating a turbine 37. The condenser 39 is provided with a cooling pipe 40, and the cooling pipe 40 is led to a deep ocean depth part deep in the sea. The low-temperature deep ocean water 3 is pumped up to the ground and used as cooling water for the condenser 39. Use.

本実施の形態の海洋深層水の冷熱利用システムは、復水器39の冷却水として海洋深層水3を用いることによって、表層水の場合に比べて復水器39の冷却性能が向上すると同時に、復水器39の配管の汚損や腐食を抑制することができる。   In the deep ocean water cooling and heat utilization system of the present embodiment, by using the deep ocean water 3 as the cooling water for the condenser 39, the cooling performance of the condenser 39 is improved as compared to the case of surface water, The fouling and corrosion of the pipe of the condenser 39 can be suppressed.

(第9の実施の形態)
本実施の形態の海洋深層水の冷熱利用システムは図9に示すように、熱交換器44に海洋深層水3を供給する吸上げ配管43には、一部内部を切り欠いて示すように、配管内部に金網42が充填されている。また熱交換器44には、熱交換を行う伝熱管45とドレン配管46が設けられている。吸上げ配管43の下端は、海面10下の海洋深層水3まで導かれている。海洋深層水3は吸上げ配管43内に入り、金網42による毛細管現象により熱交換器44内部まで導かれる。海洋深層水3は熱交換器44内に貯留され、伝熱管45内の流体と熱交換を行う。貯留された海洋深層水3は、ドレン配管46の上端部より熱交換器44外に排出される。ドレン配管46により、熱交換器44内の海洋深層水3のレベルは一定に保たれる。
本実施の形態によれば、海洋深層水3を汲み上げるポンプが不要であり、電力や燃料の消費を低減することができる。
(Ninth embodiment)
As shown in FIG. 9, the deep ocean water cooling and heat utilization system of the present embodiment has a suction pipe 43 that supplies the ocean deep water 3 to the heat exchanger 44, as shown in FIG. A wire mesh 42 is filled inside the pipe. The heat exchanger 44 is provided with a heat transfer tube 45 and a drain pipe 46 for performing heat exchange. The lower end of the suction pipe 43 is led to the deep ocean water 3 below the sea surface 10. The deep ocean water 3 enters the suction pipe 43 and is guided to the inside of the heat exchanger 44 by a capillary phenomenon by the wire mesh 42. The deep ocean water 3 is stored in the heat exchanger 44 and exchanges heat with the fluid in the heat transfer tubes 45. The stored deep ocean water 3 is discharged out of the heat exchanger 44 from the upper end portion of the drain pipe 46. The level of the deep ocean water 3 in the heat exchanger 44 is kept constant by the drain pipe 46.
According to this Embodiment, the pump which pumps the deep sea water 3 is unnecessary, and consumption of electric power and fuel can be reduced.

(第10の実施の形態)
図10は本実施の形態の海洋深層水の冷熱利用システムを示し、第9の実施形態においてさらに熱交換器44に真空配管47と真空ポンプ48、および排水管49と排水ポンプ50を接続した構成である。
(Tenth embodiment)
FIG. 10 shows a deep ocean water cooling utilization system according to the present embodiment. In the ninth embodiment, a vacuum pipe 47 and a vacuum pump 48, and a drain pipe 49 and a drain pump 50 are further connected to the heat exchanger 44. It is.

本実施の形態によれば、熱交換器44内を大気圧より低圧にすることにより吸上げ配管43の吸上げ力を高め、海洋深層水3の給水流量を大きくし、交換熱量を大きくすることができる。一方、海洋深層水3の排水は、熱交換器44内を負圧にしたため、図9に示したドレン配管46は使えなくなるので、排水管49と排水ポンプ50で強制的に排出する。
本実施の形態によれば、海洋深層水3を汲み上げるポンプが不要であり、電力や燃料の消費を低減することができる。
According to the present embodiment, the suction force of the suction pipe 43 is increased by making the inside of the heat exchanger 44 lower than the atmospheric pressure, the water supply flow rate of the deep ocean water 3 is increased, and the exchange heat amount is increased. Can do. On the other hand, since the drainage of the deep sea water 3 has a negative pressure inside the heat exchanger 44, the drain pipe 46 shown in FIG.
According to this Embodiment, the pump which pumps the deep sea water 3 is unnecessary, and consumption of electric power and fuel can be reduced.

(第11の実施の形態)
本実施の形態の海洋深層水の冷熱利用システムは図11に示すように、熱交換用伝熱器52の入口側に接続され他端が海洋深層水3中に浸漬した深層水取水管53と、汲み上げポンプ54と弁58aと、熱交換用伝熱器52の出口側に接続された排水管55と弁58bを備えている。さらに熱交換用伝熱器52を通らずに深層水取水管53と排水管55とを結ぶバイパス管56a,56bを備えている。バイパス管56aは弁58aの入口側と弁58bの入口側で接続し、バイパス管56bは弁58aの出口側と弁58bの出口側で接続している。さらにバイパス管56bには弁58cが、バイパス管56bには弁58dが設けられている。また、熱交換用伝熱器52にはポンプ60を介して熱負荷系57が接続している。
(Eleventh embodiment)
As shown in FIG. 11, the deep-sea water cold heat utilization system of the present embodiment is connected to the inlet side of the heat exchanger 52 for heat exchange and has a deep-water intake pipe 53 with the other end immersed in the deep-sea water 3. , A pumping pump 54 and a valve 58a, and a drain pipe 55 and a valve 58b connected to the outlet side of the heat exchanger 52 for heat exchange. Furthermore, bypass pipes 56 a and 56 b that connect the deep water intake pipe 53 and the drain pipe 55 without passing through the heat exchanger 52 for heat exchange are provided. The bypass pipe 56a is connected to the inlet side of the valve 58a and the inlet side of the valve 58b, and the bypass pipe 56b is connected to the outlet side of the valve 58a and the outlet side of the valve 58b. Further, the bypass pipe 56b is provided with a valve 58c, and the bypass pipe 56b is provided with a valve 58d. A heat load system 57 is connected to the heat exchanger 52 for heat exchange via a pump 60.

このように構成された本実施の形態の海洋深層水の冷熱利用システムにおいて、通常運転時は、汲み上げポンプ54で汲み上げられた海洋深層水3は、深層水取水管53と弁58aを経由して熱交換用伝熱器52に供給され、熱交換用伝熱器52で熱交換して熱負荷系57を冷却して、排水管55の弁58bを経由して海面10に戻される。このときの流れ方向を白抜き矢印で示す。一方、海洋深層水3は表層水2と比べて伝熱管等の配管の汚れが少ない流体であるが、とは言え長期間の運転中には僅かずつ汚れが堆積する恐れがある。そこで、本実施の形態では弁操作によって海洋深層水を通常運転時とは逆に流し、堆積した汚れを洗い流す。この逆洗時の流れ方向を黒塗り矢印で示す。   In the deep sea water cooling and heat utilization system of the present embodiment configured as described above, during normal operation, the deep sea water 3 pumped up by the pumping pump 54 passes through the deep water intake pipe 53 and the valve 58a. The heat exchange heat exchanger 52 supplies heat to the heat exchange heat exchanger 52 to cool the heat load system 57, and the water is returned to the sea surface 10 through the valve 58 b of the drain pipe 55. The flow direction at this time is indicated by a white arrow. On the other hand, the deep ocean water 3 is a fluid with less dirt on the pipes such as heat transfer pipes than the surface water 2, but there is a risk that dirt will accumulate little by little during long-term operation. Therefore, in this embodiment, the deep sea water is caused to flow in reverse to the normal operation by the valve operation, and the accumulated dirt is washed away. The direction of flow during backwashing is indicated by black arrows.

このように本実施の形態の海洋深層水の冷熱利用システムは、熱交換器の洗浄を伝熱管を取り外すことなくオンラインで行うことができるので、運転停止の回数が減少し稼働率が向上する。   As described above, the deep ocean water cooling and heat utilization system of the present embodiment can perform the heat exchanger cleaning online without removing the heat transfer tubes, so that the number of operation stoppages is reduced and the operation rate is improved.

(第12の実施の形態)
本発明の第12の実施の形態の海洋深層水の冷熱利用システムを図12を用いて説明する。図12は海洋を含む地形断面模式図である。陸地64上の冷熱利用建屋61内に図示しない熱交換用伝熱装置が設置されており、熱交換用伝熱装置の入口には図示しない汲み上げポンプと地中に埋設された深層水取水管62が接続し、深層水取水管62の下端は海洋深層水3内に浸漬している。
(Twelfth embodiment)
A deep ocean water cooling utilization system according to a twelfth embodiment of the present invention will be described with reference to FIG. FIG. 12 is a schematic topographic cross-sectional view including the ocean. A heat transfer device (not shown) is installed in the cold heat building 61 on the land 64, and a pump (not shown) and a deep water intake pipe 62 embedded in the ground are installed at the inlet of the heat transfer device. Are connected, and the lower end of the deep water intake pipe 62 is immersed in the deep sea water 3.

このように構成された本実施の形態の海洋深層水の冷熱利用システムは、深層水取水管62が、地中に埋設されているので気温変化の影響を受けることが少なく比較的低温に一定維持され、汲み上げた海洋深層水の温度上昇が少なく熱交換用伝熱装置に導かれる。したがって、熱交換性能を良好に維持することが可能で、配管の断熱設備を省くことができるので無駄な資源を使わずに省エネルギー化を図ることができる。   The deep ocean water cooling / utilizing system according to the present embodiment configured as described above has a deep water intake pipe 62 embedded in the ground, so that it is not affected by temperature changes and is maintained at a relatively low temperature. As a result, the temperature of the deep ocean water that has been pumped up is small, and it is led to a heat transfer device for heat exchange. Therefore, it is possible to maintain the heat exchange performance satisfactorily, and it is possible to save the energy without using wasteful resources because it is possible to omit the heat insulation equipment of the piping.

(第13の実施の形態)
本発明の第13の実施の形態の海洋深層水の冷熱利用システムを図13を用いて説明する。冷熱利用建屋61内に図示しない熱交換用伝熱装置が設置されており、熱交換用伝熱装置の入口には図示しない汲み上げポンプが設置されている。冷熱利用建屋61の入口には氷を貯蔵した氷室63が設けられている。熱交換用伝熱装置の入口に接続した深層水取水管62がこの氷室63内を通過し地中に埋設された状態で敷設されて海洋深層水3中に下端が浸漬している。氷室63は雪を貯蔵してもよい。
(Thirteenth embodiment)
A deep ocean water cooling / utilizing system according to a thirteenth embodiment of the present invention will be described with reference to FIG. A heat exchange device (not shown) is installed in the cold heat building 61, and a pump (not shown) is installed at the inlet of the heat exchange device. An ice chamber 63 for storing ice is provided at the entrance of the cold heat building 61. A deep water intake pipe 62 connected to the inlet of the heat exchange heat transfer device passes through the ice chamber 63 and is buried in the ground, and the lower end is immersed in the deep sea water 3. The ice chamber 63 may store snow.

このように構成された本実施の形態の海洋深層水の冷熱利用システムにおいては、汲み上げられた海洋深層水3は低温に維持された氷室63内を通過するので低温に維持された状態で冷熱利用建屋61に導かれる。したがって、熱交換性能を良好に維持することが可能で、配管の断熱設備を省くことができるので無駄な資源を使わずに省エネルギー化の効果をあげることができる。   In the deep ocean water cold energy utilization system of the present embodiment configured as described above, the deep ocean water 3 that has been pumped passes through the ice chamber 63 maintained at a low temperature. Guided to building 61. Therefore, it is possible to maintain the heat exchange performance well, and it is possible to omit the heat insulation equipment for the pipes, so that the effect of energy saving can be obtained without using useless resources.

本発明の第1の実施の形態の海洋深層水の冷熱利用システムの構成を示す部分断面模式図。The partial cross section schematic diagram which shows the structure of the cold utilization system of the deep sea water of the 1st Embodiment of this invention. 本発明の第2の実施の形態の海洋深層水の冷熱利用システムの構成を示す部分断面模式図。The partial cross section schematic diagram which shows the structure of the cold utilization system of the deep sea water of the 2nd Embodiment of this invention. 本発明の第3の実施の形態の海洋深層水の冷熱利用システムの構成を示す部分断面模式図。The partial cross section schematic diagram which shows the structure of the cold utilization system of the deep sea water of the 3rd Embodiment of this invention. 本発明の第4の実施の形態の海洋深層水の冷熱利用システムの構成を示す部分断面模式図。The partial cross section schematic diagram which shows the structure of the cold utilization system of the deep sea water of the 4th Embodiment of this invention. 本発明の第5の実施の形態の海洋深層水の冷熱利用システムの構成を示す部分断面模式図。The partial cross section schematic diagram which shows the structure of the cold utilization system of the deep sea water of the 5th Embodiment of this invention. 本発明の第6の実施の形態の海洋深層水の冷熱利用システムの構成を示す部分断面模式図。The partial cross section schematic diagram which shows the structure of the cold utilization system of the deep sea water of the 6th Embodiment of this invention. 本発明の第7の実施の形態の海洋深層水の冷熱利用システムの構成を示す模式図。The schematic diagram which shows the structure of the cold energy utilization system of the deep sea water of the 7th Embodiment of this invention. 本発明の第8の実施の形態の海洋深層水の冷熱利用システムの構成を示す模式図。The schematic diagram which shows the structure of the cold energy utilization system of the deep sea water of the 8th Embodiment of this invention. 本発明の第9の実施の形態の海洋深層水の冷熱利用システムの構成を示す部分断面図。The fragmentary sectional view which shows the structure of the cold utilization system of the deep sea water of the 9th Embodiment of this invention. 本発明の第10の実施の形態の海洋深層水の冷熱利用システムの構成を示す部分断面図。The fragmentary sectional view which shows the structure of the cold energy utilization system of the deep sea water of the 10th Embodiment of this invention. 本発明の第11の実施の形態の海洋深層水の冷熱利用システムの構成および流体の流れを示す配管接続図。The piping connection diagram which shows the structure of the cold utilization system of deep sea water of the 11th Embodiment of this invention, and the flow of a fluid. 本発明の第12の実施の形態の海洋深層水の冷熱利用システムの構成を示す断面図。Sectional drawing which shows the structure of the cold utilization system of the deep sea water of the 12th Embodiment of this invention. 本発明の第13の実施の形態の海洋深層水の冷熱利用システムの構成を示す断面図。Sectional drawing which shows the structure of the cold utilization system of the deep sea water of the 13th Embodiment of this invention.

符号の説明Explanation of symbols

1…常用水タンク、2…表層水、3…海洋深層水、4…ヒートパイプ、5…一次配管、6…熱交換器、7…二次配管、8…ファンコイルユニット、10…海面、11…断熱材、12…常用水、13…断熱材、14…ウィック、15a,15b…端栓、16…作動液、17…ファン、18…冷風、19…配管、21…陸地、22…住宅、23…船舶、、24…客室、25…魚介類保冷庫、26…低温栽培ハウス、27…土壌、28…野菜や高山植物、29…冷却材タンク、30…冷却材、31…循環ポンプ、32…伝熱管、34…地熱源、35…ヒートパイプ、36…蒸気発生器、37…タービン、38…発電機、39…復水器、40…冷却配管、42…金網、43…吸上げ配管、44…熱交換器、45…伝熱管、46…ドレン配管、47…真空配管、48…真空ポンプ、49…排水管、50…排水ポンプ、52…熱交換用伝熱器、53…深層水取水管、54…汲み上げポンプ、55…排水管、56a,56b…バイパス管、57…熱負荷系、58a,58b,58c,58d…弁、60…ポンプ、61…冷熱利用建屋、62…深層水取水管、63…氷室、64…陸地。   DESCRIPTION OF SYMBOLS 1 ... Common water tank, 2 ... Surface water, 3 ... Deep sea water, 4 ... Heat pipe, 5 ... Primary piping, 6 ... Heat exchanger, 7 ... Secondary piping, 8 ... Fan coil unit, 10 ... Sea surface, 11 Insulating material, 12 ... Regular water, 13 ... Insulating material, 14 ... Wick, 15a, 15b ... End plug, 16 ... Hydraulic fluid, 17 ... Fan, 18 ... Cold air, 19 ... Piping, 21 ... Land, 22 ... Housing, 23 ... Ship, 24 ... Guest room, 25 ... Seafood cooler, 26 ... Cryogenic house, 27 ... Soil, 28 ... Vegetables and alpine plants, 29 ... Coolant tank, 30 ... Coolant, 31 ... Circulating pump, 32 ... heat transfer pipe, 34 ... geothermal source, 35 ... heat pipe, 36 ... steam generator, 37 ... turbine, 38 ... generator, 39 ... condenser, 40 ... cooling pipe, 42 ... wire mesh, 43 ... suction pipe, 44 ... heat exchanger, 45 ... heat transfer tube, 46 ... drain piping, 47 ... true Piping, 48 ... Vacuum pump, 49 ... Drain pipe, 50 ... Drain pump, 52 ... Heat exchanger for heat exchange, 53 ... Deep water intake pipe, 54 ... Pumping pump, 55 ... Drain pipe, 56a, 56b ... Bypass pipe, 57 ... Thermal load system, 58a, 58b, 58c, 58d ... Valve, 60 ... Pump, 61 ... Cold energy building, 62 ... Deep water intake pipe, 63 ... Ice chamber, 64 ... Land.

Claims (9)

内部に作動液を保有し一端が海中の海洋深層水に浸漬され他端が海上または地上に設けられた冷却すべき熱負荷系に接続されたヒートパイプを備え、前記作動液の蒸発と凝縮および流動によって前記冷却すべき熱負荷系の熱を前記海洋深層水に移動させるようにしたことを特徴とする海洋深層水の冷熱利用システム。   It has a heat pipe having a hydraulic fluid inside, one end immersed in deep sea water in the sea, and the other end connected to a heat load system to be cooled provided on the sea or on the ground, and evaporation and condensation of the hydraulic fluid, A deep ocean water cold heat utilization system, wherein heat of the heat load system to be cooled is transferred to the ocean deep water by flow. 前記冷却すべき熱負荷系は、常用水を貯留する常用水タンクと、前記常用水または前記常用水によって冷却された流体によって冷却されるファンコイルユニットとを備えていることを特徴とする請求項1記載の海洋深層水の冷熱利用システム。   The heat load system to be cooled includes a service water tank for storing service water, and a fan coil unit cooled by the service water or a fluid cooled by the service water. The deep-sea water cold energy utilization system according to 1. 前記冷却すべき熱負荷系は、住宅または船舶または低温栽培ハウスであることを特徴とする請求項1記載の海洋深層水の冷熱利用システム。   The cold heat utilization system of deep ocean water according to claim 1, wherein the heat load system to be cooled is a house, a ship, or a low temperature cultivation house. ヒートパイプを介して地熱源に接続された蒸気発生器と、前記蒸気発生器で発生した水蒸気によって駆動されるタービンとを備え、前記タービンの復水冷却系が前記冷却すべき熱負荷系を構成することを特徴とする請求項1記載の海洋深層水の冷熱利用システム。   A steam generator connected to a geothermal source via a heat pipe; and a turbine driven by steam generated by the steam generator, wherein the condensate cooling system of the turbine constitutes the heat load system to be cooled The cold utilization system of deep ocean water according to claim 1, wherein: 内部に毛細管作用物体を保有し一端が海中の海洋深層水に浸漬され他端が海上または地上に設けられた熱交換器に接続された吸上げ配管を備え、前記毛細管作用物体の毛細管作用によって前記海洋深層水を吸い上げて前記熱交換器に供給するようにしたことを特徴とする海洋深層水の冷熱利用システム。   It has a capillary action object inside, and is equipped with a suction pipe connected to a heat exchanger provided at one end in the ocean deep sea water and connected at the other end to the sea or on the ground, and by the capillary action of the capillary action object A deep ocean water cold energy utilization system characterized by sucking deep ocean water and supplying it to the heat exchanger. 前記熱交換器内を減圧する減圧装置を備えていることを特徴とする請求項5記載の海洋深層水の冷熱利用システム。   The cold utilization system of deep ocean water according to claim 5, further comprising a decompression device for decompressing the inside of the heat exchanger. 海洋深層水によって冷却する熱交換器を備え、前記熱交換器に海洋深層水を流す配管にバイパス管と弁を設けて前記弁の開閉切替操作によって前記熱交換器の伝熱管を逆洗するようにしたことを特徴とする海洋深層水の冷熱利用システム。   A heat exchanger that is cooled by deep ocean water, and is provided with a bypass pipe and a valve in a pipe for flowing deep ocean water to the heat exchanger, and the heat transfer pipe of the heat exchanger is back-washed by switching operation of the valve A deep ocean water cooling and heat utilization system characterized by 地上に設けられた冷却すべき熱負荷系に海洋深層水を供給する取水管を地中敷設したことを特徴とする海洋深層水の冷熱利用システム。   A deep ocean water cooling and heat utilization system, characterized in that an intake pipe for supplying ocean deep water to a heat load system to be cooled provided on the ground is laid underground. 前記取水管の途中に氷または雪を貯蔵した氷室を設けたことを特徴とする請求項8記載の海洋深層水の冷熱利用システム。   9. The deep ocean water cooling / heating system according to claim 8, wherein an ice chamber storing ice or snow is provided in the intake pipe.
JP2005173823A 2005-06-14 2005-06-14 Cold utilization system for deep sea water Pending JP2006349226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005173823A JP2006349226A (en) 2005-06-14 2005-06-14 Cold utilization system for deep sea water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005173823A JP2006349226A (en) 2005-06-14 2005-06-14 Cold utilization system for deep sea water

Publications (1)

Publication Number Publication Date
JP2006349226A true JP2006349226A (en) 2006-12-28

Family

ID=37645263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005173823A Pending JP2006349226A (en) 2005-06-14 2005-06-14 Cold utilization system for deep sea water

Country Status (1)

Country Link
JP (1) JP2006349226A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292030A (en) * 2007-05-23 2008-12-04 Eco Power:Kk System using underground heat
CN101865500A (en) * 2010-06-10 2010-10-20 朱培世 Natural cold storage cooling air-conditioner
JP2010249383A (en) * 2009-04-14 2010-11-04 Fujikura Ltd Drift type sea ice cooling facilitation device
JP2013524142A (en) * 2010-04-01 2013-06-17 エスピーエス エナジー ゲーエムベーハー Apparatus and method for recovering heat from the environment
JP2015010527A (en) * 2013-06-28 2015-01-19 三菱日立パワーシステムズ株式会社 Gas turbine intake air cooling device and gas turbine installation
JP2015040751A (en) * 2013-08-21 2015-03-02 三菱重工業株式会社 Cooling device
CN104757104A (en) * 2015-04-03 2015-07-08 江苏建筑职业技术学院 Device and method for preserving temperature and retaining freshness by seawater
CN111928562A (en) * 2020-08-11 2020-11-13 北京创思工贸有限公司 Circulating cooling water environment-friendly and energy-saving system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292030A (en) * 2007-05-23 2008-12-04 Eco Power:Kk System using underground heat
JP2010249383A (en) * 2009-04-14 2010-11-04 Fujikura Ltd Drift type sea ice cooling facilitation device
JP2013524142A (en) * 2010-04-01 2013-06-17 エスピーエス エナジー ゲーエムベーハー Apparatus and method for recovering heat from the environment
CN101865500A (en) * 2010-06-10 2010-10-20 朱培世 Natural cold storage cooling air-conditioner
JP2015010527A (en) * 2013-06-28 2015-01-19 三菱日立パワーシステムズ株式会社 Gas turbine intake air cooling device and gas turbine installation
JP2015040751A (en) * 2013-08-21 2015-03-02 三菱重工業株式会社 Cooling device
CN104757104A (en) * 2015-04-03 2015-07-08 江苏建筑职业技术学院 Device and method for preserving temperature and retaining freshness by seawater
CN111928562A (en) * 2020-08-11 2020-11-13 北京创思工贸有限公司 Circulating cooling water environment-friendly and energy-saving system

Similar Documents

Publication Publication Date Title
JP2006349226A (en) Cold utilization system for deep sea water
US20130037236A1 (en) Geothermal facility with thermal recharging of the subsoil
CN203893703U (en) Evaporative cooler closed circulating cooling water device for thermal power plant
CN102536353B (en) For cooling the method for the carrier fluid of power station, power station and cooling system
TW201018785A (en) Ocean thermal energy conversion power plant and condensor thereof
CN104445481A (en) Waste heat electricity-water coproduction system
CN102992419A (en) Method and apparatus for desalinating water as well as method and apparatus for irrigating desalted water
CN104628067A (en) Solar-powered seawater desalination device, stove combined device and using method thereof
US9297279B2 (en) Pumping device using vapor pressure for supplying water for power plant
US8893496B2 (en) Sea water desalination and thermal energy conversion
CN107188259A (en) Sea water desalinating unit
KR20100028893A (en) Greenhouse heating apparatus using the waste heat
CN102408139B (en) Solar magnetic-refrigeration seawater desalination device and seawater desalination method thereof
CN103790793B (en) Ocean thermal energy open circulation electricity generation system
KR101500489B1 (en) Ocean Thermal Energy Conversion System Using Discharge of Seawater Heat Pump
US10550008B2 (en) Low energy fluid purification system
KR20100125830A (en) Exhaust heat power generation system by low temperature refrigerants vaporization activity
Assad et al. Geothermal Heat Pumps: Principles and Applications
CN204058007U (en) Solar thermal power sea water desalting equipment
RU2646684C1 (en) Houseboat
US8387387B1 (en) Floating solar pond energy conversion apparatus
CN106812179B (en) Intelligent air water drawing device and method based on solar power supply
CN201367922Y (en) Power generating device utilizing enthalpy difference convection of replacement working media of sea water and waste heat
RU79431U1 (en) DEVICE FOR DISPOSAL OF THERMAL ENERGY OF WATER COOLING A STEAM TURBINE CONDENSER
CN106698573A (en) Vacuum seawater desalination and refrigeration (ice-making) integrated technology and device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070302

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091110