JP2006345609A - Thermal power generator and vaporizer mounting that generator - Google Patents

Thermal power generator and vaporizer mounting that generator Download PDF

Info

Publication number
JP2006345609A
JP2006345609A JP2005167533A JP2005167533A JP2006345609A JP 2006345609 A JP2006345609 A JP 2006345609A JP 2005167533 A JP2005167533 A JP 2005167533A JP 2005167533 A JP2005167533 A JP 2005167533A JP 2006345609 A JP2006345609 A JP 2006345609A
Authority
JP
Japan
Prior art keywords
temperature
generator
power generation
vaporizer
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005167533A
Other languages
Japanese (ja)
Inventor
Norio Yasuzawa
典男 安澤
Chihiro Sekine
ちひろ 関根
Takashi Seki
孝史 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NORTH TECHNO RES KK
NORTH TECHNO RESEARCH KK
Muroran Institute of Technology NUC
Original Assignee
NORTH TECHNO RES KK
NORTH TECHNO RESEARCH KK
Muroran Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NORTH TECHNO RES KK, NORTH TECHNO RESEARCH KK, Muroran Institute of Technology NUC filed Critical NORTH TECHNO RES KK
Priority to JP2005167533A priority Critical patent/JP2006345609A/en
Publication of JP2006345609A publication Critical patent/JP2006345609A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal generator which can acquire a large amount of power generation more efficiently in volume ratio even in case that the temperature conditions of cold and hot heat sources that can be supplied to a thermoelectric element are the same, and a vaporizer mounting that generator. <P>SOLUTION: For the generator, pipelines C and H polygonal in cross section are combined, and a thermoelectric element 11 is arranged closely between adjacent pipelines. This generator increases the amount of power generation efficiently in volume ratio. This generator is applied to a vaporizer, and if it is used for gasification of cryogenic LPG, etc., it can suppress the wasteful energy loss of a hot medium required for gasification, and the latent power generation energy (low-temperature energy) that the cryogenic liquefied natural gas has can be recovered and utilized efficiently. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高温の流体と低温の流体の温度差に基づいて発電を行う熱発電装置に係り、とくに、装置のコンパクト化を図るとともに、未利用の潜在的発電エネルギーを回収してエネルギーロスのない発電を行う技術に関する。   The present invention relates to a thermoelectric generator that generates electric power based on a temperature difference between a high-temperature fluid and a low-temperature fluid, and in particular, while reducing the size of the device, recovering unused potential power generation energy to reduce energy loss. Not related to technology to generate electricity.

熱電素子は、素子の表裏の温度差に応じて電気的エネルギーを発生させる。このような熱電素子の用い方としては、従来、例えば特許文献1のように、河川水の表層と下層の水温差を利用して発電する装置や、特許文献2のように、バーナー装置を利用した強制的な温度差条件の創出による発電装置が知られている。
特開2002−136160号 特開2004−350335号
Thermoelectric elements generate electrical energy according to the temperature difference between the front and back of the element. As a method of using such a thermoelectric element, conventionally, for example, as in Patent Document 1, a device that generates power using the difference in water temperature between the surface layer and the lower layer of river water, or a burner device as in Patent Document 2 is used. There is known a power generation device by creating a forced temperature difference condition.
JP 2002-136160 A JP 2004-350335 A

ところで、従来提案されている熱電素子利用の発電装置(熱発電装置)は、熱電素子を利用した発電の方法、換言すれば、熱電素子をどのように利用して発電を行うかという点に技術開発の着眼がおかれているのが実状であって、効率的な発電を行うための設計、とくに装置のコンパクト化を図る点までは考慮されていない。   By the way, the conventionally proposed thermoelectric element-based power generator (thermoelectric generator) is a technique for generating electricity using a thermoelectric element, in other words, how to use the thermoelectric element to generate power. The actual focus is on development, and no consideration has been given to the design for efficient power generation, particularly the point of downsizing the device.

そこで、本発明の第一の目的は、熱電素子に供給できる低温および高温の熱源の温度条件が同一の場合でも、容積比率でより効率的に大きな発電量を取得できる熱発電装置を提案することにある。   Therefore, a first object of the present invention is to propose a thermoelectric generator that can acquire a large amount of power generation more efficiently with a volume ratio even when the temperature conditions of the low-temperature and high-temperature heat sources that can be supplied to the thermoelectric element are the same. It is in.

また、従来の熱発電装置は、河川水の深度の温度差、温泉水の利用のように自然エネルギーを利用するものや、強制加熱など人為的な温度差の創出を行うものとなっている。   In addition, conventional thermoelectric generators use natural energy such as the temperature difference in river water depth and the use of hot spring water, and artificially create temperature differences such as forced heating.

しかし、自然に存在する熱エネルギーを利用する発電方式では、大きな温度差を得にくいという問題があるほか、温泉水のように高温水を利用するためには、温泉水を得るための掘削工事など発電のための初期投資が必要となるため、採算がとれない事態も想定される。強制加熱による発電方式は、単なるエネルギーの変換利用であり、あえて熱発電装置に応用しなくても他に同等以上の発電量を取得できる可能性があって、効率的な発電方式とは言い難い面がある。   However, in the power generation method that uses natural thermal energy, there is a problem that it is difficult to obtain a large temperature difference, and in order to use hot water like hot spring water, excavation work to obtain hot spring water, etc. Since initial investment for power generation is required, it may be impossible to make a profit. The power generation method by forced heating is simply energy conversion use, and it is difficult to say that it is an efficient power generation method because there is a possibility that it can obtain the same or more power generation amount without applying it to a thermoelectric generator. There is a face.

そこで、本発明の第二の目的は、従来利用されなかった未利用の温度エネルギーを回収利用することによって大量の発電を可能とすることにある。   Therefore, a second object of the present invention is to enable a large amount of power generation by recovering and utilizing unused temperature energy that has not been conventionally used.

前記第一の目的を達成するため、請求項1に係る熱発電装置は、断面多角形の輸送管を組み合わせて、隣接する輸送管の間に熱電素子を密着させて配する。   In order to achieve the first object, a thermoelectric generator according to a first aspect of the present invention combines a transport pipe having a polygonal cross section and places a thermoelectric element in close contact between adjacent transport pipes.

この熱発電装置は、高温流体と低温流体の輸送管、例えば角管を格子状に組み合わせ、温度差が生じる部分に熱電素子を密着させて配するので、容積比率における発電効率が確実に向上し、装置構成のコンパクト化を実現できる。   In this thermoelectric generator, a high-temperature fluid and a low-temperature fluid transport pipe, for example, a square tube, is combined in a lattice shape, and thermoelectric elements are placed in close contact with the portion where the temperature difference occurs, so the power generation efficiency in the volume ratio is reliably improved. Therefore, the device configuration can be made compact.

請求項2は、前記第二の目的を達成するためのものである。これは、従来利用されることのなかった極低温の液化ガスの潜在エネルギーを発電用に利用するものである。   Claim 2 is for achieving the second object. This utilizes the potential energy of a cryogenic liquefied gas that has not been used in the past for power generation.

マイナス100℃以下の液化ガスは、通常、これを利用するために加熱の処理を行っているが、極低温のマイナス温度は、潜在的な発電エネルギーであって、高温の熱媒体との強制的な熱交換を行う前に利用すべき重要な資源である。請求項2記載の発明は、液化ガスのガス化処理における強制的な熱供給の際に、極低温のマイナス温度を発電用エネルギーとして回収し利用するベーパライザーである。   A liquefied gas of minus 100 ° C. or lower is usually heated in order to make use of it, but the minus temperature of extremely low temperature is potential power generation energy and is compulsory with a high-temperature heat medium. It is an important resource that should be used before performing a good heat exchange. The invention described in claim 2 is a vaporizer that recovers and uses a cryogenic minus temperature as energy for power generation when forcibly supplying heat in a gasification process of a liquefied gas.

請求項3は、液化ガス蒸発器の熱交換器が熱発電装置とするもので、液化ガスの熱交換を行うと同時に発電用の熱量を回収して利用する。極低温の液化ガスの潜在的な発電エネルギーを利用する箇所は、請求項2の構成では、ベーパライザーの熱交換器の前段でも後段でもよいのであるが、ベーパライザー自体のコンパクト化を図るうえでは、熱交換器そのものに請求項1記載の熱発電装置を適用することが最も望ましい。熱交換器のほかに、別途、熱発電装置を配する必要がないからである。   According to a third aspect of the present invention, the heat exchanger of the liquefied gas evaporator serves as a thermoelectric generator, and the heat of the liquefied gas is exchanged and at the same time, the amount of heat for power generation is recovered and used. In the configuration of claim 2, the portion using the potential power generation energy of the cryogenic liquefied gas may be before or after the vaporizer heat exchanger, but in order to make the vaporizer itself compact. It is most desirable to apply the thermoelectric generator according to claim 1 to the heat exchanger itself. This is because it is not necessary to separately provide a thermoelectric generator in addition to the heat exchanger.

請求項1の熱発電装置によれば、多角形の輸送管を組み合わせて、隣接する輸送管の間に熱電素子を配して熱発電を行うので、熱の交換接触面を最大に利用して発電装置のコンパクト化を図ることが出来る。   According to the thermoelectric generator of claim 1, since thermoelectric power generation is performed by combining a polygonal transport pipe and arranging a thermoelectric element between adjacent transport pipes, the heat exchange contact surface is utilized to the maximum. A power generator can be made compact.

請求項2および請求項3のベーパライザーによれば、断面多角形の輸送管を組み合わせて液化ガスの低温度を利用した発電を行うため、液化ガスを強制的にガス化するための熱量の無駄な損失が抑えられ、エネルギーの回収/再利用という点で優れた発電システムを構築することが出来る。   According to the vaporizers of claim 2 and claim 3, in order to generate power using the low temperature of the liquefied gas by combining the transport pipes having a polygonal cross section, waste of heat for forcibly gasifying the liquefied gas is wasted Loss can be suppressed, and an excellent power generation system can be constructed in terms of energy recovery / reuse.

図1は、請求項1に係る熱発電装置を例示するものである。この熱発電装置は、例えば、断面略正方形の輸送管を使用し、縦横それぞれ三列に配した、低温流体用の輸送管Cと高温流体用の輸送管Hを備えてなる。20は、輸送管C、Hの外周に配した断熱材、21は、輸送管C、Hを収めるためのケース体である。ケース体21と断熱材20は、輸送管C、Hに対する外気温の影響を最小にする。   FIG. 1 illustrates a thermoelectric generator according to claim 1. The thermoelectric generator includes, for example, a transport pipe having a substantially square cross section, and includes a transport pipe C for a low temperature fluid and a transport pipe H for a high temperature fluid, which are arranged in three rows in each of the vertical and horizontal directions. 20 is a heat insulating material disposed on the outer periphery of the transport pipes C and H, and 21 is a case body for accommodating the transport pipes C and H. The case body 21 and the heat insulating material 20 minimize the influence of the outside air temperature on the transport pipes C and H.

低温流体用の輸送管Cと高温流体用の輸送管Hは、内面および外面が方形のいわゆる角管を利用することが望ましい。両者(H、C)の接合面に熱電素子11を密着させやすいからである。   The transport pipe C for the low temperature fluid and the transport pipe H for the high temperature fluid desirably use so-called square tubes whose inner and outer surfaces are square. This is because the thermoelectric element 11 is easily adhered to the joint surface between the two (H, C).

低温流体用の輸送管Cと高温流体用の輸送管Hとが接する部分には、低温流体と高温流体の温度差を利用した発電を行うための熱電素子11を例えば直列に接続させて密着させて配設する。熱電素子11を配すべき箇所を斜線で示した。熱電素子11を配するときは、素子電極面の外側に絶縁材(例えばセラミック板)を配した素子ユニットを用いても良い。素子ユニットは、例えば熱伝導率が大きいシリコングリースなどを介して、輸送管H、Cとの間の空気層を除去するように接着剤やビス固定など適当な固定手段を用いて装着する。   A thermoelectric element 11 for performing power generation using a temperature difference between the low temperature fluid and the high temperature fluid is connected, for example, in series to the portion where the low temperature fluid transport pipe C and the high temperature fluid transport pipe H are in contact with each other. Arrange. A portion where the thermoelectric element 11 is to be disposed is indicated by hatching. When the thermoelectric element 11 is disposed, an element unit in which an insulating material (for example, a ceramic plate) is disposed outside the element electrode surface may be used. The element unit is mounted using an appropriate fixing means such as an adhesive or a screw so as to remove an air layer between the transport pipes H and C through, for example, silicon grease having a high thermal conductivity.

16は、ケース体21の端部に配する蓋体である。この蓋体16には、輸送管C、Hに対して流体を注入し、または流体を外部に排出させるためのパイプの接続孔17を設けておく。パイプの接続孔17に、例えばカプラ(継手)を接続する等によって、低温または高温の流体を供給または排出する。   Reference numeral 16 denotes a lid disposed on the end of the case body 21. The lid 16 is provided with a pipe connection hole 17 for injecting fluid into the transport pipes C and H or discharging the fluid to the outside. A low-temperature or high-temperature fluid is supplied or discharged, for example, by connecting a coupler (joint) to the connection hole 17 of the pipe.

なお、輸送管C、Hの製造コストを十分に低減できるようになるまでは、輸送管C、Hを短く成形して表面に熱電素子11を配したモジュールを利用しても良い。図2に示すように、モジュールMは、縦横寸法を、例えば155mm程度の立方体に成形し、外周面に例えば30mm角の熱電素子11を縦横五列×五列に配して、輸送管C、Hの長さを適宜連接して自由な長さに調整できるようにしておく。目的とする発電量、高温流体あるいは低温流体の流量、平均温度、気体/液体の相違などにより、輸送管C、Hを構成するモジュールMの断面積、前後方向の長さ、表面に密着して配する熱電素子11の数も、適宜設計変更してかまわない。   Until the manufacturing cost of the transport pipes C and H can be sufficiently reduced, a module in which the transport pipes C and H are formed short and the thermoelectric element 11 is arranged on the surface may be used. As shown in FIG. 2, the module M is formed into a cube having a vertical and horizontal dimension of, for example, about 155 mm, and the thermoelectric elements 11 of, for example, 30 mm square are arranged on the outer peripheral surface in five vertical and horizontal rows × five rows. The length of H is appropriately connected so that it can be adjusted to a free length. The cross-sectional area, the length in the front-rear direction, and the surface of the module M constituting the transport pipe C and H are in close contact with the target power generation amount, the flow rate of the high-temperature or low-temperature fluid, the average temperature, the difference in gas / liquid The number of thermoelectric elements 11 to be arranged may be changed as appropriate.

このように、輸送管C、Hを格子状に配した熱発電装置によれば、例えば9本の輸送管C、Hを用いて12面の熱電素子11の装着面を得る。この実施形態では1面につき例えば25個の熱電素子11を配するので、全体としては9本の輸送管C、Hにつき、モジュールMの一単位で300個の熱電素子11が搭載可能となる。モジュールMの接続段数を増加させれば、熱電素子11の数を任意に増大させることが出来る。   As described above, according to the thermoelectric generator in which the transport pipes C and H are arranged in a lattice shape, for example, the mounting surface of the twelve thermoelectric elements 11 is obtained using nine transport pipes C and H. In this embodiment, for example, 25 thermoelectric elements 11 are arranged on one surface, and therefore 300 thermoelectric elements 11 can be mounted as a unit of the module M per 9 transport pipes C and H as a whole. If the number of connection stages of the module M is increased, the number of thermoelectric elements 11 can be arbitrarily increased.

この熱発電装置は、空間的な余裕の少ない箇所における省スペース型の発電に適する。例えば、自動車のエンジンルームに搭載し、高温熱源としてエンジンの廃熱またはエンジンを冷却させた高温水を、低温熱源としてエンジン冷却前の水または外気を利用する等である、自動車のエンジンルームのように、スペースが限られている箇所では輸送管C、Hの断面寸法も小さく設計してよい。   This thermoelectric generator is suitable for space-saving power generation in places where there is little space. For example, an engine room of an automobile that is mounted in an engine room of an automobile and uses waste heat from the engine or high-temperature water that has cooled the engine as a high-temperature heat source, and water or outside air before cooling the engine as a low-temperature heat source. In addition, the cross-sectional dimensions of the transport pipes C and H may be designed to be small where the space is limited.

図3は、輸送管C、Hを格子状に配する熱発電装置を、液化ガス(例えばLPG)を加熱によってガス化する装置(ベーパライザー)に適用する場合を例示するものである。通常のベーパライザーは、LPGタンク30の低温流体を螺旋形の輸送管に導き、加熱した温水によって低温流体を温める。図2において、符号35は、LPGタンク30の低温流体を加熱するための熱交換器であり、内部には、通常のベーパライザーと同様に、LPGタンク30から供給される低温流体の流路となる螺旋形の輸送管31を配してある。そして、輸送管31を、ボイラ装置32によって加熱した温水33によって加熱する。34は、温水33によってガス化された流体を貯蔵するガス貯留部である。   FIG. 3 illustrates a case where the thermoelectric generator that arranges the transport pipes C and H in a lattice shape is applied to an apparatus (vaporizer) that gasifies liquefied gas (for example, LPG) by heating. A normal vaporizer guides the cryogenic fluid of the LPG tank 30 to a spiral transport pipe and warms the cryogenic fluid with heated hot water. In FIG. 2, the code | symbol 35 is a heat exchanger for heating the low temperature fluid of the LPG tank 30, and it has the flow path of the low temperature fluid supplied from the LPG tank 30 inside like a normal vaporizer inside. A spiral transport pipe 31 is arranged. Then, the transport pipe 31 is heated by hot water 33 heated by the boiler device 32. Reference numeral 34 denotes a gas reservoir that stores the fluid gasified by the hot water 33.

通常のベーパライザーとの相違は、熱交換器35の前段(流体経路の上流)に、格子状に配列した角管(C、H)を利用した熱発電装置を設ける点にある。この熱発電装置は、すでに説明したように例えば三列×三列に配した格子状の角管(C、H)の間に熱電素子11を備え、極低温の液化ガスを通す輸送管Cと、ボイラ装置32によって加熱した温水33を通す輸送管Hとを格子状に配することで、大きな温度差に基づく発電を行うものである。36は、熱電素子11によって得た電力を蓄える蓄電装置である。なお、熱交換器35に温水を供給するボイラ装置32と、輸送管Hに温水を供給するボイラ装置は別体として構成しても良い。   The difference from a normal vaporizer is that a thermoelectric generator using square tubes (C, H) arranged in a lattice form is provided in the previous stage of the heat exchanger 35 (upstream of the fluid path). As already described, this thermoelectric generator is provided with a thermoelectric element 11 between, for example, grid-like square tubes (C, H) arranged in three rows × three rows, and a transport tube C through which a cryogenic liquefied gas passes. The power generation based on a large temperature difference is performed by arranging the transport pipes H through which the hot water 33 heated by the boiler device 32 is passed in a lattice pattern. Reference numeral 36 denotes a power storage device that stores electric power obtained by the thermoelectric element 11. In addition, you may comprise the boiler apparatus 32 which supplies warm water to the heat exchanger 35, and the boiler apparatus which supplies warm water to the transport pipe H as a different body.

従って、かかるベーパライザーによれば、熱交換器35においてLPGの加熱を行う前に極低温のLPGの冷熱を利用した発電を行い、温水との熱交換によって流体温度が上昇したLPGを熱交換器35によって加熱する構造とするため、LPGをガス化するための熱量を電気的エネルギーとして効率よく回収できるとともに、熱交換器35において必要となる強制加熱用の熱的エネルギーを確実に低減することが可能になる。   Therefore, according to such a vaporizer, before the LPG is heated in the heat exchanger 35, electric power is generated using the cold heat of the extremely low temperature LPG, and the LPG whose fluid temperature is increased by heat exchange with the hot water is converted into the heat exchanger. Since the structure is heated by 35, the amount of heat for gasifying LPG can be efficiently recovered as electrical energy, and the thermal energy for forced heating required in the heat exchanger 35 can be reliably reduced. It becomes possible.

図4は、請求項1に係る熱発電装置を利用したベーパライザーの他の構成を例示するものである。このベーパライザーは、螺旋形の輸送管(31)をもった熱交換器(30)を使用せず、すべて、格子状の輸送管C、Hの間に熱電素子11を配した熱発電装置を通してLPGを強制的に加熱してガス化する。   FIG. 4 illustrates another configuration of the vaporizer using the thermoelectric generator according to claim 1. This vaporizer does not use a heat exchanger (30) having a helical transport pipe (31), but passes through a thermoelectric generator in which all thermoelectric elements 11 are arranged between grid-shaped transport pipes C and H. LPG is forcibly heated and gasified.

LPGの流路として螺旋形の輸送管(31)を用いないため、この場合には、装置を小型化するために、断面から見た場合の格子状の輸送管C、Hの数を増やすことが望ましい。例えば、上下/左右の輸送管C、Hの数を五列×五列あるいはそれ以上とする等である。また、空間的な余裕があれば、適当な長さに設計したモジュールの接続段数を増やして熱発電装置の左右幅(流体経路の上流から下流までの距離)を大きくとることも出来る。38は温水をボイラ装置32に戻す等の熱媒回収部、39はヘッダーである。   Since the spiral transport pipe (31) is not used as the LPG flow path, in this case, in order to reduce the size of the apparatus, the number of grid-shaped transport pipes C and H when viewed from the cross section is increased. Is desirable. For example, the number of upper / lower / left / right transport pipes C, H is five rows × five rows or more. Further, if there is a space, it is possible to increase the left and right widths (distance from the upstream to the downstream of the fluid path) of the thermoelectric generator by increasing the number of connecting stages of modules designed to an appropriate length. Reference numeral 38 denotes a heat medium recovery unit for returning hot water to the boiler device 32, and 39 denotes a header.

かかる構造によれば、LPGの低温エネルギーと、LPGをガス化するために必要な高温の熱エネルギーとの熱交換時に、熱交換のエネルギーを最大効率で回収し、電気的エネルギーとして利用することが出来る。熱的エネルギーの差異を電気的エネルギーに変換するときの効率は、もっぱら熱電素子11の性能に依存するが、熱電素子11に与え得る熱的エネルギーの差としては大きな発電量を期待できる。ベーパライザーで発生する電気は、蓄電装置またはレギュレーターなどを介して例えば照明、ガス検知器、温度センサーなどに利用できる。このように、LPGのガス化のために無駄に捨てられていた熱量分を電気的エネルギーに変換して利用できるので、LPGのガス化事業にとっても経済効率は格段に高まるし、いわゆる京都議定書に基づくエネルギー資源の効率的利用という趣旨にも合致する。   According to such a structure, at the time of heat exchange between the low-temperature energy of LPG and the high-temperature heat energy necessary for gasifying LPG, the heat exchange energy can be recovered with maximum efficiency and used as electrical energy. I can do it. The efficiency when converting the difference in thermal energy into electrical energy depends solely on the performance of the thermoelectric element 11, but a large amount of power generation can be expected as the difference in thermal energy that can be given to the thermoelectric element 11. The electricity generated by the vaporizer can be used for, for example, lighting, a gas detector, a temperature sensor, etc. via a power storage device or a regulator. In this way, since the amount of heat that was wasted for LPG gasification can be converted into electrical energy and used, the economic efficiency of the LPG gasification business is significantly increased. It also meets the purpose of efficient use of energy resources based on it.

なお、本発明に係るベーパライザーにおいて利用する液化ガスの平均温度は、天然ガス(−160℃)、水素(−253℃)、プロパンガス(−42℃)、酸素(−183℃)、窒素(−196℃)、アルゴン(−186℃)、ヘリウム(−269℃)、アンモニア(−33℃)、炭酸ガス(−78.5℃)等である。   The average temperature of the liquefied gas used in the vaporizer according to the present invention is natural gas (−160 ° C.), hydrogen (−253 ° C.), propane gas (−42 ° C.), oxygen (−183 ° C.), nitrogen ( -196 ° C), argon (-186 ° C), helium (-269 ° C), ammonia (-33 ° C), carbon dioxide (-78.5 ° C), and the like.

熱電素子11を選定する際には、流体(例えば天然ガス、LNG)の平均温度を勘案することが望ましい。室温以下を低温、室温から数百度までを中温、数百度以上を高温とした場合、ベーパライザーのように低温流体を利用するときは例えばビスマス・テルルを使用することが出来る。またベーパライザー以外のもので、高温流体の温度に適合する熱電素子11を選定する際には、中温用としては例えば鉛・テルル、高温用は珪素化合物(シリサイド等)を使用することが出来る。   When selecting the thermoelectric element 11, it is desirable to take into account the average temperature of the fluid (for example, natural gas, LNG). For example, bismuth tellurium can be used when using a low-temperature fluid such as a vaporizer when the room temperature or lower is a low temperature, the room temperature to several hundred degrees is a medium temperature, and a few hundred degrees or more is a high temperature. When a thermoelectric element 11 other than the vaporizer is selected that matches the temperature of the high-temperature fluid, for example, lead / tellurium can be used for the medium temperature, and a silicon compound (silicide or the like) can be used for the high temperature.

本発明に係る熱発電装置に用いる輸送管は、内面と外面が断面方形のものに限定されない。輸送管は、少なくとも外面が、隣接する輸送管との組み合わでコンパクトに設計できるものであれば良い。従って、例えば図5に示すように断面略三角形の輸送管C、Hを組み合わせて、全体形状を例えば六角形とし、輸送管C、Hの接合面に熱電素子51を配しても良い。輸送管の外形は断面五角形以上でも良い。例えば断面六角形の形状は、耐圧性にも優れ、組み合わせによる装置のコンパクト化も容易である。   The transport pipe used in the thermoelectric generator according to the present invention is not limited to one having an inner surface and an outer surface that are square in cross section. The transport pipe may be any one as long as at least the outer surface can be designed compactly in combination with the adjacent transport pipe. Therefore, for example, as shown in FIG. 5, the transport pipes C and H having a substantially triangular cross section may be combined to make the overall shape, for example, a hexagon, and the thermoelectric element 51 may be arranged on the joint surface of the transport pipes C and H. The outer shape of the transport pipe may be a pentagonal cross section or more. For example, the hexagonal cross-sectional shape is excellent in pressure resistance, and it is easy to make the apparatus compact by combination.

低温用の輸送管Cと高温用の輸送管Hの数は同一である必要はない。例えば、図5のように、輸送管C、Hの使用本数が少ない場合は、例えば、高温流体を通す輸送管Hが低温流体を通す輸送管Cを挟む状態で配置する等、流体温度の変化と発電量とを勘案して輸送管C、Hを組み合わせる。熱交換による高温流体と低温流体の温度変化の意味合いは、発電装置を適用するシステムによって異なるため、一方の輸送管が他方の輸送管を挟む状態で配設することが好ましい場合が少なくない。例えば、ベーパライザーでは、低温流体であるLNGはガス化するまでに多大な熱エネルギーを必要とする一方、高温流体である温水はLNGとの熱交換によって急速に温度が低下しやすい。このような場合、高温流体を通す輸送管Hの本数を、低温流体用の輸送管Cの本数より増やしておけば、温水の温度低下を抑えつつLNGを加熱することが出来る。   The number of low-temperature transport pipes C and high-temperature transport pipes H need not be the same. For example, when the number of transport pipes C and H used is small as shown in FIG. 5, for example, the transport pipe H through which the high-temperature fluid is passed is disposed with the transport pipe C through which the low-temperature fluid is passed. Transport pipes C and H are combined in consideration of the power generation amount. The meaning of the temperature change between the high-temperature fluid and the low-temperature fluid due to heat exchange differs depending on the system to which the power generation apparatus is applied. Therefore, it is often preferable to arrange one transport pipe with the other transport pipe sandwiched therebetween. For example, in a vaporizer, LNG, which is a low-temperature fluid, requires a large amount of heat energy until it is gasified, while hot water, which is a high-temperature fluid, tends to rapidly decrease in temperature due to heat exchange with LNG. In such a case, if the number of transport pipes H through which the high-temperature fluid passes is increased from the number of transport pipes C for the low-temperature fluid, the LNG can be heated while suppressing the temperature drop of the hot water.

また、輸送管の外形と内部の孔の形状は一致しなくても良い。例えば、断面略正方形の輸送管の内部の孔(流体経路)が円形であっても構わない。熱効率を高めるためには肉厚を一定とすることが望ましいが、耐圧性を高めるなど、種々の事情で肉厚を一定にすることが好ましくない場合もあるからである。   Further, the outer shape of the transport pipe and the shape of the internal hole do not need to match. For example, the hole (fluid path) inside the transport pipe having a substantially square cross section may be circular. In order to increase the thermal efficiency, it is desirable to make the wall thickness constant. However, it may not be preferable to make the wall thickness constant for various reasons, such as enhancing pressure resistance.

図3に示したベーパライザーは、高温水を利用した熱交換器35を用いるように図示してあるが、LNGなどのガス化では工場の温排水や高温排ガスあるいはバーナ火炎を利用した熱交換器を用いる場合もある。熱交換器の前段に輸送管を組み合わせた発電装置を配置するに際しては、温水利用かバーナ利用かなどといった、熱交換器のタイプによる区別はする必要がない。   The vaporizer shown in FIG. 3 is illustrated so as to use a heat exchanger 35 using high-temperature water. However, in the gasification of LNG or the like, a heat exchanger using factory waste water, high-temperature exhaust gas, or burner flame is used. May be used. When the power generation device combined with the transport pipe is arranged in the front stage of the heat exchanger, it is not necessary to distinguish between the types of heat exchangers such as use of hot water or burner.

本発明に係る熱発電装置を断面とともに例示する図である。It is a figure which illustrates the thermoelectric generator concerning the present invention with a section. 本発明に係る熱発電装置に適用できるモジュールを例示する斜視図である。It is a perspective view which illustrates a module applicable to a thermoelectric generator concerning the present invention. 図1の熱発電装置を用いたベーパライザーの第一の実施形態を示す図である。It is a figure which shows 1st embodiment of the vaporizer using the thermoelectric generator of FIG. 図1の熱発電装置を用いたベーパライザーの第二の実施形態を示す図である。It is a figure which shows 2nd embodiment of the vaporizer using the thermoelectric generator of FIG. 本発明に係る熱発電装置の他の実施形態を断面から例示する図である。It is a figure which illustrates other embodiment of the thermoelectric generator which concerns on this invention from a cross section.

符号の説明Explanation of symbols

11、51 熱電素子
16 蓋体
17 接続孔
20 断熱材
21 ケース体
30 LPGタンク
31 (螺旋形の)輸送管
32 ボイラ装置
34 ガス貯留部
35 熱交換器
36 蓄電装置
38 熱媒回収部
39 ヘッダー
M モジュール
C、H 輸送管
DESCRIPTION OF SYMBOLS 11, 51 Thermoelectric element 16 Cover body 17 Connection hole 20 Heat insulating material 21 Case body 30 LPG tank 31 (Helix type) transport pipe 32 Boiler device 34 Gas storage part 35 Heat exchanger 36 Power storage device 38 Heat-medium recovery part 39 Header M Module C, H Transport pipe

Claims (3)

断面多角形の輸送管を組み合わせて、隣接する輸送管の間に熱電素子を密着させて配することを特徴とする熱発電装置。   A thermoelectric generator comprising a combination of transport pipes having a polygonal cross section, and thermoelectric elements are arranged in close contact with each other between adjacent transport pipes. 請求項1記載の熱発電装置を、液化ガスの輸送管の経路上に設けることを特徴とするベーパライザー。   A vaporizer comprising the thermoelectric generator according to claim 1 on a path of a liquefied gas transport pipe. 液化ガス蒸発器の熱交換器が熱発電装置であることを特徴とする請求項2記載のベーパライザー。   The vaporizer according to claim 2, wherein the heat exchanger of the liquefied gas evaporator is a thermoelectric generator.
JP2005167533A 2005-06-07 2005-06-07 Thermal power generator and vaporizer mounting that generator Withdrawn JP2006345609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005167533A JP2006345609A (en) 2005-06-07 2005-06-07 Thermal power generator and vaporizer mounting that generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005167533A JP2006345609A (en) 2005-06-07 2005-06-07 Thermal power generator and vaporizer mounting that generator

Publications (1)

Publication Number Publication Date
JP2006345609A true JP2006345609A (en) 2006-12-21

Family

ID=37642122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005167533A Withdrawn JP2006345609A (en) 2005-06-07 2005-06-07 Thermal power generator and vaporizer mounting that generator

Country Status (1)

Country Link
JP (1) JP2006345609A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012023258A (en) * 2010-07-16 2012-02-02 Matsumoto Kenzai:Kk Temperature difference power generator and temperature difference power generation method
CN102377374A (en) * 2011-10-28 2012-03-14 章世斌 Circular tube column type temperature difference electric generator
JP2013537790A (en) * 2010-07-06 2013-10-03 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ Device for generating current and / or voltage based on a thermoelectric module disposed in a flowing fluid
JP2015008568A (en) * 2013-06-25 2015-01-15 中国電力株式会社 Power generation device utilizing lng cold
JP2015056929A (en) * 2013-09-10 2015-03-23 株式会社東芝 Thermoelectric generation device
JP2019075881A (en) * 2017-10-16 2019-05-16 三井E&S造船株式会社 Power generation system for floating body structure, power generation method in floating body structure, and piping for power generation
CN111262472A (en) * 2020-03-05 2020-06-09 太原理工大学 Temperature difference power generation device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013537790A (en) * 2010-07-06 2013-10-03 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ Device for generating current and / or voltage based on a thermoelectric module disposed in a flowing fluid
JP2012023258A (en) * 2010-07-16 2012-02-02 Matsumoto Kenzai:Kk Temperature difference power generator and temperature difference power generation method
CN102377374A (en) * 2011-10-28 2012-03-14 章世斌 Circular tube column type temperature difference electric generator
JP2015008568A (en) * 2013-06-25 2015-01-15 中国電力株式会社 Power generation device utilizing lng cold
JP2015056929A (en) * 2013-09-10 2015-03-23 株式会社東芝 Thermoelectric generation device
JP2019075881A (en) * 2017-10-16 2019-05-16 三井E&S造船株式会社 Power generation system for floating body structure, power generation method in floating body structure, and piping for power generation
CN111262472A (en) * 2020-03-05 2020-06-09 太原理工大学 Temperature difference power generation device
CN111262472B (en) * 2020-03-05 2023-06-23 太原理工大学 Thermoelectric generation device

Similar Documents

Publication Publication Date Title
Nguyen et al. Proton exchange membrane fuel cells heat recovery opportunities for combined heating/cooling and power applications
JP2006345609A (en) Thermal power generator and vaporizer mounting that generator
US20070144574A1 (en) Solar battery system and thermoelectric hybrid solar battery system
KR101717160B1 (en) Hybrid system
US20140014153A1 (en) Thermoelectric electricity generating device
JP4931614B2 (en) Cogeneration system using cold heat of liquefied gas and its operation method
JP2010136507A (en) Heat exchanger incorporating cold thermal power generation element
KR100799528B1 (en) A electric generating system using waste heat of from power generator
Maraver et al. Efficiency enhancement in existing biomass organic Rankine cycle plants by means of thermoelectric systems integration
Salari et al. Thermodynamic analysis of a photovoltaic thermal system coupled with an organic Rankine cycle and a proton exchange membrane electrolysis cell
JP2008101822A (en) Thermoelectric composite solar cell system
JP5515059B2 (en) Hot water supply system using a solar combined power generation system
Cheng et al. A review on research and technology development of green hydrogen energy systems with thermal management and heat recovery
KR100965715B1 (en) Hybrid Power Plant System using Fuel Cell Generation and Thermoelectric Generation
JP2009216222A (en) Liquefied gas vaporizer
JP5063065B2 (en) Fuel cell module and fuel cell system
CN115172801A (en) Solid oxide fuel cell and photo-thermal utilization integrated system and method
JP2008292161A (en) Nuclear heat using compact cogeneration device
JP2007254227A (en) Reforming apparatus
JP6132285B2 (en) Thermoelectric generator
JP2009277374A (en) Solid oxide fuel cell
JP2019075881A (en) Power generation system for floating body structure, power generation method in floating body structure, and piping for power generation
Tiwari et al. Study of performance of the flexible (Al-based) N-PVT-TEC collectors in different configurations
Rosenfeld et al. Life test results for water heat pipes operating at 200 C to 300 C
KR102543573B1 (en) Thermoelectric generation and waste heat recovery system for fuel cell

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902