JP2006343144A - Radiation detector and its manufacturing method - Google Patents

Radiation detector and its manufacturing method Download PDF

Info

Publication number
JP2006343144A
JP2006343144A JP2005167169A JP2005167169A JP2006343144A JP 2006343144 A JP2006343144 A JP 2006343144A JP 2005167169 A JP2005167169 A JP 2005167169A JP 2005167169 A JP2005167169 A JP 2005167169A JP 2006343144 A JP2006343144 A JP 2006343144A
Authority
JP
Japan
Prior art keywords
shaped
radiation detector
strip
portions
flexible substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005167169A
Other languages
Japanese (ja)
Inventor
Hiroshi Shiomi
大志 潮見
Kenichi Mogi
健一 茂木
Shoichi Nakanishi
正一 中西
Akira Takaoka
章 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005167169A priority Critical patent/JP2006343144A/en
Publication of JP2006343144A publication Critical patent/JP2006343144A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/167Measuring radioactive content of objects, e.g. contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/201Measuring radiation intensity with scintillation detectors using scintillating fibres

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Light Receiving Elements (AREA)
  • Measurement Of Radiation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiation detector that efficiently condenses light which has passed through scintillation fibers on the side opposite a photomultiplier tube onto the photomultiplier tube and reduce the variations in detection sensitivity due to the distance between a radiation incident position and the photomultiplier tube. <P>SOLUTION: The radiation detector uses the scintillation fibers 1 which emit fluorescence, in response to the incident of radiation and are arranged in a planar manner. The radiation detector comprises U-shaped, and strip-shaped arrangement parts (2, 3) which consist of the scintillation fibers, having two parallel linear parts and U-shaped folded parts which couple one ends of the linear parts to each other and the photomultiplier tube (7) which is optically coupled to the other ends of the linear parts of the U-shaped, strip-shaped arrangement parts. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、原子力炉施設、核燃料施設、核燃料再処理施設、放射性同位元素使用施設、放射線発生装置使用施設等において、放射性表面汚染モニタ等に使用される放射線検出器およびその製造方法に関するものである。   The present invention relates to a radiation detector used for a radioactive surface contamination monitor and the like in a nuclear reactor facility, a nuclear fuel facility, a nuclear fuel reprocessing facility, a radioactive isotope facility, a radiation generator facility, and the like, and a method for manufacturing the same. .

従来のこの種の放射線検出器として、複数のシンチレーションファイバを揃えて帯状とし、その片端を結束して光電子増倍管に光学的に接続し、前記帯状シンチレーションファイバの測定面と反対面に外部放射線を遮蔽する板状の遮蔽フレームを備え、測定面には遮光膜を備え、更に、遮蔽フレーム及び遮光膜の帯状シンチレーションファイバと対向する面には光反射層を備えた構成のものがある(例えば特許文献1参照)。   As a conventional radiation detector of this type, a plurality of scintillation fibers are arranged in a strip shape, one end of which is bound and optically connected to a photomultiplier tube, and external radiation is provided on the surface opposite to the measurement surface of the strip scintillation fiber. There is a configuration in which a plate-like shielding frame is provided, a light shielding film is provided on the measurement surface, and a light reflection layer is provided on a surface of the shielding frame and the light shielding film facing the strip scintillation fiber (for example, (See Patent Document 1).

特許第3242756号明細書Japanese Patent No. 3242756

このような従来の放射線検出器においては、光電子増倍管側と反対側にシンチレーションファイバ内を進行した光を光電子増倍管側と反対側の端面で反射させて光電子増倍管側に戻しているが、戻らない光があるため集光効率が低いという問題があった。また、シンチレーションファイバ内部での光の減衰の影響から、放射線入射位置と光電子増倍管との距離により、検出感度がばらつくという問題があった。さらに、帯状に配列したシンチレーションファイバの各シンチレーションファイバ同士の隙間が不感部になるという問題もあった。   In such a conventional radiation detector, the light traveling in the scintillation fiber on the opposite side to the photomultiplier tube side is reflected by the end surface opposite to the photomultiplier tube side and returned to the photomultiplier tube side. However, there is a problem that the light collection efficiency is low because there is light that does not return. In addition, there is a problem that detection sensitivity varies depending on the distance between the radiation incident position and the photomultiplier tube due to the influence of light attenuation inside the scintillation fiber. Further, there is a problem that a gap between the scintillation fibers arranged in a strip shape becomes a dead portion.

この発明は上記のような課題を解決するためになされたものであり、光電子増倍管側と反対側にシンチレーションファイバ内を進行した光を効率よく光電子増倍管に集光し、また放射線入射位置と光電子増倍管との距離による検出感度のばらつきを少なくし、さらには帯状に配列したシンチレーションファイバの各シンチレーションファイバ同士の隙間の不感部を解消できる帯状の可とう性を有する放射線検出器およびその製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and condenses the light traveling in the scintillation fiber on the side opposite to the photomultiplier tube side efficiently on the photomultiplier tube and makes radiation incident. A radiation detector having a strip-like flexibility capable of reducing variations in detection sensitivity due to the distance between the position and the photomultiplier tube, and further eliminating the insensitive portion between the scintillation fibers of the scintillation fibers arranged in a strip shape It aims at providing the manufacturing method.

この発明は、放射線が入射すると蛍光を発する面状に配線したシンチレーションファイバを使用した放射線検出器であって、平行な2つの直線部、これらの直線部の一端同士を互いに結合するU字型の折り返し部を有するシンチレーションファイバからなるU字型帯状配線部分と、前記U字型帯状配線部分の各直線部の他端に光学的に結合された光電子増倍管部と、を備えたことを特徴とする放射線検出器にある。   The present invention is a radiation detector using a scintillation fiber wired in a plane that emits fluorescence when radiation enters, and is a U-shaped unit that couples two parallel straight portions and one end of these straight portions to each other. A U-shaped strip-shaped wiring portion made of a scintillation fiber having a folded portion, and a photomultiplier tube portion optically coupled to the other end of each straight portion of the U-shaped strip-shaped wiring portion. It is in the radiation detector.

この発明では、光電子増倍管側と反対側にシンチレーションファイバ内を進行した光を効率よく光電子増倍管に集光し、また放射線入射位置と光電子増倍管との距離による検出感度のばらつきを少なくした放射線検出器を提供できる。   In this invention, the light traveling in the scintillation fiber on the side opposite to the photomultiplier tube is efficiently condensed on the photomultiplier tube, and the detection sensitivity variation due to the distance between the radiation incident position and the photomultiplier tube is reduced. A reduced number of radiation detectors can be provided.

以下、この発明を各実施の形態について図に基づいて説明する。
実施の形態1.
図1はこの発明の一実施の形態による放射線検出器である帯状可とう性放射線検出器の構成を示す図、図2、3は製造方法を説明するための図、また図4は図1のA−A線での概略断面図である。帯状可とう性放射線検出器10は、可とう性基板4に接着されたシンチレーションファイバ1からなる第1のU字型帯状配線部2と第2のU字型帯状配線部3が組み込まれて構成される。各U字型帯状配線部2、3は、横並びに揃えて並べられた柔軟性を有する複数のシンチレーションファイバ1が、平行な2つの長い直線部と、これらの直線部の一端同士を互いに結合する同一平面内で曲げられたU字型の折り返し部と、直線部の他端が束ねられた束線部5からなる。束線部5は、図2、3で後述するように、可とう性基板4から飛び出した(可とう性基板の端辺を超えた)シンチレーションファイバ1のU字型の折り返し部を切断、切除し束ねた部分であり、その端面を平面になるよう加工したものである。
Hereinafter, the present invention will be described with reference to the drawings for each embodiment.
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration of a strip-shaped flexible radiation detector which is a radiation detector according to an embodiment of the present invention, FIGS. 2 and 3 are diagrams for explaining a manufacturing method, and FIG. 4 is a diagram of FIG. It is a schematic sectional drawing in the AA line. The strip-shaped flexible radiation detector 10 is constructed by incorporating a first U-shaped strip-shaped wiring portion 2 and a second U-shaped strip-shaped wiring portion 3 made of a scintillation fiber 1 bonded to a flexible substrate 4. Is done. Each of the U-shaped strip-like wiring portions 2 and 3 includes a plurality of flexible scintillation fibers 1 arranged side by side so as to join two parallel long straight portions and one ends of these straight portions to each other. It consists of a U-shaped folded portion bent in the same plane and a bundled wire portion 5 in which the other end of the linear portion is bundled. 2 and 3, the bundling portion 5 cuts and cuts the U-shaped folded portion of the scintillation fiber 1 that protrudes from the flexible substrate 4 (beyond the end of the flexible substrate), as will be described later with reference to FIGS. It is a bundled portion, and its end surface is processed to be a flat surface.

遮光膜6は、第1のU字型帯状配線部2、第2のU字型帯状配線部3、可とう性基板4および束線部5を内包するようにして周囲の光から遮光する。測定対象がβ線の場合、遮光膜6はβ線が透過するように特に薄い材質、例えば、マイラーシートにアルミを蒸着したシートを2枚重ねとした1mg/cm以下の薄い膜を用いる。放射線の入射によりシンチレーションファイバ1の内部で発した蛍光は、束線部5から光電子増倍管7に入射する。光電子増倍管7は入射した蛍光を電子に変換し、電子の数を増幅して電流パルスとして出力する。前置増幅器8は、その電流パルスを電圧パルスに変換し、増幅して出力する。光検出部ケース9は、光電子増倍管7と前置増幅器8を収納して外来の電磁ノイズ及び周囲の光を遮蔽する。帯状可とう性放射線検出器10は上記1〜9で構成され、放射線を検出すると電圧パルス信号を出力する。 The light shielding film 6 shields from the surrounding light so as to enclose the first U-shaped strip-shaped wiring portion 2, the second U-shaped strip-shaped wiring portion 3, the flexible substrate 4 and the bundled-wire portion 5. When the measurement target is β-ray, the light-shielding film 6 is made of a particularly thin material so that the β-ray is transmitted, for example, a thin film of 1 mg / cm 2 or less in which two sheets of aluminum deposited on a Mylar sheet are stacked. Fluorescence emitted inside the scintillation fiber 1 by the incidence of radiation enters the photomultiplier tube 7 from the bundle portion 5. The photomultiplier tube 7 converts the incident fluorescence into electrons, amplifies the number of electrons, and outputs the amplified current pulses. The preamplifier 8 converts the current pulse into a voltage pulse, amplifies it, and outputs it. The light detection unit case 9 houses the photomultiplier tube 7 and the preamplifier 8, and shields external electromagnetic noise and ambient light. The strip-shaped flexible radiation detector 10 is composed of 1 to 9 described above, and outputs a voltage pulse signal when radiation is detected.

なお、第1のU字型帯状配線部2、第2のU字型帯状配線部3はU字型帯状配線部分、光電子増倍管7は光電子増倍管部を構成する。   The first U-shaped strip-shaped wiring portion 2, the second U-shaped strip-shaped wiring portion 3 constitutes a U-shaped strip-shaped wiring portion, and the photomultiplier tube 7 constitutes a photomultiplier tube portion.

図2は、帯状可とう性放射線検出器の特にU字型帯状配線部の製造方法について説明するための図である。柔軟性を有するシンチレーションファイバ1は、断面が円形または正方形であり、直径または一辺が0.1〜0.5mmで、放射線が入射すると蛍光を発するプラスチックシンチレータで構成される。直径または一辺が小さい場合はβ線感度に対してγ線感度は無視できるために、β線検出器として効果的である。また、直径または一辺が小さいほうが最小曲げ半径を小さくすることが可能となる。   FIG. 2 is a diagram for explaining a method of manufacturing a U-shaped strip-shaped wiring portion of the strip-shaped flexible radiation detector. The scintillation fiber 1 having flexibility has a circular or square cross section, a diameter or one side of 0.1 to 0.5 mm, and is configured by a plastic scintillator that emits fluorescence when radiation enters. When the diameter or one side is small, the γ-ray sensitivity is negligible with respect to the β-ray sensitivity, which is effective as a β-ray detector. Further, the smaller the diameter or one side, the smaller the minimum bending radius can be made.

一方、直径または一辺が大きい場合は、β線とγ線が測定できる。可とう性基板4は、例えば可とう性のプラスチックシートに粘着剤または接着剤を塗布して基板としたものである。この可とう性基板4の上にシンチレーションファイバ1を、2辺が平行で両端をU字型に折り返し、片側のU字型の折り返しが可とう性基板4の端辺を超えて延びるようにU字型の内側から外側に、または外側から内側に、密集して帯状に配線し、第1のU字型帯状配線部2を形成する。第1のU字型帯状配線部2の内側でシンチレーションファイバ1の許容曲げ半径以下の未配線の部分について、第1のU字型帯状配線部2の帯状面からずらして未配線の部分を埋めるように、第2のU字型帯状配線部3を、片側のU字型の折り返しが可とう性基板4の端辺を超えて延びるように形成して所望の面積とする。配線後、可とう性基板4から飛び出したシンチレーションファイバ1を束ねて端面が平面になるようにして切断する。   On the other hand, when the diameter or one side is large, β rays and γ rays can be measured. The flexible substrate 4 is a substrate obtained by, for example, applying a pressure-sensitive adhesive or an adhesive to a flexible plastic sheet. The scintillation fiber 1 is placed on the flexible substrate 4 so that the two sides are parallel and both ends are folded back into a U shape, and the U-shaped folding on one side extends beyond the end side of the flexible substrate 4. The first U-shaped band-shaped wiring portion 2 is formed by densely wiring in a band shape from the inside to the outside of the character shape or from the outside to the inside. The unwired portion of the scintillation fiber 1 that is not larger than the allowable bending radius inside the first U-shaped band-shaped wiring portion 2 is shifted from the band-shaped surface of the first U-shaped band-shaped wiring portion 2 to fill the unwired portion. As described above, the second U-shaped strip-shaped wiring portion 3 is formed so as to extend beyond the end side of the flexible substrate 4 so that the U-shaped folding on one side can be made to have a desired area. After the wiring, the scintillation fibers 1 jumping out from the flexible substrate 4 are bundled and cut so that the end faces are flat.

ここで図2の第1のU字型帯状配線部2と第2のU字型帯状配線部3となる細長い丸形のシンチレーションファイバ1の部分の製造方法として、図2に示すように、粘着剤又は接着剤が塗布された可とう性基板4上に、平行な2つの長い直線部とこれらの両端のU字型の折り返し部からなりU字型の折り返し部の曲率半径が徐々に大きくなる細長い丸形の柔軟性を有する複数のシンチレーションファイバをトラック形状に、かつ一方のU字型の折り返し部とこれに続く両直線部の一部が可とう性基板4の端辺を超えた位置になるように配置する方法と、図3に示すように、粘着剤又は接着剤が塗布された可とう性基板4上に、柔軟性を有する1本のシンチレーションファイバを、平行な2つの長い直線部とこれらの両端のU字型の折り返し部からなる細長い丸形に、かつ一方の前記U字型の折り返し部とこれに続く両直線部の一部が可とう性基板4の端辺を超えた位置になるように巻回する方法がある。なお図3の場合、第1のU字型帯状配線部2と第2のU字型帯状配線部3の2つ分を1本のシンチレーションファイバ1を巻回することで形成している。   Here, as shown in FIG. 2, as a method of manufacturing the elongated round scintillation fiber 1 which becomes the first U-shaped strip-shaped wiring portion 2 and the second U-shaped strip-shaped wiring portion 3 in FIG. The flexible substrate 4 to which the agent or adhesive is applied is composed of two parallel long straight portions and U-shaped folded portions at both ends thereof, and the curvature radius of the U-shaped folded portion gradually increases. A plurality of scintillation fibers having a long and narrow round shape are formed into a track shape, and one U-shaped folded portion and a part of both straight portions that follow the U-shaped folded portion are positioned beyond the end of the flexible substrate 4. As shown in FIG. 3, a flexible scintillation fiber is placed on a flexible substrate 4 to which an adhesive or an adhesive is applied, and two parallel long straight portions are arranged as shown in FIG. And the U-shaped folds at both ends There is a method of winding so that one of the U-shaped folded portion and a part of both linear portions following the U-shaped folded portion are positioned beyond the edge of the flexible substrate 4. . In the case of FIG. 3, two pieces of the first U-shaped strip-shaped wiring portion 2 and the second U-shaped strip-shaped wiring portion 3 are formed by winding one scintillation fiber 1.

図5は、シンチレーションファイバ1を可とう性基板4に配線する時において、U字型面内側のシンチレーションファイバ1の許容曲げ半径以下の未配線面を埋める他の配線方法について説明するもので、図1では第1のU字型帯状配線部2の直線部の一部の上に第2のU字型帯状配線部3のU字型の折り返し部の一部が重なるように配線するのに対して、図5は第1のU字型帯状配線部2のU字型の折り返し部の一部に第2のU字型帯状配線部3のU字型の折り返し部の一部が重なるように配線するものである。   FIG. 5 illustrates another wiring method for filling an unwired surface equal to or less than the allowable bending radius of the scintillation fiber 1 inside the U-shaped surface when wiring the scintillation fiber 1 to the flexible substrate 4. 1, while wiring is performed so that a part of the U-shaped folded portion of the second U-shaped strip-shaped wiring portion 3 overlaps a part of the straight portion of the first U-shaped strip-shaped wiring portion 2. FIG. 5 shows that a part of the U-shaped folded portion of the second U-shaped strip-shaped wiring portion 3 overlaps a part of the U-shaped folded portion of the first U-shaped strip-shaped wiring portion 2. Wiring.

図6は、U字型に配線されたシンチレーションファイバ1における光の伝達を模式的に示す図で、シンチレーションファイバ1に放射線が入射して生じた蛍光は、U字型の折り返し部で全反射して伝達され、光電子増倍管7の光電面71に入射する。   FIG. 6 is a diagram schematically showing the transmission of light in the scintillation fiber 1 wired in a U-shape. Fluorescence generated when radiation enters the scintillation fiber 1 is totally reflected by the U-shaped folded portion. And is incident on the photocathode 71 of the photomultiplier tube 7.

このように、U字型に折り返したシンチレーションファイバで、集光側と反対側に進行した蛍光を効率良く集光側に戻すことができる。集光率を向上することにより同じエネルギーの放射線に対するパルス信号の波高値が高くなるため、S/N比が改善される。さらに、シンチレーションファイバ両端に届いた光を両方とも検出するため、発光箇所から光電子増倍管までの合計移動距離が一定となり、シンチレーションファイバ内部での光の減衰の影響がほぼ一定となるため、放射線入射位置と光電子増倍管との距離による検出感度のばらつきを少なくすることが可能である。またシンチレーションファイバ内の光の減衰の影響、光電子増倍管から放射線入射箇所までの距離による、検出感度のばらつきを少なくすることが可能となる。   Thus, with the scintillation fiber folded back in a U shape, the fluorescence that has traveled to the side opposite to the light collecting side can be efficiently returned to the light collecting side. Since the peak value of the pulse signal for the radiation of the same energy is increased by improving the light collection rate, the S / N ratio is improved. Furthermore, since both the light that reaches both ends of the scintillation fiber are detected, the total distance traveled from the light emitting point to the photomultiplier tube is constant, and the influence of light attenuation inside the scintillation fiber is almost constant. It is possible to reduce variations in detection sensitivity due to the distance between the incident position and the photomultiplier tube. It is also possible to reduce variations in detection sensitivity due to the influence of light attenuation in the scintillation fiber and the distance from the photomultiplier tube to the radiation incident site.

また、上述のように配線することにより、従来手作業で行っていたシンチレーションファイバの配線を自動化できる。特に細径シンチレーションファイバを使用した場合、径に反比例して本数ひいては工数が増加するが、自動化することにより配線工数を大幅に削減でき、細径シンチレーションファイバを使用することによりバックグラウンドを低下させた帯状可とう性放射線検出器が、配線を自動化することにより低コストで実現できる。また、光電子増倍管7の反対側にシンチレーションファイバ内を進行した蛍光をU字型部で方向を変えて戻すことにより効率よく光電子増倍管に集光できるため、高感度の放射線モニタが実現できる。   Further, by wiring as described above, it is possible to automate the wiring of the scintillation fiber, which has been conventionally performed manually. In particular, when a thin scintillation fiber is used, the number of wires and the number of man-hours increase in inverse proportion to the diameter. However, the number of wires can be greatly reduced by automation, and the background is reduced by using a thin scintillation fiber. A strip-shaped flexible radiation detector can be realized at low cost by automating wiring. In addition, the fluorescence that has traveled in the scintillation fiber to the opposite side of the photomultiplier tube 7 can be efficiently condensed on the photomultiplier tube by changing the direction at the U-shaped part, realizing a highly sensitive radiation monitor. it can.

実施の形態2.
なお、上記実施の形態1では束線部5を1つにして、1つの光電子増倍管7に光学接続させるようにしたが、図7はU字型に配線したシンチレーションファイバ1の往路と復路でそれぞれ束線部5aと5bを設ける。すなわち、直線部の光電子増倍管側の端が直線部毎に束ねられ、さらに2つのU字型帯状配線部2,3のそれぞれの一方の直線部からの束線部と、それぞれの他方の直線部からの束線部とが束ねられ、それぞれに光電子増倍管7aと7bを光学接続し、それぞれを前置増幅器8aと8bに接続し、光検出部ケース9aに光電子増倍管7aと前置増幅器8aを収納し、光検出部ケース9bに光電子増倍管7bと前置増幅器8bを収納し、それぞれの出力を受ける測定部側(図示せず)で同時計数できるように出力を備えた2チャンネル型帯状可とう性放射線検出器10aを示す。同時計数処理により、光電子増倍管の単一故障ノイズを除去することが可能となり、光電子増倍管のノイズレベルに近接したレベルまで、または、そのノイズレベル領域に入り込んで低エネルギー放射線を測定することが可能になり、検出感度を高めることができる。
Embodiment 2. FIG.
In the first embodiment, one bundled wire portion 5 is provided and optically connected to one photomultiplier tube 7, but FIG. 7 shows the forward and return paths of the scintillation fiber 1 wired in a U-shape. And bundling portions 5a and 5b, respectively. That is, the photomultiplier tube side end of the straight line portion is bundled for each straight line portion, and further, the bundle line portion from one straight line portion of each of the two U-shaped strip-like wiring portions 2 and 3, and the other The bundled wire portion from the straight portion is bundled, the photomultiplier tubes 7a and 7b are optically connected to each other, respectively connected to the preamplifiers 8a and 8b, and the photomultiplier tube 7a and the photodetector case 9a are connected to each other. The preamplifier 8a is accommodated, the photomultiplier tube 7b and the preamplifier 8b are accommodated in the photodetection case 9b, and an output is provided so that the measurement unit side (not shown) receiving the respective outputs can simultaneously count. 2 shows a two-channel strip-shaped flexible radiation detector 10a. The coincidence process makes it possible to eliminate single fault noise in the photomultiplier tube and measure low energy radiation to a level close to or entering the noise level region of the photomultiplier tube. And detection sensitivity can be increased.

実施の形態3.
また、上記実施の形態1では、可とう性基板4の材質が一般的なプラスチックシートの場合について述べたが、図8に示すように、原子番号が大きくかつ密度の大きい金属、例えば原子番号74のタングステン、原子番号82の鉛などの金属粉を練りこんだプラスチックシートを使用することにより、面状に配線したシンチレーションファイバ1の各シンチレーションファイバ同士の隙間を通過した放射線β線を、金属粉含有可とう性基板41で後方散乱させ、シンチレーションファイバ1に後方から入射させることが可能となり、β線に対する検出感度を高めることができる。
Embodiment 3 FIG.
In the first embodiment, the case where the material of the flexible substrate 4 is a general plastic sheet has been described. However, as shown in FIG. 8, a metal having a large atomic number and a large density, for example, an atomic number 74 By using a plastic sheet in which metal powder such as tungsten and lead having atomic number 82 is kneaded, the radiation β ray that has passed through the gaps between the scintillation fibers 1 of the scintillation fiber 1 wired in a planar shape contains metal powder. It is possible to make the flexible substrate 41 backscatter and enter the scintillation fiber 1 from the rear, thereby increasing the detection sensitivity for β rays.

すなわち、シンチレーションファイバを貼り付ける可とう性基板として、原子番号が大きくかつ密度の大きい金属粉を練りこんだプラスチックから成るβ線散乱シートを使用することにより、β線散乱シートに貼り付けたシンチレーションファイバの谷間をすり抜けたβ線を、β線散乱シートで後方散乱させ、シンチレーションファイバに後方から入射させることが可能となり、β線を高感度で測定できる。   That is, as a flexible substrate to which the scintillation fiber is attached, a scintillation fiber attached to the β-ray scattering sheet by using a β-ray scattering sheet made of plastic in which metal powder having a large atomic number and a high density is kneaded. Β-rays that have passed through the valleys can be back-scattered by a β-ray scattering sheet and incident on the scintillation fiber from the rear, and β-rays can be measured with high sensitivity.

実施の形態4.
前記実施の形態では帯状可とう性放射線検出器10の構造およびその製造方法について述べたが、実施の形態4では帯状可とう性放射線検出器10の使用実例について図9から図11を用いて説明する。図9に示すように、帯状可とう性放射線検出器10の端部に、ファスナー11を備えたものとする。実際には例えば、遮光膜6の両側の長辺端部や可とう性基板4の背面側(シンチレーションファイバ1がない側)の両側の長辺の縁側にファスナー11を設ける。ファスナー11は例えばジッパーやその他の凹部と凸部の勘合等により結合力を得るものからなる
Embodiment 4 FIG.
In the above-described embodiment, the structure of the strip-shaped flexible radiation detector 10 and the manufacturing method thereof have been described. In the fourth embodiment, an actual use example of the strip-shaped flexible radiation detector 10 will be described with reference to FIGS. 9 to 11. To do. As shown in FIG. 9, it is assumed that a fastener 11 is provided at the end of the strip-shaped flexible radiation detector 10. Actually, for example, the fasteners 11 are provided on the long side edge portions on both sides of the light shielding film 6 and on the long side edge sides on both sides of the back side of the flexible substrate 4 (side where the scintillation fiber 1 is not provided). The fastener 11 is made of, for example, a zipper or other member that obtains a binding force by fitting a concave portion with a convex portion.

放射能汚染の程度を測定する測定対象物12がある程度の大きさである場合、あるいは測定対象物12の大きさがいつも同程度の寸法と定まらない場合は、図10に示すように帯状可とう性放射線検出器10を複数枚使用し、複数枚を使用する場合は帯状可とう性放射線検出器10の両端に設けられたファスナー11で、隣り合う帯状可とう性放射線検出器10同士を連結する。両端に位置する帯状可とう性放射線検出器10の2枚は片端を、その他は両側を他の帯状可とう性放射線検出器10で連結し、複数枚の帯状可とう性放射線検出器10で構成したシートが出来上がる。   If the measurement object 12 for measuring the degree of radioactive contamination is of a certain size, or if the measurement object 12 is not always the same size as the measurement object 12, a strip shape is acceptable as shown in FIG. When a plurality of the somatogenous radiation detectors 10 are used and a plurality of solitary radiation detectors 10 are used, the adjacent striplike flexible radiation detectors 10 are connected with the fasteners 11 provided at both ends of the striplike flexible radiation detector 10. . Two of the strip-shaped flexible radiation detectors 10 located at both ends are connected at one end, and the other is connected at both ends with the other strip-shaped flexible radiation detectors 10 to form a plurality of strip-shaped flexible radiation detectors 10. The completed sheet is completed.

このように測定対象物12の大きさを完全に覆うことができるように帯状可とう性放射線検出器10の連結シートの大きさを複数枚連結することにより調整して使用する。汚染防止シート13を帯状可とう性放射線検出器10と測定対象物12の間に設けることにより、帯状可とう性放射線検出器10を測定対象物12が粉末や液体である場合の飛散や漏洩等による放射能汚染から保護することができ、さらに帯状可とう性放射線検出器10を介した放射能汚染拡大を防止することが可能である。なお、ファスナー11連結部にはシンチレーションファイバ1は存在しないが、ファスナー11の幅の不感帯は放射線測定に影響しない程度の面積とするか、後述する図12の面ファスナーのようにファスナー11を取り付けて、ファスナー11上にシンチレーションファイバ1が重なる部分を設けるようにして不感帯を無くすものとする。   In this way, the size of the measuring object 12 is adjusted and used by connecting a plurality of connecting sheets of the strip-shaped flexible radiation detector 10 so that the size of the measuring object 12 can be completely covered. By providing the contamination prevention sheet 13 between the strip-shaped flexible radiation detector 10 and the measurement target 12, the strip-shaped flexible radiation detector 10 is scattered or leaked when the measurement target 12 is powder or liquid. It is possible to protect against radioactive contamination caused by, and further, it is possible to prevent the spread of radioactive contamination via the strip-shaped flexible radiation detector 10. In addition, although the scintillation fiber 1 does not exist in a fastener 11 connection part, the dead zone of the width | variety of the fastener 11 is made into the extent which does not affect a radiation measurement, or the fastener 11 is attached like the surface fastener of FIG. 12 mentioned later. The dead zone is eliminated by providing a portion where the scintillation fiber 1 overlaps the fastener 11.

また、ファスナー11付きの帯状可とう性放射線検出器10は複数枚の場合だけに限り効果を奏する発揮するものではなく、例えば図11に示すように、放射性物質を含む流体が流れる配管のγ線測定のように測定対象物12が管状である場合に、帯状可とう性放射線検出器10のもつ自己の両端のファスナー11同士を結合することにより、ほぼ全方向測定が可能となる。この際も、必要に応じて汚染防止シート13により帯状可とう性放射線検出器10を放射能汚染から保護する。なお、測定対象物12が管状の場合には測定物の周囲長さに合わせた幅を持つ帯状可とう性放射線検出器10を準備できればよく、帯状可とう性放射線検出器10が管状の測定対象物12の大きさに合わない場合であっても、図10のように帯状可とう性放射線検出器10を複数枚連結したうえで、両端のファスナー11を結合すれば、管状の測定対象物12の径の大きさによらず放射能測定が可能となる。ファスナー11による結合は結合力が非常に強いため、測定対象物12の体積膨張がある場合等の連結強度が要求される環境でも使用でき、充分に放射能測定が可能である。   Further, the strip-shaped flexible radiation detector 10 with the fastener 11 does not exhibit an effect only in the case of a plurality of sheets. For example, as shown in FIG. 11, γ rays of a pipe through which a fluid containing a radioactive substance flows When the measurement object 12 is tubular as in the measurement, the fasteners 11 at both ends of the strip-shaped flexible radiation detector 10 are coupled to each other, so that almost all directions can be measured. Also at this time, the strip-shaped flexible radiation detector 10 is protected from radioactive contamination by the contamination prevention sheet 13 as necessary. In the case where the measurement object 12 is tubular, it is only necessary to prepare a strip-shaped flexible radiation detector 10 having a width corresponding to the circumference of the measurement object. The strip-shaped flexible radiation detector 10 is a tubular measurement object. Even if it does not fit the size of the object 12, if a plurality of belt-shaped flexible radiation detectors 10 are connected as shown in FIG. Radioactivity measurement is possible regardless of the size of the diameter. Since the bonding by the fastener 11 has a very strong bonding force, it can be used even in an environment where connection strength is required, such as when there is volume expansion of the measurement object 12, and sufficient radioactivity measurement is possible.

実施の形態5.
前記実施の形態4では帯状可とう性放射線検出器10の両端にファスナー11を設けて連結してシート状にすると、測定対象物12の寸法に合わせた放射能測定を実現することができることについて述べたが、実施の形態5では図12を用いて、連結手段がファスナー11ではなく、一般にはマジックテープ(登録商標)等と呼ばれている面ファスナー14を適用した場合について述べる。
Embodiment 5. FIG.
In the fourth embodiment, it is described that, when the fasteners 11 are provided at both ends of the strip-shaped flexible radiation detector 10 and connected to form a sheet, it is possible to realize radioactivity measurement in accordance with the dimensions of the measurement object 12. However, the fifth embodiment will be described with reference to FIG. 12 in which the connecting means is not the fastener 11 but a hook-and-loop fastener 14 that is generally called a magic tape (registered trademark) or the like is applied.

図12の(b)に示すように、面ファスナー14には連結面にフックを有する面ファスナーフック面141と連結面にループを有する面ファスナーループ面142面があり、それを押し付けることにより連結される。図12の(a)に示すように帯状可とう性放射線検出器10の両端(実際には遮光膜6の両側の長辺端部や可とう性基板4の背面側(シンチレーションファイバ1がない側)の両側の長辺の縁側)に面ファスナーフック面141と面ファスナーループ面142を等間隔に複数箇所または帯状可とう性放射線検出器10の長さをもつ面ファスナーフック面141と面ファスナーループ面142面(図示省略)を設けて、ファスナー11と同等の連結効果を示し、放射能測定においても同等の効果を示す。   As shown in FIG. 12 (b), the hook-and-loop fastener 14 has a hook-and-loop fastener surface 141 having a hook on the connecting surface and a hook-and-loop surface 142 having a loop on the connecting surface, which are connected by pressing them. The As shown in FIG. 12A, both ends of the strip-shaped flexible radiation detector 10 (actually, the long side ends on both sides of the light-shielding film 6 and the back side of the flexible substrate 4 (the side without the scintillation fiber 1). The hook-and-loop fastener hook surface 141 and the hook-and-loop loop having the length of the strip-shaped flexible radiation detector 10 are provided at equal intervals on the hook-and-loop hook surface 141 and the hook-and-loop loop surface 142 on the long side edges on both sides). A surface 142 (not shown) is provided to exhibit a connection effect equivalent to that of the fastener 11 and also to an equivalent effect in radioactivity measurement.

このように、面ファスナー14の付いた帯状可とう性放射線検出器10を用いれば図10及び図11に示した形態と同様に配置することが可能となり、実施の形態4で述べた効果と同等の効果を奏する。面ファスナー14はこのように、面ファスナーフック面141と面ファスナーループ面142を押さえつけるだけで簡単に連結させることができ、また、簡単に剥がせるため、面ファスナー14付きの帯状可とう性放射線検出器10は実施の形態4に比べて迅速に測定対象物12に帯状可とう性放射線検出器10を設置して迅速な放射能測定が必要な場合に適している。また、ファスナー11が例えばプラスチックではなく金属である場合、測定対象物12が金属腐食性物質の場合、または金属腐食性物質を放出するものである場合、さらには金属腐食性物質が存在する環境にて放射能測定を実施する必要がある場合には不向きであるが、このような環境である場合でもプラスチック製の面ファスナー14付きの帯状可とう性放射線検出器10は適合する。   Thus, if the strip-shaped flexible radiation detector 10 with the hook-and-loop fastener 14 is used, it can be arranged in the same manner as the embodiment shown in FIG. 10 and FIG. 11, and is equivalent to the effect described in the fourth embodiment. The effect of. In this way, the hook-and-loop fastener 14 can be easily connected simply by pressing the hook-and-loop hook surface 141 and the hook-and-loop loop surface 142, and can be easily peeled off. Compared to the fourth embodiment, the vessel 10 is suitable for the case where the strip-shaped flexible radiation detector 10 is quickly installed on the measurement object 12 and rapid radioactivity measurement is required. In addition, when the fastener 11 is a metal instead of plastic, for example, when the measurement object 12 is a metal corrosive substance, or is a substance that releases a metal corrosive substance, an environment where the metal corrosive substance exists is present. Although it is not suitable for the case where it is necessary to perform radioactivity measurement, the strip-shaped flexible radiation detector 10 with the plastic surface fastener 14 is suitable even in such an environment.

実施の形態6.
上記実施の形態4と実施の形態5では、可とう性基板4の背面側等にファスナー11または面ファスナー14を備えて、帯状可とう性放射線検出器10を測定対象物の大きさや形状に合わせて、載せたり巻いたりして放射線を測定する場合等について述べたが、実施の形態6は、図13に示すように、帯状可とう性放射線検出器10をU字型に曲げて間に挿入された手の両面の放射能を測定できるようにしたものである。図13は内部の様子を示す断面図である。帯状可とう性放射線検出器10は例えば平行部がU曲部より長いU字形状に曲げられたU字形状になるようにフレーム15の内壁に面ファスナー14等により固定されている。これにより、簡素な構成で手の汚染を高感度で測定できる経済的に優れた装置を得ることができる。
Embodiment 6 FIG.
In the said Embodiment 4 and Embodiment 5, the fastener 11 or the hook_and_loop | surface fastener 14 is provided in the back side etc. of the flexible board | substrate 4, and the strip | belt-shaped flexible radiation detector 10 is matched with the magnitude | size and shape of a measurement object. In the sixth embodiment, the radiation is measured by placing or winding it. However, in the sixth embodiment, as shown in FIG. 13, the strip-shaped flexible radiation detector 10 is bent into a U shape and inserted between them. The radioactivity on both sides of the hand is measured. FIG. 13 is a cross-sectional view showing the inside. The strip-shaped flexible radiation detector 10 is fixed to the inner wall of the frame 15 with a hook-and-loop fastener 14 or the like so that the parallel portion is bent into a U-shape that is longer than the U-curved portion. Thereby, an economically excellent device capable of measuring hand contamination with high sensitivity with a simple configuration can be obtained.

実施の形態7.
上記実施の形態6では、帯状可とう性放射線検出器10をU字型に曲げて手の両面の放射能を測定できるようにした場合について述べたが、実施の形態7は、図14に示すように、帯状可とう性放射線検出器10を、片面が長く、もう一方の面が短くなるようにJ字形状に曲げ、長い面を足の裏面側に、短い面を足の甲側として足の両面の放射能を同時に測定できるようにしたものである。
Embodiment 7 FIG.
In the sixth embodiment, the case has been described in which the belt-shaped flexible radiation detector 10 is bent into a U shape so that the radioactivity on both sides of the hand can be measured, but the seventh embodiment is shown in FIG. Thus, the strip-shaped flexible radiation detector 10 is bent into a J shape so that one side is long and the other side is short, with the long side on the back side of the foot and the short side on the back side of the foot. The radioactivity on both sides can be measured simultaneously.

帯状可とう性放射線検出器10は床17に置いて使用する。この時、足を載せた場合、体重が帯状可とう性放射線検出器10に直接かかるのを防ぐために足載せ台16を併用する。図14は内部の様子を示す断面図、図15はフレーム15を取り除いて帯状可とう性放射線検出器10の部分を上から見た上面図である(図15では足は省略されている)。帯状可とう性放射線検出器10は例えばJ字形状になるようにフレーム15の内壁に面ファスナー14等により固定されている。また足載せ台16は足の裏面側の放射能を効率良く検出するために、図15に示すように体重を受ける面をメッシュ状の構造にしている。このような簡単な構成で足の裏面および甲側の汚染を高感度で測定できる経済的に優れた装置を得ることができる。   The strip-shaped flexible radiation detector 10 is placed on the floor 17 for use. At this time, when a foot is placed, the footrest 16 is used together in order to prevent the weight from being directly applied to the strip-shaped flexible radiation detector 10. FIG. 14 is a cross-sectional view showing the inside, and FIG. 15 is a top view of the strip-shaped flexible radiation detector 10 with the frame 15 removed, with the legs omitted in FIG. The strip-shaped flexible radiation detector 10 is fixed to the inner wall of the frame 15 with a hook-and-loop fastener 14 or the like so as to have a J-shape, for example. Further, in order to efficiently detect the radioactivity on the back side of the foot, the footrest 16 has a mesh-like structure for receiving weight as shown in FIG. With such a simple configuration, an economically excellent device capable of measuring the contamination of the back and back sides of the foot with high sensitivity can be obtained.

なお、上記各実施の形態では帯状の可とう性を有する放射線検出器として説明したが、必ずしも可とう性を有したり、帯状(直線部が長いこと)である必要はない。またこの発明は、上記各実施の形態の可能な組合せを含むことはいうまでもない。   In each of the above embodiments, the radiation detector having a strip-like flexibility has been described. However, the radiation detector does not necessarily have flexibility or a strip-like shape (the straight portion is long). Needless to say, the present invention includes possible combinations of the above embodiments.

この発明の実施の形態1による放射線検出器である帯状可とう性放射線検出器の構成を示す図である。It is a figure which shows the structure of the strip | belt-shaped flexible radiation detector which is a radiation detector by Embodiment 1 of this invention. この発明による放射線検出器の特にU字型帯状配線部の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the U-shaped strip | belt-shaped wiring part of the radiation detector by this invention especially. この発明による放射線検出器の特にU字型帯状配線部の別の製造方法を説明するための図である。It is a figure for demonstrating another manufacturing method of the U-shaped strip | belt-shaped wiring part of the radiation detector by this invention especially. 図1の帯状可とう性放射線検出器の断面図である。It is sectional drawing of the strip | belt-shaped flexible radiation detector of FIG. この発明による放射線検出器の特にU字型帯状配線部の別の製造方法を説明するための図である。It is a figure for demonstrating another manufacturing method of the U-shaped strip | belt-shaped wiring part of the radiation detector by this invention especially. この発明による放射線検出器のU字型に配線されたシンチレーションファイバにおける光の伝達を模式的に示す図である。It is a figure which shows typically the transmission of the light in the scintillation fiber wired by the U shape of the radiation detector by this invention. この発明の実施の形態2による放射線検出器である帯状可とう性放射線検出器の構成を示す図である。It is a figure which shows the structure of the strip | belt-shaped flexible radiation detector which is a radiation detector by Embodiment 2 of this invention. この発明の実施の形態3による放射線検出器である帯状可とう性放射線検出器の可とう性基板の構成を説明するための図である。It is a figure for demonstrating the structure of the flexible substrate of the strip | belt-shaped flexible radiation detector which is a radiation detector by Embodiment 3 of this invention. この発明の実施の形態4による放射線検出器である帯状可とう性放射線検出器の構成を示す図である。It is a figure which shows the structure of the strip | belt-shaped flexible radiation detector which is a radiation detector by Embodiment 4 of this invention. この発明の実施の形態4による帯状可とう性放射線検出器の使用例を模式的に示した図である。It is the figure which showed typically the usage example of the strip | belt-shaped flexible radiation detector by Embodiment 4 of this invention. この発明の実施の形態4による帯状可とう性放射線検出器の別の使用例を模式的に示した図である。It is the figure which showed typically the other usage example of the strip | belt-shaped flexible radiation detector by Embodiment 4 of this invention. この発明の実施の形態5による放射線検出器である帯状可とう性放射線検出器の構成を示す図である。It is a figure which shows the structure of the strip | belt-shaped flexible radiation detector which is a radiation detector by Embodiment 5 of this invention. この発明の実施の形態6による放射線検出器である帯状可とう性放射線検出器の構成を示す断面図である。It is sectional drawing which shows the structure of the strip | belt-shaped flexible radiation detector which is a radiation detector by Embodiment 6 of this invention. この発明の実施の形態7による放射線検出器である帯状可とう性放射線検出器の構成を示す断面図である。It is sectional drawing which shows the structure of the strip | belt-shaped flexible radiation detector which is a radiation detector by Embodiment 7 of this invention. 図14の帯状可とう性放射線検出器の様子を示す上面図である。It is a top view which shows the mode of the strip | belt-shaped flexible radiation detector of FIG.

符号の説明Explanation of symbols

1 シンチレーションファイバ、2 第1のU字型帯状配線部、3 第2のU字型帯状配線部、4 可とう性基板、5,5a,5b 束線部、6 遮光膜、7,7a,7b 光電子増倍管、8,8a,8b 前置増幅器、9,9a,9b 光検出部ケース、10,10a 帯状可とう性放射線検出器、11 ファスナー、12 測定対象物、13 汚染防止シート、14 面ファスナー、15 フレーム、16 足載せ台、17 床、41 金属粉含有可とう性基板、71 光電面、141 面ファスナーフック面、142 面ファスナーループ面。   DESCRIPTION OF SYMBOLS 1 Scintillation fiber, 2 1st U-shaped strip | belt-shaped wiring part, 3nd U-shaped strip | belt-shaped wiring part, 4 flexible substrate, 5, 5a, 5b bundled wire part, 6 light shielding film, 7, 7a, 7b Photomultiplier tube, 8, 8a, 8b Preamplifier, 9, 9a, 9b Photodetector case, 10, 10a Striped flexible radiation detector, 11 Fastener, 12 Measurement object, 13 Contamination prevention sheet, 14 surfaces Fastener, 15 frame, 16 footrest, 17 floor, 41 flexible substrate containing metal powder, 71 photocathode, 141 hook-and-loop hook surface, 142 hook-and-loop loop surface.

Claims (10)

放射線が入射すると蛍光を発する面状に配線したシンチレーションファイバを使用した放射線検出器であって、平行な2つの直線部、これらの直線部の一端同士を互いに結合するU字型の折り返し部を有するシンチレーションファイバからなるU字型帯状配線部分と、前記U字型帯状配線部分の各直線部の他端に光学的に結合された光電子増倍管部と、
を備えたことを特徴とする放射線検出器。
A radiation detector using scintillation fibers wired in a plane that emits fluorescence when radiation is incident, and has two parallel straight portions and a U-shaped folded portion that joins one end of these straight portions to each other. A U-shaped strip-shaped wiring portion made of scintillation fiber, and a photomultiplier tube portion optically coupled to the other end of each straight portion of the U-shaped strip-shaped wiring portion;
A radiation detector comprising:
U字型帯状配線部分が、横並びに揃えて並べられた柔軟性を有する複数のシンチレーションファイバが、平行な2つの直線部、これらの直線部の一端同士を互いに結合する同一平面内で曲げられたU字型の折り返し部、および前記直線部の他端が束ねられた束線部を有するように構成された少なくとも1つのU字型帯状配線部からなり、前記U字型帯状配線部が放射線β線を散乱させる金属紛を含む可とう性基板上に固定されていることを特徴とする請求項1に記載の放射線検出器。   A plurality of flexible scintillation fibers in which U-shaped strip-shaped wiring portions are arranged side by side are bent in the same plane where two parallel straight portions and one ends of these straight portions are coupled to each other A U-shaped folded portion, and at least one U-shaped strip-shaped wiring portion configured to have a bundled portion in which the other ends of the linear portions are bundled. The radiation detector according to claim 1, wherein the radiation detector is fixed on a flexible substrate containing a metal powder that scatters a line. U字型帯状配線部分と可とう性基板を内包する遮光膜を備えたことを特徴とする請求項2に記載の放射線検出器。   The radiation detector according to claim 2, further comprising a light-shielding film that encloses the U-shaped strip-shaped wiring portion and the flexible substrate. 2つのU字型帯状配線部が、一方のU字型帯状配線部の内側の未配線部分を他方のU字型帯状配線部の直線部で埋めるように配置されていることを特徴とする請求項2又は3に記載の放射線検出器。   The two U-shaped strip-shaped wiring portions are arranged so as to fill an unwired portion inside one U-shaped strip-shaped wiring portion with a straight portion of the other U-shaped strip-shaped wiring portion. Item 4. The radiation detector according to Item 2 or 3. U字型帯状配線部分が2つのU字型帯状配線部からなり、前記束線部では前記直線部の他端が直線部毎に束ねられ、光電子増倍管部が前記2つのU字型帯状配線部のそれぞれの一方の直線部からの束線部と、それぞれの他方の直線部からの束線部とがさらにそれぞれに束ねられて光学的に結合された2つの光電子増倍管からなることを特徴とする請求項2ないし4のいずれか1項に記載の放射線検出器。   The U-shaped band-shaped wiring portion is composed of two U-shaped band-shaped wiring portions, and the other end of the straight line portion is bundled for each straight line portion in the bundled wire portion, and the photomultiplier tube portion is the two U-shaped band-shaped wire portions. It consists of two photomultiplier tubes in which a bundled wire portion from one straight line portion of each wiring portion and a bundled wire portion from the other straight line portion are further bundled and optically coupled to each other. The radiation detector of any one of Claims 2 thru | or 4 characterized by these. 可とう性基板の両側の長辺端部又は背面側の両側の長辺の縁に、互いに連結するため又は他の放射線検出器と連結するためのファスナー又は面ファスナーを設けたことを特徴とする請求項2ないし5のいずれか1項に記載の放射線検出器。   Fasteners or hook-and-loop fasteners that are connected to each other or to be connected to other radiation detectors are provided at the ends of the long sides on both sides of the flexible substrate or the edges of the long sides on both sides of the back side. The radiation detector according to any one of claims 2 to 5. 平行部がU曲部より長いU字形状に曲げられ、間に挿入された手の放射線を検出することを特徴とする請求項2ないし5のいずれか1項に記載の放射線検出器。   6. The radiation detector according to claim 2, wherein the parallel part is bent into a U shape longer than the U-curved part, and detects the radiation of the hand inserted therebetween. 一方の面が他面より長いJ字形状に曲げられ、長い方が足の裏面に面するようにして間に挿入された足の放射線を検出することを特徴とする請求項2ないし5のいずれか1項に記載の放射線検出器。   6. The radiation of a foot inserted between them is detected such that one surface is bent into a J shape longer than the other surface and the longer surface faces the back surface of the foot. The radiation detector according to claim 1. 横並びに揃えて並べられた柔軟性を有する複数のシンチレーションファイバが、平行な2つの直線部、これらの直線部の一端同士を互いに結合する同一平面内で曲げられたU字型の折り返し部、および前記直線部の他端が束ねられた束線部を有するように面状に配線されたU字型帯状配線部を備えた放射線検出器の製造方法であって、
粘着剤又は接着剤が塗布された可とう性基板上に、柔軟性を有する1本のシンチレーションファイバを、平行な2つの直線部とこれらの両端のU字型の折り返し部からなる細長い丸形に、かつ一方の前記U字型の折り返し部とこれに続く両直線部の一部が前記可とう性基板の端辺を超えた位置になるように巻回する工程と、
前記可とう性基板の端辺を超えた位置にあるシンチレーションファイバを束ねて端面が平面になるようにして前記可とう性基板の端辺を超えた位置にある前記U字型の折り返し部を切除する工程と、
を備えたことを特徴とする放射線検出器の製造方法。
A plurality of flexible scintillation fibers arranged side by side are two parallel straight portions, a U-shaped folded portion bent in the same plane that joins ends of the straight portions to each other, and A method of manufacturing a radiation detector including a U-shaped strip-shaped wiring portion wired in a planar shape so as to have a bundled wire portion in which the other end of the linear portion is bundled,
A flexible scintillation fiber is formed on a flexible substrate coated with an adhesive or adhesive into an elongated round shape composed of two parallel straight portions and U-shaped folded portions at both ends thereof. And winding one of the U-shaped folded portion and a portion of both of the following linear portions so as to be in a position beyond the end of the flexible substrate;
Bundling scintillation fibers located beyond the end of the flexible substrate and cutting the U-shaped folded portion located beyond the end of the flexible substrate so that the end surface is flat. And a process of
A method of manufacturing a radiation detector, comprising:
横並びに揃えて並べられた柔軟性を有する複数のシンチレーションファイバが、平行な2つの直線部、これらの直線部の一端同士を互いに結合する同一平面内で曲げられたU字型の折り返し部、および前記直線部の他端が束ねられた束線部を有するように面状に配線されたU字型帯状配線部を備えた放射線検出器の製造方法であって、
粘着剤又は接着剤が塗布された可とう性基板上に、平行な2つの直線部とこれらの両端のU字型の折り返し部からなりU字型の折り返し部の曲率半径が徐々に大きくなる細長い丸形の柔軟性を有する複数のシンチレーションファイバをトラック形状に、かつ一方の前記U字型の折り返し部とこれに続く両直線部の一部が前記可とう性基板の端辺を超えた位置になるように配置する工程と、
前記可とう性基板の端辺を超えた位置にあるシンチレーションファイバを束ねて端面が平面になるようにして前記可とう性基板の端辺を超えた位置にある前記U字型の折り返し部を切除する工程と、
を備えたことを特徴とする放射線検出器の製造方法。
A plurality of flexible scintillation fibers arranged side by side are two parallel straight portions, a U-shaped folded portion bent in the same plane that joins ends of the straight portions to each other, and A method of manufacturing a radiation detector including a U-shaped strip-shaped wiring portion wired in a planar shape so as to have a bundled wire portion in which the other end of the linear portion is bundled,
On a flexible substrate to which an adhesive or an adhesive is applied, it is composed of two parallel straight portions and U-shaped folded portions at both ends thereof, and the elongate radius of curvature of the U-shaped folded portions is gradually increased. A plurality of scintillation fibers having a round flexibility are formed into a track shape, and one of the U-shaped folded portion and a part of both straight portions following the U-shaped folded portion are positioned beyond the end of the flexible substrate. A step of arranging so that
Bundling scintillation fibers located beyond the end of the flexible substrate and cutting the U-shaped folded portion located beyond the end of the flexible substrate so that the end surface is flat. And a process of
A method of manufacturing a radiation detector, comprising:
JP2005167169A 2005-06-07 2005-06-07 Radiation detector and its manufacturing method Pending JP2006343144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005167169A JP2006343144A (en) 2005-06-07 2005-06-07 Radiation detector and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005167169A JP2006343144A (en) 2005-06-07 2005-06-07 Radiation detector and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006343144A true JP2006343144A (en) 2006-12-21

Family

ID=37640225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005167169A Pending JP2006343144A (en) 2005-06-07 2005-06-07 Radiation detector and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006343144A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013122461A (en) * 2013-01-29 2013-06-20 Toshiba Corp Radiation detector
JP2013195320A (en) * 2012-03-22 2013-09-30 Hitachi-Ge Nuclear Energy Ltd Radiation measurement apparatus and measurement method thereof
WO2017171261A1 (en) * 2016-03-28 2017-10-05 (주)제이에스테크윈 Structure for mounting photomultiplier tube to scintillator
WO2023198801A1 (en) * 2022-04-16 2023-10-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Optical fibre sensor for analysing the activity of a radioactive fluid

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195320A (en) * 2012-03-22 2013-09-30 Hitachi-Ge Nuclear Energy Ltd Radiation measurement apparatus and measurement method thereof
JP2013122461A (en) * 2013-01-29 2013-06-20 Toshiba Corp Radiation detector
WO2017171261A1 (en) * 2016-03-28 2017-10-05 (주)제이에스테크윈 Structure for mounting photomultiplier tube to scintillator
WO2023198801A1 (en) * 2022-04-16 2023-10-19 Commissariat A L'energie Atomique Et Aux Energies Alternatives Optical fibre sensor for analysing the activity of a radioactive fluid
FR3134635A1 (en) * 2022-04-16 2023-10-20 Commissariat à l'Energie Atomique et aux Energies Alternatives Fiber sensor for analyzing the activity of a radioactive fluid

Similar Documents

Publication Publication Date Title
JP4159052B2 (en) Radiation direction detector, radiation monitoring method and apparatus
JP5930973B2 (en) Radiation detector
JP5824774B2 (en) Strip apparatus and method for measuring position and time of gamma quantum reaction and method of using strip apparatus for measuring position and time of gamma quantum reaction in positron emission tomography
JP4313895B2 (en) Radiation detector
JP4886662B2 (en) Radiation measurement equipment
RU2653116C2 (en) Fibers based segmented nuclear level meter
EP0608101A2 (en) Scintillation counter
JPH0915335A (en) Radiation detector and detecting method of radiation
EP0583118A2 (en) Gamma camera
JPH10232284A (en) Wavelength shift type radiation sensor and radiation detector
CN109313277A (en) The gamma ray detector of pixelation
JP4737292B2 (en) Nuclear medicine diagnostic equipment
JP2006343144A (en) Radiation detector and its manufacturing method
JP2000147125A (en) Radiation detector and computer-readable recording medium
JP2023537997A (en) Detection collimating unit, detector and SPECT imaging system
JP2007248408A (en) Radiation detector
JP2000206254A (en) Alpha ray and beta/gamma ray discrimination type radiation detector
JPH09243752A (en) Optical fiber type large area radiation monitor
JP5502341B2 (en) Rod-shaped radiation detector and manufacturing method thereof
US9020099B1 (en) Miniaturized pipe inspection system for measuring corrosion and scale in small pipes
JP3242756B2 (en) Radioactive surface contamination detector
JP2004361290A (en) Gamma-ray directivity detector, and method and device for monitoring radiation
JP3463018B2 (en) Thin radiation surface contamination detector
JP5060410B2 (en) Radiation detector
US20210204900A1 (en) Tomography apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090929