JP2006337089A - Structure measuring method and measuring device of base material for optical fiber - Google Patents

Structure measuring method and measuring device of base material for optical fiber Download PDF

Info

Publication number
JP2006337089A
JP2006337089A JP2005159662A JP2005159662A JP2006337089A JP 2006337089 A JP2006337089 A JP 2006337089A JP 2005159662 A JP2005159662 A JP 2005159662A JP 2005159662 A JP2005159662 A JP 2005159662A JP 2006337089 A JP2006337089 A JP 2006337089A
Authority
JP
Japan
Prior art keywords
optical fiber
core
fiber preform
light
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005159662A
Other languages
Japanese (ja)
Other versions
JP4233098B2 (en
Inventor
Yuuji Tobisaka
優二 飛坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005159662A priority Critical patent/JP4233098B2/en
Priority to PCT/JP2006/309968 priority patent/WO2006129494A1/en
Publication of JP2006337089A publication Critical patent/JP2006337089A/en
Application granted granted Critical
Publication of JP4233098B2 publication Critical patent/JP4233098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • G01B11/10Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving
    • G01B11/105Measuring arrangements characterised by the use of optical techniques for measuring diameters of objects while moving using photoelectric detection means

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure measuring method and measuring device of base metal for optical fiber capable of efficiently and simultaneously measuring non-circularity and non-concentricity of core part of the base material for an optical fiber. <P>SOLUTION: Laser is irradiated from the side of base material for an optical fiber by dipping the base material for optical fiber in a vessel filled with matching oil and elevating and dropping. By detecting the width of the beam having transmitted the core part of the base material for the optical fiber with a sensor, the outer diameter and the position of the core part is measured. The brightness of the beam having transmitted near the boundary of the clad and the matching oil is detected with a sensor to measure the clad position, and the measured data are continuously measured, recorded in the longitudinal direction together with the position in the longitudinal direction of the base material for the optical fiber. Then by rotating the base metal for the optical fiber for a specific angle and measurement/recording similar in the longitudinal direction at different angles are repeated. The non-circularity and non-concentricity of core part in each position in the longitudinal direction are simultaneously obtained from the longitudinal distribution of the position and shape of the core and the clad obtained in the circumferential angles. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光ファイバの原材料として使用される光ファイバ用母材の構造測定方法及び測定装置に関する。   The present invention relates to a structure measuring method and a measuring apparatus for an optical fiber preform used as a raw material of an optical fiber.

近年、光通信の長距離化や高速化を制限する要因として、偏波モード分散(Polarization Mode Dispersion、以下、PMDと称する)の影響が注目されている。PMDとは、互いに直交する偏波面を持つ2つのモードが光ファイバ中を僅かに異なる速度で伝播することにより、入射されたパルスの幅が光ファイバ中を伝播するにつれて広がっていく現象である。このPMDの影響が大きくなると、光通信において異なる信号光パルスの一部が重なるようになり、受信部でパルスの判別ができなくなる。よって、パルス幅を小さくしてより高速通信を行う場合に、目標のパルス幅で通信ができなかったり、長距離通信時に信号のパルスが重なりあって通信異常を引き起こしたりする可能性が大きくなる。   In recent years, the influence of Polarization Mode Dispersion (hereinafter referred to as PMD) has been attracting attention as a factor limiting the increase in distance and speed of optical communication. PMD is a phenomenon in which two modes having mutually orthogonal polarization planes propagate in an optical fiber at slightly different speeds, so that the width of an incident pulse spreads as it propagates in the optical fiber. When the influence of this PMD becomes large, a part of different signal light pulses overlap in optical communication, and the pulse cannot be discriminated by the receiving unit. Therefore, when higher speed communication is performed with a reduced pulse width, there is a higher possibility that communication with the target pulse width cannot be performed, or that signal pulses overlap during long distance communication, causing communication abnormalities.

通常のシングルモード光ファイバは、周囲より屈折率の高いコア部とそれを覆うクラッド部からなり、光は主にそのコア部を伝播する。コア部が真円である場合は、前記直交する偏波面を持つ2つのモードは縮退しており判別はできないが、コア部が真円でなかったり、光ファイバあるいは光ファイバケーブルを製造する際にコア部に歪が加わったりして、コア部の対称性が崩れると、光ファイバ中を伝播する2つのモードに速度差が生じ、PMDを引き起こす。   A normal single mode optical fiber is composed of a core part having a higher refractive index than the surroundings and a clad part covering the core part, and light mainly propagates through the core part. When the core part is a perfect circle, the two modes having the orthogonal planes of polarization are degenerated and cannot be distinguished. However, when the core part is not a perfect circle or when manufacturing an optical fiber or an optical fiber cable. When distortion is applied to the core part and the symmetry of the core part is lost, a speed difference occurs between the two modes propagating in the optical fiber, causing PMD.

このPMDを管理する方法として、光ファイバ用母材のコア部の非円率を測定し、その非円率を管理する方法がある。非円率を測定する方法として、特許文献1は、マッチングオイルが満たされた容器中に光ファイバ用母材を浸漬し、光ファイバ用母材を回転させながら、側面より平行光を照射し、透過してきた光を受光・撮像し、その明度分布からコア部の外径を測定し、周方向のコア外径値からコア部の非円率を算出する方法を提示している。   As a method of managing this PMD, there is a method of measuring the non-circularity of the core portion of the optical fiber preform and managing the non-circularity. As a method for measuring the non-circularity, Patent Document 1 irradiates parallel light from the side surface while immersing the optical fiber preform in a container filled with matching oil and rotating the optical fiber preform. It presents a method of receiving and imaging the transmitted light, measuring the outer diameter of the core part from its brightness distribution, and calculating the non-circularity of the core part from the core outer diameter value in the circumferential direction.

光ファイバ用母材のコア部の非円率でPMDを管理する場合、光ファイバとした場合のPMDを予測する必要があり、これにはかなり細かく光ファイバ用母材の非円率を測定する必要がある。光ファイバ用母材の測定間隔を、光ファイバで1kmとすると、外径80mmの光ファイバ用母材では2.4
mm 程度の長さであり、コア部外径が18 mm のコア母材では0.2 mm 程度の長さになる。
When managing PMD with the non-circularity of the core part of the optical fiber base material, it is necessary to predict the PMD in the case of an optical fiber, and this involves measuring the non-circularity of the optical fiber base material fairly finely. There is a need. If the measurement interval of the optical fiber preform is 1 km with an optical fiber, it is 2.4 for an optical fiber preform with an outer diameter of 80 mm.
The length of the core base material with a core outer diameter of 18 mm is about 0.2 mm.

特許文献1は、光ファイバ用母材のコア部の外径を測定する方法を提示しているが、母材の外周を一回り測定した後、長手方向の次の測定位置への移動のために移動・停止時間を必要とする。自動化した場合でも、その移動時間に一箇所当り1秒を要すると、長さ1,000mm
の光ファイバ用母材を長手方向に1mm間隔で測定する場合、移動だけで16分以上かかり、長さ500 mm のコア母材を0.2 mm 間隔で測定する場合、その移動時間は40分以上となる。このようにコア部の外径測定に要する時間は、この移動時間に加え、さらに回転に要する時間と計算に要する時間を加える必要があり、極めて長時間となる。
Patent Document 1 presents a method for measuring the outer diameter of the core portion of the optical fiber preform, but after measuring the outer circumference of the preform once, to move to the next measurement position in the longitudinal direction. It takes time to move and stop. Even when automated, if the travel time takes 1 second per location, the length is 1,000mm.
When measuring optical fiber preforms at 1 mm intervals in the longitudinal direction, it takes more than 16 minutes to move alone, and when measuring 500 mm long core preforms at 0.2 mm intervals, the travel time is 40 minutes or more. Become. As described above, the time required for measuring the outer diameter of the core portion needs to be added to the time required for the rotation and the time required for the calculation and the time required for the calculation.

この対策として特許文献2は、コア部非円率を高速で測定する方法を提案している。具体的には、マッチングオイル中に浸漬された光ファイバ用母材を上昇又は下降させつつ側方から光を照射し、コア部を透過してきた光の幅をコア部相対外径値として測定し、その位置とともに長手方向に沿って連続的に記録した後、さらに母材の角度を変えて長手方向に同様の測定・記録を繰返し、周方向の複数の角度で得られたコア部相対外径値群の長手方向の分布から、長手方向のそれぞれの位置でのコア部の非円率を計算する方法である。   As a countermeasure, Patent Document 2 proposes a method of measuring the core non-circularity at high speed. Specifically, light is irradiated from the side while raising or lowering the optical fiber preform immersed in the matching oil, and the width of the light transmitted through the core portion is measured as the core portion relative outer diameter value. After recording along the longitudinal direction along with the position, the core part relative outer diameter obtained at multiple angles in the circumferential direction by repeating the same measurement and recording in the longitudinal direction by changing the angle of the base material further This is a method of calculating the non-circularity of the core portion at each position in the longitudinal direction from the distribution in the longitudinal direction of the value group.

また、PMD管理のためのコア部非円率測定以外にも、コア部の光ファイバの中心からのズレ量を示す偏芯率の要求も厳しくなっている。これは、通信事業者と加入者との間を光ファイバで結ぶFTTH(Fiber
To The Home)サービスなどにより、屋内配線用の曲げに強い光ファイバが要求されていることに起因している。従来の光ファイバでは、φ60mmより小さい曲げに対応しておらず、小さい曲げを加えた場合伝送損失が著しく増加する。このため、小さな曲げに対応した光ファイバが開発され実用に供されているが、この光ファイバはモードフィールド径が小さいために、他の光ファイバと接続する場合に軸ずれの影響が大きく、光ファイバのコア部が偏芯していると、軸ずれによる接続損失が大きく出る。このため、従来にも増して偏芯率の管理が重要となってきている。
In addition to the core non-circularity measurement for PMD management, the demand for the eccentricity indicating the amount of deviation from the center of the optical fiber in the core is also becoming strict. This is because FTTH (Fiber) is used to connect telecommunications carriers and subscribers with optical fiber.
This is due to the demand for bending-resistant optical fiber for indoor wiring by To The Home) service. Conventional optical fibers do not support bending smaller than φ60 mm, and transmission loss increases remarkably when small bending is applied. For this reason, an optical fiber corresponding to a small bend has been developed and put into practical use. However, since this optical fiber has a small mode field diameter, the effect of misalignment is large when connected to other optical fibers. If the fiber core is eccentric, connection loss due to axial misalignment will increase. For this reason, management of eccentricity has become more important than ever.

偏芯測定に使用される偏心測定機は、空気中あるいはマッチングオイル中の光ファイバ用母材を透過させた光を撮像し、それにより得られる光ファイバ用母材及びコア部の外径とその位置から、その角度でのコア部の母材中心からのずれ量を求めるものであり、幾つかの異なる角度(例えば、0°と90°の2箇所)でずれ量を求め、それらのデータを合成することにより芯ずれ量が求められる。   The eccentricity measuring machine used for the eccentricity measurement picks up the light transmitted through the optical fiber preform in the air or matching oil, and obtains the optical fiber preform and the outer diameter of the core portion and its outer diameter. The amount of deviation from the center of the base material of the core at that angle is obtained from the position, the amount of deviation is obtained at several different angles (for example, two locations of 0 ° and 90 °), and the data is obtained. The amount of misalignment is determined by combining.

具体的には、特許文献3に示されているように、回転機構を備えた吊下げ装置の把持具に光ファイバ用母材を取り付け、母材の長手方向に沿って走査可能な台上に載せられた投光部と撮像部により、母材を透過した明暗パターンによりクラッド部の位置とコア部の位置を検知し、母材の長手方向にわたってコアの偏芯量を測定する。この方法では、マッチングオイルに浸漬して測定した方が測定精度は良いが、マッチングオイルの除去など後処理が面倒なため、通常は空気中で測定される。
特開2003-42894号公報 特願2005-45329号 特許第3053509号
Specifically, as shown in Patent Document 3, an optical fiber preform is attached to a holding tool of a suspension device having a rotation mechanism, and the optical fiber preform is placed on a table that can be scanned along the longitudinal direction of the preform. The position of the clad part and the position of the core part are detected by the bright and dark pattern transmitted through the base material, and the eccentric amount of the core is measured in the longitudinal direction of the base material. In this method, the measurement accuracy is better when measured by immersing in matching oil, but is usually measured in air because post-processing such as removal of matching oil is troublesome.
Japanese Patent Laid-Open No. 2003-42894 Japanese Patent Application No. 2005-45329 Patent No. 3053509

偏芯測定機の測定部は、通常CCDカメラで撮影した画像を処理して、クラッドやコアの位置を算出している。CCDカメラの画素数は、エリアセンサタイプで横方向500〜1400画素程度、ラインセンサタイプで1000〜8000画素程度であり、外径100mmの光ファイバ用母材の偏芯測定を行う場合、走査範囲は120mm位になるため、その解像度は、120mm/500〜8000画素、すなわち0.24〜0.02mm/画素ということなる。   The measuring unit of the eccentricity measuring device usually processes the image taken by the CCD camera and calculates the position of the clad and the core. The number of pixels of the CCD camera is about 500 to 1400 pixels in the horizontal direction for the area sensor type, and about 1000 to 8000 pixels for the line sensor type. When measuring eccentricity of an optical fiber preform with an outer diameter of 100 mm, the scanning range Therefore, the resolution is 120 mm / 500 to 8000 pixels, that is, 0.24 to 0.02 mm / pixel.

コア部の非円測定は偏芯測定と、外径測定が必要という点で共通しているため、コア部の非円測定を偏芯測定と同時に行えそうだが、現在の最高画素数のラインセンサを使用した場合の0.02mmという解像度でも、幅で0.04mmの誤差を生む可能性がある。これは外径100mmの光ファイバ用母材のコア径約6mmに対して0.7%のコア部非円率に相当し、精度的にコア部非円率の測定に偏芯測定機は使用できず、別に精度の高いセンサを搭載した非円測定機で測定する必要があった。   The non-circular measurement of the core part is common to the eccentricity measurement and the need to measure the outer diameter, so it seems that the non-circular measurement of the core part can be performed simultaneously with the eccentricity measurement, but the line sensor with the current maximum number of pixels Even with a resolution of 0.02mm when using, there is a possibility of producing an error of 0.04mm in width. This is equivalent to a core non-circularity of 0.7% for a core diameter of about 6 mm for an optical fiber preform with an outer diameter of 100 mm, and an eccentricity measuring machine cannot be used to accurately measure the core non-circularity. In addition, it was necessary to measure with a non-circular measuring machine equipped with a highly accurate sensor.

光ファイバ用母材の品質管理に必要な構造測定には、上記コア部非円測定及び偏芯測定に加えて、プリフォームアナライザーによる屈折率分布測定の3種類があり、それぞれ専用の装置で個別に行われるため、測定のための運搬や、測定待ちのための一時仮置き場も必要であり、かつそれぞれの測定に長時間を要するという問題があった。   In addition to the core non-circularity measurement and eccentricity measurement, there are three types of structural measurements required for quality control of optical fiber preforms: refractive index distribution measurement using a preform analyzer. Therefore, there is a problem that transportation for measurement and a temporary storage place for waiting for measurement are required, and each measurement takes a long time.

本発明は、高速通信上問題とされているPMDに関係する光ファイバ用母材のコア部の非円量と、光ファイバの接続時に問題となる光ファイバ用母材の偏芯量を効率よく同時に測定することのできる光ファイバ用母材の構造測定方法及び測定装置を提供することを目的としている。   The present invention efficiently reduces the non-circular amount of the core portion of the optical fiber base material related to PMD, which is regarded as a problem in high-speed communication, and the eccentric amount of the optical fiber base material that is a problem when connecting optical fibers. An object of the present invention is to provide a structure measuring method and a measuring apparatus for an optical fiber preform that can be measured simultaneously.

本発明の光ファイバ用母材の構造測定方法は、光ファイバ用母材をマッチングオイルで満たされた容器中に浸漬して上昇又は下降させつつ光ファイバ用母材の側方から光を照射し、該光ファイバ用母材のコア部を透過してきた光の幅をセンサで検知してコア部の外径値とその位置を測定し、クラッド部とマッチングオイルの界面付近を透過してきた光の明暗をセンサで検知してクラッド位置を測定し、光ファイバ用母材の長手方向の位置とともにそれらの測定データを長手方向にわたって連続的に測定・記録した後、光ファイバ用母材を所定の角度回転させて異なる角度で長手方向に同様の測定・記録を繰返し、周方向の複数の角度で得られたコアとクラッドの位置、形状の長手方向の分布から、長手方向各位置でのコア部非円率と偏芯率を同時に得ることを特徴としている。   The method for measuring the structure of an optical fiber preform of the present invention irradiates light from the side of the optical fiber preform while immersing the optical fiber preform in a container filled with matching oil and raising or lowering it. The width of the light transmitted through the core of the optical fiber preform is detected by a sensor to measure the outer diameter value and position of the core, and the light transmitted through the vicinity of the interface between the cladding and the matching oil is measured. The clad position is measured by detecting the brightness and darkness, and the measurement data is continuously measured and recorded along the longitudinal direction of the optical fiber preform along with the longitudinal position of the optical fiber preform. The same measurement and recording is repeated in the longitudinal direction at different angles by rotating, and the core portion at each position in the longitudinal direction is determined from the longitudinal distribution of the core and cladding positions and shapes obtained at a plurality of circumferential angles. The circularity and eccentricity It is characterized in that obtained when.

本発明の光ファイバ用母材の構造測定装置は、光ファイバ用母材を把持して吊り下げる、上下動及び回転可能な吊下げ装置と、上部に開口部、側面に測定用の観察窓を有し、マッチングオイルが満たされた容器と、観察窓から平行光を容器内へ照射する光源と、光ファイバ用母材のコア部を透過してきた光の幅を検知するセンサと、クラッド部とマッチングオイルの界面付近を透過してきた光の明暗を検知するセンサと、光ファイバ用母材の長手方向の位置、回転角度、外周端及びコア部端の位置をそれぞれ同時に記録する装置と、これらの測定されたデータからコア部非円率とコア偏芯率を計算する装置とを有し、光ファイバ用母材の長手方向各位置でのコア部非円率と偏芯率を同時に測定することを特徴としている。   An optical fiber preform structure measuring apparatus according to the present invention includes an optical fiber preform holding and hanging optical fiber preform that can be moved vertically and rotated, an opening on the top, and a measurement observation window on the side. A container filled with matching oil; a light source that irradiates parallel light from the observation window into the container; a sensor that detects the width of light transmitted through the core portion of the optical fiber preform; and a cladding portion. A sensor for detecting the brightness of light transmitted near the interface of the matching oil, a device for simultaneously recording the longitudinal position, rotation angle, outer peripheral end and core end position of the optical fiber preform, and Having a device that calculates the core non-circularity and core eccentricity from the measured data, and simultaneously measuring the core non-circularity and eccentricity at each position in the longitudinal direction of the optical fiber preform It is characterized by.

なお、本発明においては、コア部を透過してきた光の幅と、クラッド部とマッチングオイルの界面付近を透過してきた光の明暗とをそれぞれ別のセンサで検知し、さらに、クラッド部とマッチングオイルの界面付近を透過してきた光の明暗は、光ファイバ用母材の両外側でそれぞれ別体のセンサで検知するように構成するのが好ましい。   In the present invention, the width of the light transmitted through the core portion and the brightness and darkness of the light transmitted near the interface between the cladding portion and the matching oil are detected by separate sensors, respectively, and the cladding portion and the matching oil are further detected. It is preferable that the brightness of the light transmitted near the interface is detected by separate sensors on both outer sides of the optical fiber preform.

本発明によれば、高速通信上問題とされているPMDに関係する光ファイバ用母材のコア部の非円量と、光ファイバの接続時に問題となる光ファイバ用母材の偏芯量とを高い精度で効率良く、同時に測定することができる。   According to the present invention, the non-circular amount of the core portion of the optical fiber base material related to PMD, which is regarded as a problem in high-speed communication, and the eccentric amount of the optical fiber base material that becomes a problem when connecting the optical fiber, Can be measured simultaneously with high accuracy and efficiency.

本発明者は、上記課題に鑑み鋭意検討を重ねた結果、精度の高いコア径の測定が要求されるコア部非円率の測定と、比較的精度を必要としないクラッド部の外径の測定をそれぞれ別のセンサで行い、さらに、コア径とクラッド部の外径の位置の測定を同時に行えるように、コア径測定用のセンサの両側に、光ファイバ用母材(以下、単に母材と称する)の両外側に対応する位置にそれぞれ別体のセンサを配置してクラッド部の外径を測定することで課題を解決し、本発明を達成した。   As a result of intensive studies in view of the above problems, the present inventor has measured the non-circularity of the core part that requires a highly accurate measurement of the core diameter, and the measurement of the outer diameter of the cladding part that does not require relatively high accuracy. The optical fiber preform (hereinafter simply referred to as the base material) is provided on both sides of the core diameter measurement sensor so that the core diameter and the outer diameter position of the cladding portion can be measured simultaneously. The problem has been solved by measuring the outer diameter of the clad portion by arranging separate sensors at positions corresponding to both outer sides of the first and second outer surfaces.

本発明のコア部非円率及び偏芯率の測定方法について、一例として挙げた下記の態様に基づき、図を用いてさらに詳細に説明する。
図1は、コア部非円率と偏芯率を測定する構造測定機の構成の概略を示す図である。母材1は、上下動及び回転自在な吊下げ具2に鉛直に保持され、マッチングオイル3で満たされた容器4内に浸漬され、母材1の長手方向にわたってコア部非円率と偏芯率が測定される。容器4の上部には、側方から平行光を入射させその透過光を観察できる測定窓5が設けられている。
The method for measuring the non-circularity of the core and the eccentricity of the present invention will be described in more detail with reference to the drawings based on the following modes given as examples.
FIG. 1 is a diagram showing an outline of a configuration of a structural measuring machine that measures a core portion non-circularity and an eccentricity. The base material 1 is vertically held by a hanging tool 2 that can be moved up and down and is immersed in a container 4 filled with matching oil 3, and the core part non-circularity and eccentricity along the longitudinal direction of the base material 1. The rate is measured. A measurement window 5 is provided at the top of the container 4 so that parallel light can enter from the side and the transmitted light can be observed.

測定部では、図2に示されているように、平行光を出射する光源6から観察窓5へ平行光8が入射され、マッチングオイル3と母材1を透過した光は、コア部の外径と位置が受光部7のコア部用センサ7bで、クラッドの位置はクラッド用センサ7a,7cでそれぞれ検出され、得られた外径や位置情報でコア部非円率と偏芯率が求められる。
なお、図2は平面図であるため各センサは横に並べられているが、寸法上の制約が許せばCCD素子を同一筐体内に3個並べても良く、図3の例のようにコア部の透過光をミラーで屈折させセンサ7bを傾けて設置しても良い。実際には、市販のラインセンサを使うのが安価なので、ミラーを使用し、コア用センサ7bを垂直方向に90°ずらして設置するのが好ましい。
As shown in FIG. 2, in the measurement unit, the parallel light 8 is incident on the observation window 5 from the light source 6 that emits parallel light, and the light transmitted through the matching oil 3 and the base material 1 is outside the core unit. The diameter and position are detected by the core sensor 7b of the light receiving section 7, and the cladding position is detected by the cladding sensors 7a and 7c, respectively, and the core non-circularity and eccentricity are obtained from the obtained outer diameter and position information. It is done.
Since FIG. 2 is a plan view, the sensors are arranged side by side, but if the dimensional restrictions allow, three CCD elements may be arranged in the same housing, as shown in the example of FIG. The transmitted light may be refracted by a mirror and the sensor 7b may be inclined. Actually, since it is inexpensive to use a commercially available line sensor, it is preferable to use a mirror and install the core sensor 7b by shifting it 90 ° in the vertical direction.

他にも、図4に示すように、クラッド用センサ7a,7cとコア用センサ7bを直交する形で水平に90°ずらして配置し、クラッドとコア部をそれぞれ90°異なる方向から測る方法もある。この場合、2箇所から平行光を入射するため、互いの測定に影響しないように配慮する必要がある。また、長手方向について測定位置の調整や、ワークが斜めに取付けられていた場合の補正など、同一面を計測していないことでの問題もよく検討しておく必要がある。   In addition, as shown in FIG. 4, the clad sensors 7a and 7c and the core sensor 7b are arranged so as to be horizontally shifted by 90 °, and the clad and the core portion are measured from different directions by 90 °. is there. In this case, since parallel light is incident from two places, it is necessary to consider so as not to affect the mutual measurement. In addition, it is necessary to carefully consider problems caused by not measuring the same surface, such as adjustment of the measurement position in the longitudinal direction and correction when the work is mounted obliquely.

測定は、次のような手順で行われる。
母材1をマッチングオイル3に浸漬し、光源6からレーザー光を照射し、透過してきた光を受光部7(センサ7a,7b,7c)で受け、撮像の明暗から母材1のクラッド外側の位置とコア・クラッド界面の位置を求める。このコア、クラッドの位置について、母材1を上昇又は下降させてその長手方向にわたって測定し、測定位置と共に記録することで、その角度(周方向位置)でのコアとクラッドの位置関係、形状の長手方向の分布が得られる。再度、母材1を所定の角度回転させた後、下降又は上昇させて同様に長手方向の分布を測定する。さらに所定の角度を回転させて同様の測定を繰り返す。
The measurement is performed according to the following procedure.
Immerse the base material 1 in the matching oil 3, irradiate laser light from the light source 6, receive the transmitted light at the light receiving part 7 (sensors 7a, 7b, 7c), Find the position and the position of the core-cladding interface. About the position of this core and a clad, the base material 1 is raised or lowered and measured along its longitudinal direction, and recorded together with the measurement position, so that the positional relationship and shape of the core and the clad at that angle (circumferential position) A longitudinal distribution is obtained. Again, after rotating the base material 1 by a predetermined angle, the base material 1 is lowered or raised, and similarly the distribution in the longitudinal direction is measured. Further, the same measurement is repeated by rotating a predetermined angle.

このようにして得られた母材1の周方向の複数の角度で測定されたコアとクラッドの位置、形状の長手方向の分布から、長手方向各位置でのコア部非円率と偏芯率が計算によって求められる。この測定手順をフローチャートにしたものが、図5である。
測定する周方向への分割数(以下、周分割数と称する)は、7〜20がコア径の非円率測定に適当であり、360°をその周分割数で割った数値を角度ピッチとし、各分割角度で母材の長手方向の各位置でコア部相対外径値を測定する。
この周分割数は、データにはノイズ分が含まれているため正確な測定値を得たい場合には20とし、大まかな非円率を高速で求めたい場合には5とするのがよい。なお、周分割数を20より大きくしても精度的にはそれほど向上しない。また、周分割数を16とした場合には、FFT(高速フーリエ変換)が行えるので形状の詳細な検討が容易に行える。通常の測定の場合は、正確性と測定速度を勘案して分割数10程度とするのが最適である。
The core part non-circularity and the eccentricity at each position in the longitudinal direction are obtained from the longitudinal distribution of the core and clad positions and shapes measured at a plurality of circumferential angles of the base material 1 thus obtained. Is obtained by calculation. FIG. 5 shows a flowchart of this measurement procedure.
The number of divisions in the circumferential direction to be measured (hereinafter referred to as the number of circumferential divisions) is appropriate for measuring the non-circularity of the core diameter from 7 to 20, and the value obtained by dividing 360 ° by the number of circumferential divisions is the angular pitch. The core portion relative outer diameter value is measured at each position in the longitudinal direction of the base material at each division angle.
Since the data includes noise, the number of circumference divisions is preferably 20 when it is desired to obtain an accurate measurement value, and 5 when a rough non-circularity is desired at a high speed. Even if the number of circumferential divisions is greater than 20, the accuracy is not improved so much. Further, when the number of circumferential divisions is 16, FFT (Fast Fourier Transform) can be performed, so that detailed examination of the shape can be easily performed. In the case of normal measurement, it is optimal to set the number of divisions to about 10 in consideration of accuracy and measurement speed.

受光部で得られた位置情報の変換は、次のようにして行う。
図6に示したようにセンサ7a,7b,7cはそれぞれ検出する位置が違い、各センサが受ける明度分布は図の様になる。この明度分布から、クラッド外径とマッチングオイルの境界であるE1,E4と、コアとクラッドの境界であるE2,E3の位置を得る。それぞれのセンサ同士の位置関係は、センサ設置時に径の異なる丸棒を用いて計測しておき、それぞれのセンサで見える大きさを合わせると共に、その位置関係も正確に求めておく。
The position information obtained by the light receiving unit is converted as follows.
As shown in FIG. 6, the sensors 7a, 7b, and 7c are detected at different positions, and the brightness distribution received by each sensor is as shown in the figure. From this brightness distribution, the positions of E1 and E4 that are the boundary between the cladding outer diameter and the matching oil and the positions E2 and E3 that are the boundary between the core and the cladding are obtained. The positional relationship between the sensors is measured using round bars with different diameters at the time of sensor installation, and the size that can be seen by each sensor is matched and the positional relationship is also accurately determined.

位置関係については、図6のセンサ7cの一番左の画素の位置を0とし、センサ7bの一番左の画素の位置をA、センサ7aの一番左の画素の位置をBとした場合、それぞれ画素基準で下記のようになる。これらの数値は、別途求めた画素を実寸法に変換する係数を用いて実寸法に変換しても良い。
クラッド左端;E1、クラッド右端;B+E4
コア左端;A+E2、コア右端;A+E3
クラッド径; B+E4-E1、コア径;E3-E2
その角度での偏芯量;(2A+E2+E3)/2−(E1+B+E4)/2
Regarding the positional relationship, the position of the leftmost pixel of the sensor 7c in FIG. 6 is 0, the position of the leftmost pixel of the sensor 7b is A, and the position of the leftmost pixel of the sensor 7a is B. , Respectively, on a pixel basis. These numerical values may be converted into actual dimensions by using a coefficient for converting separately obtained pixels into actual dimensions.
Clad left end: E1, Clad right end: B + E4
Core left end: A + E2, Core right end: A + E3
Cladding diameter; B + E4-E1, Core diameter; E3-E2
Eccentricity at that angle; (2A + E2 + E3) / 2− (E1 + B + E4) / 2

データの記録は、それぞれのセンサの位置検出を個別の画像処理装置により行わせ、それぞれの画像処理装置からのデータを受け取り、上下位置と回転角度の情報とを合わせて記録させる。高速化のため、センサ毎に計算機を設けてそれぞれに上下位置情報を与え、それぞれの計算機(パーソナルコンピュータやボードコンピュータなど)で上下位置情報とセンサで検出された位置情報とを記録するのが望ましく、その場合、上下動の位置検出機構をボールネジとしてその回転をエンコーダーで検出させたり、チェーンによる上下駆動では歯車の回転をエンコーダーで検出させたりと、エンコーダーから発生したパルスを各計算機でカウントすることで、正確に上下位置の共有化が図れる。   For data recording, the position of each sensor is detected by an individual image processing device, data from each image processing device is received, and information on the vertical position and rotation angle is recorded together. In order to increase the speed, it is desirable to provide a computer for each sensor and give the vertical position information to each sensor, and to record the vertical position information and the position information detected by the sensor with each computer (personal computer, board computer, etc.) In that case, the position detection mechanism of the vertical movement is a ball screw, the rotation is detected by the encoder, the rotation of the gear is detected by the encoder in the vertical drive by the chain, and the pulses generated from the encoder are counted by each computer Thus, the vertical position can be accurately shared.

また、計算機に位置検出プログラムを組み込んだ画像処理ボードを3枚セットし、計算機1台で3台の画像処理結果を高速で得る方法もある。この場合は、計算機のメモリ上に書き出された位置情報を読み出すだけなので情報の取り出しは高速かつ容易となるが、それぞれの画像処理ボードの処理速度と計算結果の出力タイミングが問題となるので、費用、処理速度を加味して構成を考慮する必要がある。   There is also a method in which three image processing boards incorporating a position detection program are set in a computer, and three image processing results are obtained at a high speed with one computer. In this case, since the position information written in the memory of the computer is only read out, the information can be extracted quickly and easily. However, the processing speed of each image processing board and the output timing of the calculation result are problems. It is necessary to consider the configuration in consideration of cost and processing speed.

本実施例は、調整の容易性から、3つのセンサを個別に画像処理用計算機に接続し、それぞれの計算機で上下位置とセンサの検出位置情報の記録を行った。記録されたデータは、計算後、後述の整形(補間)処理を行った後、長手方向について同一位置でのコア、クラッド位置情報として3種類のデータを合体させ、コア部非円率と偏芯率を計算した。   In this embodiment, for ease of adjustment, the three sensors were individually connected to the image processing computer, and the vertical position and the detected position information of the sensor were recorded by each computer. After the calculation, the recorded data is subjected to a shaping (interpolation) process described later, and then three types of data are combined as core and clad position information at the same position in the longitudinal direction, and the core non-circularity and eccentricity are combined. The rate was calculated.

次に、得られた実測データの整形・補間処理について説明する。
本実施例では、計算に必要な同一周上の異なる方向からのコア径、コア位置、クラッド径データを得るために、長手方向の各測定位置で停止・回転させて測定するのではなく、各角度で上昇又は下降させつつ連続的に3つのセンサで別々に測定している。
このため、各角度および各センサのデータで、長手方向の測定位置が合わない場合が生じるが、これにはデータを得たい間隔で実測値による補間処理を行って、各角度でのデータを長手方向に同じ位置データとして整形し、整形後のコア径データを基に、長手方向の各位置でコア部非円率や偏芯率の計算を行う。この補間を行うことで、測定時に、わざわざ各角度で長手方向に測定位置を合わせて測定する必要がなく、位置合わせ精度上の制約からくる移動速度の制約を排除でき、母材の高速移動・測定が可能となる。
Next, shaping / interpolation processing of the obtained actual measurement data will be described.
In this example, in order to obtain core diameter, core position, and clad diameter data from different directions on the same circumference necessary for calculation, measurement is not performed by stopping and rotating at each measurement position in the longitudinal direction. It is measured separately by three sensors continuously while raising or lowering at an angle.
For this reason, the measurement position in the longitudinal direction may not match with the data of each angle and each sensor, but this may be caused by performing an interpolation process with actual measurement values at intervals where data is desired to obtain the data at each angle in the longitudinal direction. Shape the same position data in the direction, and calculate the core non-circularity and eccentricity at each position in the longitudinal direction based on the shaped core diameter data. By performing this interpolation, there is no need to bother measuring the measurement position in the longitudinal direction at each angle during measurement, and it is possible to eliminate the restriction on the movement speed due to the restriction on the alignment accuracy. Measurement is possible.

長手方向でのコア径やクラッド位置の変動は、割と滑らかに変化して行くため、隣接データとの比較で、異常点の判断が行える。そこで本発明では、隣接するデータを含めた3点での平均値が所定の許容幅に入っているかを判断し、許容幅を超えた値に対しては異常値として除外する。好ましい方法は、それぞれの長手方向のデータ群を一旦、上下位置をxとしデータをyとしてその多項式近似を行い、その近似値が所定の許容幅に入っているか否かを判断する方法である。この方法によれば、長いスパンでのデータの変化にも対応できる。多項式近似は、6次〜10次が適当で、6次未満では本来のコア径の変動に追随できず、正常値が異常値として判断され易い。他方、10次を超えると連続した異常値などを拾いやすくなり、異常値が正常値として判断されかねず、好ましくない。   Since the fluctuation of the core diameter and the cladding position in the longitudinal direction changes relatively smoothly, an abnormal point can be determined by comparison with adjacent data. Therefore, in the present invention, it is determined whether the average value at three points including adjacent data falls within a predetermined allowable range, and values exceeding the allowable range are excluded as abnormal values. A preferred method is a method in which each longitudinal data group is temporarily approximated by setting the vertical position to x and the data to y to determine whether the approximate value falls within a predetermined allowable range. According to this method, it is possible to cope with data changes over a long span. For the polynomial approximation, the 6th to 10th orders are appropriate, and if it is less than the 6th order, it cannot follow the fluctuation of the original core diameter, and the normal value is easily determined as the abnormal value. On the other hand, if it exceeds the 10th order, it becomes easy to pick up consecutive abnormal values and the abnormal values may be judged as normal values, which is not preferable.

測定したデータに対しては、上記異常値の排除と共に前述した補間という長手方向のデータの整形処理が必要である。この補間は、長手方向に所望の間隔でデータを補間するもので、最終的に得たい間隔未満の長手方向位置の前後のデータを用いて補間する。補間方法については、所望の位置をX、所望の位置のデータDxとし、その位置より前のデータの長手方向の位置(以下、単に長手位置と称する)と画素位置を、それぞれχ1,D1、その長手位置より後のデータをそれぞれχ2,D2とした場合、下式により計算することができる。

Figure 2006337089
For the measured data, it is necessary to perform the data shaping process in the longitudinal direction of interpolation as described above together with the removal of the abnormal values. In this interpolation, data is interpolated at a desired interval in the longitudinal direction, and interpolation is performed using data before and after the longitudinal position less than the interval desired to be finally obtained. With respect to the interpolation method, the desired position is X and the desired position data Dx, and the position in the longitudinal direction (hereinafter simply referred to as the longitudinal position) and the pixel position of the data before that position are represented by χ 1 and D 1 , respectively. When the data after the longitudinal position is χ 2 and D 2 , respectively, the following formula can be used.
Figure 2006337089

図7は、データの整形・補間処理手順を示すフロー図である。補間は、各角度データ群に対して長手位置を合わせて行う。長手位置を合わせることで、各角度のデータ位置は同一長手位置つまり同一周上に並ぶことになり、同一周上にある各角度でのデータを抜き出し、sin2θフィッティングあるいは、フーリエ解析にてコア部の非円率を求めることができる。
データの整形・補間時には、ノイズの除去を目的として、長手位置とそのコア部相対外径値から一旦多項式近似を行い、その多項式近似値に対し許容範囲にあるか否かの判断を行い、異常点を排除する。
FIG. 7 is a flowchart showing a data shaping / interpolation processing procedure. Interpolation is performed by matching the longitudinal position for each angle data group. By aligning the longitudinal positions, the data positions of each angle are arranged on the same longitudinal position, that is, on the same circumference.Data at each angle on the same circumference is extracted, and the core part is extracted by sin2θ fitting or Fourier analysis. Non-circularity can be determined.
At the time of data shaping / interpolation, for the purpose of removing noise, a polynomial approximation is performed once from the longitudinal position and the relative outer diameter value of the core, and it is judged whether the polynomial approximation is within the allowable range. Eliminate points.

コア部非円率は、次のようにして求めることができる。
同一の長手位置に整形・補間されたコア部相対外径値について、1周で2周期となる楕円成分を[数2]式でフーリエ解析し、得られた楕円成分の振幅から[数3]式のように楕円率のみを求め、それをコア部非円率とした。なお、[数2]式において、yはその角度でのコア部相対外径値、θは角度であり、[数3]式のaはcos成分の振幅、bはsin成分の振幅である。
この計算を整形・補間後の長手方向全ての位置で行い、長手方向のコア楕円率の分布を求める。

Figure 2006337089
Figure 2006337089
The core non-circularity can be obtained as follows.
For the core portion relative outer diameter value shaped and interpolated at the same longitudinal position, Fourier analysis is performed on the elliptic component having two cycles in one rotation by the formula [2], and the amplitude of the obtained elliptic component is calculated from the formula [3] Only the ellipticity was obtained as in the equation, and it was defined as the core non-circularity. In the equation [2], y is the core relative outer diameter value at that angle, [theta] is the angle, a in the equation [3] is the amplitude of the cos component, and b is the amplitude of the sin component.
This calculation is performed at all positions in the longitudinal direction after shaping and interpolation, and the distribution of core ellipticity in the longitudinal direction is obtained.
Figure 2006337089
Figure 2006337089

偏芯率は、次のようにして求めることができる。
同一の長手位置に整形・補間されたクラッド位置,コア位置のデータを用い、それぞれの長手位置でのコア偏芯量を求める。前述の記号を用いると、ある角度での偏芯量は以下のようになる。

Figure 2006337089
The eccentricity can be obtained as follows.
Using the data of the clad position and the core position shaped and interpolated at the same longitudinal position, the core eccentricity at each longitudinal position is obtained. Using the above symbols, the eccentricity at a certain angle is as follows.
Figure 2006337089

この偏芯量を同一長手位置の他の偏芯量とで、1周で1周期となる成分を[数5]式のフーリエ解析で求める。得られた成分から[数6]式の様にクラッド外径で割った偏芯率を求める。これを整形・補間後の長手方向全ての位置で行い、長手方向のコア楕円率の分布を求める。なお、[数5]式において、hはその角度でのコア部相対外径値、θは角度であり、[数6]のcはcos成分の振幅、dはsin成分の振幅である。

Figure 2006337089
Figure 2006337089
Using this eccentricity amount and another eccentricity amount at the same longitudinal position, a component that makes one cycle in one round is obtained by Fourier analysis of [Formula 5]. From the obtained component, the eccentricity divided by the outer diameter of the clad is obtained as in [Formula 6]. This is performed at all positions in the longitudinal direction after shaping and interpolation, and the distribution of core ellipticity in the longitudinal direction is obtained. In [Expression 5], h is the core relative outer diameter value at that angle, θ is the angle, c in [Expression 6] is the amplitude of the cos component, and d is the amplitude of the sin component.
Figure 2006337089
Figure 2006337089

本発明によれば、母材の長手方向各位置でのコア部非円率と偏芯率を効率よく同時に測定できるため、母材の管理コストの低減に寄与する。   According to the present invention, the core non-circularity and the eccentricity at each position in the longitudinal direction of the base material can be measured efficiently and at the same time, which contributes to the reduction of the management cost of the base material.

母材の構造測定機の構成の概略を示す図である。It is a figure which shows the outline of a structure of the base material structure measuring machine. 本発明の構造測定機の測定部の構成の概略を示す図である。It is a figure which shows the outline of a structure of the measurement part of the structure measuring machine of this invention. 他の例の測定部の構成の概略を示す図である。It is a figure which shows the outline of a structure of the measurement part of another example. 本発明の構造測定機のセンサの配置例の概略を示す図である。It is a figure which shows the outline of the example of arrangement | positioning of the sensor of the structure measuring machine of this invention. 測定手順を示すフロー図である。It is a flowchart which shows a measurement procedure. 各センサの受光レベルを示す模式図である。It is a schematic diagram which shows the light reception level of each sensor. 測定データの補間整形処理手順を示すフロー図である。It is a flowchart which shows the interpolation shaping process procedure of measurement data.

符号の説明Explanation of symbols

1……母材、
2……吊下げ具、
3……マッチングオイル、
4……容器、
5……測定窓、
6……光源、
7……受光部、
7a,7c……クラッド用センサ、7b……コア部用センサ、
8……平行光。

1 ... base material,
2 ... Hanging tool,
3 …… Matching oil,
4 …… Container
5 …… Measurement window,
6 …… Light source,
7 …… Light receiver,
7a, 7c …… Clad sensor, 7b …… Core sensor,
8: Parallel light.

Claims (6)

光ファイバ用母材をマッチングオイルで満たされた容器中に浸漬して上昇又は下降させつつ光ファイバ用母材の側方から光を照射し、該光ファイバ用母材のコア部を透過してきた光の幅をセンサで検知してコア部の外径値とその位置を測定し、クラッド部とマッチングオイルの界面付近を透過してきた光の明暗をセンサで検知してクラッド位置を測定し、光ファイバ用母材の長手方向の位置とともにそれらの測定データを長手方向にわたって連続的に測定・記録した後、光ファイバ用母材を所定の角度回転させて異なる角度で長手方向に同様の測定・記録を繰返し、周方向の複数の角度で得られたコアとクラッドの位置、形状の長手方向の分布から、長手方向各位置でのコア部非円率と偏芯率を同時に得ることを特徴とする光ファイバ用母材の構造測定方法。 The optical fiber preform is irradiated with light from the side of the optical fiber preform while immersed or raised in a container filled with matching oil and transmitted through the core of the optical fiber preform. The width of light is detected with a sensor to measure the outer diameter value and position of the core, and the light and darkness of light transmitted near the interface between the cladding and matching oil is detected with a sensor to measure the cladding position. After measuring and recording the measurement data along with the longitudinal position of the fiber preform along the longitudinal direction, the optical fiber preform is rotated by a predetermined angle, and the same measurement and recording at different angles in the longitudinal direction. The core non-circularity and the eccentricity at each position in the longitudinal direction are obtained simultaneously from the distribution of the longitudinal direction of the core and clad positions and shapes obtained at multiple angles in the circumferential direction. Optical fiber preform Structure measurement method. コア部を透過してきた光の幅と、クラッド部とマッチングオイルの界面付近を透過してきた光の明暗とをそれぞれ別のセンサで検知する請求項1に記載の光ファイバ用母材の構造測定方法。 2. The structure measuring method for an optical fiber preform according to claim 1, wherein the width of the light transmitted through the core part and the brightness of the light transmitted through the vicinity of the interface between the cladding part and the matching oil are detected by separate sensors. . クラッド部とマッチングオイルの界面付近を透過してきた光の明暗を、光ファイバ用母材の両外側でそれぞれ別体のセンサで検知する請求項1又は2に記載の光ファイバ用母材の構造測定方法。 The structural measurement of the optical fiber preform according to claim 1, wherein the light intensity transmitted through the vicinity of the interface between the cladding and the matching oil is detected by separate sensors on both outer sides of the optical fiber preform. Method. 光ファイバ用母材を把持して吊り下げる、上下動及び回転可能な吊下げ装置と、上部に開口部、側面に測定用の観察窓を有し、マッチングオイルが満たされた容器と、観察窓から平行光を容器内へ照射する光源と、光ファイバ用母材のコア部を透過してきた光の幅を検知するセンサと、クラッド部とマッチングオイルの界面付近を透過してきた光の明暗を検知するセンサと、光ファイバ用母材の長手方向の位置、回転角度、外周端及びコア部端の位置をそれぞれ同時に記録する装置と、これらの測定されたデータからコア部非円率とコア偏芯率を計算する装置とを有し、光ファイバ用母材の長手方向各位置でのコア部非円率と偏芯率を同時に測定することを特徴とする光ファイバ用母材の構造測定装置。 A suspension device that can hold and suspend optical fiber preforms, and can be moved up and down, an opening at the top, a measurement observation window at the side, a container filled with matching oil, and an observation window A light source that irradiates parallel light into the container, a sensor that detects the width of light that has passed through the core of the optical fiber preform, and light and darkness that has passed through the vicinity of the interface between the cladding and matching oil Sensor, a device for simultaneously recording the longitudinal position, rotation angle, outer peripheral end and core end position of the optical fiber preform, and the core non-circularity and core eccentricity from these measured data. An optical fiber preform structure measuring apparatus for simultaneously measuring the non-circularity of the core portion and the eccentricity at each position in the longitudinal direction of the preform for the optical fiber. コア部を透過してきた光の幅と、クラッド部とマッチングオイルの界面付近を透過してきた光の明暗とをそれぞれ別のセンサで検知する請求項4に記載の光ファイバ用母材の構造測定装置。 5. The structure measuring apparatus for an optical fiber preform according to claim 4, wherein the width of the light transmitted through the core part and the brightness of the light transmitted through the vicinity of the interface between the cladding part and the matching oil are detected by separate sensors. . クラッド部とマッチングオイルの界面付近を透過してきた光の明暗を、光ファイバ用母材の両外側でそれぞれ別体のセンサで検知する請求項4又は5に記載の光ファイバ用母材の構造測定装置。


The structural measurement of the optical fiber preform according to claim 4 or 5, wherein light and darkness of light transmitted near the interface between the cladding portion and the matching oil is detected by separate sensors on both outer sides of the optical fiber preform. apparatus.


JP2005159662A 2005-05-31 2005-05-31 Method and apparatus for measuring structure of optical fiber preform Active JP4233098B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005159662A JP4233098B2 (en) 2005-05-31 2005-05-31 Method and apparatus for measuring structure of optical fiber preform
PCT/JP2006/309968 WO2006129494A1 (en) 2005-05-31 2006-05-18 Method and device for measuring structure of parent material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005159662A JP4233098B2 (en) 2005-05-31 2005-05-31 Method and apparatus for measuring structure of optical fiber preform

Publications (2)

Publication Number Publication Date
JP2006337089A true JP2006337089A (en) 2006-12-14
JP4233098B2 JP4233098B2 (en) 2009-03-04

Family

ID=37481424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005159662A Active JP4233098B2 (en) 2005-05-31 2005-05-31 Method and apparatus for measuring structure of optical fiber preform

Country Status (2)

Country Link
JP (1) JP4233098B2 (en)
WO (1) WO2006129494A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102878955A (en) * 2012-10-09 2013-01-16 中天科技精密材料有限公司 Measuring equipment and measuring method for eccentricity ratios of large-diameter preform
CN105092588A (en) * 2015-06-04 2015-11-25 青海中利光纤技术有限公司 Optical fiber perform rod inspection platform structure
CN109655017A (en) * 2019-02-25 2019-04-19 沈阳航空航天大学 A kind of pipeline the coaxial degree measurement
JPWO2020065632A1 (en) * 2018-09-28 2021-09-16 信越化学工業株式会社 Measurement method of optical fiber base material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101788276B (en) * 2010-03-18 2012-01-11 长飞光纤光缆有限公司 Method for measuring concentricity deviation azimuth of optical fiber preform core
KR102233643B1 (en) 2014-06-17 2021-04-01 헤래우스 쿼츠 노쓰 아메리카 엘엘씨 Apparatus and method for measurement of transparent cylindrical articles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6491007A (en) * 1987-10-01 1989-04-10 Sumitomo Electric Industries Body-configuration measuring apparatus
JP3053509B2 (en) * 1992-08-27 2000-06-19 信越化学工業株式会社 Inspection apparatus and inspection method for optical fiber preform
JP2003042894A (en) * 2001-08-01 2003-02-13 Sumitomo Electric Ind Ltd Method and apparatus for measuring out of roundness of core

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102878955A (en) * 2012-10-09 2013-01-16 中天科技精密材料有限公司 Measuring equipment and measuring method for eccentricity ratios of large-diameter preform
CN102878955B (en) * 2012-10-09 2015-05-20 中天科技精密材料有限公司 Measuring equipment and measuring method for eccentricity ratios of large-diameter preform
CN105092588A (en) * 2015-06-04 2015-11-25 青海中利光纤技术有限公司 Optical fiber perform rod inspection platform structure
JPWO2020065632A1 (en) * 2018-09-28 2021-09-16 信越化学工業株式会社 Measurement method of optical fiber base material
JP7068484B2 (en) 2018-09-28 2022-05-16 信越化学工業株式会社 Measurement method of optical fiber base material
CN109655017A (en) * 2019-02-25 2019-04-19 沈阳航空航天大学 A kind of pipeline the coaxial degree measurement

Also Published As

Publication number Publication date
WO2006129494A1 (en) 2006-12-07
JP4233098B2 (en) 2009-03-04

Similar Documents

Publication Publication Date Title
JP4233098B2 (en) Method and apparatus for measuring structure of optical fiber preform
JP4018071B2 (en) Optical fiber defect detection apparatus and method
CN101178369B (en) Industry ray detection negative film digitalizer
JP4791118B2 (en) Image measuring machine offset calculation method
KR102233643B1 (en) Apparatus and method for measurement of transparent cylindrical articles
KR102128214B1 (en) Methods and apparatus for determining geometric properties of optical fiber preforms
JP5034891B2 (en) Apparatus for measuring shape of transparent plate and method for producing plate glass
JP4824625B2 (en) Method and apparatus for inspecting the end face of a light guide
JP4825430B2 (en) A method for measuring the non-circularity of the core of an optical fiber preform.
WO2020162409A1 (en) Plastic optical fiber core diameter measuring method and plastic optical fiber core diameter measuring device used therefor, and plastic optical fiber defect detecting method and plastic optical fiber defect detecting device used therefor
JPS63502777A (en) Method and apparatus for measuring the diameter of a moving long article such as an optical fiber
WO2007025350A1 (en) Fibre assessment apparatus and method
CN108709509B (en) Contour camera, matched oversized-diameter revolving body workpiece non-contact caliper and non-contact revolving body measuring method
US20120075625A1 (en) Optical surface defect inspection apparatus and optical surface defect inspection method
CN115451821A (en) Calibration method and standard sample plate for cable insulation layer structure dimension tester
JP2006349453A (en) Outer-diameter measuring instrument
JP2008058133A (en) Measuring device for curvature radius of long tool edge and its method
JP2020126050A (en) Method for measuring core diameter of plastic optical fiber and device for measuring core diameter of plastic optical fiber used therefor, method for detecting defect of plastic optical fiber, and device for detecting defect of plastic optical fiber used therefor
JP4639114B2 (en) Inspection method of rod lens array
CN114087981B (en) Online detection method for laser holes of cigarette filter tip based on laser polishing method
CN219121309U (en) Gun barrel bore size and surface defect detection system
JP3665781B2 (en) Method and apparatus for measuring refractive index distribution of transparent body
KR102610238B1 (en) Machine vision based ultra-precision inspection system
TWI467129B (en) Method for detecting flatness of nozzle
KR20240067222A (en) Device for measuring irregularities in sheet-shaped objects, method for measuring irregularities in sheet-shaped objects

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4233098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141219

Year of fee payment: 6