JP2006336919A - Heating furnace for roasting - Google Patents

Heating furnace for roasting Download PDF

Info

Publication number
JP2006336919A
JP2006336919A JP2005160946A JP2005160946A JP2006336919A JP 2006336919 A JP2006336919 A JP 2006336919A JP 2005160946 A JP2005160946 A JP 2005160946A JP 2005160946 A JP2005160946 A JP 2005160946A JP 2006336919 A JP2006336919 A JP 2006336919A
Authority
JP
Japan
Prior art keywords
heater
roasting
furnace
heat
nickel oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005160946A
Other languages
Japanese (ja)
Inventor
Keisuke Shibayama
敬介 柴山
Izumi Sugita
泉 杉田
Yoshiaki Ihara
義昭 井原
Taku Sugiura
卓 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2005160946A priority Critical patent/JP2006336919A/en
Publication of JP2006336919A publication Critical patent/JP2006336919A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently manufacture suppressing manufacturing costs by reducing thermal energy costs and roasting facility maintaining costs in a manufacturing process of nickel oxide powder by high temperature roasting. <P>SOLUTION: In the heating furnace 1 for roasting, electric heating type side face heaters 3 and an electric heating type bottom face heater 4 in an opposing state are detachably attached in a divided state on three faces, both side face parts and a bottom face part, of a cylindrical type tumbling furnace 2, a rod like electric heater, preferably a rod like electric heater made by Shirikonitto Inc. is used as a heat source of the bottom face heater 4, and the bottom heater 4 is operated by fixed load during operation and load control is carried out in the side heaters 3 to supply thermal energy to an object (the nickel oxide powder) to be roasted in the tumbling furnace 2, and to roast the object (the nickel oxide powder) to be roasted. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、円筒型の転動炉(ロータリーキルン)型の外熱式焙焼炉、特にその加熱効率を改善する手段に関する。 The present invention relates to a cylindrical-type rolling furnace (rotary kiln) type external heating roasting furnace, and more particularly to means for improving the heating efficiency.

従来から結晶水を含有する硫酸ニッケルを原料とし、これをキルンで焙焼して、酸化ニッケル粉末を製造する方法が一般的に行われてきた。近年は、この酸化ニッケル粉末は、フェライト部品や電極材料など機能性材料として多く用いられており、その需要も旺盛な現状である。 Conventionally, a method of producing nickel oxide powder by using nickel sulfate containing crystal water as a raw material and baking it in a kiln has been generally performed. In recent years, this nickel oxide powder has been widely used as a functional material such as a ferrite part and an electrode material, and the demand for the nickel oxide powder is also strong.

フェライト部品向けについては、当該粉末と他の材料との焼結体をより高密度にし、またフェライト部品のインダクターに与える影響を低減させる為に、平均粒径が小さい事、および低硫黄品位が求められている。一方、電極材料向けは、前者とは異なり、より低密度で多孔質の焼結体を得る為に、平均粒径が出来るだけ大きな粉末が必要とされている。 For ferrite parts, a small average particle size and low sulfur grade are required to increase the density of the sintered body of the powder and other materials and to reduce the effect of ferrite parts on the inductor. It has been. On the other hand, for the electrode material, unlike the former, in order to obtain a porous sintered body having a lower density, a powder having an average particle size as large as possible is required.

このように、酸化ニッケル粉末においては、機能性材料として求められる多種多様な製品品質を安定的に供給する事が非常に重要である。また、高温焙焼による製造は、熱エネルギーコストおよび焙焼設備維持コストが多くかかる事を考慮すると、製造コストを抑えた効率的な製造方法が求められている。
特開2004−123488
Thus, in nickel oxide powder, it is very important to stably supply various product qualities required as functional materials. Further, considering that the production by high-temperature roasting requires a large amount of heat energy cost and roasting equipment maintenance cost, an efficient production method that suppresses the production cost is required.
JP 2004-123488 A

したがって、本発明の解決課題は、酸化ニッケル粉末の高温焙焼による製造過程で、熱エネルギーコストおよび焙焼設備維持コストを少なくし、製造コストを抑えた効率的な製造を可能とすることである。 Accordingly, the problem to be solved by the present invention is to reduce the thermal energy cost and the roasting equipment maintenance cost in the manufacturing process by high-temperature roasting of nickel oxide powder, and to enable efficient manufacturing with reduced manufacturing cost. .

本発明は、上記課題を達成する為に、被焙焼物、主に、結晶水を含有する硫酸ニッケルを外熱式円筒型焙焼用の転動炉により電熱式のヒーターにより焙焼する際に、転動炉の両側面部および底面部から熱エネルギーを供給し、これらの熱エネルギーを伝導伝熱手段により被焙焼物へ効率よく熱伝達して、供給エネルギーを有効に利用することに加え、側面ヒーターの負荷安定化および負荷低減による寿命延長、ヒーターメンテナンス性向上、ならびにヒーターショートの防止を可能としている。 In order to achieve the above-mentioned object, the present invention, when roasting an object to be baked, mainly nickel sulfate containing water of crystallization, with an electrothermal heater in a rolling furnace for externally heated cylindrical roasting. In addition to supplying heat energy from both sides and bottom of the rolling furnace and efficiently transferring the heat energy to the to-be-baked product by conductive heat transfer means, It is possible to extend the life by stabilizing and reducing the load of the heater, improve the heater maintenance, and prevent the heater short circuit.

具体的には、本発明に係る焙焼用加熱炉は、円筒型の転動炉の両側面部および底面部の3面に、対向状態の電熱式の側面ヒーターおよび電熱式の底面ヒーターを具備し、これらの側面ヒーターおよび底面ヒーターにより転動炉内の被焙焼物(結晶水を含有する硫酸ニッケル)に熱エネルギーを供給している(請求項1)。底面ヒーターの熱源は棒状電熱ヒーター、好ましくはシリコニット製棒状電熱ヒーターであり、運転時に、底面ヒーターを負荷固定運転とし、側面ヒーターを負荷制御とする(請求項2)。 Specifically, the heating furnace for roasting according to the present invention comprises an electrothermal side heater and an electrothermal bottom heater in opposing states on three sides of a cylindrical rolling furnace on both sides and bottom. These side surface heaters and bottom surface heaters supply heat energy to the to-be-baked product (nickel sulfate containing crystal water) in the rolling furnace (Claim 1). The heat source of the bottom heater is a rod-shaped electric heater, preferably a silicon-made rod-shaped electric heater. During operation, the bottom heater is in a load fixing operation and the side heater is in load control.

両側面ヒーターおよび各側面ヒーターの外側に位置する側面断熱材は分割状態として構成され、分割状態の側面ヒーターおよび側面断熱材を取り外すことで容易に脱着可能となっている(請求項3)。焙焼用加熱炉は主として酸化ニッケル製造用として有益である(請求項4)。 Side heaters located on the outside of both side heaters and side heaters are configured in a divided state, and can be easily detached by removing the divided side heaters and side insulators (Claim 3). The heating furnace for roasting is mainly useful for producing nickel oxide (claim 4).

円筒型の転動炉の両側面部のほかに、底面部からも底面ヒーターにより熱エネルギーを供給するから、両側面ヒーターの負荷低減が可能となるだけでなく、熱エネルギー効率の上昇分だけ各ヒーターの表面温度を低下させる事ができ、これによってヒーター寿命延長を図る事が可能となる(請求項1)。 In addition to the both sides of the cylindrical rolling furnace, heat energy is also supplied from the bottom to the bottom heater. Thus, the heater life can be extended (Claim 1).

加熱効率の良い底面ヒーターの棒状ヒーターを負荷固定運転とし、熱利用率を優先し、側面ヒーターを負荷に応じて加減制御することによって、側面ヒーターの熱負荷を可能な限り低減でき、その寿命を延ばすことができる(請求項2)。 By making the rod heater of the bottom heater with good heating efficiency a fixed load operation, giving priority to the heat utilization rate, and controlling the side heater according to the load, the heat load on the side heater can be reduced as much as possible, and its life is reduced. It can be extended (claim 2).

両側面ヒーター内蔵の側面ヒーターボードおよび側面ヒーターボードの外側に位置する側面断熱を分割状態で脱着可能とすることにより、それらを取り外すことで、両側面ヒーターの交換が速やかに容易に行える状態となる(請求項3)。 The side heater board with built-in heaters on both sides and the side heat insulation located outside the side heater board can be removed in a split state. By removing them, the heaters on both sides can be replaced quickly and easily. (Claim 3).

本発明に係る焙焼用加熱炉は、熱効率の観点から特に酸化ニッケル製造用として有益である(請求項4)。 The heating furnace for roasting according to the present invention is particularly useful for producing nickel oxide from the viewpoint of thermal efficiency (claim 4).

酸化ニッケルの製造工程では、結晶水を含有する硫酸ニッケルを原料として用い、例えばロータリーキルンのような円筒型の転動炉(製造炉)を利用して、その外部から被焙焼物(結晶水を含有する硫酸ニッケル)に対して熱エネルギーを供給し、第一工程および第二工程にわたって以下に示すような吸熱反応を生じさせる。 In the nickel oxide manufacturing process, nickel sulfate containing crystal water is used as a raw material, and for example, a cylindrical rolling furnace (manufacturing furnace) such as a rotary kiln is used. Thermal energy is supplied to the nickel sulfate), and an endothermic reaction as shown below is caused over the first step and the second step.

Figure 2006336919
Figure 2006336919

本発明に係る焙焼用加熱炉は、上記の第二工程で使用する円筒型の転動炉である。円筒型の転動炉に対して、炉外部の熱源から被焙焼物への伝熱機構として、「伝導伝熱」と「放射伝熱」との2種類が考えられる。前者の「伝導伝熱」は、熱源により加熱された炉壁を媒体として被焙焼物に伝熱される事であり、本発明においては電熱式のヒーターから供給される熱エネルギーが炉壁を流れ、転動炉の内壁と接触しているNiSO4 ・6H20(s)あるいはNiSO4(s)に伝達される状態を指す。また後者の「放射伝熱」は、炉壁を流れた熱が炉内空気に伝達され、最終的に高温空気によりNiSO4 ・6H20(s)あるいはNiSO4(s)が加熱される状態を指す。 The heating furnace for roasting according to the present invention is a cylindrical rolling furnace used in the second step. There are two types of heat transfer mechanisms from the heat source outside the furnace to the to-be-roasted object for the cylindrical rolling furnace: “conduction heat transfer” and “radiant heat transfer”. The former "conduction heat transfer" is to transfer heat to the to-be-fired object using the furnace wall heated by the heat source as the medium, and in the present invention, the heat energy supplied from the electrothermal heater flows through the furnace wall, This refers to the state transmitted to NiSO4 6H20 (s) or NiSO4 (s) in contact with the inner wall of the rolling furnace. The latter “radiant heat transfer” refers to a state in which the heat flowing through the furnace wall is transferred to the furnace air, and NiSO4 6H20 (s) or NiSO4 (s) is finally heated by the high-temperature air.

ここで工業的には外熱式キルンの熱供給方法としては、例えば電熱パネルヒーターをキルンレトルト外周側の側面部に設置することが一般的に行われている。また更に熱供給を増加させる為には、側面熱源の熱供給量増加あるいは熱源数増加が必要であるが、その場合に、焙焼設備のメンテナンス性ならびに保温材屑、粉塵によるヒーターショートの防止、側面ヒーターの寿命延長を考慮すると、両側面および上面からの3面加熱が適当である。しかし、上面部からの熱供給では、放射伝熱のみによる熱伝達となり、エネルギー利用率が低下するという課題がある。 Here, industrially, as a heat supply method of the external heating kiln, for example, an electric heating panel heater is generally installed on the side surface portion on the outer peripheral side of the kiln retort. In order to further increase the heat supply, it is necessary to increase the heat supply amount of the side heat source or increase the number of heat sources, but in that case, maintenance of the roasting equipment and prevention of heater short-circuit due to heat insulation waste, dust, In consideration of extending the life of the side heater, three-side heating from both sides and the upper surface is appropriate. However, in the heat supply from the upper surface, there is a problem that heat transfer is performed only by radiant heat transfer and the energy utilization rate is reduced.

そこで、本発明では、円筒型の転動炉の両側面部のパネルヒーターなどの電熱式の側面ヒーターを設置することに加え、円筒型の転動炉の下面部加熱用として棒状ヒーターによる電熱式の底面ヒーターを設置し、転動炉の3面を分割状態のヒーターにより加熱を行うこととした。これにより上記課題の解決が可能となる。さらに側面ヒーターが金属製ヒーターの場合、熱負荷の上昇により、溶断し易いという問題もあった。しかしながら、棒状ヒーターによる底面ヒーターの設置により、全体のエネルギー効率が向上するため、安価な金属製ヒーターでも側面ヒーターの寿命が延びるという利点がある。 Therefore, in the present invention, in addition to installing an electrothermal side heater such as a panel heater on both sides of the cylindrical rolling furnace, an electric heating type by a rod heater is used for heating the lower surface of the cylindrical rolling furnace. A bottom heater was installed, and the three surfaces of the rolling furnace were heated by a divided heater. This makes it possible to solve the above problem. Further, when the side heater is a metal heater, there is a problem that it is easily melted by an increase in heat load. However, since the overall energy efficiency is improved by installing the bottom heater by the rod heater, there is an advantage that the life of the side heater is extended even by an inexpensive metal heater.

図1および図2は、本発明に係る焙焼用加熱炉1の具体例を示している。焙焼用加熱炉1は、酸化ニッケル製造用であり、円筒型の転動炉2の3面すなわち両側面部および底面部の各面毎に、電熱式の側面ヒーター3および電熱式の底面ヒーター4を具備している。電熱式の側面ヒーター3および電熱式の底面ヒーター4は、転動炉2内の被焙焼物(結晶水を含有する硫酸ニッケル)に対して熱エネルギーを供給し、前記第二工程の反応を起こさせる。 1 and 2 show specific examples of a roasting heating furnace 1 according to the present invention. The roasting heating furnace 1 is for nickel oxide production, and is provided with an electrothermal side heater 3 and an electrothermal bottom heater 4 on each of the three surfaces of the cylindrical rolling furnace 2, that is, on both sides and the bottom. It has. The electrothermal side heater 3 and the electrothermal bottom heater 4 supply heat energy to the to-be-roasted material (nickel sulfate containing crystal water) in the rolling furnace 2 to cause the reaction in the second step. Let

両側面ヒーター3は、例えば金属製電熱ヒーターボードまたは電熱パネルヒーターによって構成されており、転動炉2の両側面で対向し、上部断熱材5と下部断熱材6との間にはめ込まれ、その外側から側面断熱材7を取り外すことで容易に脱着可能となっている。また、底面ヒーター4は、下部断熱材6の空間に側面方向から挿入され、その熱源は、スパイラル棒状電熱ヒーター、好ましくはシリコニット製棒状電熱ヒーターとする。各側面ヒーター3および側面断熱材7は、上下に分割されており、分割ピースごとに着脱自在となっている。 The both side surface heaters 3 are constituted by, for example, metal electric heater boards or electric panel heaters, are opposed to both side surfaces of the rolling furnace 2, and are fitted between the upper heat insulating material 5 and the lower heat insulating material 6, It can be easily detached by removing the side heat insulating material 7 from the outside. The bottom heater 4 is inserted into the space of the lower heat insulating material 6 from the side surface, and the heat source thereof is a spiral rod-shaped electric heater, preferably a siliconite rod-shaped electric heater. Each side heater 3 and the side heat insulating material 7 are divided into upper and lower parts, and can be freely attached and detached for each divided piece.

なお、両側面の上部断熱材5は、転動炉2の上面で開口を形成しているが、その開口面は上面断熱材8により閉塞されている。また、両側面の下部断熱材6の間は、下面断熱材9により閉塞されており、この下面断熱材9は、中心位置で点検用、粉塵や異物排出用の窓10を形成している。このようにして、転動炉2は、両側面および下面の方向の3面から対向状態の側面断熱材7および底面ヒーター4に直接向き合っている。 The upper heat insulating material 5 on both side surfaces forms an opening on the upper surface of the rolling furnace 2, but the opening surface is closed by the upper surface heat insulating material 8. Further, the lower heat insulating material 6 between both side surfaces is closed by a lower surface heat insulating material 9, and this lower surface heat insulating material 9 forms a window 10 for inspection, dust and foreign matter discharge at the center position. In this manner, the rolling furnace 2 directly faces the side heat insulating material 7 and the bottom heater 4 in the opposed state from the three surfaces in the direction of both side surfaces and the bottom surface.

側面ヒーター3、底面ヒーター4、上部断熱材5、下部断熱材6、側面断熱材7、上面断熱材8および下面断熱材9は、図1のように、転動炉2の中心軸の軸線方向に一例として6分割されており、6ゾーンを形成している。そしてこれらの外周部分は断熱材カバー11により包みこまれている。 The side heater 3, the bottom heater 4, the upper insulator 5, the lower insulator 6, the side insulator 7, the upper insulator 8 and the lower insulator 9 are arranged in the axial direction of the central axis of the rolling furnace 2 as shown in FIG. As an example, it is divided into six to form six zones. These outer peripheral portions are wrapped with a heat insulating material cover 11.

運転時に、対向状態の側面ヒーター3および底面ヒーター4は、転動炉2に熱エネルギーを供給するが、このとき底面ヒーター4は、必要な熱エネルギーの大半を供給すべく負荷固定運転とし、両側面ヒーター3は、熱負荷に応じて加減するように制御とする。 During operation, the opposed side heater 3 and bottom heater 4 supply thermal energy to the rolling furnace 2. At this time, the bottom heater 4 is in a load-fixing operation to supply most of the necessary thermal energy. The surface heater 3 is controlled so as to be adjusted according to the heat load.

側面ヒーター4が金属製ヒーターのとき、熱負荷の上昇により、溶断し易い。しかしながら、棒状ヒーターによる底面ヒーター4の設置により、全体のエネルギー効率が向上するため、安価な金属製ヒーターでも側面ヒーター3の寿命は底面ヒーター4のない時に比較して延びる。 When the side heater 4 is a metal heater, it is easily melted by an increase in heat load. However, since the overall energy efficiency is improved by installing the bottom heater 4 with a rod heater, the life of the side heater 3 is extended as compared with the case where the bottom heater 4 is not provided even with an inexpensive metal heater.

第一工程である電熱ヒーター式の焙焼キルンへNiSO4 ・6H20 結晶を(a)108kg/Hrならびに(b)130kg/Hr添加して、500℃で焙焼し、無水NiSO4とした後、これらを第二工程において、図1のように、6ゾーンに区切られた焙焼用加熱炉1(焙焼用のキルン)で1000〜1200℃の条件下で各々(a)キルン2面加熱(キルン両側面のパネル式電熱ヒーター;30kWh*6ゾーンで加熱)ならびに(b)キルン3面加熱(キルン両側面のパネル式電熱ヒーター;30kWh*6ゾーンと底面のスパイラル棒状電熱ヒーター;15kWh*6ゾーンで加熱)の方法で焙焼して、酸化ニッケル粉末を製造した。この場合における単位重量当りの酸化ニッケル粉末製造に必要な熱量[Mcal/kg-NiO]を比較した。なお製造時の消費熱量は、電力メータの指示を読み、読み取った電力値と1kWh →860kcalとから熱量を換算して算出した。ケース(a),(b)における第二工程での消費熱量の算出結果を表1に示す。 Add NiSO4 6H20 crystals (a) 108kg / Hr and (b) 130kg / Hr to the first stage electric heater type roasting kiln, roast at 500 ° C to make anhydrous NiSO4, In the second step, as shown in FIG. 1, (a) kiln two-side heating (both sides of the kiln) in a heating furnace 1 for roasting (kiln for roasting) divided into 6 zones under conditions of 1000 to 1200 ° C. Panel electric heater on the surface; heating in 30kWh * 6 zone) and (b) Kiln three-surface heating (panel electric heater on both sides of the kiln; 30kWh * 6 zone and spiral rod-shaped electric heater on the bottom; heating in 15kWh * 6 zone ) To produce nickel oxide powder. In this case, the amount of heat [Mcal / kg- NiO ] required for producing nickel oxide powder per unit weight was compared. The amount of heat consumed at the time of manufacture was calculated by converting the amount of heat from the read power value and 1 kWh → 860 kcal after reading the instructions of the power meter. Table 1 shows the calculation results of the heat consumption in the second step in cases (a) and (b).

Figure 2006336919
Figure 2006336919

表1に示したケース(a),(b)における消費熱量には、前記の第二工程における下記の分解反応で生成したSO2 、O2ガスならびに焙焼物排出側から添加しているエアによる持ち去り熱によるロス熱が含まれている。 The amount of heat consumed in cases (a) and (b) shown in Table 1 is taken away by SO2 and O2 gas generated by the following decomposition reaction in the second step and air added from the roasted product discharge side. Loss heat due to heat is included.

Figure 2006336919
Figure 2006336919

ここで消費熱量からエアによる持ち去り熱を差し引いて、単位重量当りの酸化ニッケル粉末を産出する為に必要な熱量[Mcal/kg-NiO]を各々算出し、比較すると、表2のような結果となった。 By subtracting the heat taken away by air from the amount of heat consumed, the amount of heat [Mcal / kg -NiO ] required to produce nickel oxide powder per unit weight is calculated and compared. It became.

Figure 2006336919
Figure 2006336919

この結果より、キルン下面加熱をスパイラル棒状電熱ヒーター(底面ヒーター4)で加熱することで、キルン両側面のパネル式電熱ヒーター(側面ヒーター3)の熱負荷を低下させる事ができるだけでなく、熱利用率を向上した状態のもとに酸化ニッケル粉末を製造する事が可能となった。さらに、この具体例から側面のパネル式電熱ヒーター(側面ヒーター3)の寿命を約8ヶ月から約2年に延長する事ができた。また、同様の加熱炉(6ゾーンに区切られた焙焼用加熱炉)による増処理に対応できることとなった。 From this result, it is possible not only to reduce the heat load of the panel-type electric heater (side heater 3) on both sides of the kiln by heating the kiln underside heating with the spiral rod-shaped electric heater (bottom heater 4), but also to use heat It became possible to produce nickel oxide powder with the rate improved. Further, from this example, the life of the side panel type electric heater (side heater 3) could be extended from about 8 months to about 2 years. In addition, it was possible to cope with an increase treatment by a similar heating furnace (heating furnace for roasting divided into 6 zones).

第二工程の焙焼用加熱炉1に具備している側面ヒーター3の溶断時には側面ヒーター3(側面ヒーターボード)の交換を行うが、その時に周囲の側面断熱材7や断熱材カバー11の脱着所に多くの時間がかかり、これが設備稼働率を圧迫するという問題がある。 When the side heater 3 included in the heating furnace 1 for roasting in the second step is melted, the side heater 3 (side heater board) is replaced. At that time, the surrounding side heat insulating material 7 and the heat insulating material cover 11 are removed. There is a problem that it takes a lot of time and this puts pressure on the capacity factor.

しかし、図2に示すように、転動炉2の側面ヒーター3および側面断熱材7を分割設置することにより、側面ヒーター3の交換が効率的に行う事ができ、設備稼働率低下を極力防止することが可能となった。 However, as shown in FIG. 2, by separately installing the side heater 3 and the side heat insulating material 7 of the rolling furnace 2, the side heater 3 can be exchanged efficiently, and a reduction in equipment operation rate is prevented as much as possible. It became possible to do.

本発明は、酸化ニッケル製造用の焙焼用加熱炉1に限らず、ロータリーキルン型外熱式焙焼炉において、焙焼操作を行う工業分野に広く利用可能である。 The present invention is not limited to the roasting heating furnace 1 for producing nickel oxide, but can be widely used in the industrial field where roasting operations are performed in a rotary kiln type external heating roasting furnace.

本発明に係る焙焼用加熱炉の一部破断説明図である。It is a partially broken explanatory view of the heating furnace for roasting according to the present invention. 本発明に係る焙焼用加熱炉の拡大断面図である。It is an expanded sectional view of the heating furnace for roasting concerning the present invention.

符号の説明Explanation of symbols

1 焙焼用加熱炉
2 転動炉
3 側面ヒーター
4 底面ヒーター
5 上部断熱材
6 下部断熱材
7 側面断熱材
8 上面断熱材
9 下面断熱材
10 窓
11 断熱材カバー
DESCRIPTION OF SYMBOLS 1 Heating furnace for roasting 2 Rolling furnace 3 Side heater 4 Bottom heater 5 Upper heat insulating material 6 Lower heat insulating material 7 Side heat insulating material 8 Upper surface heat insulating material 9 Lower surface heat insulating material 10 Window 11 Heat insulating material cover

Claims (4)

円筒型の転動炉(2)の両側面部および底面部の3面に、熱エネルギーを供給するために対向状態の電熱式の側面ヒーター(3)および電熱式の底面ヒーター(4)を具備することを特徴とする焙焼用加熱炉(1)。 An electric heating side heater (3) and an electric heating bottom heater (4) which are opposed to each other for supplying heat energy are provided on both sides and the bottom of the cylindrical rolling furnace (2). A heating furnace for roasting (1). 底面ヒーター(4)の熱源として棒状電熱ヒーター、好ましくはシリコニット製棒状電熱ヒーターを用い、底面ヒーター(4)を負荷固定運転とし、側面ヒーター(3)を負荷制御とすることを特徴とする請求項1記載の焙焼用加熱炉(1)。 A bar-shaped electric heater, preferably a silicon-made bar-shaped electric heater is used as a heat source for the bottom heater (4), the bottom heater (4) is set to load fixing operation, and the side heater (3) is set to load control. 1. A heating furnace for roasting (1). 両側面ヒーター(3)および各側面ヒーター(3)の外側に位置する側面断熱材(7)を分割状態とし、分割状態の側面ヒーター(3)および側面断熱材(7)を取り外すことで容易に脱着可能とすることを特徴とする請求項1記載の焙焼用加熱炉(1)。 The side surface heater (3) and the side surface heat insulator (7) located outside each side surface heater (3) are divided and easily separated by removing the side heater (3) and the side heat insulator (7) in the divided state. The heating furnace (1) for roasting according to claim 1, characterized in that it is removable. 酸化ニッケル製造用である請求項1、請求項2、または請求項4に記載の焙焼用加熱炉(1)。 The heating furnace (1) for roasting according to claim 1, 2 or 4, which is used for producing nickel oxide.
JP2005160946A 2005-06-01 2005-06-01 Heating furnace for roasting Pending JP2006336919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005160946A JP2006336919A (en) 2005-06-01 2005-06-01 Heating furnace for roasting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005160946A JP2006336919A (en) 2005-06-01 2005-06-01 Heating furnace for roasting

Publications (1)

Publication Number Publication Date
JP2006336919A true JP2006336919A (en) 2006-12-14

Family

ID=37557624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005160946A Pending JP2006336919A (en) 2005-06-01 2005-06-01 Heating furnace for roasting

Country Status (1)

Country Link
JP (1) JP2006336919A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017150740A (en) * 2016-02-24 2017-08-31 株式会社ノリタケカンパニーリミテド Continuous ultrahigh-temperature baking furnace including carbon heater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017150740A (en) * 2016-02-24 2017-08-31 株式会社ノリタケカンパニーリミテド Continuous ultrahigh-temperature baking furnace including carbon heater

Similar Documents

Publication Publication Date Title
CN103896255B (en) Vertical continuous graphitizing furnace
CN110093504B (en) Method and system for preparing titanium-rich material by using high-calcium-magnesium titanium concentrate
CN102020411A (en) Induction heating type nonmetal smelting method and system used thereby
CN105645396B (en) A kind of continous way direct current superhigh temperature graphitizing electric furnace and application method
JP2006336919A (en) Heating furnace for roasting
JP5408417B2 (en) Operation method of electric furnace for ferronickel smelting
CN107954718A (en) A kind of preparation method of boron carbide smelting device and boron carbide
CN102936648B (en) Method for producing rich-titanium material by using microwave kiln, independent container and ilmenite pressing blocks
CN107287423A (en) A kind of continuous aluminium metallurgy device
CN205223296U (en) Salt bath heat treatment furnace
CN102943142A (en) Solid-state reduction ilmenite pressing block for producing titanium-rich material and preparation method and application thereof
JP4182787B2 (en) Method for producing metallurgical furnace raw materials
CN105940765A (en) Method for operating an electric arc furnace, and electric arc furnace
CN204324899U (en) Active carbon production equipment process furnace
JP6637591B2 (en) Gas making rapid steelmaking system and method
WO2017202119A1 (en) Reduction smelting system and reduction smelting method for vanadium-titanium magnetite ore or ilmenite
CN100416203C (en) Calcined coke graphitization method and calcined coke graphitization furnace
KR20060059272A (en) Apparatus for reducing metal oxide with hydrogen and method for hydrogen reduction using the same
CN107651679B (en) Graphitizing furnace
JP2006219305A (en) Method and apparatus for producing porous carbon material
CN202924761U (en) Continuous microwave kiln for producing titanium-enriched material
KR101374242B1 (en) Magnesium produduce apparatus
JP2007238371A (en) Apparatus and method for manufacturing boron oxide
CN204752218U (en) Carbide stove
RU2747988C1 (en) Method for production of silicon carbide