JP2006335739A - Method for producing organovanadate - Google Patents

Method for producing organovanadate Download PDF

Info

Publication number
JP2006335739A
JP2006335739A JP2005165140A JP2005165140A JP2006335739A JP 2006335739 A JP2006335739 A JP 2006335739A JP 2005165140 A JP2005165140 A JP 2005165140A JP 2005165140 A JP2005165140 A JP 2005165140A JP 2006335739 A JP2006335739 A JP 2006335739A
Authority
JP
Japan
Prior art keywords
vanadium
oxide
isomer
producing
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005165140A
Other languages
Japanese (ja)
Inventor
Akihiro Sato
明宏 佐藤
Nobutoshi Miyake
信寿 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2005165140A priority Critical patent/JP2006335739A/en
Publication of JP2006335739A publication Critical patent/JP2006335739A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an organovanadate without generating harmful by-products in producing the same. <P>SOLUTION: This method for producing the organovanadate having at least one vanadium-oxygen-carbon bond by performing the reaction of reacting materials and then distilling off low boiling point compounds produced as by-products and containing water is provided by reacting at least 1 kind of vanadium oxide selected from VO, V<SB>2</SB>O<SB>3</SB>, VO<SB>2</SB>and V<SB>2</SB>O<SB>5</SB>with a specific hydroxy compound. Preferably, the hydroxy compound is an aromatic hydroxy compound expressed by the general formula: Ar<SP>1</SP>OH (wherein, Ar<SP>1</SP>is a 6-20C aromatic group), and the low boiling point compounds produced as the by-products and containing water are preferably removed by a distillation method. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、有機バナデートの製造方法に関するものである。さらに詳しくは、酸化バナジウムとヒドロキシ化合物とを反応させて、副生する水を含む低沸点化合物を留去することにより、有機バナデートを有毒な副生成物なしに製造することを可能にする方法に関するものである。   The present invention relates to a method for producing an organic vanadate. More particularly, the present invention relates to a method that makes it possible to produce organic vanadate without toxic byproducts by reacting vanadium oxide with a hydroxy compound and distilling off low-boiling compounds containing by-product water. Is.

有機バナデートは一般的にはオレフィン重合用触媒やエステル交換用触媒として用いられている。有機バナデートの製造方法としては、塩化バナジウムをアンモニアの存在下で過剰量のヒドロキシ化合物と反応させて有機バナデートと塩化アンモニウムを生成させることにより製造する方法が知られている。   Organic vanadate is generally used as an olefin polymerization catalyst or a transesterification catalyst. As a method for producing organic vanadate, a method is known in which vanadium chloride is reacted with an excess amount of a hydroxy compound in the presence of ammonia to produce organic vanadate and ammonium chloride.

しかしながら、これらの製造方法は有害な塩化アンモニウムが副生するという問題があり、工業的な製造には多大な困難を伴っていた。また、有機バナデートを濾過により塩化アンモニウムから分離する際に、濾過フィルターの塩化アンモニウムによる目詰まりや濾過工程を有機バナデートの加水分解を避けるために密閉系において行う必要があるなど、多くの問題点がある。   However, these production methods have a problem that harmful ammonium chloride is produced as a by-product, and industrial production is accompanied by great difficulty. In addition, when separating organic vanadate from ammonium chloride by filtration, there are many problems such as clogging of the filter by ammonium chloride and the need to perform the filtration process in a closed system in order to avoid hydrolysis of organic vanadate. is there.

これを改良するためにいくつかの提案がなされているが、その大部分は有機バナデートを塩化アンモニウムから濾過により分離する工程をジメチルスルホキシドなどを添加することにより簡略化する方法を提供するものであり〔特許文献1〕、塩化アンモニウムなどの有毒な副生物を回避する方法は知られていない。   Several proposals have been made to improve this, but most of them provide a method for simplifying the process of separating organic vanadate from ammonium chloride by filtration by adding dimethyl sulfoxide or the like. [Patent Document 1], a method for avoiding toxic by-products such as ammonium chloride is not known.

また、塩化バナジウムとヒドロキシ化合物をアンモニアを用いずに反応させて塩化アンモニウムを生成させない方法が提案されている〔非特許文献1〕。しかし、塩化バナジウムとヒドロキシ化合物を反応させる場合、有害な塩化水素が発生するという問題があり、有毒な副生成物なしに有機バナデートを製造する方法は未開示である。   Further, a method has been proposed in which vanadium chloride and a hydroxy compound are reacted without using ammonia to produce ammonium chloride [Non-Patent Document 1]. However, when vanadium chloride and a hydroxy compound are reacted, there is a problem that harmful hydrogen chloride is generated, and a method for producing organic vanadate without toxic by-products has not been disclosed.

特開昭52−57126号公報JP 52-57126 A Indian J.Chem.、Vol.28、February(1983)Indian J. Chem. Vol. 28, February (1983)

本発明の目的は、酸化バナジウムとヒドロキシ化合物とを反応させて、副生する水を含む低沸点化合物を留去することにより有機バナデートを製造する際に、上記した欠点のない、有害な副生物が発生せずに有機バナデートを製造する方法を提供することにある。   The object of the present invention is to produce a harmful by-product without the above-mentioned drawbacks when producing an organic vanadate by reacting vanadium oxide with a hydroxy compound and distilling off a low-boiling compound containing water as a by-product. An object of the present invention is to provide a method for producing an organic vanadate without causing the above-mentioned problem.

本発明者らは、前記課題を解決するため鋭意検討した結果、有機バナデートを製造するに際して、酸化バナジウム、ヒドロキシ化合物からなる反応物質を反応させ、副生する水及び低沸点化合物を反応系外に除去することによって、有害な副生成物無しに有機バナデートが製造可能であることを見いだし本発明を完成させた。本発明により、毒性の非常に低い水を副生成物とする、比較的安全で、工業的に有用な製造方法により有機バナデートを製造することができる。
すなわち、本発明は、以下のとおりである。
As a result of diligent studies to solve the above problems, the present inventors have reacted reactants composed of vanadium oxide and a hydroxy compound to produce organic vanadate, and by-produced water and low-boiling compounds are out of the reaction system. As a result of the removal, it was found that organic vanadate can be produced without harmful by-products, and the present invention was completed. According to the present invention, organic vanadate can be produced by a relatively safe and industrially useful production method using water with very low toxicity as a by-product.
That is, the present invention is as follows.

[1] 少なくとも一つのバナジウム−酸素−炭素結合を有する有機バナデートの製造方法において、下記一般式(1)〜(4)から選ばれる少なくとも1種の酸化バナジウムと下記一般式(5)から選ばれる少なくとも1種のヒドロキシ化合物とを反応させることを特徴とする有機バナデートの製造方法。   [1] In the method for producing an organic vanadate having at least one vanadium-oxygen-carbon bond, at least one vanadium oxide selected from the following general formulas (1) to (4) and the following general formula (5) are selected. A method for producing an organic vanadate, comprising reacting at least one hydroxy compound.

Figure 2006335739
Figure 2006335739

Figure 2006335739
Figure 2006335739

(式中、Rは、直鎖状または分岐状の炭素数1〜12のアルキル基、炭素数5〜12のシクロアルキル基、直鎖状または分岐状の炭素数2〜12のアルケニル基、無置換又は置換された炭素数6〜19のアリール及び直鎖状または分岐状の炭素数4〜14のアルキルと炭素数5〜14のシクロアルキルよりなる群から選ばれるアルキルからなる炭素数7〜20のアラルキル基、又は無置換又は置換された炭素数6〜20のアリール基を表し、xはアルコールの価数を表し1〜3の整数を表す。) (In the formula, R 1 is a linear or branched alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, a linear or branched alkenyl group having 2 to 12 carbon atoms, 7 to 7 carbon atoms composed of unsubstituted or substituted aryl having 6 to 19 carbon atoms and linear or branched alkyl having 4 to 14 carbon atoms and alkyl group selected from the group consisting of cycloalkyl having 5 to 14 carbon atoms 20 represents an aralkyl group or an unsubstituted or substituted aryl group having 6 to 20 carbon atoms, and x represents the valence of alcohol and represents an integer of 1 to 3).

[2] 副生する水を含む低沸点化合物を除去することを特徴とする[1]に記載の有機バナデートの製造方法。
[3] ヒドロキシ化合物が水よりも沸点が高いことを特徴とする[1]または[2]に記載の有機バナデートの製造方法。
[4] 副生する水を含む低沸点化合物の除去を、蒸留法によって行うことを特徴とする[2]に記載の有機バナデートの製造方法。
[5] 副生する水を含む低沸点化合物の除去を、水と共沸混合物を生成する成分を添加し、水を含む共沸混合物を含む低沸点化合物を蒸留することによって行うことを特徴とする[1]〜[4]のいずれかに記載の有機バナデートの製造方法
[6] ヒドロキシ化合物が下記一般式(6)で表される芳香族ヒドロキシ化合物であることを特徴とする[1]または[2]に記載の有機バナデートの製造方法。
[2] The method for producing an organic vanadate according to [1], wherein a low-boiling compound containing water as a by-product is removed.
[3] The method for producing an organic vanadate according to [1] or [2], wherein the hydroxy compound has a boiling point higher than that of water.
[4] The method for producing an organic vanadate according to [2], wherein the low-boiling compound containing water produced as a by-product is removed by a distillation method.
[5] The removal of low-boiling compounds containing by-product water is performed by adding a component that forms an azeotrope with water and distilling the low-boiling compounds containing an azeotrope containing water. The method for producing an organic vanadate according to any one of [1] to [4] [6] The hydroxy compound is an aromatic hydroxy compound represented by the following general formula (6) [1] or The method for producing an organic vanadate according to [2].

Figure 2006335739
Figure 2006335739

(式中、Ar1は炭素数6〜20の芳香族基を表す。)
[7] 芳香族ヒドロキシ化合物がフェノールであることを特徴とする[6]に記載の有機バナデートの製造方法。
[8] ヒドロキシ化合物の使用量が、酸化バナジウム中に含まれるバナジウム原子のモル量に対しての1〜500倍の範囲であることを特徴とする[1]〜[7]のいずれかに記載の有機バナデートの製造方法。
[9] 反応温度が45〜300℃の範囲であることを特徴とする[1]〜[8]のいずれかに記載の有機バナデートの製造方法。
[10] 酸化バナジウムがVであることを特徴とする[1]〜[9]のいずれかに記載の有機バナデートの製造方法。
(In the formula, Ar 1 represents an aromatic group having 6 to 20 carbon atoms.)
[7] The method for producing an organic vanadate according to [6], wherein the aromatic hydroxy compound is phenol.
[8] The amount of the hydroxy compound used is in the range of 1 to 500 times the molar amount of vanadium atoms contained in the vanadium oxide, according to any one of [1] to [7] Of manufacturing organic vanadate.
[9] The method for producing an organic vanadate according to any one of [1] to [8], wherein the reaction temperature is in the range of 45 to 300 ° C.
[10] The method for producing an organic vanadate according to any one of [1] to [9], wherein the vanadium oxide is V 2 O 5 .

本発明により、酸化バナジウムとヒドロキシ化合物を反応させて、副生する水を含む低沸点化合物を留去することにより有機バナデートを製造する際に、有害な副生物が発生せずに有機バナデートを製造することができる。   According to the present invention, when an organic vanadate is produced by reacting vanadium oxide with a hydroxy compound and distilling off a low-boiling compound containing water as a by-product, the organic vanadate is produced without generating harmful by-products. can do.

以下、本発明について、詳細に説明する。本発明で反応原料として用いられる酸化バナジウムは下記一般式(1)〜(4)で表されるものである。   Hereinafter, the present invention will be described in detail. Vanadium oxide used as a reaction raw material in the present invention is represented by the following general formulas (1) to (4).

Figure 2006335739
Figure 2006335739

式中バナジウムの価数はII〜Vであるが、特に制限はなく、また、複数の価数の混合物でもよい。一般的に市販されている酸化バナジウム中のバナジウムの価数を酸化剤や還元剤などで調整したり、一般的な酸化還元法によるバナジウムの価数調整を行ってもよい。   In the formula, the valence of vanadium is from II to V, but is not particularly limited, and may be a mixture of a plurality of valences. In general, the valence of vanadium in commercially available vanadium oxide may be adjusted with an oxidizing agent or a reducing agent, or the valence of vanadium may be adjusted by a general oxidation-reduction method.

酸化剤は、一般的に用いられているものでよく、空気、分子状酸素、オゾン、過酸化水素、酸化銀;過酢酸、過安息香酸、ベンゾイルパーオキサイド、tert−ブチルハイドロパーオキサイド、クミルハイドロパーオキサイド等の有機過酸化物;亜硝酸、硝酸、塩素酸、次亜塩素酸等のオキソ酸およびその塩類などが挙げられる。好ましくは、空気、分子状酸素、オゾン、過酸化水素、亜硝酸、硝酸が用いられ、さらに好ましくは空気、分子状酸素が用いられる。   The oxidant may be a commonly used oxidant such as air, molecular oxygen, ozone, hydrogen peroxide, silver oxide; peracetic acid, perbenzoic acid, benzoyl peroxide, tert-butyl hydroperoxide, cumyl. Organic peroxides such as hydroperoxides; oxo acids such as nitrous acid, nitric acid, chloric acid, hypochlorous acid, and salts thereof. Preferably, air, molecular oxygen, ozone, hydrogen peroxide, nitrous acid, and nitric acid are used, and more preferably air and molecular oxygen are used.

還元剤は、一般的に用いられているものでよく、ヒドラジン、水素、硫化水素、炭素、一酸化炭素、二酸化硫黄、シュウ酸、亜硫酸ナトリウム、ヨウ素などが挙げられる。好ましくは水素、ヨウ素、シュウ酸が用いられ、さらに好ましくはシュウ酸が用いられる。   The reducing agent may be a commonly used reducing agent such as hydrazine, hydrogen, hydrogen sulfide, carbon, carbon monoxide, sulfur dioxide, oxalic acid, sodium sulfite, iodine and the like. Preferably, hydrogen, iodine and oxalic acid are used, and more preferably oxalic acid is used.

酸化還元法によるバナジウムの価数調整は一般的に用いられる手法でよく、例えば酸化バナジウムを還元したいときは、窒素、二酸化炭素、ヘリウム、アルゴン、水素などの不活性ガス雰囲気中で酸化バナジウムを加熱処理することにより価数を調整する方法があり、酸化バナジウムを酸化したい場合には空気、分子状酸素などの酸化性ガス雰囲気中で酸化バナジウムを加熱処理することにより価数を調整する方法がある。いずれの方法においても加熱処理は価数の変化を迅速に進めるためのものであり、必須なものではない。   Adjustment of the valence of vanadium by the oxidation-reduction method may be a commonly used method. For example, when vanadium oxide is to be reduced, the vanadium oxide is heated in an inert gas atmosphere such as nitrogen, carbon dioxide, helium, argon, or hydrogen. There is a method of adjusting the valence by processing, and there is a method of adjusting the valence by heat-treating vanadium oxide in an oxidizing gas atmosphere such as air or molecular oxygen when oxidizing vanadium oxide. . In any method, the heat treatment is for promptly proceeding with the change of the valence, and is not essential.

本発明において反応原料として用いられるヒドロキシ化合物は下記一般式(5)で表されるものである。   The hydroxy compound used as a reaction raw material in the present invention is represented by the following general formula (5).

Figure 2006335739
Figure 2006335739

式中Rは、直鎖状または分岐状の炭素数1〜12のアルキル基、炭素数5〜12のシクロアルキル基、直鎖状または分岐状の炭素数2〜12のアルケニル基、無置換又は置換された炭素数6〜19のアリール及び直鎖状または分岐状の炭素数4〜14のアルキルと炭素数5〜14のシクロアルキルよりなる群から選ばれるアルキルからなる炭素数7〜20のアラルキル基、又は無置換又は置換された炭素数6〜20のアリール基を表し、xはアルコールの価数を表し1〜3の整数を表す。 In the formula, R 1 represents a linear or branched alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, a linear or branched alkenyl group having 2 to 12 carbon atoms, or unsubstituted. Or a substituted or substituted aryl having 6 to 19 carbon atoms and an alkyl selected from the group consisting of a linear or branched alkyl having 4 to 14 carbon atoms and a cycloalkyl having 5 to 14 carbon atoms. It represents an aralkyl group or an unsubstituted or substituted aryl group having 6 to 20 carbon atoms, and x represents the valence of the alcohol and represents an integer of 1 to 3.

このようなRを有するヒドロキシ化合物の例としては、例えば、メタノール、エタノール、プロパノール(各異性体)、ブタノール(各異性体)、ペンタノール(各異性体)、ヘキサノール(各異性体)、ヘプタノール(各異性体)、オクタノール(各異性体)、ノナノール(各異性体)、デカノール(各異性体)、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ヘキサンジオール、1,6−ヘキサンジオールなどが挙げられる。
また、芳香族ヒドロキシ化合物は下記一般式(6)で表されるものである。
Examples of such hydroxy compounds having R 1 include, for example, methanol, ethanol, propanol (each isomer), butanol (each isomer), pentanol (each isomer), hexanol (each isomer), heptanol. (Each isomer), octanol (each isomer), nonanol (each isomer), decanol (each isomer), 1,3-propanediol, 1,4-butanediol, 1,5-hexanediol, 1, Examples include 6-hexanediol.
The aromatic hydroxy compound is represented by the following general formula (6).

Figure 2006335739
Figure 2006335739

式中、一般式(6)のAr1は炭素数6〜20の芳香族基を表す。
このようなアリール基の例としては、例えば、フェニル、トリル(各異性体)、キシリル(各異性体)、トリメチルフェニル(各異性体)、テトラメチルフェニル(各異性体)、エチルフェニル(各異性体)、プロピルフェニル(各異性体)、ブチルフェニル(各異性体)、ジエチルフェニル(各異性体)、メチルエチルフェニル(各異性体)、ペンチルフェニル(各異性体)、ヘキシルフェニル(各異性体)、シクロヘキシルフェニル(各異性体)等の、フェニル基及び各種アルキルフェニル基類; メトキシフェニル(各異性体)、エトキシフェニル(各異性体)、ブトキシフェニル(各異性体)等の各種アルコキシフェニル基類;フルオロフェニル(各異性体)、クロロフェニル(各異性体)、ブロモフェニル(各異性体)、クロロ(メチル)フェニル(各異性体)、ジクロロフェニル(各異性体)等の各種ハロゲン化フェニル基類;下記一般式(7)で示される各種置換フェニル基類;
In the formula, Ar 1 in the general formula (6) represents an aromatic group having 6 to 20 carbon atoms.
Examples of such aryl groups include, for example, phenyl, tolyl (each isomer), xylyl (each isomer), trimethylphenyl (each isomer), tetramethylphenyl (each isomer), ethylphenyl (each isomer) ), Propylphenyl (each isomer), butylphenyl (each isomer), diethylphenyl (each isomer), methylethylphenyl (each isomer), pentylphenyl (each isomer), hexylphenyl (each isomer) ), Cyclohexylphenyl (each isomer), etc., phenyl group and various alkylphenyl groups; methoxyphenyl (each isomer), ethoxyphenyl (each isomer), various alkoxyphenyl groups such as butoxyphenyl (each isomer) Fluorophenyl (each isomer), chlorophenyl (each isomer), bromophenyl (each isomer), chloro (medium) Various halogenated phenyl groups such as til) phenyl (each isomer) and dichlorophenyl (each isomer); various substituted phenyl groups represented by the following general formula (7);

Figure 2006335739
Figure 2006335739

(ただし、Aは単結合、−O−、−S−、−CO−、−SO2−等の2価の基、下記(8)に示されるアルキレン基もしくは置換アルキレン基、または下記(9)に示されるシクロアルキレン基を表し、また、芳香環は低級アルキル基、低級アルコキシ基、エス テル基、ヒドロキシ基、ニトロ基、ハロゲン、シアノ基等の置換基によって置換されていてもよい。) (However, A is a single bond, a divalent group such as —O—, —S—, —CO—, —SO 2 —, an alkylene group or a substituted alkylene group represented by the following (8), or the following (9) The aromatic ring may be substituted with a substituent such as a lower alkyl group, a lower alkoxy group, an ester group, a hydroxy group, a nitro group, a halogen, or a cyano group.

Figure 2006335739
Figure 2006335739

(ここでR、R、R、Rの各々は独立に水素原子、低級アルキル基、シクロアルキル基、アリール基、アラルキル基であって、場合により、ハロゲン原子、アルコキシ基で置換されていてもよい。) (Wherein R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom, a lower alkyl group, a cycloalkyl group, an aryl group or an aralkyl group, optionally substituted by a halogen atom or an alkoxy group. May be.)

Figure 2006335739
Figure 2006335739

(ここでkは3〜11の整数であって、水素原子は低級アルキル基、アリール基ハロゲン原子等で置換されていてもよい) (Here, k is an integer of 3 to 11, and the hydrogen atom may be substituted with a lower alkyl group, an aryl group or a halogen atom)

ナフチル(各異性体)、メチルナフチル(各異性体)、ジメチルナフチル(各異性体)、クロロナフチル(各異性体)、メトキシナフチル(各異性体)、シアノナフチル(各異性体)等のナフチル基及び各種置換ナフチル基類;ピリジン(各異性体)、クマリル(各異性体)、キノリル(各異性体)、メチルピリジル(各異性体)、クロルピリジル(各異性体)、メチルクマリル(各異性体)、メチルキノリル(各異性体)等の置換及び無置換 の各種ヘテロ芳香族基類等が挙げられる。好ましくは、フェノール、サリチル酸、サリチル酸フェニル、ビスフェノールなどがあげられ、さらに好ましくは、フェノールである。 Naphtyl groups such as naphthyl (each isomer), methyl naphthyl (each isomer), dimethylnaphthyl (each isomer), chloronaphthyl (each isomer), methoxynaphthyl (each isomer), cyanonaphthyl (each isomer) And various substituted naphthyl groups; pyridine (each isomer), coumaryl (each isomer), quinolyl (each isomer), methylpyridyl (each isomer), chloropyridyl (each isomer), methylcoumaryl (each isomer) And various substituted and non-substituted heteroaromatic groups such as methylquinolyl (each isomer). Preferable examples include phenol, salicylic acid, phenyl salicylate, and bisphenol, and more preferable is phenol.

本発明において製造される有機バナデートは少なくとも一つのバナジウム−酸素−炭素結合を有するものである。このようなバナジウム−酸素−炭素結合を有する有機バナデートの例としては、例えば、下記一般式(10)〜(16)で表されるものである。   The organic vanadate produced in the present invention has at least one vanadium-oxygen-carbon bond. Examples of such organic vanadate having a vanadium-oxygen-carbon bond are represented by the following general formulas (10) to (16), for example.

Figure 2006335739
Figure 2006335739

(式中、一般式(10)〜(16)のR〜のR10は、それぞれ直鎖状または分岐状の炭素数1〜12のアルキル基、炭素数5〜12のシクロアルキル基、直鎖状または分岐状の炭素数2〜12のアルケニル基、無置換又は置換された炭素数6〜19のアリール及び直鎖状または分岐状の炭素数4〜14のアルキルと炭素数5〜14のシクロアルキルよりなる群から選ばれるアルキルからなる炭素数7〜20のアラルキル基、又は無置換又は置換された炭素数6〜20のアリール基を表す。R〜R10はそれぞれ同一でも異なっていてもよい。) (In the formula, R 6 to R 10 in the general formulas (10) to (16) are each a linear or branched alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, A linear or branched alkenyl group having 2 to 12 carbon atoms, unsubstituted or substituted aryl having 6 to 19 carbon atoms, and linear or branched alkyl having 4 to 14 carbon atoms and 5 to 14 carbon atoms Represents an aralkyl group having 7 to 20 carbon atoms or an unsubstituted or substituted aryl group having 6 to 20 carbon atoms composed of alkyl selected from the group consisting of cycloalkyl, and R 6 to R 10 are the same or different. May be good.)

このようなRを有する有機バナデートの例としては、例えば、アルキル基を持つものとしては、バナジウム(II)ジメトキシド、バナジウム(III)トリメトキシド、バナジウム(III)メトキシドオキシド、バナジウム(IV)テトラメトキシド、バナジウム(IV)ジメトキシドオキシド、バナジウム(V)トリメトキシドオキシド、バナジウム(V)ペンタメトキシドオキシド、バナジウム(II)ジエトキシド、バナジウム(III)トリエトキシド、バナジウム(III)エトキシドオキシド、バナジウム(IV)テトラエトキシド、バナジウム(IV)ジエトキシドオキシド、バナジウム(V)トリエトキシドオキシド、バナジウム(V)ペンタエトキシド、バナジウム(II)ジプロポキシド、バナジウム(III)トリプロポキシド、バナジウム(III)プロポキシドオキシド、バナジウム(IV)テトラプロポキシド、バナジウム(IV)ジプロポキシドオキシド、バナジウム(V)トリプロポキシドオキシド、バナジウム(V)ペンタエトキシド、バナジウム(II)ジブトキシド(各異性体)、バナジウム(III)トリブトキシド(各異性体)、バナジウム(III)ブトキシドオキシド(各異性体)、バナジウム(IV)テトラブトキシド(各異性体)、バナジウム(IV)ジブトキシドオキシド(各異性体)、バナジウム(V)トリブトキシドオキシド(各異性体)、バナジウム(V)ペンタブトキシド(各異性体)、バナジウム(II)ジペントキシド(各異性体)、バナジウム(III)トリペントキシド(各異性体)、バナジウム(III)ペントキシドオキシド(各異性体)、バナジウム(IV)テトラペントキシド(各異性体)、バナジウム(IV)ジペントキシドオキシド(各異性体)、バナジウム(V)トリペントキシドオキシド(各異性体)、バナジウム(V)ペンタペントキシド(各異性体)、バナジウム(II)ジヘキサオキシド(各異性体)、バナジウム(III)トリヘキサオキシド(各異性体)、バナジウム(III)ヘキサオキシドオキシド(各異性体)、バナジウム(IV)テトラヘキサオキシド(各異性体)、バナジウム(IV)ジヘキサオキシドオキシド(各異性体)、バナジウム(V)トリヘキサオキシドオキシド(各異性体)、バナジウム(V)ペンタヘキサオキシド(各異性体)、バナジウム(II)ジヘプチルオキシド(各異性体)、バナジウム(III)トリヘプチルオキシド(各異性体)、バナジウム(III)ヘプチルオキシドオキシド(各異性体)、バナジウム(IV)テトラヘプチルオキシド(各異性体)、バナジウム(IV)ジヘプチルオキシドオキシド(各異性体)、バナジウム(V)トリヘプチルオキシドオキシド(各異性体)、バナジウム(V)ペンタヘプチルオキシド(各異性体)、バナジウム(II)ジオクチルオキシド(各異性体)、バナジウム(III)トリオクチルオキシド(各異性体)、バナジウム(III)オクチルオキシドオキシド(各異性体)、バナジウム(IV)テトラオクチルオキシド(各異性体)、バナジウム(IV)ジオクチルオキシドオキシド(各異性体)、バナジウム(V)トリオクチルオキシドオキシド(各異性体)、バナジウム(V)ペンタオクチルオキシド(各異性体)、バナジウム(II)ジノニルオキシド(各異性体)、バナジウム(III)トリノニルオキシド(各異性体)、バナジウム(III)ノニルオキシドオキシド(各異性体)、バナジウム(IV)テトラノニルオキシド(各異性体)、バナジウム(IV)ジノニルオキシドオキシド(各異性体)、バナジウム(V)トリノニルオキシドオキシド(各異性体)、バナジウム(V)ペンタノニルオキシド(各異性体)、バナジウム(II)ジデシルオキシド(各異性体)、バナジウム(III)トリデシルオキシド(各異性体)、バナジウム(III)デシルオキシドオキシド(各異性体)、バナジウム(IV)テトラデシルオキシド(各異性体)、バナジウム(IV)ジデシルオキシドオキシド(各異性体)、バナジウム(V)トリデシルオキシドオキシド(各異性体)、バナジウム(V)ペンタデシルオキシド(各異性体)、バナジウム(II)ジデシルオキシド(各異性体)、バナジウム(III)トリデシルオキシド(各異性体)、バナジウム(III)デシルオキシドオキシド(各異性体)、バナジウム(IV)テトラデシルオキシド(各異性体)、バナジウム(IV)ジデシルオキシドオキシド(各異性体)、バナジウム(V)トリデシルオキシドオキシド(各異性体)、バナジウム(V)ペンタデシルオキシド(各異性体)が挙げられる。   Examples of such organic vanadates having R include, for example, those having an alkyl group such as vanadium (II) dimethoxide, vanadium (III) trimethoxide, vanadium (III) methoxide oxide, vanadium (IV) tetramethoxide. , Vanadium (IV) dimethoxide oxide, vanadium (V) trimethoxide oxide, vanadium (V) pentamethoxide oxide, vanadium (II) diethoxide, vanadium (III) triethoxide, vanadium (III) ethoxide oxide, vanadium (IV ) Tetraethoxide, vanadium (IV) diethoxide oxide, vanadium (V) triethoxide oxide, vanadium (V) pentaethoxide, vanadium (II) dipropoxide, vanadium (III) tripropoxide, vanadium (III) propoxy Do Oxide, vanadium (IV) tetrapropoxide, vanadium (IV) dipropoxide oxide, vanadium (V) tripropoxide oxide, vanadium (V) pentaethoxide, vanadium (II) dibutoxide (each isomer), vanadium (III ) Tributoxide (each isomer), vanadium (III) butoxide oxide (each isomer), vanadium (IV) tetrabutoxide (each isomer), vanadium (IV) dibutoxide oxide (each isomer), vanadium (V) Tributoxide oxide (each isomer), vanadium (V) pentaboxide (each isomer), vanadium (II) dipentoxide (each isomer), vanadium (III) tripentoxide (each isomer), vanadium (III) pentoxide oxide (Each isomer), vanadium (IV) tetrapentoxide (each isomer) Vanadium (IV) dipentoxide oxide (each isomer), vanadium (V) tripentoxide oxide (each isomer), vanadium (V) pentapentoxide (each isomer), vanadium (II) dihexaoxide (each) Isomers), vanadium (III) trihexaoxide (each isomer), vanadium (III) hexaoxide oxide (each isomer), vanadium (IV) tetrahexaoxide (each isomer), vanadium (IV) dihexaoxide Oxide (each isomer), vanadium (V) trihexaoxide oxide (each isomer), vanadium (V) pentahexaoxide (each isomer), vanadium (II) diheptyl oxide (each isomer), vanadium (III ) Triheptyl oxide (each isomer), vanadium (III) heptyl oxide oxide (each isomer), vanadium (I V) tetraheptyl oxide (each isomer), vanadium (IV) diheptyl oxide oxide (each isomer), vanadium (V) triheptyl oxide oxide (each isomer), vanadium (V) pentaheptyl oxide (each isomer) ), Vanadium (II) dioctyl oxide (each isomer), vanadium (III) trioctyl oxide (each isomer), vanadium (III) octyl oxide oxide (each isomer), vanadium (IV) tetraoctyl oxide (each isomer) ), Vanadium (IV) dioctyl oxide oxide (each isomer), vanadium (V) trioctyl oxide oxide (each isomer), vanadium (V) pentaoctyl oxide (each isomer), vanadium (II) dinonyl oxide (Each isomer), vanadium (III) trinonyl oxide (each isomer), vanadi (III) nonyl oxide oxide (each isomer), vanadium (IV) tetranonyl oxide (each isomer), vanadium (IV) dinonyl oxide oxide (each isomer), vanadium (V) trinonyl oxide oxide (each Isomers), vanadium (V) pentanonyl oxide (each isomer), vanadium (II) didecyl oxide (each isomer), vanadium (III) tridecyl oxide (each isomer), vanadium (III) decyl oxide oxide (Each isomer), vanadium (IV) tetradecyl oxide (each isomer), vanadium (IV) didecyl oxide oxide (each isomer), vanadium (V) tridecyl oxide oxide (each isomer), vanadium (V ) Pentadecyl oxide (each isomer), vanadium (II) didecyl oxide (each isomer), vanadium (III) Decyl oxide (each isomer), vanadium (III) decyl oxide oxide (each isomer), vanadium (IV) tetradecyl oxide (each isomer), vanadium (IV) didecyl oxide oxide (each isomer), vanadium ( V) tridecyl oxide oxide (each isomer), vanadium (V) pentadecyl oxide (each isomer).

シクロアルキル基を持つものとしては、例えば、バナジウム(II)ジシクロペントキシド(各異性体)、バナジウム(III)トリシクロペントキシド(各異性体)、バナジウム(III)シクロペントキシドオキシド(各異性体)、バナジウム(IV)テトラシクロペントキシド(各異性体)、バナジウム(IV)ジシクロペントキシドオキシド(各異性体)、バナジウム(V)トリシクロペントキシドオキシド(各異性体)、バナジウム(V)ペンタシクロペントキシド(各異性体)、バナジウム(II)ジシクロヘキシルオキシド(各異性体)、バナジウム(III)トリシクロヘキシルオキシド(各異性体)、バナジウム(III)シクロヘキシルオキシドオキシド(各異性体)、バナジウム(IV)テトラシクロヘキシルオキシド(各異性体)、バナジウム(IV)ジシクロヘキシルオキシドオキシド(各異性体)、バナジウム(V)トリシクロヘキシルオキシドオキシド(各異性体)、バナジウム(V)ペンタシクロヘキシルオキシド(各異性体)、バナジウム(II)ジシクロヘプチルオキシド(各異性体)、バナジウム(III)トリシクロヘプチルオキシド(各異性体)、バナジウム(III)シクロヘプチルオキシドオキシド(各異性体)、バナジウム(IV)テトラシクロヘプチルオキシド(各異性体)、バナジウム(IV)ジシクロヘプチルオキシドオキシド(各異性体)、バナジウム(V)トリシクロヘプチルオキシドオキシド(各異性体)、バナジウム(V)ペンタシクロヘプチルオキシド(各異性体)、   Examples of those having a cycloalkyl group include vanadium (II) dicyclopentoxide (each isomer), vanadium (III) tricyclopentoxide (each isomer), vanadium (III) cyclopentoxide oxide (each isomer). ), Vanadium (IV) tetracyclopentoxide (each isomer), vanadium (IV) dicyclopentoxide oxide (each isomer), vanadium (V) tricyclopentoxide oxide (each isomer), vanadium (V ) Pentacyclopentoxide (each isomer), vanadium (II) dicyclohexyl oxide (each isomer), vanadium (III) tricyclohexyl oxide (each isomer), vanadium (III) cyclohexyl oxide oxide (each isomer), vanadium (IV) Tetracyclohexyl oxide (each isomer), vanadium (IV) Cyclohexyl oxide oxide (each isomer), vanadium (V) tricyclohexyl oxide oxide (each isomer), vanadium (V) pentacyclohexyl oxide (each isomer), vanadium (II) dicycloheptyl oxide (each isomer), Vanadium (III) tricycloheptyl oxide (each isomer), vanadium (III) cycloheptyl oxide oxide (each isomer), vanadium (IV) tetracycloheptyl oxide (each isomer), vanadium (IV) dicycloheptyl oxide Oxide (each isomer), vanadium (V) tricycloheptyl oxide oxide (each isomer), vanadium (V) pentacycloheptyl oxide (each isomer),

アルケニル基を持つものとしては、例えば、バナジウム(II)ジビニルオキシド、バナジウム(III)トリビニルオキシド、バナジウム(III)ビニルオキシドオキシド、バナジウム(IV)テトラビニルオキシド、バナジウム(IV)ジビニルオキシドオキシド、バナジウム(V)トリビニルオキシドオキシド、バナジウム(V)ペンタビニルオキシドオキシド、バナジウム(II)ジアリルオキシド、バナジウム(III)トリアリルオキシド、バナジウム(III)アリルオキシドオキシド、バナジウム(IV)テトラアリルオキシド、バナジウム(IV)ジアリルオキシドオキシド、バナジウム(V)トリアリルオキシドオキシド、バナジウム(V)ペンタアリルオキシドオキシドが挙げられる。   Examples of those having an alkenyl group include vanadium (II) divinyl oxide, vanadium (III) trivinyl oxide, vanadium (III) vinyl oxide oxide, vanadium (IV) tetravinyl oxide, vanadium (IV) divinyl oxide oxide, vanadium. (V) Trivinyl oxide oxide, vanadium (V) pentavinyl oxide oxide, vanadium (II) diallyl oxide, vanadium (III) triallyl oxide, vanadium (III) allyl oxide oxide, vanadium (IV) tetraallyl oxide, vanadium ( IV) diallyl oxide oxide, vanadium (V) triallyl oxide oxide, vanadium (V) pentaallyl oxide oxide.

アラルキル基を持つものとしてはバナジウム(II)ジベンゾキシド(各異性体)、バナジウム(III)トリベンゾキシド(各異性体)、バナジウム(III)ベンゾキシドオキシド(各異性体)、バナジウム(IV)テトラベンゾキシド(各異性体)、バナジウム(IV)ジベンゾキシドオキシド(各異性体)、バナジウム(V)トリベンゾキシドオキシド(各異性体)、バナジウム(V)ペンタベンゾキシド(各異性体)、バナジウム(II)ジフェネチルオキシド(各異性体)、バナジウム(III)トリフェネチルオキシド(各異性体)、バナジウム(III)フェネチルオキシドオキシド(各異性体)、バナジウム(IV)テトラフェネチルオキシド(各異性体)、バナジウム(IV)ジフェネチルオキシドオキシド(各異性体)、バナジウム(V)トリフェネチルオキシドオキシド(各異性体)、バナジウム(V)ペンタフェネチルオキシド(各異性体)、バナジウム(II)ジフェニルプロポキシド(各異性体)、バナジウム(III)トリフェニルプロポキシド(各異性体)、バナジウム(III)フェニルプロポキシドオキシド(各異性体)、バナジウム(IV)テトラフェニルプロポキシド(各異性体)、バナジウム(IV)ジフェニルプロポキシドオキシド(各異性体)、バナジウム(V)トリフェニルプロポキシドオキシド(各異性体)、バナジウム(V)ペンタフェニルプロポキシド(各異性体)、バナジウム(II)ジフェニルブトキシド(各異性体)、バナジウム(III)トリフェニルブトキシド(各異性体)、バナジウム(III)フェニルブトキシドオキシド(各異性体)、バナジウム(IV)フェニルブトキシド(各異性体)、バナジウム(IV)ジフェニルブトキシドオキシド(各異性体)、バナジウム(V)トリフェニルブトキシドオキシド(各異性体)、バナジウム(V)ペンタフェニルブトキシド(各異性体)、バナジウム(II)ジ(メトキシベンジル)オキシド、バナジウム(III)トリ(メトキシベンジル)オキシド、バナジウム(III)(メトキシベンジル)オキシドオキシド、バナジウム(IV)(メトキシベンジル)オキシド、バナジウム(IV)ジ(メトキシベンジル)オキシドオキシド、バナジウム(V)トリ(メトキシベンジル)オキシドオキシド、バナジウム(V)(メトキシベンジル)オキシド、バナジウム(II)ジ(メトキシメチル)オキシド、バナジウム(III)トリ(メトキシメチル)オキシド、バナジウム(III)(メトキシメチル)オキシドオキシド、バナジウム(IV)(メトキシメチル)オキシド、バナジウム(IV)ジ(メトキシメチル)オキシドオキシド、バナジウム(V)トリ(メトキシメチル)オキシドオキシド、バナジウム(V)ペンタ(メトキシメチル)オキシド、バナジウム(II)ジ(メトキシエチル)オキシド、バナジウム(III)トリ(メトキシエチル)オキシド、バナジウム(III)(メトキシエチル)オキシドオキシド、バナジウム(IV)(メトキシエチル)オキシド、バナジウム(IV)ジ(メトキシエチル)オキシドオキシド、バナジウム(V)トリ(メトキシエチル)オキシドオキシド、バナジウム(V)(メトキシエチル)オキシド、バナジウム(II)ジ(シアノエチル)オキシド、バナジウム(III)トリ(シアノエチル)オキシド、バナジウム(III)(シアノエチル)オキシドオキシド、バナジウム(IV)(シアノエチル)オキシド、バナジウム(IV)ジ(シアノエチル)オキシドオキシド、バナジウム(V)トリ(シアノエチル)オキシドオキシド、バナジウム(V)ペンタ(シアノエチル)オキシドなどが挙げられる。   Those having an aralkyl group include vanadium (II) dibenzooxide (each isomer), vanadium (III) tribenzoxide (each isomer), vanadium (III) benzooxide oxide (each isomer), vanadium (IV) tetrabenzooxide ( Each isomer), vanadium (IV) dibenzooxide oxide (each isomer), vanadium (V) tribenzooxide oxide (each isomer), vanadium (V) pentabenzoxide (each isomer), vanadium (II) di Phenethyl oxide (each isomer), vanadium (III) triphenethyl oxide (each isomer), vanadium (III) phenethyl oxide oxide (each isomer), vanadium (IV) tetraphenethyl oxide (each isomer), vanadium (IV ) Diphenethyl oxide oxide (each isomer), vanadium (V) triphenethylo Sid oxide (each isomer), vanadium (V) pentaphenethyl oxide (each isomer), vanadium (II) diphenylpropoxide (each isomer), vanadium (III) triphenylpropoxide (each isomer), vanadium (III) ) Phenylpropoxide oxide (each isomer), vanadium (IV) tetraphenylpropoxide (each isomer), vanadium (IV) diphenylpropoxide oxide (each isomer), vanadium (V) triphenylpropoxide oxide (each Isomers), vanadium (V) pentaphenylpropoxide (each isomer), vanadium (II) diphenylbutoxide (each isomer), vanadium (III) triphenylbutoxide (each isomer), vanadium (III) phenylbutoxide oxide (Each isomer), vanadium (IV) phenylbutoxide ( Isomers), vanadium (IV) diphenylbutoxide oxide (each isomer), vanadium (V) triphenylbutoxide oxide (each isomer), vanadium (V) pentaphenylbutoxide (each isomer), vanadium (II) di ( Methoxybenzyl) oxide, vanadium (III) tri (methoxybenzyl) oxide, vanadium (III) (methoxybenzyl) oxide oxide, vanadium (IV) (methoxybenzyl) oxide, vanadium (IV) di (methoxybenzyl) oxide oxide, vanadium (V) Tri (methoxybenzyl) oxide oxide, vanadium (V) (methoxybenzyl) oxide, vanadium (II) di (methoxymethyl) oxide, vanadium (III) tri (methoxymethyl) oxide, vanadium (III) (methoxymethyl) ) Oxy Oxide, vanadium (IV) (methoxymethyl) oxide, vanadium (IV) di (methoxymethyl) oxide oxide, vanadium (V) tri (methoxymethyl) oxide oxide, vanadium (V) penta (methoxymethyl) oxide, vanadium (II ) Di (methoxyethyl) oxide, vanadium (III) tri (methoxyethyl) oxide, vanadium (III) (methoxyethyl) oxide oxide, vanadium (IV) (methoxyethyl) oxide, vanadium (IV) di (methoxyethyl) oxide Oxide, vanadium (V) tri (methoxyethyl) oxide oxide, vanadium (V) (methoxyethyl) oxide, vanadium (II) di (cyanoethyl) oxide, vanadium (III) tri (cyanoethyl) oxide, vanadium (III) (cyanoe Til) oxide oxide, vanadium (IV) (cyanoethyl) oxide, vanadium (IV) di (cyanoethyl) oxide oxide, vanadium (V) tri (cyanoethyl) oxide oxide, vanadium (V) penta (cyanoethyl) oxide, and the like.

また、アリール基を持つものとしては、例えば、バナジウム(II)ジフェノキシド、バナジウム(III)トリフェノキシド)、バナジウム(III)フェノキシドオキシド、バナジウム(IV)ジフェノキシド、バナジウム(IV)ジフェノキシドオキシド、バナジウム(V)トリフェノキシドオキシド、バナジウム(V)ペンタフェノキシド、バナジウム(II)ジ(メチルフェノキシド)(各異性体)、バナジウム(III)トリ(メチルフェノキシド)(各異性体)、バナジウム(III)メチルフェノキシドオキシド(各異性体)、バナジウム(IV)テトラメチルフェノキシド(各異性体)、バナジウム(IV)ジ(メチルフェノキシド)オキシド(各異性体)、バナジウム(V)トリ(メチルフェノキシド)オキシド(各異性体)、バナジウム(V)ペンタ(メチルフェノキシド)(各異性体)、バナジウム(II)ジ(エチルフェノキシド)(各異性体)、バナジウム(III)トリ(エチルフェノキシド)(各異性体)、バナジウム(III)(エチルフェノキシド)オキシド(各異性体)、バナジウム(IV)テトラ(エチルフェノキシド)(各異性体)、バナジウム(IV)ジ(エチルフェノキシド)オキシド(各異性体)、バナジウム(V)トリ(エチルフェノキシド)オキシド(各異性体)、バナジウム(V)ペンタ(エチルフェノキシド)(各異性体)、バナジウム(II)ジ(プロピルフェノキシド)(各異性体)、バナジウム(III)トリ(プロピルフェノキシド)(各異性体)、バナジウム(III)(プロピルフェノキシド)オキシド(各異性体)、バナジウム(IV)テトラ(プロピルフェノキシド)(各異性体)、バナジウム(IV)ジ(プロピルフェノキシド)オキシド(各異性体)、バナジウム(V)トリ(プロピルフェノキシド)オキシド(各異性体)、バナジウム(V)ペンタ(プロピルフェノキシド)(各異性体)、バナジウム(II)ジ(アリルフェノキシド)(各異性体)、バナジウム(III)トリ(アリルフェノキシド)(各異性体)、バナジウム(III)(アリルフェノキシド)オキシド(各異性体)、バナジウム(IV)テトラ(アリルフェノキシド)(各異性体)、バナジウム(IV)ジ(アリルフェノキシド)オキシド(各異性体)、バナジウム(V)トリ(アリルフェノキシド)オキシド(各異性体)、バナジウム(V)ペンタ(アリルフェノキシド)(各異性体)、バナジウム(II)ジ(ブチルフェノキシド)(各異性体)、バナジウム(III)トリ(ブチルフェノキシド)(各異性体)、バナジウム(III)(ブチルフェノキシド)オキシド(各異性体)、バナジウム(IV)テトラ(ブチルフェノキシド)(各異性体)、バナジウム(IV)ジ(ブチルフェノキシド)オキシド(各異性体)、バナジウム(V)トリ(ブチルフェノキシド)オキシド(各異性体)、バナジウム(V)ペンタ(ブチルフェノキシド)(各異性体)、バナジウム(II)ジ(ペンチルフェノキシド)(各異性体)、バナジウム(III)トリ(ペンチルフェノキシド)(各異性体)、バナジウム(III)(ペンチルフェノキシド)オキシド(各異性体)、バナジウム(IV)テトラ(ペンチルフェノキシド)(各異性体)、バナジウム(IV)ジ(ペンチルフェノキシド)オキシド(各異性体)、バナジウム(V)トリ(ペンチルフェノキシド)オキシド(各異性体)、バナジウム(V)ペンタ(ペンチルフェノキシド)(各異性体)、バナジウム(II)ジ(ヘキシルフェノキシド)(各異性体)、バナジウム(III)トリ(ヘキシルフェノキシド)(各異性体)、バナジウム(III)(ヘキシルフェノキシド)オキシド(各異性体)、バナジウム(IV)テトラ(ヘキシルフェノキシド)(各異性体)、バナジウム(IV)ジ(ヘキシルフェノキシド)オキシド(各異性体)、バナジウム(V)トリ(ヘキシルフェノキシド)オキシド(各異性体)、バナジウム(V)ペンタ(ヘキシルフェノキシド)オキシド(各異性体)、バナジウム(II)ジ(ヘプチルフェノキシド)(各異性体)、バナジウム(III)トリ(ヘプチルフェノキシド)(各異性体)、バナジウム(III)ヘプチルフェノキシドオキシド(各異性体)、バナジウム(IV)テトラ(ヘプチルフェノキシド)(各異性体)、バナジウム(IV)ジ(ヘプチルフェノキシド)オキシド(各異性体)、バナジウム(V)トリ(ヘプチルフェノキシド)オキシド(各異性体)、バナジウム(V)ペンタ(ヘプチルフェノキシド)オキシド(各異性体)、バナジウム(II)ジ(オクチルフェノキシド)(各異性体)、バナジウム(III)トリ(オクチルフェノキシド)(各異性体)、バナジウム(III)オクチルフェノキシドオキシド(各異性体)、バナジウム(IV)テトラ(オクチルフェノキシド)(各異性体)、バナジウム(IV)ジ(オクチルフェノキシド)オキシド(各異性体)、バナジウム(V)トリ(オクチルフェノキシド)オキシド(各異性体)、バナジウム(V)ペンタ(オクチルフェノキシド)オキシド(各異性体)、
バナジウム(II)ジノニル(エチルフェノキシド)(各異性体)、バナジウム(III)トリ(オクチルフェノキシド)(各異性体)、バナジウム(III)オクチルフェノキシドオキシド(各異性体)、バナジウム(IV)テトラ(オクチルフェノキシド)(各異性体)、バナジウム(IV)ジ(オクチルフェノキシド)オキシド(各異性体)、バナジウム(V)トリ(オクチルフェノキシド)オキシド(各異性体)、バナジウム(V)ペンタ(オクチルフェノキシド)オキシド(各異性体)等が挙げられる。
これらの有機バナデートは単核で存在していても複合体のように多核で存在していてもよい。多核で存在する有機バナデートとしては、例えば、Vを2核持つものとしては下式(17)〜(37)で示すようなものが挙げられる。
Examples of those having an aryl group include vanadium (II) diphenoxide, vanadium (III) triphenoxide), vanadium (III) phenoxide oxide, vanadium (IV) diphenoxide, vanadium (IV) diphenoxide oxide, vanadium. (V) triphenoxide oxide, vanadium (V) pentaphenoxide, vanadium (II) di (methylphenoxide) (each isomer), vanadium (III) tri (methylphenoxide) (each isomer), vanadium (III) methylphenoxide Oxide (each isomer), vanadium (IV) tetramethylphenoxide (each isomer), vanadium (IV) di (methylphenoxide) oxide (each isomer), vanadium (V) tri (methylphenoxide) oxide (each isomer) ), Vanadium (V) penta (methyl Phenoxide) (each isomer), vanadium (II) di (ethyl phenoxide) (each isomer), vanadium (III) tri (ethyl phenoxide) (each isomer), vanadium (III) (ethyl phenoxide) oxide (each isomer) ), Vanadium (IV) tetra (ethyl phenoxide) (each isomer), vanadium (IV) di (ethyl phenoxide) oxide (each isomer), vanadium (V) tri (ethyl phenoxide) oxide (each isomer), Vanadium (V) penta (ethyl phenoxide) (each isomer), vanadium (II) di (propyl phenoxide) (each isomer), vanadium (III) tri (propyl phenoxide) (each isomer), vanadium (III) ( Propyl phenoxide) oxide (each isomer), vanadium (IV) tetra (propyl phenoxide) (each isomer) , Vanadium (IV) di (propyl phenoxide) oxide (each isomer), vanadium (V) tri (propyl phenoxide) oxide (each isomer), vanadium (V) penta (propyl phenoxide) (each isomer), vanadium ( II) Di (allylphenoxide) (each isomer), vanadium (III) tri (allylphenoxide) (each isomer), vanadium (III) (allylphenoxide) oxide (each isomer), vanadium (IV) tetra (allyl) Phenoxide) (each isomer), vanadium (IV) di (allyl phenoxide) oxide (each isomer), vanadium (V) tri (allyl phenoxide) oxide (each isomer), vanadium (V) penta (allyl phenoxide) ( Each isomer), vanadium (II) di (butylphenoxide) (each isomer), vanadium (III) Tri (butylphenoxide) (each isomer), vanadium (III) (butylphenoxide) oxide (each isomer), vanadium (IV) tetra (butylphenoxide) (each isomer), vanadium (IV) di (butylphenoxide) Oxide (each isomer), vanadium (V) tri (butylphenoxide) oxide (each isomer), vanadium (V) penta (butylphenoxide) (each isomer), vanadium (II) di (pentylphenoxide) (each isomer) ), Vanadium (III) tri (pentylphenoxide) (each isomer), vanadium (III) (pentylphenoxide) oxide (each isomer), vanadium (IV) tetra (pentylphenoxide) (each isomer), vanadium ( IV) Di (pentylphenoxide) oxide (each isomer), vanadium (V) tri (pentylph) Enoxide) oxide (each isomer), vanadium (V) penta (pentylphenoxide) (each isomer), vanadium (II) di (hexylphenoxide) (each isomer), vanadium (III) tri (hexylphenoxide) (each Isomers), vanadium (III) (hexylphenoxide) oxide (each isomer), vanadium (IV) tetra (hexylphenoxide) (each isomer), vanadium (IV) di (hexylphenoxide) oxide (each isomer), Vanadium (V) tri (hexylphenoxide) oxide (each isomer), vanadium (V) penta (hexylphenoxide) oxide (each isomer), vanadium (II) di (heptylphenoxide) (each isomer), vanadium (III) ) Tri (heptylphenoxide) (each isomer), vanadium (III) heptylpheno Sid oxide (each isomer), vanadium (IV) tetra (heptylphenoxide) (each isomer), vanadium (IV) di (heptylphenoxide) oxide (each isomer), vanadium (V) tri (heptylphenoxide) oxide (each Isomers), vanadium (V) penta (heptylphenoxide) oxide (each isomer), vanadium (II) di (octylphenoxide) (each isomer), vanadium (III) tri (octylphenoxide) (each isomer), Vanadium (III) octylphenoxide oxide (each isomer), vanadium (IV) tetra (octylphenoxide) (each isomer), vanadium (IV) di (octylphenoxide) oxide (each isomer), vanadium (V) tri ( Octylphenoxide) oxide (each isomer), vanadium (V) penta (oct Rufenokishido) oxide (isomers),
Vanadium (II) dinonyl (ethyl phenoxide) (each isomer), vanadium (III) tri (octyl phenoxide) (each isomer), vanadium (III) octyl phenoxide oxide (each isomer), vanadium (IV) tetra (octyl) Phenoxide) (each isomer), vanadium (IV) di (octylphenoxide) oxide (each isomer), vanadium (V) tri (octylphenoxide) oxide (each isomer), vanadium (V) penta (octylphenoxide) oxide (Each isomer) and the like.
These organic vanadates may exist in mononuclear form or in multinuclear form like a complex. Examples of organic vanadates present in multiple nuclei include those represented by the following formulas (17) to (37) as those having 2 nuclei of V.

Figure 2006335739
Figure 2006335739

Figure 2006335739
Figure 2006335739

Figure 2006335739
Figure 2006335739

Figure 2006335739
Figure 2006335739

(式(17)〜(37)中、nはR−酸素−バナジウム結合を持つVの価数から1を引いた、0〜4の間の整数である。また、mはR−酸素−バナジウム結合を持つVの価数から2を引いた、0〜3の間の整数である。 (In the formulas (17) to (37), n is an integer between 0 and 4 obtained by subtracting 1 from the valence of V having an R 2 -oxygen-vanadium bond, and m is R 2 -oxygen. -An integer between 0 and 3 obtained by subtracting 2 from the valence of V having a vanadium bond.

これらの有機バナデートの中で、本発明において好ましく製造されるのはヒドロキシ化合物が芳香族である芳香族バナデートであり、さらに好ましくは芳香族がフェノールであるフェニルバナデートであり、バナジウムが単核として存在している場合、バナジウム(II)ジフェノキシド、バナジウム(III)フェノキシドオキシド、バナジウム(III)トリフェノキシド、バナジウム(IV)テトラフェノキシド、バナジウム(IV)ジフェノキシドオキシド、バナジウム(V)ペンタフェノキシド、バナジウム(V)トリフェノキシドオキシドである。さらに好ましくは酸化バナジウムとしてVを用いて製造されるフェニルバナデートである。 Among these organic vanadates, preferably produced in the present invention is an aromatic vanadate whose hydroxy compound is aromatic, more preferably phenyl vanadate whose aromatic is phenol, and vanadium as a mononuclear. If present, vanadium (II) diphenoxide, vanadium (III) phenoxide oxide, vanadium (III) triphenoxide, vanadium (IV) tetraphenoxide, vanadium (IV) diphenoxide oxide, vanadium (V) pentaphenoxide, vanadium (V) Triphenoxide oxide. More preferably, it is phenyl vanadate produced using V 2 O 5 as vanadium oxide.

本発明で用いられる、水と共沸混合物を生成する成分には特に制限はなく、一般的に用いられる成分でよく、アクリルアルデヒド、アクリル酸エチル、アクリロニトリル、アセチルアセトン、アニソール、アニリン、安息香酸エチル、エタノール、1−オクタノール、2−オクタノール、オクタン、ギ酸、クロロベンゼン、クロロホルム、酢酸エチル、酢酸メチル、四塩化炭素、1,4−ジオキサン、シクロヘキサノール、シクロヘキサノン、シクロヘキサン、ジデカン、トリメチルアミン、トルエン、ナフタレン、ニトロエタン、ピリジン、フェノール、1−ブタノール、2−ブタノール、フルフリルアルコール、1−プロパノール、2−プロパノール、1−ヘキサノール、ヘキサン、ヘキシルアミン、1−ヘプタノール、3−ヘプタノン、4−ヘプタノン、ベンゼン、1−ペンタノール、2−ペンタノール、メタクリル酸メチル、2−メチルピリジン、3−メチルピリジン、4−メチルピリジン、酢酸メチルなどが挙げられる。好ましくはアニソール、安息香酸エチル、オクタン、クロロホルム、四塩化炭素、トルエン、ピリジン、ヘキサン、ベンゼンである。   The component that forms an azeotrope with water used in the present invention is not particularly limited and may be a commonly used component such as acrylic aldehyde, ethyl acrylate, acrylonitrile, acetylacetone, anisole, aniline, ethyl benzoate, Ethanol, 1-octanol, 2-octanol, octane, formic acid, chlorobenzene, chloroform, ethyl acetate, methyl acetate, carbon tetrachloride, 1,4-dioxane, cyclohexanol, cyclohexanone, cyclohexane, didecane, trimethylamine, toluene, naphthalene, nitroethane Pyridine, phenol, 1-butanol, 2-butanol, furfuryl alcohol, 1-propanol, 2-propanol, 1-hexanol, hexane, hexylamine, 1-heptanol, 3-heptanone 4-heptanone, benzene, 1-pentanol, 2-pentanol, methyl methacrylate, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, methyl acetate and the like. Anisole, ethyl benzoate, octane, chloroform, carbon tetrachloride, toluene, pyridine, hexane and benzene are preferred.

本発明で行われる反応時間(連続法の場合は滞留時間)に、特に制限はなく通常0.1〜50時間、好ましくは1〜20時間、より好ましくは2〜10時間である。
反応温度は、用いる反応原料の種類によって異なるが、原料であるヒドロキシ化合物の融点以上かつ反応速度向上の面から可能な限り高温で行うことが好ましいが、反応器の材質や耐圧能力を考慮する必要がある。それらを考慮した上で、通常40〜350℃、好ましくは45〜300℃、より好ましくは90〜230℃の範囲で行われる。
There is no restriction | limiting in particular in the reaction time (retention time in the case of a continuous method) performed by this invention, Usually, 0.1 to 50 hours, Preferably it is 1 to 20 hours, More preferably, it is 2 to 10 hours.
Although the reaction temperature varies depending on the type of reaction raw material used, it is preferably performed at a temperature that is higher than the melting point of the raw hydroxy compound and as high as possible from the viewpoint of improving the reaction rate, but it is necessary to consider the material of the reactor and the pressure resistance capability. There is. In consideration of them, it is usually carried out in the range of 40 to 350 ° C, preferably 45 to 300 ° C, more preferably 90 to 230 ° C.

反応圧力は、用いる反応原料の種類や反応温度などにより異なるが、減圧、常圧、加圧のいずれであってもよく、通常0.1〜 2.0×107Paの範囲で行われる。副生成物である水を酸化バナジウムとヒドロキシ化合物が存在している液から抜出すことにより反応の促進が期待できるため、大気圧〜減圧の状態が好ましい場合が多い。 The reaction pressure varies depending on the type of reaction raw material used, the reaction temperature, and the like, but may be any of reduced pressure, normal pressure, and increased pressure, and is usually in the range of 0.1 to 2.0 × 10 7 Pa. Since the reaction can be expected to be accelerated by extracting water, which is a by-product, from the liquid in which vanadium oxide and a hydroxy compound are present, the state of atmospheric pressure to reduced pressure is often preferable.

本発明においては、必ずしも反応溶媒を使用する必要はないが、反応操作を容易にする、反応を完結させる等の目的で適当な不活性溶媒、例えば、エーテル類、脂肪族炭化水素類、芳香族炭化水素類、ハロゲン化芳香族炭化水素類等を反応溶媒として用いることができる。   In the present invention, it is not always necessary to use a reaction solvent, but an inert solvent suitable for the purpose of facilitating the reaction operation, completing the reaction, etc., for example, ethers, aliphatic hydrocarbons, aromatics Hydrocarbons, halogenated aromatic hydrocarbons and the like can be used as the reaction solvent.

本発明において、反応器の形式に特に制限はなく、攪拌槽方式、多段攪拌槽方式等、公知の種々の方法が用いられる。これらの反応器はバッチ式、連続式のいずれでも使用できる。平衡を生成系側に効率的にずらすという点で、低沸点生成物を反応系から留去することが好ましい。
反応の有無、反応進行度、及び反応終了は反応により生成した水を定量することにより確認する。水の定量方法は特に制限はなく、カールフィッシャー法などの公知の方法が用いられる。
In the present invention, the type of the reactor is not particularly limited, and various known methods such as a stirring tank system and a multistage stirring tank system can be used. These reactors can be used either batchwise or continuously. It is preferable to distill off the low boiling point product from the reaction system in that the equilibrium is effectively shifted to the production system side.
Presence / absence of reaction, reaction progress, and completion of reaction are confirmed by quantifying water produced by the reaction. The method for quantifying water is not particularly limited, and a known method such as the Karl Fischer method is used.

次に、本発明を実施例によって具体的に説明するが、本発明はこれら実施例に限定されるものではない。液中の酸性・アルカリ性はリトマス試験紙を用いて分析した。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited to these Examples. The acidity and alkalinity in the liquid were analyzed using litmus paper.

液中の有機成分濃度は、ガスクロマトグラフを用いて分析した。
(1)ガスクロマトグラフィー分析条件
カラム:DB−1(J&W Scientific)
液相:100%ジメチルポリシロキサン
長さ:30m
内径:0.25mm
フィルム厚さ:1μm
カラム温度:50℃(10℃/minで昇温)300℃
インジェクション温度:300℃
検出器温度:300℃
検出法:FID
(2)定量分析法
各標準物質の標準サンプルについて分析を実施し作成した検量線を基に、分析サンプル溶液の定量分析を実施した。
The organic component concentration in the liquid was analyzed using a gas chromatograph.
(1) Gas chromatography analysis conditions Column: DB-1 (J & W Scientific)
Liquid phase: 100% dimethylpolysiloxane Length: 30m
Inner diameter: 0.25mm
Film thickness: 1μm
Column temperature: 50 ° C. (temperature rising at 10 ° C./min) 300 ° C.
Injection temperature: 300 ° C
Detector temperature: 300 ° C
Detection method: FID
(2) Quantitative analysis method Based on a calibration curve prepared by analyzing a standard sample of each standard substance, a quantitative analysis of the analysis sample solution was performed.

液中の塩素の定量分析はイオンクロマトグラフを用いて行った。
(1)酸素燃焼による前処理
装置: 三菱化学製 TOX−100
燃焼温度:800℃
分析対象を0.1g採取し、上記の装置による酸素燃焼を行った。
(2)イオンクロマトグラフ法による定量分析
装置: 日本ダイオネクス製 DX−300
検出法: 電気伝導度検出器
カラム: AG−4A+AS−4A
除去液: 12.5mmol/L HSO
溶離液: 10mmol/L Na
前処理から得た残渣物を水溶液に調製したのち、塩素の標準サンプルを用いて作成した検量線に基づいて、分析サンプル中の塩素の定量を行った。
Quantitative analysis of chlorine in the liquid was performed using an ion chromatograph.
(1) Pretreatment by oxygen combustion Device: Mitsubishi Chemical TOX-100
Combustion temperature: 800 ° C
0.1 g of an analysis target was collected and oxyfuel combustion was performed using the above apparatus.
(2) Quantitative analysis by ion chromatography method Device: DX-300 manufactured by Nippon Dionex
Detection method: Electric conductivity detector Column: AG-4A + AS-4A
Removed liquid: 12.5 mmol / L H 2 SO 4
Eluent: 10 mmol / L Na 2 B 4 O 7
After the residue obtained from the pretreatment was prepared in an aqueous solution, chlorine in the analysis sample was quantified based on a calibration curve created using a standard sample of chlorine.

本発明を実施例に基づいて説明する。
[実施例1]
(酸化バナジウムを原料とした有機バナデートの合成)
五酸化バナジウム(東京化成社製)6.42g(0.035mol)とフェノール(東京化成社製)112.86g(1.2mol)を300mlナスフラスコに入れ、攪拌機及び減圧するための装置、及び温度調節器を備えたオイルバスに浸漬した。オイルバスを約170℃に保った。約5分後にオイルバスの温度を190℃、該ナスフラスコ内を約73kPaまで減圧した。約3時間後に約10gの留去された混合液を回収した。約10分後に該混合液の色が深い赤色に変化した。約30分後に該圧力を約47kPaまで減圧し、生成する水を含む混合液を留去した。その後該圧力を約33kPaまで減圧し、引き続き生成する水を含む混合液を留去し、約2時間後に室温(約23℃)で固体の混合物が留去された。その後圧力を約0.7kPaまで減圧し、残留フェノールを留去した。残留フェノールを留去後、ナスフラスコをオイルバスから取り出し、放冷し、室温(約23℃)まで冷却した後に約9gの黒く着色したバナジウムトリフェノキシドオキシドを含む固体混合物を回収した。留去された液からは塩素が検出されなかった。また、回収されたバナジウムトリフェノキシドオキシドを含む固体混合物からも塩素が検出されなかった。
The present invention will be described based on examples.
[Example 1]
(Synthesis of organic vanadate from vanadium oxide)
Vanadium pentoxide (manufactured by Tokyo Chemical Industry Co., Ltd.) 6.42 g (0.035 mol) and phenol (manufactured by Tokyo Chemical Industry Co., Ltd.) 112.86 g (1.2 mol) are placed in a 300 ml eggplant flask, a stirrer, an apparatus for decompressing, and temperature It was immersed in an oil bath equipped with a regulator. The oil bath was kept at about 170 ° C. After about 5 minutes, the temperature of the oil bath was reduced to 190 ° C., and the pressure in the eggplant flask was reduced to about 73 kPa. After about 3 hours, about 10 g of the distilled liquid mixture was recovered. After about 10 minutes, the color of the mixture changed to deep red. After about 30 minutes, the pressure was reduced to about 47 kPa, and the resulting mixed liquid containing water was distilled off. Thereafter, the pressure was reduced to about 33 kPa, and subsequently the mixed liquid containing water was distilled off. After about 2 hours, the solid mixture was distilled off at room temperature (about 23 ° C.). Thereafter, the pressure was reduced to about 0.7 kPa, and the residual phenol was distilled off. After the residual phenol was distilled off, the eggplant flask was removed from the oil bath, allowed to cool, and cooled to room temperature (about 23 ° C.), and then a solid mixture containing about 9 g of black-colored vanadium triphenoxide oxide was recovered. Chlorine was not detected from the distilled liquid. Further, chlorine was not detected from the solid mixture containing the recovered vanadium triphenoxide oxide.

[比較例1]
(塩化バナジウムを原料とした有機バナデートの合成)
バナジウムオキシトリクロライド(アルドリッチ社製)6.1g(0.035mol)とフェノール(東京化成社製)113.03g(1.2mol)を300mlナスフラスコに入れ、攪拌機及び減圧するための装置、留出ガスを吸収するための水を保持した装置、及び温度調節器を備えたオイルバスに浸漬した。オイルバスを約170℃に保った。約5分後にオイルバスの温度を190℃、該ナスフラスコ内を約73kPaに設定した。30分後に該圧力を約47kPaに設定し、生成する気体を含む混合液を留去した。該気体にアンモニア水を近づけると白煙が発生した。その後該圧力を約33kPaまで減圧し、引き続き生成する白い気体を含む混合液を留去し、約2時間後に室温(約23℃)で固体の混合物が留去された。その後圧力を約0.7kPaまで減圧し、残留フェノールを留去した。留出ガスを吸収するための水を保持した装置内の水をリトマス試験紙に浸透させたところリトマス試験紙は強酸性を示した。ナスフラスコをオイルバスから取り出し、放冷し、室温(約23℃)まで冷却した後に約4gの黒く着色したバナジウムトリフェノキシドオキシドを含む固体混合物を回収した。留去された液からは塩素が検出された。また、回収されたバナジウムトリフェノキシドオキシドを含む固体混合物からも塩素が検出された。
[Comparative Example 1]
(Synthesis of organic vanadate from vanadium chloride)
6.1 g (0.035 mol) of vanadium oxytrichloride (manufactured by Aldrich) and 113.03 g (1.2 mol) of phenol (manufactured by Tokyo Chemical Industry Co., Ltd.) are placed in a 300 ml eggplant flask, a stirrer and an apparatus for decompressing, distilling It was immersed in an oil bath equipped with a device for holding water for absorbing gas and a temperature controller. The oil bath was kept at about 170 ° C. After about 5 minutes, the temperature of the oil bath was set to 190 ° C., and the inside of the eggplant flask was set to about 73 kPa. After 30 minutes, the pressure was set to about 47 kPa, and the mixed liquid containing the generated gas was distilled off. When ammonia water was brought close to the gas, white smoke was generated. Thereafter, the pressure was reduced to about 33 kPa, and the resulting mixed liquid containing white gas was distilled off. After about 2 hours, the solid mixture was distilled off at room temperature (about 23 ° C.). Thereafter, the pressure was reduced to about 0.7 kPa, and the residual phenol was distilled off. When water in the apparatus holding water for absorbing the distillate gas was permeated into the litmus paper, the litmus paper showed strong acidity. The eggplant flask was removed from the oil bath, allowed to cool, and cooled to room temperature (about 23 ° C.), and then a solid mixture containing about 4 g of black-colored vanadium triphenoxide oxide was recovered. Chlorine was detected from the distilled liquid. Chlorine was also detected from the solid mixture containing the recovered vanadium triphenoxide oxide.

[実施例2]
(有機バナデートを触媒とするエステル交換反応)
実施例1で得られた有機バナデートを両端をスェージロックで固定可能な内径6mm、長さ50mmのSUS製チューブに11mg(バナジウム分が全液量の約400ppmとなるような量)仕込み、さらにジブチルカーボネート0.65g(3.7ミリモル)、フェノール0.35g(3.7ミリモル)を仕込みスェージロックのキャップを締めて密栓した。温調器を備えたオイルバスの温度を220℃として、上記リアクターを浸漬して0.4時間反応させた。反応終了後、リアクターをオイルバスから取り出して放冷し、室温(約22℃)に冷却したのち、キャップをあけて反応液を取り出した。反応液をガスクロマトグラフィー(FID検知器)で分析したところブチルフェニルカーボネートが2.4重量%、ジフェニルカーボネートが0.01重量%得られた。反応液からは塩素が検出されなかった。
[Example 2]
(Transesterification reaction using organic vanadate as a catalyst)
The organic vanadate obtained in Example 1 was charged in an SUS tube having an inner diameter of 6 mm and a length of 50 mm capable of being fixed with swage lock at both ends, and 11 mg (an amount such that the vanadium content was about 400 ppm of the total liquid amount), and further dibutyl carbonate 0.65 g (3.7 mmol) and 0.35 g (3.7 mmol) of phenol were charged, and the cap of Swagelok was tightened and sealed. The temperature of the oil bath provided with the temperature controller was 220 ° C., and the reactor was immersed and reacted for 0.4 hours. After completion of the reaction, the reactor was taken out from the oil bath, allowed to cool, cooled to room temperature (about 22 ° C.), then the cap was opened and the reaction solution was taken out. When the reaction solution was analyzed by gas chromatography (FID detector), 2.4% by weight of butylphenyl carbonate and 0.01% by weight of diphenyl carbonate were obtained. Chlorine was not detected from the reaction solution.

[実施例3]
(有機バナデートを触媒とする不均化反応)
両端をスェージロックで固定可能な内径6mm、長さ50mmのSUS製チューブにブチルフェニルカーボネート0.99g及び実施例1で合成した有機バナデート2.5mg(バナジウムとして全液量の約1000ppmとなるような量)を仕込み、スェージロックのキャップを締めて密栓した。温調器を備えたオイルバスの温度を220℃として、上記リアクターを浸漬して0.5時間反応させた。反応終了後、リアクターをオイルバスから取り出して放冷し、室温(約22℃)に冷却したのち、キャップをあけて反応液を取り出した。反応液をガスクロマトグラフィー(FID検知器)で分析したところジフェニルカーボネートが3.5重量%得られた。ブチルフェニルエーテルは検出限界以下であった。反応液からは塩素が検出されなかった。
[Example 3]
(Disproportionation reaction using organic vanadate as catalyst)
SUS tube with an inner diameter of 6 mm and a length of 50 mm that can be fixed at both ends with Swagelok, 0.99 g of butylphenyl carbonate and 2.5 mg of organic vanadate synthesized in Example 1 (amount such that the total amount of vanadium is about 1000 ppm) ), And the cap of the Swagelok was tightened and sealed. The temperature of the oil bath provided with the temperature controller was set to 220 ° C., and the reactor was immersed and reacted for 0.5 hour. After completion of the reaction, the reactor was taken out from the oil bath, allowed to cool, cooled to room temperature (about 22 ° C.), then the cap was opened and the reaction solution was taken out. When the reaction solution was analyzed by gas chromatography (FID detector), 3.5% by weight of diphenyl carbonate was obtained. Butylphenyl ether was below the detection limit. Chlorine was not detected from the reaction solution.

[比較例2]
(塩素を含む有機バナデートを触媒とするエステル交換反応)
比較例1で得られた有機バナデートを両端をスェージロックで固定可能な内径6mm、長さ50mmのSUS製チューブに2.2mg(バナジウム分が全液量の約1000ppmとなるような量)仕込み、さらにジブチルカーボネート0.65g(3.7ミリモル)、フェノール0.35g(3.7ミリモル)を仕込みスェージロックのキャップを締めて密栓した。温調器を備えたオイルバスの温度を220℃として、上記リアクターを浸漬して0.4時間反応させた。反応終了後、リアクターをオイルバスから取り出して放冷し、室温(約22℃)に冷却したのち、キャップをあけて反応液を取り出した。反応液をガスクロマトグラフィー(FID検知器)で分析したところブチルフェニルカーボネートが2.2重量%得られた。反応液からは塩素が検出された。
[Comparative Example 2]
(Transesterification reaction using organic vanadate containing chlorine as a catalyst)
The organic vanadate obtained in Comparative Example 1 was charged into an SUS tube having an inner diameter of 6 mm and a length of 50 mm capable of fixing both ends with a swage lock, and 2.2 mg (an amount such that the vanadium content was about 1000 ppm of the total liquid amount) 0.65 g (3.7 mmol) of dibutyl carbonate and 0.35 g (3.7 mmol) of phenol were charged, and the cap of Swagelok was tightened and sealed. The temperature of the oil bath provided with the temperature controller was 220 ° C., and the reactor was immersed and reacted for 0.4 hours. After completion of the reaction, the reactor was taken out from the oil bath, allowed to cool, cooled to room temperature (about 22 ° C.), then the cap was opened and the reaction solution was taken out. When the reaction solution was analyzed by gas chromatography (FID detector), 2.2% by weight of butylphenyl carbonate was obtained. Chlorine was detected from the reaction solution.

[比較例3]
(塩素を含む有機バナデートを触媒とする不均化反応)
両端をスェージロックで固定可能な内径6mm、長さ50mmのSUS製チューブにブチルフェニルカーボネート0.99g及び比較例1で合成した有機バナデート2.2mg(バナジウムとして全液量の約1000ppmとなるような量)を仕込み、スェージロックのキャップを締めて密栓した。温調器を備えたオイルバスの温度を220℃として、上記リアクターを浸漬して0.5時間反応させた。反応終了後、リアクターをオイルバスから取り出して放冷し、室温(約22℃)に冷却したのち、キャップをあけて反応液を取り出した。反応液をガスクロマトグラフィー(FID検知器)で分析したところジフェニルカーボネートが3重量%得られた。反応液からは塩素が検出された。
[Comparative Example 3]
(Disproportionation reaction catalyzed by organic vanadate containing chlorine)
A SUS tube having an inner diameter of 6 mm and a length of 50 mm that can be fixed with a swage lock at both ends, 0.99 g of butylphenyl carbonate and 2.2 mg of organic vanadate synthesized in Comparative Example 1 (amount that will be about 1000 ppm of the total liquid amount as vanadium) ), And the cap of the Swagelok was tightened and sealed. The temperature of the oil bath provided with the temperature controller was set to 220 ° C., and the reactor was immersed and reacted for 0.5 hour. After completion of the reaction, the reactor was taken out from the oil bath, allowed to cool, cooled to room temperature (about 22 ° C.), then the cap was opened and the reaction solution was taken out. When the reaction solution was analyzed by gas chromatography (FID detector), 3% by weight of diphenyl carbonate was obtained. Chlorine was detected from the reaction solution.

本発明によれば、酸化バナジウムとヒドロキシ化合物を反応させて、副生する水を含む低沸点化合物を留去することにより有機バナデートを製造する際に、有害な副生物が発生せず有機バナデートを製造することができる。   According to the present invention, when an organic vanadate is produced by reacting vanadium oxide with a hydroxy compound and distilling off a low-boiling compound containing water produced as a by-product, no harmful by-product is generated. Can be manufactured.

Claims (10)

少なくとも一つのバナジウム−酸素−炭素結合を有する有機バナデートの製造方法において、下記一般式(1)〜(4)から選ばれる少なくとも1種の酸化バナジウムと下記一般式(5)から選ばれる少なくとも1種のヒドロキシ化合物とを反応させることを特徴とする有機バナデートの製造方法。
Figure 2006335739
Figure 2006335739
(式中Rは、直鎖状または分岐状の炭素数1〜12のアルキル基、炭素数5〜12のシクロアルキル基、直鎖状または分岐状の炭素数2〜12のアルケニル基、無置換又は置換された炭素数6〜19のアリール及び直鎖状または分岐状の炭素数4〜14のアルキルと炭素数5〜14のシクロアルキルよりなる群から選ばれるアルキルからなる炭素数7〜20のアラルキル基、又は無置換又は置換された炭素数6〜20のアリール基を表し、xはアルコールの価数を表し1〜3の整数を表す。)
In the method for producing an organic vanadate having at least one vanadium-oxygen-carbon bond, at least one vanadium oxide selected from the following general formulas (1) to (4) and at least one selected from the following general formula (5) A process for producing an organic vanadate, which comprises reacting with a hydroxy compound.
Figure 2006335739
Figure 2006335739
(Wherein R 1 represents a linear or branched alkyl group having 1 to 12 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, a linear or branched alkenyl group having 2 to 12 carbon atoms, 7 to 20 carbon atoms composed of substituted or substituted aryl having 6 to 19 carbon atoms and linear or branched alkyl having 4 to 14 carbon atoms and alkyl selected from the group consisting of cycloalkyl having 5 to 14 carbon atoms And an unsubstituted or substituted aryl group having 6 to 20 carbon atoms, x represents the valence of alcohol and represents an integer of 1 to 3).
副生する水を含む低沸点化合物を除去することを特徴とする請求項1に記載の有機バナデートの製造方法。 2. The method for producing an organic vanadate according to claim 1, wherein low-boiling compounds containing by-product water are removed. ヒドロキシ化合物が水よりも沸点が高いことを特徴とする請求項1または2に記載の有機バナデートの製造方法。 The method for producing an organic vanadate according to claim 1 or 2, wherein the hydroxy compound has a boiling point higher than that of water. 副生する水を含む低沸点化合物の除去を、蒸留法によって行うことを特徴とする請求項2に記載の有機バナデートの製造方法。 The method for producing an organic vanadate according to claim 2, wherein the low-boiling compound containing water produced as a by-product is removed by a distillation method. 副生する水を含む低沸点化合物の除去を、水と共沸混合物を生成する成分を添加し、水を含む共沸混合物を含む低沸点化合物を蒸留することによって行うことを特徴とする請求項1〜4のいずれかに記載の有機バナデートの製造方法 The low-boiling compound containing water produced as a by-product is removed by adding a component that forms an azeotrope with water and distilling the low-boiling compound containing the azeotrope containing water. The manufacturing method of the organic vanadate in any one of 1-4 ヒドロキシ化合物が下記一般式(6)で表される芳香族ヒドロキシ化合物であることを特徴とする請求項1または2に記載の有機バナデートの製造方法。
Figure 2006335739
(式中、Ar1は炭素数6〜20の芳香族基を表す。)
The method for producing an organic vanadate according to claim 1 or 2, wherein the hydroxy compound is an aromatic hydroxy compound represented by the following general formula (6).
Figure 2006335739
(In the formula, Ar 1 represents an aromatic group having 6 to 20 carbon atoms.)
芳香族ヒドロキシ化合物がフェノールであることを特徴とする請求項6に記載の有機バナデートの製造方法。 The method for producing an organic vanadate according to claim 6, wherein the aromatic hydroxy compound is phenol. ヒドロキシ化合物の使用量が、酸化バナジウム中に含まれるバナジウム原子のモル量に対しての1〜500倍の範囲であることを特徴とする請求項1〜7のいずれかに記載の有機バナデートの製造方法。 The amount of the hydroxy compound used is in the range of 1 to 500 times the molar amount of vanadium atoms contained in the vanadium oxide, The production of organic vanadate according to any one of claims 1 to 7 Method. 反応温度が45〜300℃の範囲であることを特徴とする請求項1〜8のいずれかに記載の有機バナデートの製造方法。 The method for producing an organic vanadate according to any one of claims 1 to 8, wherein the reaction temperature is in the range of 45 to 300 ° C. 酸化バナジウムがVであることを特徴とする請求項1〜9のいずれかに記載の有機バナデートの製造方法。 Method of manufacturing an organic vanadate according to any one of claims 1 to 9, wherein the vanadium oxide is V 2 O 5.
JP2005165140A 2005-06-06 2005-06-06 Method for producing organovanadate Pending JP2006335739A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005165140A JP2006335739A (en) 2005-06-06 2005-06-06 Method for producing organovanadate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005165140A JP2006335739A (en) 2005-06-06 2005-06-06 Method for producing organovanadate

Publications (1)

Publication Number Publication Date
JP2006335739A true JP2006335739A (en) 2006-12-14

Family

ID=37556594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005165140A Pending JP2006335739A (en) 2005-06-06 2005-06-06 Method for producing organovanadate

Country Status (1)

Country Link
JP (1) JP2006335739A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024891A1 (en) 2012-08-10 2014-02-13 旭硝子株式会社 Method for producing carbonate compound and method for producing aromatic polycarbonate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024891A1 (en) 2012-08-10 2014-02-13 旭硝子株式会社 Method for producing carbonate compound and method for producing aromatic polycarbonate

Similar Documents

Publication Publication Date Title
Gu et al. Highly efficient synthesis of alkyl N-arylcarbamates from CO2, anilines, and branched alcohols with a catalyst system of CeO2 and 2-cyanopyridine
KR100371044B1 (en) Manufacturing Method of Diaryl Carbonate
JP5026727B2 (en) Method for producing high purity cyanate ester
Bigdeli et al. Wet 2, 4, 6-trichloro [1, 3, 5] triazine (TCT) an efficient catalyst for synthesis of α, α′-bis (substituted-benzylidene) cycloalkanones under solvent-free conditions
SA518400514B1 (en) Method for producing aromatic nitrile compound and method for producing carbonate ester
Matsui et al. New cumene-oxidation systems: O2 activator effects and radical stabilizer effects
Baj et al. Synthesis of dialkyl peroxides in the presence of polymer-supported phase-transfer catalysts
Jung et al. Facile synthesis of (η5-Ph4C4COH)(CO) 2RuCl and catalytic oxidation of alcohols with chloroform
Lehtinen et al. Factors affecting the selectivity of air oxidation of 2-ethyhexanal, an α-branched aliphatic aldehyde
JP2006335739A (en) Method for producing organovanadate
Niu et al. Transesterification of dimethyl carbonate and phenol to diphenyl carbonate catalyzed by samarium diiodide
JP3349542B2 (en) Stabilization of rhodium compounds
Duris et al. Lanthanide bis (trifluoromethylsulfonyl) amides vs. trifluoromethylsulfonates as catalysts for Friedel–Crafts acylations
WO2012176930A1 (en) Process for producing carboxylic acid ester
Li et al. Scalable Sn-catalyzed regioselective allylation of 1-methyl-L-α-rhamnopyranoside
TWI641588B (en) Method for producing carbonate compound and methacrylic acid or ester thereof
KR20140004651A (en) Nitrous oxide-containing ionic liquids as chemical reagents
JP2006342136A (en) Method for producing dialkyl carbonate together with alkylene glycol
US9604896B2 (en) Halogen-free catalyst system and method for producing benzoic acid
Mori et al. InCl3-catalyzed reductive coupling of aromatic carbonyl compounds in the presence of magnesium and chlorotrimethylsilane
Chen et al. Co-solvent intensification effect on aromatic alcohol oxidation
KR970000485B1 (en) Process for the preparation of 2-(dialkyloxy)carboxylic acid esters
JP2008247771A (en) Method for producing dihydroxy aromatic compound
RU2697419C2 (en) Method of producing alcohol and/or ketone
JP2757050B2 (en) Method for producing 2-alkyl-4,5,6-trialkoxyphenol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090831