JP2006334365A - Blood-pressure measurement method and blood-pressure measurement device - Google Patents

Blood-pressure measurement method and blood-pressure measurement device Download PDF

Info

Publication number
JP2006334365A
JP2006334365A JP2005192762A JP2005192762A JP2006334365A JP 2006334365 A JP2006334365 A JP 2006334365A JP 2005192762 A JP2005192762 A JP 2005192762A JP 2005192762 A JP2005192762 A JP 2005192762A JP 2006334365 A JP2006334365 A JP 2006334365A
Authority
JP
Japan
Prior art keywords
blood pressure
biological signal
intensity
heartbeat
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005192762A
Other languages
Japanese (ja)
Inventor
Arata Nemoto
新 根本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cb System Kaihatsu Kk
Original Assignee
Cb System Kaihatsu Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cb System Kaihatsu Kk filed Critical Cb System Kaihatsu Kk
Priority to JP2005192762A priority Critical patent/JP2006334365A/en
Publication of JP2006334365A publication Critical patent/JP2006334365A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blood-pressure measurement method which detects biosignals by installing a biosignal-detecting means under a body of a subject in a recumbent position, calculates intensity of heartbeat signals by extracting the heartbeat signals from the detected biosignals, and estimates the blood pressure of the subject from the resulting heartbeat intensity signals. <P>SOLUTION: A blood-pressure measurement device comprises: the biosignal-detecting means having a biosignal-detecting part under the body of the subject in the recumbent position; a heartbeat signal-extracting means which extracts the heartbeat signals from the biosignals detected by the biosignal-detecting means; a heartbeat intensity-calculating means which calculates the intensity of the heartbeat signals; a blood-pressure-calculating means which estimates the blood-pressure of the subject from the heartbeat intensity signals. The blood-pressure-calculating means is a blood-pressure measurement device which calculates the blood-pressure from a variation of the blood-pressure based on the value of the heartbeat intensity obtained by the heartbeat intensity-calculating means and from a standard value of blood-pressure which is previously calculated. Additionally, in the blood-pressure measurement device, change of the intensity is reduced by the lying position in which the biosignal-detecting means is installed mainly under the buttocks of the subject. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、無侵襲で血圧を計測することができるとともに、連続的に血圧を計測することが可能な血圧計測方法及び血圧計測装置に関する。  The present invention relates to a blood pressure measurement method and a blood pressure measurement device capable of measuring blood pressure non-invasively and capable of continuously measuring blood pressure.

血圧を計測する方法として、上腕部に空気圧カフを巻きつけ、エアーポンプを用いてカフの圧力を制御することにより、動脈の状態変化を観測して最高血圧および最低血圧を知る方法が知られている。  As a method of measuring blood pressure, a method is known in which a pneumatic cuff is wrapped around the upper arm and the pressure of the cuff is controlled using an air pump to observe the changes in the state of the arteries to know the maximum blood pressure and the minimum blood pressure. Yes.

このカフを用いる方法は、血圧を計測する方法として一般的に採用されており、臨床的にも信頼が高いが、被験者の身体を拘束する必要があり、かつ連続的に自動で計測することが出来ないために、睡眠時あるいは横臥時の被験者の血圧を監視するのに用いる装置としては適切ではない。  This method using a cuff is generally adopted as a method for measuring blood pressure and is clinically reliable. However, it is necessary to restrain the subject's body and continuously and automatically measure the blood pressure. Since it cannot be performed, it is not suitable as a device for monitoring the blood pressure of a subject during sleep or lying.

一方、カフを用いない方法としては、脈動検出センサを被験者の心臓に近い身体表面に貼り付け、心臓が発生させる脈派をこの脈動検出センサで検出し、この測定データから血圧を演算する方法が知られているが、脈動検出センサで検出されるのは、心臓を駆動する筋電流であり、必ずしも血圧の変動と一致するわけではない。事実、心因性の要因等で血圧が変動する場合などには、筋電流の変動と血圧の変動とは対応しないという現象が起きる。  On the other hand, as a method not using a cuff, there is a method in which a pulsation detection sensor is attached to a body surface close to a subject's heart, a pulsation generated by the heart is detected by the pulsation detection sensor, and blood pressure is calculated from the measurement data. As is known, a pulsation detection sensor detects a muscle current that drives the heart, and does not necessarily coincide with a change in blood pressure. In fact, when blood pressure fluctuates due to a psychogenic factor or the like, a phenomenon occurs in which muscle current fluctuation does not correspond to blood pressure fluctuation.

さらに、被験者の身体に脈動検出センサを貼り付けられた状態は快適とは言えず、脈動検出センサの信号伝送のリード線は睡眠を妨げる原因ともなり、日常的に用いることは難しい。  Furthermore, it cannot be said that the state in which the pulsation detection sensor is attached to the body of the subject is comfortable, and the signal transmission lead of the pulsation detection sensor also causes sleep disturbance and is difficult to use on a daily basis.

また、手首に脈派検出手段を装着して脈派を検出し、この脈派から血圧を演算する方法も知られているが、手首は心臓の場所から離れているために心臓で発生する心拍の変化波形からは変形した波形となっており、この波形データから血圧を演算するのは適当とは言えない。また、被験者が装着するのを忘れることもあり、その場合には血圧データ測定を行うことができないという不具合が発生する。  There is also known a method of detecting a pulse group by attaching a pulse group detection means to the wrist and calculating blood pressure from this pulse group. However, since the wrist is away from the heart location, the heart rate generated in the heart is also known. The waveform is a deformed waveform, and it is not appropriate to calculate the blood pressure from this waveform data. In addition, the subject may forget to wear it, and in this case, a problem that blood pressure data cannot be measured occurs.

このように、横臥時及び睡眠中の被験者の血圧の変化を連続的に計測しようとすると、従来の血圧計測装置では、被験者に身体的負担をかけるものであり、さらに毎日確実に血圧データを得ることが出来ないという問題点があり、上記の要求に対応することができない。  Thus, when trying to continuously measure changes in the blood pressure of a subject while lying down and sleeping, the conventional blood pressure measurement device places a physical burden on the subject, and more reliably obtains blood pressure data every day. There is a problem that it cannot be done, and it is impossible to meet the above requirements.

本発明は、上記問題点を鑑み、被験者の就寝中の血圧の測定を無侵襲でかつ連続的に行うことができるとともに、通常の生活の中において被験者に負担をかけることなく血圧を計測することができる血圧計測方法及び血圧計測装置を提供することを目的とする。  In view of the above-described problems, the present invention can measure blood pressure during sleep of a subject non-invasively and continuously, and measure blood pressure without placing a burden on the subject in normal life. An object of the present invention is to provide a blood pressure measurement method and a blood pressure measurement device capable of performing the above.

上記目的を達成するために、本発明の第1の解決手段の血圧計測方法は、横臥した被験者の身体の下に生体信号検出手段を配置して生体信号を検出し、検出された生体信号から心拍信号を抽出してその心拍信号の強度を演算し、得られた心拍強度信号から被験者の血圧を求めている。  In order to achieve the above object, the blood pressure measurement method according to the first solving means of the present invention detects a biological signal by disposing a biological signal detecting means under the body of a lying subject, and from the detected biological signal. The heartbeat signal is extracted, the intensity of the heartbeat signal is calculated, and the blood pressure of the subject is obtained from the obtained heartbeat intensity signal.

上記の第1の解決手段によれば、被験者の身体の下に配置した検出手段により生体信号を検出し、この生体信号データから心拍信号を抽出し、その心拍信号の強度から血圧を演算するので、被験者は生体信号検出手段を身体の下、実際的には被験者の横臥する寝具の下に敷いているだけで、血圧を計測することが可能になる。即ち、被験者の身体を拘束しないで被験者の血圧を計測することができる。  According to the first solution means, the biological signal is detected by the detection means arranged under the body of the subject, the heartbeat signal is extracted from the biological signal data, and the blood pressure is calculated from the intensity of the heartbeat signal. The test subject can measure the blood pressure only by placing the biological signal detection means under the body, actually under the bedding lying on the subject's side. That is, the blood pressure of the subject can be measured without restraining the subject's body.

また、本発明の血圧計測方法で検出する生体信号は、被験者の生命活動に基づいて発生する振動を検出しているため、心臓のポンプ機能に基づく弁の開閉による、圧力の変化が振動となって生体信号の一部として検出されている。ここで、心拍信号成分を抽出することは、とりも直さず血圧に対応する振動を検出することになる。即ち生体信号から抽出された信号強度は、血圧と強い相関性を持っていると見做すことができるために精度の高い血圧測定が実現できる。  Moreover, since the biological signal detected by the blood pressure measurement method of the present invention detects vibration generated based on the life activity of the subject, a change in pressure due to opening and closing of the valve based on the heart pump function becomes vibration. And detected as part of the biological signal. Here, extracting the heartbeat signal component does not fix the vibration but detects the vibration corresponding to the blood pressure. That is, since the signal intensity extracted from the biological signal can be regarded as having a strong correlation with the blood pressure, a highly accurate blood pressure measurement can be realized.

本発明の第2の解決手段は、第1の解決手段の血圧計測方法であって、心拍強度信号から血圧変動値を導き、予め求められていた基準血圧値を用いて血圧値を算出することを特徴としている。  The second solving means of the present invention is the blood pressure measurement method of the first solving means, wherein a blood pressure fluctuation value is derived from a heartbeat intensity signal, and a blood pressure value is calculated using a reference blood pressure value obtained in advance. It is characterized by.

上記の第2の解決手段によれば、測定開始時に校正用の血圧計で基準となる血圧の値を計測し、この値を用いることにより正確な血圧の値を得ることができる。  According to the second solving means, an accurate blood pressure value can be obtained by measuring a blood pressure value serving as a reference with a calibration sphygmomanometer at the start of measurement and using this value.

本発明の第3の解決手段は、第1の解決手段の血圧計測方法であって、前記生体信号検出手段は、微差圧センサと生体信号検出部とからなり、生体信号検出部の内部に収容されている空気の圧力変化を微差圧センサでもって検出することにより生体信号を検出する。  A third solving means of the present invention is the blood pressure measuring method of the first solving means, wherein the biological signal detecting means is composed of a slight differential pressure sensor and a biological signal detecting section, and is provided inside the biological signal detecting section. A biological signal is detected by detecting a change in the pressure of the accommodated air with a differential pressure sensor.

本発明の第4の解決手段は、血圧計測装置であって、横臥した被験者の身体の下に生体信号検出部を配置した生体信号検出手段と、前記生体信号検出手段によって検出された生体信号から心拍信号を抽出する心拍信号抽出手段と、前記心拍信号の強度を演算する心拍強度演算手段と、心拍強度信号から被験者の血圧を求める血圧算出手段とからなることを特徴とする。  The fourth solving means of the present invention is a blood pressure measurement device, comprising: a biological signal detection means having a biological signal detection unit disposed under the body of a lying subject, and a biological signal detected by the biological signal detection means. It comprises a heartbeat signal extracting means for extracting a heartbeat signal, a heartbeat intensity calculating means for calculating the intensity of the heartbeat signal, and a blood pressure calculating means for obtaining a blood pressure of the subject from the heartbeat intensity signal.

本発明の第5の解決手段は、第4の解決手段の血圧計測装置であって、前記血圧算出手段は、心拍強度演算手段によって得られた心拍強度の値から導かれた血圧変動値と、予め求められていた基準血圧値とから血圧値を算出することを特徴とする。  A fifth solving means of the present invention is the blood pressure measuring device of the fourth solving means, wherein the blood pressure calculating means includes a blood pressure fluctuation value derived from the value of the heart rate intensity obtained by the heart rate intensity calculating means, A blood pressure value is calculated from a reference blood pressure value obtained in advance.

本発明の第6の解決手段は、第4の解決手段の血圧計測装置であって、前記生体信号検出手段は、微差圧センサと生体信号検出部とからなることを特徴とする。  The sixth solving means of the present invention is the blood pressure measurement device of the fourth solving means, wherein the biological signal detecting means comprises a slight differential pressure sensor and a biological signal detecting unit.

本発明の第7の解決手段は、第6の解決手段の血圧計測装置であって、前記生体信号検出手段の生体信号検出部は、弾性を有する中空のチューブであることを特徴としており、中空のチューブ内の圧力変化を微差圧センサで検出することにより生体信号を検出する。  A seventh solution of the present invention is the blood pressure measurement device of the sixth solution, wherein the biological signal detector of the biological signal detector is a hollow tube having elasticity, A biological signal is detected by detecting a pressure change in the tube with a slight differential pressure sensor.

本発明の第8の解決手段は、第6の解決手段の血圧計測装置であって、前記生体信号検出手段の生体信号検出部は、内部に空気を充填したマットであることを特徴としており、マット内の圧力変化を微差圧センサで検出することにより生体信号を検出する。  The eighth solution of the present invention is the blood pressure measurement device of the sixth solution, characterized in that the biological signal detector of the biological signal detector is a mat filled with air inside, A biological signal is detected by detecting a pressure change in the mat with a slight differential pressure sensor.

本発明の第9の解決手段は、第4の解決手段の血圧計測装置であって、前記生体信号検出手段を主として被験者の臀部の下に配置したことを特徴としており、被験者の横臥する姿勢(上向き、横向き等)に、心拍強度の変化はほとんどないか、僅かであるため、姿勢等を測定して、その補正も出来る。  A ninth solution means of the present invention is the blood pressure measurement device according to the fourth solution means, characterized in that the biological signal detection means is mainly arranged under the subject's buttocks, and the subject's lying posture ( (Upward, horizontal, etc.), there is little or no change in the heart rate intensity, so the posture can be measured and corrected.

本発明の第10の解決手段は、第4の解決手段の血圧計測装置であって、前記心拍強度演算手段は、心拍信号に一定に制御を施した際の制御ゲインの値から信号強度を演算することを特徴とする。  The tenth solving means of the present invention is the blood pressure measurement device of the fourth solving means, wherein the heart rate intensity calculating means calculates the signal intensity from the value of the control gain when the heartbeat signal is controlled to be constant. It is characterized by doing.

上述したように本発明の血圧計測装置は、被験者の身体の下に配置した検出手段により生体信号を検出し、この検出した生体信号を演算処理することにより、血圧値を無侵襲で計測することを実現するものであり、心臓のポンプ機能に基づく圧力の変化が振動となって生体信号の一部として検出されているので、生体信号から抽出された信号強度は血圧の値と強い相関性を持ち、精度の高い血圧測定が実現できる。  As described above, the blood pressure measurement device of the present invention measures a blood pressure value in a non-invasive manner by detecting a biological signal by a detection unit disposed under the body of the subject and performing arithmetic processing on the detected biological signal. Since the change in pressure based on the pump function of the heart becomes vibration and is detected as part of the biological signal, the signal intensity extracted from the biological signal has a strong correlation with the blood pressure value. A highly accurate blood pressure measurement can be realized.

さらに、検出手段は横臥中あるいは就寝中の被験者の身体の下に寝具と一緒に敷かれ、被験者の身体を拘束することなく血圧値が計測されるとともに、連続的に血圧が計測されることで、横臥中あるいは就寝中の被験者の身体の状態の変化あるいは異常を検出することが可能となる。  Furthermore, the detection means is laid together with bedding under the body of the subject lying down or sleeping, and the blood pressure value is measured without restraining the subject's body, and the blood pressure is continuously measured. It becomes possible to detect a change or abnormality in the body condition of the subject lying on his or her side or sleeping.

発明の実施するための最良の形態BEST MODE FOR CARRYING OUT THE INVENTION

図1(a)は、本発明の血圧値計測を実施する実施例の工程を示すブロック図であり、図1(b)は、図1(a)において矢視方向から見た一部断面図である。図1に示す生体信号検出手段1は、被験者の微細な生体信号を検出する無侵襲センサであり、信号増幅整形手段2において、後の処理工程で処理できるように生体検出手段1で検出された信号を増幅し、呼吸などの不要な信号をバンドパスフィルターなどにより除去する。  Fig.1 (a) is a block diagram which shows the process of the Example which implements the blood-pressure value measurement of this invention, FIG.1 (b) is partial sectional drawing seen from the arrow direction in Fig.1 (a). It is. The biological signal detection means 1 shown in FIG. 1 is a non-invasive sensor that detects a minute biological signal of a subject, and is detected by the biological detection means 1 in the signal amplification shaping means 2 so that it can be processed in a later processing step. The signal is amplified and unnecessary signals such as respiration are removed by a band pass filter or the like.

生体信号検出手段1は圧力検出チューブ1aと圧力セン微差圧センサ1bとからなり、無侵襲な生体信号の検出手段を構成している。微差圧センサ1bは、微小な圧力の変動を検出するセンサであり、本実施例では、低周波用のコンデンサマイクロホンタイプを使用するが、これに限るものではなく、適切な分解能とダイナミックレンジを有するものであればよい。  The biological signal detection means 1 includes a pressure detection tube 1a and a pressure sensor slight differential pressure sensor 1b, and constitutes a non-invasive biological signal detection means. The fine differential pressure sensor 1b is a sensor that detects minute pressure fluctuations. In this embodiment, a low-frequency condenser microphone type is used. However, the present invention is not limited to this, and an appropriate resolution and dynamic range can be obtained. What is necessary is just to have.

本実施例で使用した低周波用のコンデンサマイクロフォンは、一般の音響用マイクロフォンが低周波領域に対して配慮されていないのに引き替え、受圧面の後方にチャンバーを設けることによって低周波領域の特性を大幅に向上させたものであり、圧力検出チューブ1b内の微小圧力変動を検出するのに好適なものである。また、微小な差圧を計測するのに優れており、0.2Paの分解能と約50Paのダイナミックレンジを有し、通常使用されるセラミックを利用した微差圧センサと比較して数倍の性能を持つものであり、生体信号が体表面に通して圧力検出チューブ1aに加えた微小な圧力を検出するのに好適なものである。また周波数特性は0.1Hz〜20Hzの間でほぼ平坦な出力値を示し、心拍および呼吸数等の微少な生体信号を検出するのに適している。  The low-frequency condenser microphone used in this example is replaced with a general acoustic microphone that does not consider the low-frequency area. This is a significant improvement and is suitable for detecting minute pressure fluctuations in the pressure detection tube 1b. In addition, it is excellent for measuring minute differential pressure, has a resolution of 0.2 Pa and a dynamic range of about 50 Pa, and is several times the performance of a fine differential pressure sensor using a ceramic that is normally used. It is suitable for detecting a minute pressure applied to the pressure detection tube 1a through a biological signal passing through the body surface. The frequency characteristic shows an almost flat output value between 0.1 Hz and 20 Hz, and is suitable for detecting minute biological signals such as heartbeat and respiration rate.

圧力検出チューブ1aは、生体信号の圧力変動範囲に対応して内部の圧力が変動するように適度の弾力を有するものを使用する。また圧力変化を適切な応答速度で微差圧センサ1bに伝達するためにチューブの中空部の容積を適切に選ぶ必要がある。圧力検出チューブ1aが適度な弾性と中空部容積を同時に満足できない場合には、圧力検出チューブ1aの中空部に適切な太さの芯線をチューブ長さ全体にわたって装填し、中空部の容積を適切にとることができる。  As the pressure detection tube 1a, a tube having an appropriate elasticity is used so that the internal pressure varies in accordance with the pressure variation range of the biological signal. Further, in order to transmit the pressure change to the fine differential pressure sensor 1b at an appropriate response speed, it is necessary to appropriately select the volume of the hollow portion of the tube. When the pressure detection tube 1a cannot satisfy the appropriate elasticity and the volume of the hollow portion at the same time, the hollow portion of the pressure detection tube 1a is loaded with a core wire having an appropriate thickness over the entire length of the tube so that the volume of the hollow portion is appropriately set. Can take.

圧力検出チューブ1aは寝台7上に敷かれた硬質シート8の上に配置され、その上に弾性を有するクッションシート9が敷かれており、圧力検出チューブ1aの上は被験者が横臥することになる。なお、圧力検出チューブ1aは、クッションシート9などに組み込んだ構成にすることにより、圧力検出チューブ1aの位置を安定させる構造としてもよい。  The pressure detection tube 1a is arranged on a hard sheet 8 laid on the bed 7, and a cushion sheet 9 having elasticity is laid on the pressure detection tube 1a, and the subject lies on the pressure detection tube 1a. . In addition, the pressure detection tube 1a may be configured to stabilize the position of the pressure detection tube 1a by being incorporated in the cushion sheet 9 or the like.

本実施例では、2組の圧力検出チューブ1aが設けられており、一方が被験者の胸部の部位の生体信号を検出し、他方が被験者の臀部の部位を検出することで、被験者の就寝の姿勢に関わらず生体信号を検出するように構成されているが、臀部の部位のみ圧力検出チューブ1aを配置する構成としてもよい。  In the present embodiment, two sets of pressure detection tubes 1a are provided, one of which detects a biological signal of a part of the subject's chest and the other of which detects a part of the subject's buttocks, so that the subject's sleeping posture Regardless of the configuration, it is configured to detect a biological signal, but the pressure detection tube 1a may be disposed only in the region of the buttocks.

生体信号検出手段1によって検出された生体信号は、人の体から発する様々な振動が混ざりあった信号であり,その中に心拍信号を始めとして呼吸信号や寝返り等の信号が含まれている。上記の心拍信号は、心臓のポンプ機能に基づく圧力の変化(即ち血圧)が振動となって生体信号の一部として検出されているものであり、生体信号から心拍信号成分を抽出することは、とりも直さず血圧に相当する振動を検出することになる。そこで本発明では、血圧値と高い相関を有する心拍信号を抽出する。  The biological signal detected by the biological signal detection means 1 is a signal in which various vibrations emitted from a human body are mixed, and includes a heartbeat signal, a respiratory signal, a wake-up signal, and the like. The above heart rate signal is detected as a part of the biological signal in which a change in pressure based on the pump function of the heart (that is, blood pressure) is detected as a vibration. In any case, vibration corresponding to blood pressure is detected. Therefore, in the present invention, a heartbeat signal having a high correlation with the blood pressure value is extracted.

自動利得制御手段3は、信号増幅整形手段2の出力を所定の信号レベルの範囲に入るように自動的にゲイン制御を行ういわゆるAGC回路であり、この際のゲインの値(係数)を信号強度演算手段4に出力する。ゲイン制御は、例えば信号のピーク値が上限閾値を超えた場合に出力信号の振幅が小さくなるようにゲインを設定し、ピーク値が下限閾値を下回った場合に振幅が大きくなるようにゲインを設定している。  The automatic gain control means 3 is a so-called AGC circuit that automatically performs gain control so that the output of the signal amplification shaping means 2 falls within a predetermined signal level range. The gain value (coefficient) at this time is used as the signal strength. Output to the arithmetic means 4. For gain control, for example, the gain is set so that the amplitude of the output signal decreases when the peak value of the signal exceeds the upper threshold, and the gain is increased so that the amplitude increases when the peak value falls below the lower threshold. is doing.

信号強度演算手段4は、自動利得制御手段3において生体信号に対して施したゲイン制御の係数から信号の強度を演算する。上述のAGC回路から得られるゲインの値は信号の大きさが大なるときには小さく、また信号の大きさが小なるときは大きく設定されるために、ゲインの値を用いて信号強度を示すには、ゲインの値と反比例するように信号強度を示す関数を設定するようにするのがよい。  The signal strength calculation means 4 calculates the signal strength from the gain control coefficient applied to the biological signal in the automatic gain control means 3. The gain value obtained from the above AGC circuit is set to be small when the signal size is large and large when the signal size is small. It is preferable to set a function indicating the signal intensity so as to be inversely proportional to the gain value.

血圧値演算手段5は、信号強度演算手段4で得られた心拍信号強度から血圧値を演算する。心拍強度のデータから導かれるのは、血圧の変動値であるので、予め測定されている血圧データと比較校正することで、血圧値が得られる。血圧値演算手段5において血圧値の演算は繰り返しかつ連続的に実行され、所定時間間隔で血圧値が出力・記録手段6に出力される。  The blood pressure value calculation means 5 calculates a blood pressure value from the heart rate signal intensity obtained by the signal intensity calculation means 4. Since the fluctuation value of the blood pressure is derived from the heart rate intensity data, the blood pressure value can be obtained by comparing and calibrating the blood pressure data measured in advance. The blood pressure value calculation means 5 repeatedly and continuously executes the blood pressure value calculation, and outputs the blood pressure value to the output / recording means 6 at predetermined time intervals.

出力・記録手段6は測定された血圧値のモニタなどの出力装置へ出力あるいは血圧値のデータの保管を制御する手段である。  The output / recording means 6 is means for controlling output to an output device such as a monitor of the measured blood pressure value or storage of blood pressure value data.

生体信号検出手段として中空のチューブを用いた例を説明したが、図2に示すエアマットを検出手段として用いてもよい。ここで、生体信号検出手段10aは内部に空気を封入したエアマットであり、その一端にエアチューブ10bが接続され、微差圧センサ10cに接続される。微差圧センサは、中空のチューブを用いた生体信号検出手段の場合で説明したものと同じものを用いることができる。  Although an example in which a hollow tube is used as the biological signal detection means has been described, the air mat shown in FIG. 2 may be used as the detection means. Here, the biological signal detection means 10a is an air mat in which air is enclosed, and an air tube 10b is connected to one end of the air signal detection means 10a, and is connected to the fine differential pressure sensor 10c. The same differential pressure sensor as that described in the case of the biological signal detecting means using a hollow tube can be used.

次に図3に示す血圧値演算手段5が実行する血圧値の算出手順の第1の実施例について説明する。まず強度演算手段4で得られた心拍信号強度信号を取込み、心拍強度信号のピーク値を検出する。次いで心拍強度信号のピーク値の移動平均を求め、この値を血圧変動値パラメータPとする。  Next, a first embodiment of a blood pressure value calculation procedure executed by the blood pressure value calculation means 5 shown in FIG. 3 will be described. First, the heart rate signal intensity signal obtained by the intensity calculating means 4 is taken in, and the peak value of the heart rate intensity signal is detected. Next, a moving average of peak values of the heart rate intensity signal is obtained, and this value is set as a blood pressure fluctuation value parameter P.

測定開始時に別の血圧測定手段で測定した血圧値を取込み、この値に所定係数を乗じた基準値Tを定め、次式を用いて最高血圧値および最低血圧値を求める。
最高血圧 =α・P +T (A)
最低血圧 =β・P +T (B)
ここで、αおよびβはそれぞれ、最高血圧および最低血圧を算出するための実験的に求められた血圧値誘導係数である。
A blood pressure value measured by another blood pressure measuring means at the start of measurement is taken, a reference value T obtained by multiplying this value by a predetermined coefficient is determined, and a maximum blood pressure value and a minimum blood pressure value are obtained using the following equations.
Systolic blood pressure = α · P + T (A)
Diastolic blood pressure = β · P + T (B)
Here, α and β are blood pressure value induction coefficients obtained experimentally for calculating the maximum blood pressure and the minimum blood pressure, respectively.

図3の処理は、血圧値演算手段5において繰り返し連続的に実行され、所定時間間隔で血圧値が出力・記録手段6に出力される。  The processing of FIG. 3 is repeatedly and continuously executed by the blood pressure value calculation means 5, and blood pressure values are output to the output / recording means 6 at predetermined time intervals.

図4は、血圧値演算手段5における血圧値の算出手順について第2の実施例を示すものである。まず強度演算手段4で得られた心拍信号強度信号を取込み、心拍強度信号のピーク値を検出する。次いで心拍強度信号のピーク値の移動平均を求め、この値を血圧変動値パラメータPとし、さらに測定開始時に別の血圧測定手段で測定した血圧値を取込む。  FIG. 4 shows a second embodiment of the blood pressure value calculation procedure in the blood pressure value calculation means 5. First, the heart rate signal intensity signal obtained by the intensity calculating means 4 is taken in, and the peak value of the heart rate intensity signal is detected. Next, a moving average of the peak values of the heart rate intensity signal is obtained, this value is used as the blood pressure fluctuation value parameter P, and the blood pressure value measured by another blood pressure measuring means at the start of measurement is taken in.

一方、取込んだ心拍信号強度信号について、別途その分散値を算出する。即ちある時刻において、その時刻までの一定時間にサンプリングしたデータのばらつきを示す指標を分散値とし、算出した分散値を用いて血圧値誘導係数の補正係数を算出する。分散値として標準偏差を用いてもよい。  On the other hand, the variance value is separately calculated for the captured heartbeat signal intensity signal. That is, at a certain time, an index indicating variation in data sampled for a certain time until that time is used as a variance value, and a correction coefficient for the blood pressure value induction coefficient is calculated using the calculated variance value. A standard deviation may be used as the variance value.

この補正は、被験者となる個体の年齢差などにより、心拍強度と血圧値との関係が異なる場合を配慮して行うものであり、所定の血圧誘導係数αおよびβに対して乗算した値を新たな血圧誘導係数αおよびβとする。  This correction is performed in consideration of the case where the relationship between the heart rate intensity and the blood pressure value differs depending on the age difference of the individuals who are subjects, and a new value obtained by multiplying the predetermined blood pressure induction coefficients α and β is newly added. Blood pressure induction coefficients α and β.

第1の実施例と同様にして(A)および(B)の式から最高血圧値および最低血圧値を求める。  As in the first embodiment, the systolic blood pressure value and the diastolic blood pressure value are obtained from the expressions (A) and (B).

校正データの取込みに用いる血圧計は、本発明の血圧計測装置に対してオンラインで血圧データを取り込めるものが望ましいが、測定開始時に測定を行い、手入力で血圧値を入力する方法でもよい。  The sphygmomanometer used for taking calibration data is preferably one that can take blood pressure data online with respect to the blood pressure measuring device of the present invention, but it may be a method in which measurement is performed at the start of measurement and blood pressure values are inputted manually.

上記の実施例では、信号強度信号のピーク値に注目して血圧値を算出するパラメータとしたが、これに限るものではなく、信号強度信号の他の特徴指標、例えば一定時間内の最大振幅値などをパラメータとすることができる。  In the above embodiment, the blood pressure value is calculated by paying attention to the peak value of the signal intensity signal. However, the present invention is not limited to this, but other characteristic indicators of the signal intensity signal, for example, the maximum amplitude value within a certain time Etc. can be used as parameters.

また、心拍強度の分散値(ばらつき指数)を算出し、この値を使用して血圧値を算出するためのパラメータを求めてもよい。即ち、心拍強度信号からさらに心拍強度の分散値を求めて、このデータから血圧値を算出するためのパラメータを導く方法を採用してもよい。  Alternatively, a dispersion value (variation index) of heart rate intensity may be calculated, and a parameter for calculating a blood pressure value may be obtained using this value. In other words, a method may be employed in which a variance value of the heart rate intensity is further obtained from the heart rate intensity signal, and a parameter for calculating the blood pressure value is derived from this data.

上腕部にカフを装着して血圧を測定する装置は、言うまでもなく睡眠時に用いることはできない。また、脈動検出センサを被験者の心臓に近い身体表面に貼り付けて心臓が発生させる脈派を検出して血圧を計測する装置は、脈動検出センサを身体に貼り付けられた状態で計測が行われるために快適な状態とは言えず、睡眠時に日常的に用いることは困難である。さらに、手首に脈派検出手段を装着して血圧を計測する装置も提案されているが、睡眠時には邪魔なものであり、被験者が装着するのを忘れれば、血圧測定データが得られないという不具合が発生する。  Needless to say, a device that measures blood pressure by wearing a cuff on the upper arm cannot be used during sleep. Further, an apparatus that measures a blood pressure by detecting a pulsation generated by the heart by attaching a pulsation detection sensor to a body surface close to the subject's heart is measured with the pulsation detection sensor attached to the body. Therefore, it cannot be said that it is a comfortable state, and it is difficult to use it on a daily basis during sleep. Furthermore, an apparatus for measuring blood pressure by attaching a pulse group detection means to the wrist has been proposed, but it is an obstacle during sleep, and blood pressure measurement data cannot be obtained if the subject forgets to wear it. A malfunction occurs.

本発明の血圧計測装置は、就寝する寝具と一緒に被験者の身体の下に敷くだけであり、睡眠を妨げるものではない。その結果、被験者には安眠を保証した上で被験者の血圧の変動を一晩中記録することができる。また、単に横臥している場合でも血圧の計測は可能であり、寝たきりに近い状態の患者にも適用することができる。このことは、例えば老齢者あるいは病人等の身体に不調を抱える人の就寝中あるいは横臥中の血圧を監視することができるので、被験者に異常があった際に警報を発することにより、介護する人の負担を軽減することが可能となるとともに、被験者の健康管理に大いに寄与するものである。  The blood pressure measurement device of the present invention is only laid under the subject's body together with the bedclothes to sleep, and does not disturb sleep. As a result, it is possible to record the fluctuation of the blood pressure of the subject all night while assuring the subject to sleep. Moreover, blood pressure can be measured even when lying down, and it can be applied to a patient who is almost bedridden. This is because, for example, the blood pressure during sleeping or lying on the side of a person who has an upset condition such as an elderly person or a sick person can be monitored. It is possible to reduce the burden on the subject and greatly contribute to the health management of the subject.

本発明の血圧計測装置における血圧測定を行う作業の流れを示すブロック図である。  It is a block diagram which shows the flow of the operation | work which performs the blood-pressure measurement in the blood-pressure measuring device of this invention. 別の生体信号検出手段を示す平面図である。  It is a top view which shows another biological signal detection means. 血圧値を算出する第1の実施例の手順を示すフロー図である。  It is a flowchart which shows the procedure of the 1st Example which calculates a blood-pressure value. 血圧値を算出する第2の実施例の手順を示すフロー図である。  It is a flowchart which shows the procedure of the 2nd Example which calculates a blood pressure value.

符号の説明Explanation of symbols

1 生体検出手段(圧力検出手段)
1a 圧力検出手段
1b 微差圧センサ
2 信号増幅整形手段
3 自動利得制御(AGC)手段
4 信号強度演算手段
5 血圧値演算手段
6 データ記憶・出力手段
7 寝台
8 硬質シート
9 クッションシート
10 生体検出手段(圧力検出手段)
10a 圧力検出手段(エアーマット)
10b エアチューブ
10c 微差圧センサ
1 Living body detection means (pressure detection means)
DESCRIPTION OF SYMBOLS 1a Pressure detection means 1b Minute differential pressure sensor 2 Signal amplification shaping means 3 Automatic gain control (AGC) means 4 Signal intensity calculation means 5 Blood pressure value calculation means 6 Data storage / output means 7 Bed 8 Hard sheet 9 Cushion seat 10 Living body detection means (Pressure detection means)
10a Pressure detection means (air mat)
10b Air tube 10c Differential pressure sensor

Claims (10)

横臥した被験者の身体の下に生体信号検出手段を配置して生体信号を検出し、検出された生体信号から心拍信号を抽出してその心拍信号の強度を演算し、得られた心拍強度信号から被験者の血圧を求めることを特徴とする血圧計測方法。  A biological signal detection means is placed under the body of a subject lying down, a biological signal is detected, a heartbeat signal is extracted from the detected biological signal, the intensity of the heartbeat signal is calculated, and from the obtained heartbeat intensity signal A blood pressure measurement method characterized by obtaining a blood pressure of a subject. 心拍強度信号から血圧変動値を導き、予め求められていた基準血圧値を用いて血圧値を算出することを特徴とする請求項1に記載の血圧計測方法。  The blood pressure measurement method according to claim 1, wherein a blood pressure fluctuation value is derived from a heartbeat intensity signal, and a blood pressure value is calculated using a reference blood pressure value obtained in advance. 前記生体信号検出手段は、微差圧センサと生体信号検出部とからなり、生体信号検出部の内部に収容されている空気の圧力変化を微差圧センサでもって検出することにより生体信号を検出することを特徴とする請求項1に記載の血圧計測方法。  The biological signal detection means includes a fine differential pressure sensor and a biological signal detection unit, and detects a biological signal by detecting a change in pressure of air stored in the biological signal detection unit with the fine differential pressure sensor. The blood pressure measurement method according to claim 1, wherein: 横臥した被験者の身体の下に生体信号検出部を配置した生体信号検出手段と、前記生体信号検出手段によって検出された生体信号から心拍信号を抽出する心拍信号抽出手段と、前記心拍信号の強度を演算する心拍強度演算手段と、心拍強度信号から被験者の血圧を求める血圧算出手段とからなることを特徴とする血圧計測装置。  A biological signal detection unit having a biological signal detection unit disposed under the body of a lying subject, a heartbeat signal extraction unit that extracts a heartbeat signal from the biological signal detected by the biological signal detection unit, and an intensity of the heartbeat signal A blood pressure measuring device comprising: a heart rate intensity calculating means for calculating; and a blood pressure calculating means for obtaining a blood pressure of a subject from a heart rate intensity signal. 前記血圧算出手段は、心拍強度演算手段によって得られた心拍強度の値から導かれた血圧変動値と、予め求められていた基準血圧値とから血圧値を算出することを特徴とする請求項4に記載の血圧計測装置。  5. The blood pressure calculation unit calculates a blood pressure value from a blood pressure fluctuation value derived from a heart rate intensity value obtained by a heart rate intensity calculation unit and a reference blood pressure value obtained in advance. The blood pressure measurement device described in 1. 前記生体信号検出手段は、微差圧センサと生体信号検出部とからなることを特徴とする請求項4に記載の血圧計測装置。  The blood pressure measurement device according to claim 4, wherein the biological signal detection means includes a differential pressure sensor and a biological signal detection unit. 前記生体信号検出手段の生体信号検出部は、弾性を有する中空のチューブであることを特徴とする請求項6に記載の血圧計測装置。  The blood pressure measurement device according to claim 6, wherein the biological signal detection unit of the biological signal detection means is a hollow tube having elasticity. 前記生体信号検出手段の生体信号検出部は、内部に空気を充填したマットであることを特徴とする請求項6に記載の血圧計測装置。  The blood pressure measurement device according to claim 6, wherein the biological signal detection unit of the biological signal detection means is a mat filled with air. 前記生体信号検出手段を主として被験者の臀部の下に配置したことを特徴とする請求項4に記載の血圧計測装置。  5. The blood pressure measurement device according to claim 4, wherein the biological signal detection means is arranged mainly under the buttocks of the subject. 前記心拍強度演算手段は、心拍信号を一定値に制御した際のゲインの値から信号強度を演算することを特徴とする請求項4に記載の血圧計測装置。  The blood pressure measuring device according to claim 4, wherein the heart rate intensity calculating means calculates a signal intensity from a gain value when the heart rate signal is controlled to a constant value.
JP2005192762A 2005-06-06 2005-06-06 Blood-pressure measurement method and blood-pressure measurement device Withdrawn JP2006334365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005192762A JP2006334365A (en) 2005-06-06 2005-06-06 Blood-pressure measurement method and blood-pressure measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005192762A JP2006334365A (en) 2005-06-06 2005-06-06 Blood-pressure measurement method and blood-pressure measurement device

Publications (1)

Publication Number Publication Date
JP2006334365A true JP2006334365A (en) 2006-12-14

Family

ID=37555400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005192762A Withdrawn JP2006334365A (en) 2005-06-06 2005-06-06 Blood-pressure measurement method and blood-pressure measurement device

Country Status (1)

Country Link
JP (1) JP2006334365A (en)

Similar Documents

Publication Publication Date Title
JP7303854B2 (en) Evaluation device
JP4483862B2 (en) Sleep stage determination device
JP3820811B2 (en) Respiratory system disease monitoring device
JP7171665B2 (en) Apparatus and method for providing control signals for blood pressure measuring devices
KR101027741B1 (en) Apparatus and method for non-constrained analysis of sleeping status using air-mattress
JP4013195B2 (en) Sleep state monitoring device
JP5228266B2 (en) Method and apparatus for non-invasive detection of special sleep state conditions by monitoring the peripheral vasculature
JP2006212218A (en) Device, system, method, and program for health care
JP2009297474A (en) Sleep stage determining device
JP5843090B2 (en) Non-contact stress evaluation system, non-contact stress evaluation method and program thereof
JP2000000214A (en) Sleeping monitor device
JP5526308B2 (en) Sleep quality evaluation device
AU2001237695A1 (en) Method and apparatus for the non-invasive detection of particular sleep-state conditions by monitoring the peripheral vascular system
JP7106729B2 (en) Abnormality judgment device and program used for it
JP2004130012A (en) Method for measuring biosignal strength, and determination method and monitoring device for sleeping conditions
JP2011160852A (en) Wakefulness state detector
JP2004187961A (en) Sleeping condition detector and sleeping condition management system
JP6589108B2 (en) Apnea and / or hypopnea diagnostic device
JP2008080071A (en) Evaluation device for quality of sleep
JP2007151979A (en) Subject&#39;s health condition monitoring device
WO2017038966A1 (en) Bio-information output device, bio-information output method and program
JP6413073B2 (en) Sleep stage determination device and sleep stage determination method
JP2006334365A (en) Blood-pressure measurement method and blood-pressure measurement device
JP2008073478A (en) Grasping method and grasping device for sympathetic nerve activity
JP5526307B2 (en) Sleep cycle measuring device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080430

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080902