JP2006333575A - Power supply shut-down detection device and power supply shut-down amount calculation device - Google Patents

Power supply shut-down detection device and power supply shut-down amount calculation device Download PDF

Info

Publication number
JP2006333575A
JP2006333575A JP2005150870A JP2005150870A JP2006333575A JP 2006333575 A JP2006333575 A JP 2006333575A JP 2005150870 A JP2005150870 A JP 2005150870A JP 2005150870 A JP2005150870 A JP 2005150870A JP 2006333575 A JP2006333575 A JP 2006333575A
Authority
JP
Japan
Prior art keywords
power
power supply
frequency
loss
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005150870A
Other languages
Japanese (ja)
Inventor
Yasuyuki Kowada
靖之 小和田
Takashi Sasaki
孝志 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005150870A priority Critical patent/JP2006333575A/en
Publication of JP2006333575A publication Critical patent/JP2006333575A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply shut-down detection device and a power supply shut-down amount calculation device that can detect power supply shut-down and calculate a power supply shut-down amount, by using an effective power flow at a connecting point with the other power system and the information of a frequency. <P>SOLUTION: The effective power flow Pi that flows in and out at the connecting point of an own power system and the other power system is measured and collected to an information accumulation means 11 via an information transmission means 4. An effective power flow addition means 12 calculates the sum PT=ΣPi of the effective power flow Pi that flows in and out between the other system and the own system. A difference calculation means 14 calculates a difference DP between the sum PT(t) of the calculated newest effective power flow and the sum PT(t▵-t) of the effective power flow that is calculated a fixed time (▵t) before. A power supply shut-down determination means 16 compares the difference DP of the sum of the effective power flow and a prescribed threshold DP_limit, determines that there arises the power supply shut-down when the difference DP is not smaller than the prescribed threshold, and detects the power supply shut-down in the own power system. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、例えば電力系統の安定度を維持する系統安定化装置に用いられる電源脱落検出装置及び電源脱落量算出装置に係わり、特に比較的少ない情報に基づき動作可能な電源脱落検出装置及び電源脱落量算出装置に関するものである。   The present invention relates to a power loss detection device and a power loss amount calculation device used in, for example, a power system stabilization device that maintains the stability of a power system, and more particularly to a power loss detection device and a power loss that are operable based on relatively little information. The present invention relates to a quantity calculation device.

従来、電源脱落検出や電源脱落量算出は、発電所近傍もしくは発電所と基幹系統とを結ぶ電源線に何らかの計測端末を設置し、電源脱落発生前の有効電力潮流を把握しておくとともに、電源脱落発生時には、電源脱落の事象そのものを捉えて検出し、事前と事後の有効電力潮流の差を電源脱落量として算出する方法が一般的である(例えば、特許文献1参照)。   Conventionally, power loss detection and power loss amount calculation have been done by installing a measurement terminal near the power plant or on the power line connecting the power plant and the main system, and grasping the active power flow before the power loss occurs. In general, when a power loss occurs, a method of detecting and detecting the power loss event itself and calculating the difference between the previous and subsequent active power flows as the power loss amount is common (see, for example, Patent Document 1).

特開平11−234904号公報(第3頁右欄第26〜第27行目、同第46行目〜第49行目、第4頁第(2)式及び図1)。JP-A-11-234904 (right column on page 3, lines 26-27, lines 46-49, page 4, expression (2) and FIG. 1).

従来の電源脱落検出は、上述のように電源脱落が生じうる箇所にあらかじめ何らかの計測端末を設置し、この情報に基づき判断を実施していた。この方法は確実に検出が行える反面、電源脱落を検出すべき全ての箇所に計測端末を備える必要があり、システムが大規模化するという欠点があった。また、状況変化により電源脱落を検出すべき箇所は変化する可能性があるが、その度に計測端末の新設や撤去を行う必要があり、システム維持に手間がかかるという問題点があった。
この発明は、上記のような問題点を解決するためになされたものであり、比較的少ない情報量に基づいて、具体的には他の電力系統との連系点における有効電力潮流や周波数の情報に基づいて、電源脱落検出及び電源脱落量算出が可能な電源脱落検出装置及び電源脱落量算出装置を得ることを目的とする。
In the conventional power-off detection, as described above, some measurement terminal is installed in advance at a place where the power-off may occur, and a determination is made based on this information. While this method can reliably detect, it is necessary to provide measurement terminals at all locations where power loss should be detected, and there is a drawback that the system becomes large-scale. In addition, the location where the power loss should be detected may change depending on the situation change. However, it is necessary to newly install or remove the measurement terminal each time, and there is a problem that it takes time to maintain the system.
The present invention has been made to solve the above-described problems, and based on a relatively small amount of information, specifically, the effective power flow and frequency at a connection point with another power system. It is an object of the present invention to provide a power-off detection device and a power-off-amount calculation device capable of detecting a power-off and calculating a power-off amount based on information.

この発明に係る電源脱落検出装置においては、自己の電力系統と他の電力系統との連系点を通過する有効電力潮流に基づいて自己の電力系統内における電源脱落の有無を判定するものである。   In the power supply loss detection device according to the present invention, the presence or absence of power supply loss in the own power system is determined based on the active power flow passing through the connection point between the own power system and another power system. .

また、この発明に係る電源脱落量算出装置においては、自己の電力系統と他の電力系統との連系点を通過する有効電力潮流の和を算出する有効電力潮流加算手段と連系点における周波数の時間微分値を求める周波数時間微分値算出手段とを有し有効電力潮流の和と周波数の時間微分値とに基づいて自己の電力系統内における需給アンバランス量を算出する需給アンバランス量算出手段と、需給アンバランス量に基づいて自己の電力系統内に発生した電源脱落量を求める電源脱落量算出手段とを備えたものである。   Further, in the power supply loss amount calculating device according to the present invention, the active power flow adding means for calculating the sum of the active power flows passing through the connection point between the own power system and the other power system and the frequency at the connection point Supply / demand imbalance amount calculating means for calculating a supply / demand unbalance amount in its own power system based on the sum of the active power flow and the time differential value of the frequency And a power supply loss amount calculating means for obtaining a power supply loss amount generated in the own power system based on the supply and demand imbalance amount.

この発明の電源脱落検出装置においては、自己の電力系統と他の電力系統との連系点を通過する有効電力潮流に基づいて自己の電力系統内における電源脱落の有無を判定するものであるので、他の電力系統との連系点における有効電力潮流の情報を用いて、容易に電源脱落を検出することができる。   In the power supply loss detection device of the present invention, the presence or absence of power supply loss in the own power system is determined based on the effective power flow passing through the connection point between the own power system and another power system. The power loss can be easily detected by using the information of the active power flow at the connection point with other power systems.

また、この発明の電源脱落量算出装置においては、自己の電力系統と他の電力系統との連系点を通過する有効電力潮流の和を算出する有効電力潮流加算手段と連系点における周波数の時間微分値を求める周波数時間微分値算出手段とを有し有効電力潮流の和と周波数の時間微分値とに基づいて自己の電力系統内における需給アンバランス量を算出する需給アンバランス量算出手段と、需給アンバランス量に基づいて自己の電力系統内に発生した電源脱落量を求める電源脱落量算出手段とを備えたので、他の電力系統との連系点における電気的量の情報を用いて、容易に電源脱落量を求めることができる。   Further, in the power supply dropout amount calculating device of the present invention, the active power flow adding means for calculating the sum of the active power flows passing through the connection point between the own power system and the other power system and the frequency at the connection point are calculated. A supply-demand imbalance amount calculating means for calculating a supply-demand unbalance amount in its own power system based on the sum of the active power flow and the time-differential value of the frequency. And a power supply loss amount calculating means for determining the power supply loss amount generated in the own power system based on the supply and demand imbalance amount, so that information on the electrical quantity at the connection point with other power systems is used. The amount of power loss can be easily determined.

実施の形態1.
図1〜図3は、この発明を実施するための実施の形態1を示すものであり、図1は全体系統を示す系統図、図2は電源脱落検出装置の構成を示す構成図、図3は電源脱落検出装置の動作を示すフローチャートである。図1において、電源脱落検出装置10が自社系統100内に設けられている。自社系統100は発電機111や送電線121を有し、同様に図示しない発電機や送電線を有する他社系統200,300と連系点G1〜G4を介して接続された連系線401〜404にて連系されている。
Embodiment 1 FIG.
1 to 3 show a first embodiment for carrying out the present invention. FIG. 1 is a system diagram showing an entire system, FIG. 2 is a configuration diagram showing a configuration of a power loss detection device, and FIG. These are flowcharts which show operation | movement of a power-off detection apparatus. In FIG. 1, a power loss detection device 10 is provided in the company system 100. The in-house system 100 includes a generator 111 and a power transmission line 121. Similarly, connection lines 401 to 404 connected to other company systems 200 and 300 having a generator and a transmission line (not shown) via connection points G1 to G4. It is connected with.

自社系統100内には、図2に示すように、連系点G1〜G4を通過する有効電力を計測する電力計測手段2と、計測した情報を伝送するための情報伝送手段4と、電源脱落検出装置10とが設けられている。電源脱落検出装置10は、伝送された情報を蓄積する情報蓄積手段11と、蓄積した情報を基に有効電力潮流の和を算出する有効電力潮流加算手段12と、有効電力潮流の和の差分を算出する差分算出手段14と、電源脱落の有無を判定する差分ベース電源脱落判定手段としての電源脱落判定手段16とを備えている。なお、装置としては、例えば電源脱落検出装置10の機能を通常用いられている系統安定化システムの中央装置に持たせる。   In the in-house system 100, as shown in FIG. 2, the power measuring means 2 for measuring the active power passing through the connection points G1 to G4, the information transmitting means 4 for transmitting the measured information, and the power disconnection A detection device 10 is provided. The power loss detection device 10 includes an information storage unit 11 that stores the transmitted information, an active power flow addition unit 12 that calculates the sum of the active power flows based on the stored information, and a difference between the sums of the active power flows. Difference calculating means 14 for calculating and power supply loss determining means 16 as difference base power supply loss determining means for determining presence / absence of power supply loss are provided. As the device, for example, the function of the power-off detection device 10 is provided in the central device of the system stabilization system that is normally used.

次に、図3のフローチャートに従って動作を説明する。
ステップS11では、連系線401〜404において、自社系統と他社系統との間で出入する有効電力潮流(Pi、但しiは各連系点を意味する)を電力計測手段2にて計測し、計測値を情報伝送手段4を介して情報蓄積手段11に収集し蓄積する。有効電力の計測は、例えば連系点が4カ所ある場合、図1に示す通り連系点Gl〜G4にて計測することになる。
ステップS12では、有効電力潮流加算手段12が、収集された有効電力潮流(Pi)を基に、自社系統と他社系統との間を流出入する有効電力潮流の和PTを、次の(1)式により算出する。
PT=ΣPi (1)
この値は、計測時間毎に蓄積する。
Next, the operation will be described with reference to the flowchart of FIG.
In step S11, the power measuring means 2 measures the active power flow (Pi, where i means each interconnection point) entering and exiting between the company system and the other company system in the interconnection lines 401 to 404, Measurement values are collected and stored in the information storage means 11 via the information transmission means 4. For example, when there are four interconnection points, the active power is measured at the interconnection points G1 to G4 as shown in FIG.
In step S12, the active power flow adding means 12 calculates the sum PT of the active power flows flowing in and out between the own system and the other company's system based on the collected active power flow (Pi) as the following (1). Calculate by the formula.
PT = ΣPi (1)
This value is accumulated every measurement time.

ステップS13では、差分算出手段14が、ステップS12において算出された最新の有効電力潮流の和PT(t)と、一定時間(△t)前に算出した有効電力潮流の和PT(t−△t)との差分DPを、次の(2)式により算出する。
DP=PT(t)−PT(t一△t) (2)
ステップS14では、電源脱落判定手段16が、ステップS13で算出した有効電力潮流の和の差分DPと所定の閾値DP_limitを比較する。そして、次の(3)式に従って、差分DPが所定の閾値DP_limit以上のときステップS15へ進み、電源脱落の有りと判定して処理を終了する。
DP≧DP_limit :電源脱落あり
DP<DP_limit :電源脱落なし (3)
ステップS14において差分DPが所定値未満と判定された場合は電源脱落なしと判定し、ステップS11に戻る。
なお、計測誤差の影響を軽減するため、上記のステップS14における差分DPが所定値以上との判定が一定回数連続した場合に初めてステップS15に進むようにしてもよい。
In step S13, the difference calculation means 14 calculates the sum PT (t) of the latest active power flow calculated in step S12 and the sum PT (t−Δt) of the active power flow calculated before a certain time (Δt). ) Is calculated by the following equation (2).
DP = PT (t) −PT (t−1Δt) (2)
In step S14, the power loss determination unit 16 compares the difference DP of the sum of the active power flows calculated in step S13 with a predetermined threshold value DP_limit. Then, according to the following equation (3), when the difference DP is equal to or larger than the predetermined threshold value DP_limit, the process proceeds to step S15, and it is determined that there is a power loss and the process is terminated.
DP ≧ DP_limit: Power supply is disconnected DP <DP_limit: Power supply is not disconnected (3)
If it is determined in step S14 that the difference DP is less than the predetermined value, it is determined that there is no power loss and the process returns to step S11.
In order to reduce the influence of the measurement error, the process may proceed to step S15 for the first time when the determination that the difference DP in step S14 is equal to or greater than a predetermined value continues for a certain number of times.

以上のように、この発明の実施の形態1によれば、電源脱落が発生しうる箇所の全てに電力計測手段を備えなくても、他の電力系統との連系点における有効電力潮流の情報を用いることで、容易に電源脱落を検出することが可能となる。   As described above, according to the first embodiment of the present invention, the information on the effective power flow at the connection point with another power system can be provided without providing the power measuring means in all the places where the power loss can occur. By using this, it is possible to easily detect power loss.

実施の形態2.
実施の形態1では、電源脱落発生の判定に流入有効電力の和PTの差分(変化幅)DP(上記(2)式参照)を用いている。この変化幅DPの値は電源脱落発生時には確実に増加するが、一定の時間遅れが存在する。このため、電源脱落の程度、あるいは閾値の設定によっては、検出タイミングが遅れる可能性がある。そこで、この実施の形態2では、他の電気的量の情報も併せて演算を実施し、自社系統の需給アンバランス量を算出することにより、検出の高速化、高精度化を図るものである。図4、図5は、この発明の実施の形態2を示すものであり、図4は電源脱落検出装置の構成を示す構成図、図5は電源脱落検出装置の動作を示すフローチャートである。
Embodiment 2. FIG.
In the first embodiment, the difference (change width) DP (see the above formula (2)) of the sum PT of the inflow active power is used for the determination of the occurrence of the power loss. Although the value of the change width DP is surely increased when the power is cut off, there is a certain time delay. For this reason, the detection timing may be delayed depending on the degree of power loss or the setting of a threshold value. Therefore, in the second embodiment, calculation is performed together with other electrical quantity information, and the supply / demand imbalance amount of the in-house system is calculated, thereby speeding up detection and increasing accuracy. . 4 and 5 show the second embodiment of the present invention. FIG. 4 is a block diagram showing the configuration of the power loss detection device, and FIG. 5 is a flowchart showing the operation of the power loss detection device.

図4において、周波数計測手段6が設けられ、情報伝送手段4を介して連系点G1〜G4における周波数情報が電源脱落検出装置20へ送られる。電源脱落検出装置20は、周波数時間微分値算出手段21、需給アンバランス量算出手段24、需給アンバランス量ベース電源脱落判定手段としての電源脱落判定手段26を有する。その他の構成については、図1に示した実施の形態1と同様のものであるので、相当するものに同じ符号を付して説明を省略する。   In FIG. 4, a frequency measurement unit 6 is provided, and frequency information at the connection points G <b> 1 to G <b> 4 is sent to the power supply loss detection device 20 via the information transmission unit 4. The power loss detection device 20 has a frequency time differential value calculation means 21, a supply / demand imbalance amount calculation means 24, and a power supply loss determination means 26 as a supply / demand unbalance amount base power supply loss determination means. Since other configurations are the same as those of the first embodiment shown in FIG. 1, the same reference numerals are given to the corresponding components and the description thereof is omitted.

次に、図5のフローチャートに従って動作を説明する。
ステップS21では、連系点G1〜G4を他社系統側と自社系統側との間で出入りする有効電力潮流Piの計測値及び各地点の周波数Fiの計測値を、電力計測手段2及び周波数計測手段6にて収集し、情報蓄積手段11に収集、蓄積する。
Next, the operation will be described with reference to the flowchart of FIG.
In step S21, the measured value of the active power flow Pi and the measured value of the frequency Fi at each point between the other company's system side and the company's system side at the interconnection points G1 to G4, the power measurement unit 2 and the frequency measurement unit 6 and collected and stored in the information storage means 11.

ステップS22では、有効電力潮流加算手段12が、収集された有効電力潮流(Pi)を基に、自社系統と他社系統との間を流出入する有効電力潮流の和PTを、次の(4)式により算出する。
PT=ΣPi (4)
また、ステップS23において、周波数時間微分値算出手段21が、収集された周波数(Fi)の値を基に、演算に用いる周波数Fを次の(5)式により算出する。
F=(ΣFi)/n (5)
但し、n:計測周波数点数
なお、周波数Fについては、有効電力潮流の和PTと時間が揃うならば、別途自社系統内で計測、算出した値を用いてもよい。
次に、周波数Fを時間について微分して、周波数時間微分値dF(t)/dtを求める。
In step S22, the active power flow adding means 12 calculates the sum PT of the active power flow flowing in and out between the own system and the other company's system based on the collected effective power flow (Pi) as the following (4). Calculate by the formula.
PT = ΣPi (4)
Further, in step S23, the frequency time differential value calculating means 21 calculates the frequency F used for the calculation by the following equation (5) based on the collected frequency (Fi) value.
F = (ΣFi) / n (5)
However, n: number of measurement frequency points As for the frequency F, if the time and the sum PT of the active power flow are equal, a value measured and calculated separately in the own system may be used.
Next, the frequency F is differentiated with respect to time to obtain a frequency time differential value dF (t) / dt.

ステップS24では、需給アンバランス量算出手段24が、ステップS22,S23にて算出した有効電力潮流の和PT、周波数時間微分値dF(t)/dtの値を基に、需給アンバランス量△Pを次の(6)式により算出する。
△P=△PT(t)−(M/F0)・dF(t)/dt
△PT(t)=PT(t)−PT0 (6)
但し、
M :慣性定数(s)
PT0:電源脱落発生前の他社系統と自社系統との間で流出入する有効電力潮流の和
F0 :基準周波数(Hz)
F :計測周波数(Hz)
ここで、慣性定数Mの値は、別途オンラインで設定するものとする。このようにして算出される需給アンバランス量△Pは、電源脱落発生と同時に大きく変化することから、高速な検出が期待できる。
In step S24, the supply / demand imbalance amount calculation means 24 calculates the supply / demand imbalance amount ΔP based on the sum of the active power flows PT calculated in steps S22 and S23 and the frequency time differential value dF (t) / dt. Is calculated by the following equation (6).
ΔP = ΔPT (t) − (M / F0) · dF (t) / dt
ΔPT (t) = PT (t) −PT0 (6)
However,
M: Inertia constant (s)
PT0: Sum of active power flow flowing in and out between the other company's system and the power system before the power loss occurs. F0: Reference frequency (Hz)
F: Measurement frequency (Hz)
Here, the value of the inertia constant M is separately set online. Since the supply / demand imbalance amount ΔP calculated in this way changes greatly at the same time as the power failure occurs, high-speed detection can be expected.

ステップS25では、電源脱落判定手段26が、ステップS24で算出したアンバランス量△Pと閾値△P_limiとを比較する。そして、次の(7)式に従いアンバランス量△Pが閾値△P_limit以上のとき、ステップS26へ進み、電源脱落有りと判定し、処理を終了する。
△P≧△P_limit :電源脱落あり
△P<△P_limit :電源脱落なし (7)
ステップS25において、アンバランス量△Pが閾値△P_limit未満と判定された場合は、電源脱落なしとしてステップS21に戻る。
In step S25, the power-off judgment unit 26 compares the unbalance amount ΔP calculated in step S24 with the threshold value ΔP_limi. When the unbalance amount ΔP is equal to or greater than the threshold value ΔP_limit according to the following equation (7), the process proceeds to step S26, where it is determined that there is a power loss and the process ends.
ΔP ≧ ΔP_limit: Power supply disconnection ΔP <ΔP_limit: Power supply disconnection (7)
If it is determined in step S25 that the unbalance amount ΔP is less than the threshold value ΔP_limit, the process returns to step S21 with no power loss.

なお、計測誤差の影響を回避するため、(6)式で得られた△Pの値を数回分平均した上で判定に用いてもよい。また、ステップS25における需給アンバランス量△Pが所定値以上との判定が一定回数継続した場合に初めてステップS26に進むようにしてもよい。
以上のように、この発明の実施の形態2によれば、より高速に電源脱落の検出が可能となる。
In order to avoid the influence of measurement error, the value of ΔP obtained by equation (6) may be averaged several times and used for determination. Alternatively, the process may proceed to step S26 for the first time when the determination that the supply / demand imbalance amount ΔP in step S25 is equal to or greater than a predetermined value continues a certain number of times.
As described above, according to the second embodiment of the present invention, it is possible to detect the power loss at a higher speed.

実施の形態3.
上記実施の形態2は、上述した(6)式にて算出した需給アンバランス量△Pにより電源脱落の判定を行っている。この値は、電源脱落時点では電源脱落量に近い値であると考えられる。そこで、この実施の形態3では、収集した連系点における有効電力潮流の和及び周波数情報を基に、電源脱落量を求める。図6、図7は、この発明の実施の形態3を示すものであり、図6は電源脱落量算出装置の構成を示す構成図、図7は電源脱落量算出装置の動作を示すフローチャートである。
図6において、電源脱落量算出装置30は、電源脱落量算出手段38を有する。その他の構成については、図4に示した実施の形態2と同様のものであるので、相当するものに同じ符号を付して説明を省略する。
Embodiment 3 FIG.
In the second embodiment, the power supply loss is determined based on the supply and demand imbalance amount ΔP calculated by the above-described equation (6). This value is considered to be a value close to the power-off amount at the time of power-off. Therefore, in the third embodiment, the power supply disconnection amount is obtained based on the sum of the active power flow at the collected interconnection points and the frequency information. FIGS. 6 and 7 show Embodiment 3 of the present invention. FIG. 6 is a block diagram showing the configuration of the power supply loss amount calculation device, and FIG. 7 is a flowchart showing the operation of the power supply loss amount calculation device. .
In FIG. 6, the power supply loss amount calculation device 30 includes a power supply loss amount calculation means 38. Since other configurations are the same as those of the second embodiment shown in FIG. 4, the corresponding components are denoted by the same reference numerals and description thereof is omitted.

動作の説明に先立ち、電源脱落量の算出方法について説明する。
電源脱落量の算出のために、まず需給アンバランス量△Pを求める。需給アンバランス量△Pは、先にあげた(6)式で求めることができる。
ところで、この需給アンバランス量△Pは、次の(8)式で表現できる。
△P=−(△PM−Pdrop)+△PL+△Ploss (8)
但し、
△PM :自社系統内発電機の機械入力増加分(電源脱落分を除く)
Pdrop :自社系統内での電源脱落量
△PL :自社系統内での負荷増分
△Ploss:自社系統内での線路ロス増分
Prior to the description of the operation, a method for calculating the power loss amount will be described.
In order to calculate the amount of power loss, first, the supply and demand imbalance amount ΔP is obtained. The supply and demand imbalance amount ΔP can be obtained by the above-described equation (6).
By the way, this supply and demand imbalance amount ΔP can be expressed by the following equation (8).
ΔP = − (ΔPM−Pdrop) + ΔPL + ΔPloss (8)
However,
△ PM: Increase in machine input of the generator in the system (excluding power loss)
Pdrop: Amount of power loss in the company system △ PL: Increase in load within the company system △ Ploss: Increase in line loss in the company system

この内、△PMは発電機の調速制御系動作により変化するが、一般的に調速系の動作時定数は大きいことから、電源脱落直後についてはこの値は零とみなすことができる。また、△PLについては、負荷脱落や負荷変化、負荷の電圧や周波数特性に基づき変化しうるが、自社系統における負荷全体から見た場合、これら変化要因は無視できると考えられる。また、△Plossについても、自社系統内での極端な潮流変化がない限り十分無視できる変数といえる。従って、電源脱落発生直後においては、(8)式は次の(9)式で表現できる。
△P=Pdrop (9)
すなわち、電源脱落量Pdropは電源脱落発生直後の需給アンバランス量△Pにほぼ等しい。
従って、電源脱落量Pdropは、次の(10)式で求めることができる。
Pdrop=△PT(t)−(M/F0)・dF(t)/dt (10)
Among these, ΔPM varies depending on the speed control system operation of the generator. However, since the operation time constant of the speed control system is generally large, this value can be regarded as zero immediately after the power is turned off. Further, ΔPL can change based on load drop, load change, load voltage and frequency characteristics, but these change factors are considered negligible when viewed from the entire load in the company system. ΔPloss is also a variable that can be sufficiently ignored as long as there is no extreme change in power flow within the company's own system. Therefore, immediately after the occurrence of power loss, the equation (8) can be expressed by the following equation (9).
ΔP = Pdrop (9)
That is, the power drop amount Pdrop is substantially equal to the supply and demand imbalance amount ΔP immediately after the power drop occurs.
Therefore, the power-off amount Pdrop can be obtained by the following equation (10).
Pdrop = ΔPT (t) − (M / F0) · dF (t) / dt (10)

この実施の形態における電源脱落量算出装置30は、上記(10)式により電源脱落量Pdropを求めるものであり、以下、図7のフローチャートに従って動作を説明する。
ステップS21〜S24は、図5のフローチャートにおける処理と同様であり、需給アンバランス量算出手段24が、(6)式に従って需給アンバランス量△Pを算出する。
次に、ステップS31において、電源脱落量算出手段38が、需給アンバランス量△Pに基づき上記(10)式により電源脱落量Pdropを求める。
The power supply loss amount calculation device 30 in this embodiment calculates the power supply loss amount Pdrop by the above equation (10), and the operation will be described below with reference to the flowchart of FIG.
Steps S21 to S24 are the same as the processing in the flowchart of FIG. 5, and the supply and demand imbalance amount calculation means 24 calculates the supply and demand imbalance amount ΔP according to the equation (6).
Next, in step S31, the power supply loss amount calculation means 38 obtains the power supply loss amount Pdrop by the above equation (10) based on the supply and demand imbalance amount ΔP.

以上のように、この発明の実施の形態3によれば、電源脱落が発生しうる箇所の全てに電力計測手段を備えなくても、他の電力系統との連系点における電気的量の情報を用いることで、すなわち比較的少ない情報量に基づいて、容易に電源脱落量を求めることが可能となる。   As described above, according to the third embodiment of the present invention, the information on the electrical quantity at the connection point with another power system can be provided without providing the power measuring means in all the places where the power loss can occur. In other words, it is possible to easily determine the power loss amount based on a relatively small amount of information.

実施の形態4.
先に示した実施の形態2及び3では、その動作の過程において周波数時間微分値を用いている。一般的に計測量の微分値はノイズが重畳しやすいため、得られる結果にも影響を与える可能性がある。このため、この実施の形態4では、演算に用いる周波数の時系列データに最小二乗法等を適用して周波数を求める。図8、図9は、この発明の実施の形態4を示すものであり、図8は電源脱落検出装置の構成を示す構成図、図9は電源脱落検出装置の動作を示すフローチャートである。図8において、電源脱落検出装置40は、周波数時間微分値計算装置41を有する。周波数時間微分値計算装置41は、周波数近似式算出手段42、周波数時間微分値算出手段43を有する。その他の構成については、図4に示した実施の形態2と同様のものであるので、相当するものに同じ符号を付して説明を省略する。
Embodiment 4 FIG.
In the second and third embodiments shown above, the frequency time differential value is used in the process of the operation. In general, the differential value of the measured quantity is likely to be superimposed with noise, and thus the obtained result may be affected. For this reason, in the fourth embodiment, the frequency is obtained by applying the least square method or the like to the time-series data of the frequency used for the calculation. 8 and 9 show a fourth embodiment of the present invention. FIG. 8 is a block diagram showing the configuration of the power-off detection device, and FIG. 9 is a flowchart showing the operation of the power-off detection device. In FIG. 8, the power-off detection device 40 has a frequency time differential value calculation device 41. The frequency time differential value calculation device 41 includes a frequency approximate expression calculation means 42 and a frequency time differential value calculation means 43. Since other configurations are the same as those of the second embodiment shown in FIG. 4, the corresponding components are denoted by the same reference numerals and description thereof is omitted.

次に動作について図9のフローチャートに従って説明する。
図9において、ステップS21及びステップS22は、図4に示した電源脱落検出装置20と同様である。すなわち、ステップS21において、他社系統側から自社系統側に流れる有効電力潮流Piの計測値及び各地点の周波数Fiの計測値を、情報蓄積手段11に収集、蓄積する。ステップS22において、収集した有効電力潮流(Pi)を基に、他社系統から自社系統に流入する有効電力潮流の和PTを、有効電力潮流加算手段12にて算出する。次に、ステップS41において、周波数時間微分値計算装置41の周波数近似式算出手段42により次の(11)式に示すような周波数の近似式を時間関数として求める。なお、ここでは仮に2次式の例を示しているが、必要に応じて次数を変更しても問題はない。
F(t)=a0+a1・t+a2・t・t (11)
ここに、
F(t):計測周波数
a0:2次近似式の定数項
a1:2次近似式の1次の係数
a2:2次近似式の2次の係数
t:時間
である。
そして、ステップS42において、周波数時間微分値算出手段43が時刻t1における周波数時間微分値dF(t1)/dtを、次の(12)式を用いて算出する。
dF(t1)/dt=a1+2・a2・t1 (12)
ここに、
dF(t1)/dt:t1時点の周波数微分
a1,a2:11式と同一
t1:時刻
である。
ステップS24において需給アンバランス量算出手段24が上記のようにして算出した周波数時間徹分値dF(t1)/dtを用いて需給アンバランス量ΔPを算出し、ステップS25、ステップS26において電源脱落判定手段26が電源脱落の発生を判定する。このようにして、より精度の高い検出を行うことができる。
なお、電源脱落量を求める場合も同様であり、実施の形態3における図6に示した周波数時間微分値算出手段21の代わりにこの実施の形態4における周波数時間微分値計算装置41を用いれば、より精度の高い電源脱落量の算出を行うことができる。
Next, the operation will be described with reference to the flowchart of FIG.
In FIG. 9, step S21 and step S22 are the same as those of the power-off detection device 20 shown in FIG. That is, in step S21, the measurement value of the active power flow Pi flowing from the other company's system side to the company's system side and the measurement value of the frequency Fi at each point are collected and stored in the information storage unit 11. In step S22, based on the collected effective power flow (Pi), the effective power flow summing means 12 calculates the sum PT of the effective power flows flowing from the other company's system into the system. Next, in step S41, the frequency approximate expression calculating means 42 of the frequency time differential value calculating device 41 obtains an approximate expression of the frequency as shown in the following expression (11) as a time function. Although an example of a quadratic expression is shown here, there is no problem even if the order is changed as necessary.
F (t) = a0 + a1 · t + a2 · t · t (11)
here,
F (t): Measurement frequency a0: Constant term of quadratic approximate expression a1: Primary coefficient of quadratic approximate expression a2: Secondary coefficient of quadratic approximate expression t: Time.
In step S42, the frequency time differential value calculation means 43 calculates the frequency time differential value dF (t1) / dt at time t1 using the following equation (12).
dF (t1) / dt = a1 + 2 · a2 · t1 (12)
here,
dF (t1) / dt: Frequency differentiation at time t1 Same as equations a1 and a2: 11 t1: Time.
In step S24, the supply / demand unbalance amount calculation means 24 calculates the supply / demand unbalance amount ΔP using the frequency time full value dF (t1) / dt calculated as described above. Means 26 determines the occurrence of power loss. In this way, detection with higher accuracy can be performed.
The same applies to the case of obtaining the power loss amount, and if the frequency time differential value calculation device 41 in the fourth embodiment is used instead of the frequency time differential value calculation means 21 shown in FIG. 6 in the third embodiment, It is possible to calculate the power loss amount with higher accuracy.

この発明の実施の形態1における有効電力系統を示す図である。It is a figure which shows the active power grid | system in Embodiment 1 of this invention. この発明の実施の形態1である電源脱落検出装置の構成を示す構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram which shows the structure of the power supply loss detection apparatus which is Embodiment 1 of this invention. 電源脱落検出装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of a power-off detection apparatus. この発明の実施の形態2である電源脱落検出装置の構成を示す構成図である。It is a block diagram which shows the structure of the power-supply-loss detection apparatus which is Embodiment 2 of this invention. 電源脱落検出装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of a power-off detection apparatus. この発明の実施の形態3である電源脱落量算出装置の構成を示す構成図である。It is a block diagram which shows the structure of the power supply loss amount calculation apparatus which is Embodiment 3 of this invention. 電源脱落量算出装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the power supply loss amount calculation apparatus. この発明の実施の形態4である電源脱落検出装置の構成を示す構成図である。It is a block diagram which shows the structure of the power-supply-loss detection apparatus which is Embodiment 4 of this invention. 電源脱落量算出装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the power supply loss amount calculation apparatus.

符号の説明Explanation of symbols

2 電力計測手段、4 情報伝送手段、6 周波数計測手段、
10 電源脱落検出装置、11 情報蓄積手段、12 有効電力潮流加算手段、
14 差分算出手段、16 電源脱落判定手段、20 電源脱落検出装置、
21 周波数算出手段、24 需給アンバランス量算出手段、26 電源脱落判定手段、
30 電源脱落量算出装置、38 電源脱落量算出手段、40 電源脱落検出装置、
41 周波数時間微分値計算装置、42 周波数近似式算出手段、
43 周波数計測手段、100 自社系統、200,300 他社系統、
401〜404 連系線、G1〜G4 連系点。
2 power measurement means, 4 information transmission means, 6 frequency measurement means,
10 power loss detection device, 11 information storage means, 12 active power flow addition means,
14 difference calculation means, 16 power supply loss determination means, 20 power supply loss detection device,
21 frequency calculation means, 24 supply and demand imbalance amount calculation means, 26 power supply loss determination means,
30 power supply loss amount calculation device, 38 power supply loss amount calculation means, 40 power supply loss detection device,
41 frequency time differential value calculation device, 42 frequency approximation formula calculation means,
43 Frequency measurement means, 100 In-house system, 200,300 Other company system,
401-404 interconnection line, G1-G4 interconnection point.

Claims (6)

自己の電力系統と他の電力系統との連系点を通過する有効電力潮流に基づいて上記自己の電力系統内における電源脱落の有無を判定する電源脱落検出装置。 A power supply loss detection device that determines whether or not a power supply is lost in the self power system based on an active power flow passing through a connection point between the self power system and another power system. 上記連系点を通過する有効電力潮流の和を算出する有効電力潮流加算手段と、上記有効電力潮流の和の所定時間当たりの変化量が所定値以上のとき上記自己の電力系統内に電源脱落が生じたと判定する差分ベース電源脱落判定手段とを備えたものであることを特徴とする請求項1に記載の電源脱落検出装置。 Active power flow adding means for calculating the sum of the active power flows passing through the interconnection point, and when the amount of change per predetermined time of the sum of the active power flows is greater than or equal to a predetermined value, the power is dropped into the own power system. The power supply loss detection device according to claim 1, further comprising difference-based power supply loss determination means for determining that the error has occurred. 上記連系点を通過する有効電力潮流の和を算出する有効電力潮流加算手段と上記連系点における周波数の時間微分値を求める周波数時間微分値算出手段とを有し上記有効電力潮流の和と上記周波数の時間微分値とに基づいて上記自己の電力系統内における需給アンバランス量を算出する需給アンバランス量算出手段と、上記需給アンバランス量が所定値以上のとき上記自己の電力系統内に電源脱落が生じたと判定する需給アンバランス量ベース電源脱落判定手段とを備えたものであることを特徴とする請求項1に記載の電源脱落検出装置。 An active power flow adding means for calculating a sum of active power flows passing through the interconnection point; and a frequency time differential value calculating means for obtaining a time differential value of the frequency at the interconnection point; Supply / demand imbalance amount calculation means for calculating a supply / demand imbalance amount in the own power system based on the time differential value of the frequency, and when the supply / demand imbalance amount is equal to or greater than a predetermined value, 2. The power supply loss detection apparatus according to claim 1, further comprising a supply / demand imbalance amount-based power supply loss determination means for determining that a power loss has occurred. 上記周波数時間微分値算出手段は、上記周波数の近似式を時間関数として求め上記近似式により求めた周波数について時間微分値を求めるものであることを特徴とする請求項3に記載の電源脱落検出装置。 4. The power loss detection device according to claim 3, wherein the frequency time differential value calculation means calculates an approximate expression of the frequency as a time function and calculates a time differential value for the frequency obtained by the approximate expression. . 自己の電力系統と他の電力系統との連系点を通過する有効電力潮流の和を算出する有効電力潮流加算手段と上記連系点における周波数の時間微分値を求める周波数時間微分値算出手段とを有し上記有効電力潮流の和と上記周波数の時間微分値とに基づいて上記自己の電力系統内における需給アンバランス量を算出する需給アンバランス量算出手段と、上記需給アンバランス量に基づいて上記自己の電力系統内に発生した電源脱落量を求める電源脱落量算出手段とを備えた電源脱落量算出装置。 An active power flow adding means for calculating the sum of the active power flows passing through the connection point between the own power system and another power system, and a frequency time differential value calculating means for calculating a time differential value of the frequency at the connection point; Supply and demand imbalance amount calculating means for calculating the supply and demand imbalance amount in the power system based on the sum of the active power flow and the time differential value of the frequency, and based on the supply and demand imbalance amount A power supply loss amount calculating device comprising: a power supply loss amount calculating means for obtaining a power supply loss amount generated in the self power system. 上記周波数時間微分値算出手段は、上記周波数の近似式を時間関数として求め上記近似式により求めた周波数について時間微分値を求めるものであることを特徴とする請求項5に記載の電源脱落量算出装置。
6. The power supply loss amount calculation according to claim 5, wherein the frequency time differential value calculating means calculates an approximate expression of the frequency as a time function and calculates a time differential value for the frequency determined by the approximate expression. apparatus.
JP2005150870A 2005-05-24 2005-05-24 Power supply shut-down detection device and power supply shut-down amount calculation device Pending JP2006333575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005150870A JP2006333575A (en) 2005-05-24 2005-05-24 Power supply shut-down detection device and power supply shut-down amount calculation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005150870A JP2006333575A (en) 2005-05-24 2005-05-24 Power supply shut-down detection device and power supply shut-down amount calculation device

Publications (1)

Publication Number Publication Date
JP2006333575A true JP2006333575A (en) 2006-12-07

Family

ID=37554677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005150870A Pending JP2006333575A (en) 2005-05-24 2005-05-24 Power supply shut-down detection device and power supply shut-down amount calculation device

Country Status (1)

Country Link
JP (1) JP2006333575A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050152A (en) * 2009-08-26 2011-03-10 Mitsubishi Electric Corp System stabilizing system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5092430A (en) * 1973-12-20 1975-07-23
JPH08223800A (en) * 1995-02-14 1996-08-30 Toshiba Corp Fault detector for link system
JPH08322148A (en) * 1995-05-29 1996-12-03 Central Res Inst Of Electric Power Ind System stabilization system
JP2001103669A (en) * 1999-07-28 2001-04-13 Kansai Electric Power Co Inc:The Frequency-stabilizing device of power system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5092430A (en) * 1973-12-20 1975-07-23
JPH08223800A (en) * 1995-02-14 1996-08-30 Toshiba Corp Fault detector for link system
JPH08322148A (en) * 1995-05-29 1996-12-03 Central Res Inst Of Electric Power Ind System stabilization system
JP2001103669A (en) * 1999-07-28 2001-04-13 Kansai Electric Power Co Inc:The Frequency-stabilizing device of power system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011050152A (en) * 2009-08-26 2011-03-10 Mitsubishi Electric Corp System stabilizing system

Similar Documents

Publication Publication Date Title
US9077208B2 (en) Method of detecting instability in islanded electrical systems
US9590426B2 (en) System and method for managing a power distribution system
CN102118244B (en) Adaptive clock recovery with step-delay pre-compensation
EP1734651B1 (en) Protection system for an electrical power generator
EP2941674B1 (en) Predicting the oil temperature of a transformer
JP6266377B2 (en) Accident prevention system
JP6335641B2 (en) Frequency stabilizer for single system
JP7131971B2 (en) Power system stabilization system and power system stabilization method
JP5427762B2 (en) Power conversion device, power conversion device control device, and power conversion device control method
US20180097363A1 (en) Detection and Remediation of Transients in Electric Power Systems
CN102798803A (en) Method for detecting line fault of power distribution network
KR102639221B1 (en) Inertial energy monitoring method and system
JP2006333575A (en) Power supply shut-down detection device and power supply shut-down amount calculation device
JP2010004144A (en) Control circuit having detection circuit of serial data degradation
US8913703B2 (en) Method and device for determining a quality of a clock signal
JP2019193539A (en) Power system control system and power system control method
CN117044060A (en) Preemptive power conversion switching
KR101338125B1 (en) Intelligent and Adaptive Protection System for Varying Power System Conditions to Prevent Transient Instability
JP4852486B2 (en) Traffic monitoring system
KR101576046B1 (en) Method for operating special protection schemes
JPH1146447A (en) Frequency maintenance system for power system
KR102568050B1 (en) Apparatus for detecting islanding of distributed generation and method thereof
JP2023134216A (en) Method and device for calculating surge waveform detection time
CN117692361A (en) Gateway fault monitoring method and system based on network communication
KR102232644B1 (en) Apparatus and method for monitoring for advertising consumption ratio

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100817