JP2006332410A - Device for heating wafer and device for manufacturing semiconductor using it - Google Patents

Device for heating wafer and device for manufacturing semiconductor using it Download PDF

Info

Publication number
JP2006332410A
JP2006332410A JP2005155054A JP2005155054A JP2006332410A JP 2006332410 A JP2006332410 A JP 2006332410A JP 2005155054 A JP2005155054 A JP 2005155054A JP 2005155054 A JP2005155054 A JP 2005155054A JP 2006332410 A JP2006332410 A JP 2006332410A
Authority
JP
Japan
Prior art keywords
heating element
resistance heating
wafer
plate
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005155054A
Other languages
Japanese (ja)
Inventor
Tsunehiko Nakamura
恒彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005155054A priority Critical patent/JP2006332410A/en
Publication of JP2006332410A publication Critical patent/JP2006332410A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a heater can not be cooled in a short time if heating the wafer of a large size ≥300 mm since it is difficult to substantially increase the supply amount of cooling gas, even when the cooling gas is supplied to the heater in a conventional device for heating wafer. <P>SOLUTION: The device for heating wafer 1 comprises: the heater provided with an insulation layer 14 on one main surface of a planar body 2, provided with a belt-like resistor heating element 5 on the insulation layer 14, and provided with a mounting surface 3 for mounting the wafer W on the other main surface; a power feeding terminal 11 for supplying power to the resistor heating element 5; and a case 19 connected with the planar body 2 so as to wrap the power feeding terminal 11. The case 19 is provided with a nozzle 24 for cooling the heater and an opening 23, and the distal end of the nozzle 24 is positioned between the resistor heating elements 5 in the view from a projection plane to the mounting surface 3. Since the cooling time of the heater can be shortened and the cooling time of the wafer can be shortened, wafer processing time in a semiconductor manufacturing process can be shortened. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、主に、半導体の製造用や検査用装置として用いられるウェハ加熱装置およびそれを用いた半導体製造装置に関するものであり、例えば、半導体ウェハや液晶基板あるいは回路基板等のウェハ上に半導体薄膜を生成したり、前記ウェハ上に塗布されたレジスト液を乾燥焼き付けしてレジスト膜を形成したりするのに好適なものである。   The present invention mainly relates to a wafer heating apparatus used as a semiconductor manufacturing or inspection apparatus and a semiconductor manufacturing apparatus using the same, for example, a semiconductor on a wafer such as a semiconductor wafer, a liquid crystal substrate, or a circuit substrate. It is suitable for forming a thin film or forming a resist film by drying and baking a resist solution applied on the wafer.

半導体製造装置の製造工程における、半導体薄膜の成膜処理、エッチング処理、レジスト膜の焼き付け処理等においては、半導体ウェハ(以下、ウェハと略す)を加熱するためのウェハ加熱装置が用いられている。   A wafer heating apparatus for heating a semiconductor wafer (hereinafter abbreviated as a wafer) is used in a semiconductor thin film forming process, an etching process, a resist film baking process, and the like in a manufacturing process of a semiconductor manufacturing apparatus.

そして、温度制御性に優れ、半導体素子の配線の微細化とウェハ熱処理温度の精度向上が要求されるのに伴い、セラミック製のウェハ加熱装置が広く使用されている。   Further, ceramic wafer heating apparatuses are widely used in accordance with demands for excellent temperature controllability, miniaturization of wiring of semiconductor elements, and improvement in accuracy of wafer heat treatment temperature.

このようなセラミック製のウェハ加熱装置として、例えば特許文献1、特許文献2、特許文献3や特許文献4には、図9に示すようなセラミック製のウェハ加熱装置71が提案されている。   As such a ceramic wafer heating apparatus, for example, Patent Document 1, Patent Document 2, Patent Document 3 and Patent Document 4 propose a ceramic wafer heating apparatus 71 as shown in FIG.

このセラミック製のウェハ加熱装置71は、板状セラミック体72,ケース79を主要な構成要素としたもので、アルミニウム等の金属からなる有底状のケース79の開口部に、窒化物セラミックスや炭化物セラミックスからなる板状セラミック体72を樹脂製の断熱性の接続部材74を介してボルト80で固定され、その上面をウェハWを載せる載置面73とするとともに、板状セラミック体72の下面に、例えば図10に示すような同心円状の抵抗発熱体75を備えたヒータ部からなっていた。   This ceramic wafer heating device 71 has a plate-like ceramic body 72 and a case 79 as main components, and nitride ceramics or carbides are formed in an opening of a bottomed case 79 made of a metal such as aluminum. A plate-shaped ceramic body 72 made of ceramics is fixed with a bolt 80 via a heat insulating connecting member 74 made of a resin, and the upper surface thereof is used as a mounting surface 73 on which the wafer W is placed, and the lower surface of the plate-shaped ceramic body 72 is placed on the lower surface. For example, the heater unit includes a concentric resistance heating element 75 as shown in FIG.

さらに、抵抗発熱体75の端子部には、給電端子77がロウ付けされており、この給電端子77がケース79の底部79aに形成されたリード線引出用の孔76に挿通されたリード線78と電気的に接続されるようになっていた。   Furthermore, a power supply terminal 77 is brazed to the terminal portion of the resistance heating element 75, and the power supply terminal 77 is inserted into a lead wire drawing hole 76 formed in the bottom 79 a of the case 79. And was to be electrically connected.

そして、板状セラミック体72とケース79で囲まれた空間内にノズル82より冷媒を送り、循環させ排出口83より排出することによりヒータ部を冷却するようになっていた。   The heater is cooled by sending the coolant from the nozzle 82 into the space surrounded by the plate-shaped ceramic body 72 and the case 79, circulating it, and discharging it from the discharge port 83.

ところで、このようなセラミック製のウェハ加熱装置71において、ウェハWの表面全体に均質な膜を形成したり、レジスト膜の加熱反応状態を均質にするにはウェハ面内の温度差を小さくして温度分布を均一にすることが重要であり、同時にウェハを加熱・冷却する際の時間が短いことが求められている。さらに、ウェハの加熱温度を変更するためにセラミックヒータ71の設定温度を変更する必要があり、セラミック製のウェハ加熱装置71を短時間に昇温したり冷却したりする時間が短い必要があった。   By the way, in such a ceramic wafer heating apparatus 71, in order to form a uniform film over the entire surface of the wafer W or to make the heating reaction state of the resist film uniform, the temperature difference in the wafer surface is reduced. It is important to make the temperature distribution uniform, and at the same time, a short time for heating and cooling the wafer is required. Furthermore, it is necessary to change the set temperature of the ceramic heater 71 in order to change the heating temperature of the wafer, and it is necessary to shorten the time for heating and cooling the ceramic wafer heating device 71 in a short time. .

特許文献5には、図9に示すように、ケース79の底部79aの面粗度を一定の値以下とすると冷媒が底部79aとの界面で気流の乱れがなくなり昇温効率や冷却効率を向上させることができると提案されている。   In Patent Document 5, as shown in FIG. 9, when the surface roughness of the bottom 79a of the case 79 is set to a certain value or less, the airflow is not disturbed at the interface with the bottom 79a, and the temperature raising efficiency and the cooling efficiency are improved. It has been proposed that it can be.

また、特許文献6には、上記のセラミック製のウェハ加熱装置71の熱容量を5000J/K以下として、ウェハの昇温速度や冷却速度を高めているものが提案されている。しかし、ケース79の熱容量は板状セラミック体73の熱容量の3.3倍以上と大きく、また、ケース79の表面積Sとケース79の体積Vとの比率S/Vが5(1/cm)を下回ることから冷却時間が長かった。   Further, Patent Document 6 proposes that the heat capacity of the above-described ceramic wafer heating device 71 is set to 5000 J / K or less to increase the heating rate and cooling rate of the wafer. However, the heat capacity of the case 79 is as large as 3.3 times the heat capacity of the plate-like ceramic body 73, and the ratio S / V between the surface area S of the case 79 and the volume V of the case 79 is 5 (1 / cm). The cooling time was long because it was lower.

しかし、いずれもウェハの設定加熱温度を変更する時間は長く、短時間で温度変更できるセラミックヒータが求められていた。   However, in all cases, the time for changing the set heating temperature of the wafer is long, and a ceramic heater capable of changing the temperature in a short time has been demanded.

また、特許文献8には、ケース内に強制冷却用のノズルと開口部とを備え、ノズルから冷媒を供給し、上記ヒータ部を強制冷却する方法が記載されている。   Patent Document 8 describes a method in which a forced cooling nozzle and an opening are provided in a case, a coolant is supplied from the nozzle, and the heater is forcibly cooled.

ところで、このようなセラミックヒータ71において、ウェハWの表面全体に均質な膜を形成したり、レジスト膜の加熱反応状態を均質にしたりするためには、ウェハの温度分布を均一にすることが重要である。そのため、これまでウェハの温度分布を小さくするため、帯状の抵抗発熱体75の抵抗分布を調整することや、帯状の抵抗発熱体75の温度を分割制御することが行なわれており、また、熱引きを発生し易い構造の場合、その周囲の発熱量を増大させる等の提案がされていた。   By the way, in such a ceramic heater 71, in order to form a homogeneous film on the entire surface of the wafer W or to make the heating reaction state of the resist film uniform, it is important to make the temperature distribution of the wafer uniform. It is. Therefore, until now, in order to reduce the temperature distribution of the wafer, the resistance distribution of the strip-like resistance heating element 75 is adjusted, and the temperature of the strip-like resistance heating body 75 is divided and controlled. In the case of a structure that easily causes pulling, a proposal has been made to increase the amount of heat generation around the structure.

しかし、いずれも非常に複雑な構造、制御が必要になるという課題があり、簡単な構造で温度分布を均一に加熱できるようなセラミックヒータが求められている。
特開2001−135684号公報 特開2001−203156号公報 特開2001−313249号公報 特開2002−76102号公報 特開2002−83848号公報 特開2002−100462号公報 特開2002−64133号公報 特開2004−063813号公報
However, both have the problem that a very complicated structure and control are required, and a ceramic heater capable of uniformly heating the temperature distribution with a simple structure is required.
JP 2001-135684 A JP 2001-203156 A JP 2001-313249 A JP 2002-76102 A JP 2002-83848 A JP 2002-100462 A JP 2002-64133 A JP 2004-063813 A

しかしながら、上記のウェハ加熱装置では、ヒータ部に冷媒を供給しても、冷媒の供給量を大幅に増加することは難しいため、300mm以上の大型のウェハを加熱するウェハ加熱装置のヒータ部を短時間で冷却することができないという問題があった。   However, in the above-described wafer heating apparatus, even if refrigerant is supplied to the heater section, it is difficult to significantly increase the supply amount of the refrigerant. Therefore, the heater section of the wafer heating apparatus that heats a large wafer of 300 mm or more is shortened. There was a problem that it could not be cooled in time.

さらに、半導体素子の配線微細化に伴い使用され始めた化学増幅型レジストにおいては、ウェハの面内温度差が小さく、繰り返し加熱冷却してもウェハ面内温度差が大きくならないことが望まれている。   Furthermore, in chemically amplified resists that have begun to be used with the miniaturization of semiconductor device wiring, it is desired that the in-plane temperature difference of the wafer is small and that the in-plane temperature difference does not increase even when repeatedly heated and cooled. .

また、板状セラミック体と抵抗発熱体との間に形成される絶縁層においては、その構成材料の違いから、相互の熱膨張差のために、板状体に対する抵抗発熱体および絶縁層の密着強度が弱く、特に昇降温を繰り返したり、冷却ガスをノズルより排出させると、抵抗発熱体や絶縁層が剥離したりクラック等の損傷が発生するといった問題があった。   In addition, in the insulating layer formed between the plate-shaped ceramic body and the resistance heating element, due to the difference in mutual thermal expansion, the resistance heating element and the insulating layer are in close contact with the plate-shaped body. Since the strength is weak, particularly when heating and cooling are repeated or cooling gas is discharged from the nozzle, there is a problem that the resistance heating element or the insulating layer is peeled off or damage such as cracks occurs.

本発明は、上記問題を解決するためになされたもので、抵抗発熱体を有する板状体からなるヒータ部の冷却速度を向上させることで急速冷却が可能なウェハ加熱装置を提供することを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a wafer heating apparatus capable of rapid cooling by improving the cooling rate of a heater portion made of a plate-like body having a resistance heating element. And

本発明のウェハ加熱装置は、板状体の一方の主面に絶縁層を備え、該絶縁層の上に帯状の抵抗発熱体を備え、他方の主面にウェハを載せる載置面を備えたヒータ部と、上記抵抗発熱体に電力を供給する給電端子と、該給電端子を包むように板状体と接続したケースとを有するとともに、該ケースに上記ヒータ部を冷却するノズルと開口部とを備え、上記載置面への投影面から見て、上記ノズルの先端が上記抵抗発熱体の間に位置することを特徴とする。   The wafer heating apparatus of the present invention includes an insulating layer on one main surface of a plate-shaped body, a strip-like resistance heating element on the insulating layer, and a mounting surface on which the wafer is placed on the other main surface. A heater part; a power supply terminal for supplying power to the resistance heating element; and a case connected to a plate-like body so as to wrap the power supply terminal; and a nozzle and an opening for cooling the heater part in the case. And the tip of the nozzle is located between the resistance heating elements when viewed from the projection surface onto the placement surface.

また、本発明のウェハ加熱装置は、板状体の一方の主面に絶縁層を備え、該絶縁層の上に複数の帯状の抵抗発熱体を備え、他方の主面にウェハを載せる載置面を備えたヒータ部と、前記抵抗発熱体に電力を供給する給電端子と、該給電端子を包むように板状体と接続したケースとを有するとともに、該ケースに上記ヒータ部を冷却するノズルと開口部とを備え、上記載置面への投影面から見て、上記抵抗発熱体は略同一の幅を有する円弧状の帯と折り返し帯とを連続させて略同心円状に配設され、上記ノズルの先端が上記複数の抵抗発熱体の間に位置することを特徴とする。   Further, the wafer heating apparatus of the present invention is provided with an insulating layer on one main surface of a plate-like body, a plurality of strip-like resistance heating elements on the insulating layer, and a wafer placed on the other main surface. A heater section having a surface, a power supply terminal for supplying power to the resistance heating element, a case connected to a plate-like body so as to wrap the power supply terminal, and a nozzle for cooling the heater section in the case; The resistance heating element is arranged in a substantially concentric manner by continuously connecting an arc-shaped band and a folded band having substantially the same width as viewed from the projection surface onto the mounting surface. The tip of the nozzle is located between the plurality of resistance heating elements.

また、本発明のウェハ加熱装置は、上記各構成において、上記帯状の抵抗発熱体の上面の全てまたは一部に絶縁層を設けたことを特徴とする。   The wafer heating apparatus of the present invention is characterized in that, in each of the above configurations, an insulating layer is provided on all or a part of the upper surface of the strip-shaped resistance heating element.

また、本発明のウェハ加熱装置は、上記各構成において、上記複数の帯状の抵抗発熱体は、上記板状体の中心部に備えた円形の抵抗発熱体ゾーンと、その外側の同心円の2つまたは3つの円環状の抵抗発熱体ゾーンとからなることを特徴とする。   Further, in the wafer heating apparatus of the present invention, in each of the above-described configurations, the plurality of strip-like resistance heating elements includes two circular resistance heating element zones provided at the central portion of the plate-like body and concentric circles outside thereof. Or, it comprises three annular resistance heating element zones.

また、本発明のウェハ加熱装置は、上記構成において、上記円環状の抵抗発熱体ゾーンのうち、最も外側の抵抗発熱体ゾーンは、円環を4等分した4個の扇状であり、その内側の抵抗発熱体ゾーンは、円環を円周方向に2等分した2個の扇状であることを特徴とする。   In the wafer heating device of the present invention, in the above configuration, the outermost resistance heating element zone of the annular resistance heating element zones has four fan shapes obtained by dividing the ring into four equal parts. The resistance heating element zone is characterized in that it has two fan shapes obtained by dividing the ring into two equal parts in the circumferential direction.

また、本発明のウェハ加熱装置は、上記各構成において、上記中心部に備えた円形の抵抗発熱体ゾーンまたはその外側の同心円の円環状の抵抗発熱体ゾーンと、上記円形の抵抗発熱体ゾーンまたは上記円環状の抵抗発熱体ゾーンの外側の円環状の抵抗発熱体ゾーンとの間隔S2と、上記外側の円環状の抵抗発熱体ゾーンと最も外側の円環状の抵抗発熱体ゾーンとの間隔S3とを備え、該間隔S3が上記間隔S2より大きいことを特徴とする。   Further, the wafer heating apparatus of the present invention, in each of the above-described configurations, has a circular resistance heating element zone provided in the central portion or a concentric annular resistance heating element zone outside the center portion, and the circular resistance heating element zone or An interval S2 between the outer annular resistance heating element zone and the outer annular resistance heating element zone; and an interval S3 between the outer annular resistance heating element zone and the outermost annular resistance heating element zone; The interval S3 is larger than the interval S2.

また、本発明のウェハ加熱装置は、上記各構成において、上記載置面への投影面から見て、上記最も外側の円環状の抵抗発熱体ゾーンとその内側の抵抗発熱体ゾーンとの間に上記ノズルの先端を複数個備えていることを特徴とする。   Further, the wafer heating apparatus of the present invention is, in each of the above-described configurations, between the outermost annular resistance heating element zone and the inner resistance heating element zone when viewed from the projection surface onto the placement surface. A plurality of nozzle tips are provided.

また、本発明のウェハ加熱装置は、上記各構成において、上記絶縁層および/または抵抗発熱体の表面が凹凸面であることを特徴とする。   Moreover, the wafer heating apparatus of the present invention is characterized in that, in each of the above configurations, the surface of the insulating layer and / or the resistance heating element is an uneven surface.

また、本発明のウェハ加熱装置は、上記各構成において、上記凹凸面は略格子状の溝であることを特徴とする。   The wafer heating apparatus according to the present invention is characterized in that, in each of the above-described configurations, the uneven surface is a substantially lattice-shaped groove.

また、本発明の半導体製造装置は、上記各構成の本発明のウェハ加熱装置を用いたものであることを特徴とする。   Further, a semiconductor manufacturing apparatus of the present invention is characterized by using the wafer heating apparatus of the present invention having the above-described configuration.

本発明のウェハ加熱装置によれば、ヒータ部を冷却するノズルの先端が抵抗発熱体の間に位置することから、ノズルからの冷却ガスによって板状体を効率良く急速に冷却することができるので、ヒータ部の冷却時間を短くすることができ、ウェハの冷却時間を短くすることができる。そして、半導体製造工程におけるウェハ処理時間を短縮させることができるので、半導体素子を効率良く量産できる。   According to the wafer heating apparatus of the present invention, since the tip of the nozzle for cooling the heater portion is located between the resistance heating elements, the plate-like body can be efficiently and rapidly cooled by the cooling gas from the nozzle. The cooling time of the heater can be shortened, and the cooling time of the wafer can be shortened. And since the wafer processing time in a semiconductor manufacturing process can be shortened, a semiconductor element can be mass-produced efficiently.

また、本発明のウェハ加熱装置によれば、抵抗発熱体が略同一の幅を有する円弧状の帯と折り返し帯とを連続させて略同心円状に配置されていることから、載置面を一様に加熱できるので、ウェハ面内の温度差が小さく耐久性の優れたウェハ加熱装置が得られる。   Further, according to the wafer heating apparatus of the present invention, the resistance heating element is arranged in a substantially concentric manner by continuously arranging the arc-shaped band and the folded band having substantially the same width. Thus, a wafer heating apparatus having a small temperature difference within the wafer surface and excellent durability can be obtained.

また、本発明のウェハ加熱装置によれば、絶縁層および/または抵抗発熱体の表面を凹凸面とすることによって、この凹凸面と外部熱媒体である空気等の冷却ガスとの熱交換が容易となるので、熱膨張差を吸収しつつ、抵抗発熱体の劣化損傷を抑えることができるとともに、ヒータ部を急速冷却することができる。そして信頼性の高いウェハ加熱装置とすることができる。   In addition, according to the wafer heating apparatus of the present invention, the surface of the insulating layer and / or the resistance heating element is an uneven surface, so that heat exchange between the uneven surface and a cooling gas such as air as an external heat medium is easy. Therefore, while absorbing the difference in thermal expansion, it is possible to suppress the deterioration damage of the resistance heating element and to rapidly cool the heater portion. And it can be set as a highly reliable wafer heating apparatus.

図1(a)は本発明のウェハ加熱装置1の例を示す断面図であり、図1(b)はその上面図である。本発明のウェハ加熱装置1は、熱伝導率の大きな炭化珪素または窒化アルミニウムを主成分とするセラミックスからなる板状体2の他方の主面をウェハWを載せる載置面3とするとともに、一方の主面に絶縁層14を備え、該絶縁層14の上に帯状の抵抗発熱体5とその両端に給電部6を形成したヒータ部7を備えている。また、ヒータ部7の給電部6には給電端子11が接続されている。そして、給電端子11を覆うように金属製のケース19が断熱部材17を介して板状体2の一方の主面に接続されている。   FIG. 1A is a cross-sectional view showing an example of the wafer heating apparatus 1 of the present invention, and FIG. 1B is a top view thereof. In the wafer heating apparatus 1 of the present invention, the other main surface of the plate-like body 2 made of ceramics mainly composed of silicon carbide or aluminum nitride having a high thermal conductivity is used as the mounting surface 3 on which the wafer W is placed. An insulating layer 14 is provided on the main surface, and a strip-shaped resistance heating element 5 is provided on the insulating layer 14, and a heater portion 7 in which a power feeding portion 6 is formed at both ends thereof. A power supply terminal 11 is connected to the power supply unit 6 of the heater unit 7. A metal case 19 is connected to one main surface of the plate-like body 2 via a heat insulating member 17 so as to cover the power supply terminal 11.

また、ウェハリフトピン25は、板状セラミック体2を貫通する孔を通してウェハWを上下に移動させ、ウェハWを載置面3に載せたり持ち上げたりすることができる。   Further, the wafer lift pins 25 can move the wafer W up and down through a hole penetrating the plate-like ceramic body 2 to place or lift the wafer W on the placement surface 3.

絶縁層14には、板状体2との密着性の優れたガラスや樹脂等の絶縁性材料を使うことができる。   For the insulating layer 14, an insulating material such as glass or resin having excellent adhesion to the plate-like body 2 can be used.

抵抗発熱体5は、導体成分として、耐熱性および耐酸化性が良好な貴金属、もしくはこれらの合金を主成分とするものを使用することが好ましい。抵抗発熱体5としては、絶縁層14との密着性および抵抗発熱体5自体の焼結性を向上させるために、30〜75重量%のガラス成分を混合することが好ましく、抵抗発熱体5の熱伝導率は板状体2の熱伝導率に比べ小さくなっている。   In the resistance heating element 5, it is preferable to use a noble metal having good heat resistance and oxidation resistance, or a main component thereof, as a conductor component. As the resistance heating element 5, it is preferable to mix 30 to 75% by weight of a glass component in order to improve the adhesion to the insulating layer 14 and the sintering property of the resistance heating element 5 itself. The thermal conductivity is smaller than the thermal conductivity of the plate-like body 2.

図2は本発明のウェハ加熱装置の例における抵抗発熱体5の形状を示す正面図である。また、図3は図2の各抵抗発熱体5を囲む抵抗発熱体ゾーン4を示す概略図であり、図3(a)は抵抗発熱体ゾーンを示す概略図であり、図3(b)は環状の抵抗発熱体ゾーンを部活した一例を示す概略図である。この抵抗発熱体5では、図2および図3(a)に示すように、略同一の幅を有する円弧状の帯51と折り返し帯52とを連続させて略同心円状に配設した抵抗発熱体5e,5f,5g,5hを囲む抵抗発熱体ゾーン4ehを備え、その中に同様に円環状の複数の抵抗発熱体ゾーン4cd,4b,4aを備えている。なお、ゾーン4aと4bとは連続した一つの円形のゾーンとしてもよい。そして、これらの抵抗発熱体ゾーンの抵抗発熱体5は独立して加熱できることから、ウェハWの面内温度を精密に制御して面内温度差を小さくすることができる。また、抵抗発熱体5の形状としては、図8に正面図で示すような円弧状の帯51と折り返し直線状の帯52とからなる略同心円状をしたものや、渦巻き状のものなど、載置面3を均一に加熱できる形状であれば種々の形状としてよい。   FIG. 2 is a front view showing the shape of the resistance heating element 5 in the example of the wafer heating apparatus of the present invention. 3 is a schematic diagram showing a resistance heating element zone 4 surrounding each resistance heating element 5 of FIG. 2, FIG. 3 (a) is a schematic diagram showing a resistance heating element zone, and FIG. It is the schematic which shows an example which carried out partial activity of the cyclic | annular resistance heating element zone. In this resistance heating element 5, as shown in FIG. 2 and FIG. 3 (a), a resistance heating element in which an arc-shaped band 51 and a folded band 52 having substantially the same width are continuously arranged in a concentric manner. A resistance heating element zone 4eh surrounding 5e, 5f, 5g, and 5h is provided, and a plurality of annular resistance heating element zones 4cd, 4b, and 4a are similarly provided therein. The zones 4a and 4b may be one continuous circular zone. Since the resistance heating elements 5 in these resistance heating element zones can be heated independently, the in-plane temperature difference of the wafer W can be precisely controlled to reduce the in-plane temperature difference. Further, as the shape of the resistance heating element 5, a substantially concentric circular shape composed of an arc-shaped band 51 and a folded linear band 52 as shown in a front view in FIG. Various shapes may be used as long as the mounting surface 3 can be heated uniformly.

抵抗発熱体5には、金(Au)や銀(Ag),パラジウム(Pd),白金(Pt)等の材質からなる給電部6が形成され、該給電部6に給電端子11を不図示の弾性体により押圧して接触させることにより、導通が確保されている。また、給電端子11は半田付けやロウ付けなどにより抵抗発熱体5に直接接合されていてもよい。   The resistance heating element 5 is formed with a power feeding portion 6 made of a material such as gold (Au), silver (Ag), palladium (Pd), platinum (Pt), and the power feeding terminal 11 is not shown. Electrical conduction is ensured by pressing and contacting the elastic body. The power supply terminal 11 may be directly joined to the resistance heating element 5 by soldering or brazing.

金属製のケース19は、側壁部22とベースプレート21を有し、板状体2はそのベースプレート21に対向してケース19の上部の開口側を覆うように設置してある。また、ベースプレート21には冷却ガスを排出するための開口部23が施されており、給電部6に導通する給電端子11,ヒータ部7を冷却するためのノズル24,ヒータ部7の温度を測定するための複数の温度センサー27が設けられている。   The metal case 19 has a side wall portion 22 and a base plate 21, and the plate-like body 2 is installed so as to face the base plate 21 and cover the upper opening side of the case 19. Further, the base plate 21 is provided with an opening 23 for discharging cooling gas, and the temperature of the power supply terminal 11 conducting to the power supply unit 6, the nozzle 24 for cooling the heater unit 7, and the heater unit 7 is measured. A plurality of temperature sensors 27 are provided.

また、板状体2とケース19の周辺部とにボルトを貫通させ、板状体2とケース19とが直接当たらないように、断熱部材17を介在させてナットを螺着することにより固定している。   Further, a bolt is passed through the plate-like body 2 and the peripheral portion of the case 19, and the plate-like body 2 and the case 19 are fixed by screwing a nut through an insulating member 17 so that the plate-like body 2 and the case 19 do not directly contact each other. ing.

そして、抵抗発熱体5に通電して載置面3を加熱することによって、ウェハWを均一に加熱することができる。そして、通電を停止するとともにノズル24より冷却ガスを送ることによって、ヒータ部7を急速に冷却することができる。   The wafer W can be uniformly heated by energizing the resistance heating element 5 and heating the mounting surface 3. The heater unit 7 can be rapidly cooled by stopping energization and sending cooling gas from the nozzle 24.

本発明のウェハ加熱装置1は、上記載置面3への投影面から見て、上記ノズル24の先端24aが上記抵抗発熱体5の間に位置することが好ましい。抵抗発熱体5の間の表面は、絶縁層14から板状体2への熱伝達が容易であるので、上記ノズル24の先端24aが上記抵抗発熱体5の間に位置することで、ノズル24から噴射された空気等の冷却ガスが絶縁層14の表面に確実に当たり、絶縁層14の表面を介して板状体2の熱を効率よく冷却ガスに伝えることができることから、板状体2を含むヒータ部7を短時間に冷却することができる。   In the wafer heating apparatus 1 according to the present invention, it is preferable that the tip 24 a of the nozzle 24 is positioned between the resistance heating elements 5 when viewed from the projection surface onto the placement surface 3. Since the surface between the resistance heating elements 5 can easily transfer heat from the insulating layer 14 to the plate-like body 2, the tip 24 a of the nozzle 24 is positioned between the resistance heating elements 5, so that the nozzle 24 The cooling gas such as air jetted from the air reliably hits the surface of the insulating layer 14, and the heat of the plate-like body 2 can be efficiently transmitted to the cooling gas through the surface of the insulating layer 14. The heater part 7 containing can be cooled in a short time.

さらに、本発明のウェハ加熱装置1は、載置面3への投影面から見て、複数の帯状の抵抗発熱体2が略同一の幅を有する円弧状の帯51と折り返し帯52とを連続させて略同心円状に配設され、上記ノズル24の先端24aが上記複数の抵抗発熱体5の間に位置することによって、ヒータ部7を冷却する際に、ノズル24の先端24aから冷却ガスを噴射して抵抗発熱体5の間の板状体2の上面に形成された絶縁層14に直接冷却ガスを当てることで板状体2の熱を急速に奪うことができ、ヒータ部7の温度を短時間に低下させ冷却することができる。   Further, in the wafer heating apparatus 1 of the present invention, when viewed from the projection surface onto the mounting surface 3, the plurality of strip-like resistance heating elements 2 continuously connect the arc-shaped strip 51 and the folded strip 52 having substantially the same width. The tip 24a of the nozzle 24 is positioned between the plurality of resistance heating elements 5 so that the cooling gas is supplied from the tip 24a of the nozzle 24 when the heater unit 7 is cooled. By spraying and directly applying a cooling gas to the insulating layer 14 formed on the upper surface of the plate-like body 2 between the resistance heating elements 5, the heat of the plate-like body 2 can be rapidly taken away, and the temperature of the heater section 7 Can be cooled in a short time.

また、好ましくは、上記抵抗発熱体2は略同一の幅を有する円弧状の帯51と折り返し円弧状の帯52とを連続させて略同心円状に配設されていることが、載置面3のウェハW面内の温度差が小さくなるという点で好ましい。さらに円弧状の帯52の間隔L1が円弧状の帯51の間隔L4より小さいと、あるいは円弧状の帯52の間隔L3が円弧状の帯51の間隔L6より小さいと、さらにウェハW面内の温度差が小さくなり好ましい。   Preferably, the resistance heating element 2 is arranged in a substantially concentric manner in which an arc-shaped band 51 and a folded arc-shaped band 52 having substantially the same width are continuously arranged. This is preferable in that the temperature difference in the wafer W surface is small. Further, when the distance L1 between the arc-shaped bands 52 is smaller than the distance L4 between the arc-shaped bands 51, or when the distance L3 between the arc-shaped bands 52 is smaller than the distance L6 between the arc-shaped bands 51, The temperature difference is preferably small.

図4は、板状体2と板状体2の上の絶縁層14,抵抗発熱体5と、ノズル24の先端24aとの位置関係を示す拡大断面図である。本発明のウェハ加熱装置1は、ノズル24から空気等の冷却ガスが抵抗発熱体5の間に向けて噴射される。ここで、ノズル24の先端24aが抵抗発熱体5の間に位置するとは、ノズル24の先端24aの中心が図3(a)
中にAPで示す抵抗発熱体5の間の位置にあり、板状体2の表面に形成された絶縁層14に直接冷却ガスを当てることができる位置にあることをいう。この抵抗発熱体5の帯の間は、抵抗発熱体5の表面に比べて熱伝導率が大きな板状体2の表面に近く、表面から板状体2までの熱伝達が大きい。そのため、ノズル24から噴射された冷却ガスが板状体2の表面の絶縁層14を直接冷却することができるので、板状体2を効率的に冷却することが可能性となり短時間でヒータ部7の熱を奪い取ることができ、ヒータ部7の冷却時間を短縮することができる。
FIG. 4 is an enlarged cross-sectional view showing the positional relationship between the plate-like body 2, the insulating layer 14 on the plate-like body 2, the resistance heating element 5, and the tip 24 a of the nozzle 24. In the wafer heating apparatus 1 of the present invention, a cooling gas such as air is injected from the nozzle 24 toward the resistance heating element 5. Here, the fact that the tip 24a of the nozzle 24 is located between the resistance heating elements 5 means that the center of the tip 24a of the nozzle 24 is shown in FIG.
It is in the position between the resistance heating elements 5 indicated by AP, and is in a position where the cooling gas can be directly applied to the insulating layer 14 formed on the surface of the plate-like body 2. Between the strips of the resistance heating element 5, it is close to the surface of the plate-like body 2 having a larger thermal conductivity than the surface of the resistance heating element 5, and heat transfer from the surface to the plate-like body 2 is large. Therefore, since the cooling gas injected from the nozzle 24 can directly cool the insulating layer 14 on the surface of the plate-like body 2, the plate-like body 2 can be efficiently cooled, and the heater section can be quickly obtained. 7 can be taken away, and the cooling time of the heater unit 7 can be shortened.

図5(a)は、抵抗発熱体5の表面に絶縁層14を形成し、該絶縁層14の上に抵抗発熱体5を形成し、該抵抗発熱体5の上に帯状の絶縁層12を形成したヒータ部7とノズル24との位置関係を示す拡大図である。帯状の絶縁層12は、抵抗発熱体5の上面の全てまたは一部に形成することが好ましい。このように抵抗発熱体5の上面に帯状の絶縁層12を形成すると、帯状の絶縁層12によって抵抗発熱体5の表面を保護することができる。そして、例えば冷却ガスが抵抗発熱体5に流れても抵抗発熱体5の表面を損傷したり汚染したりする虞がなく、抵抗発熱体5の加熱/冷却を繰り返しても径時変化が少なくなるので、耐久性を高めることができる。   In FIG. 5A, an insulating layer 14 is formed on the surface of the resistance heating element 5, the resistance heating element 5 is formed on the insulating layer 14, and a strip-shaped insulating layer 12 is formed on the resistance heating element 5. It is an enlarged view which shows the positional relationship of the formed heater part 7 and the nozzle 24. FIG. The strip-shaped insulating layer 12 is preferably formed on all or part of the upper surface of the resistance heating element 5. When the strip-shaped insulating layer 12 is formed on the upper surface of the resistance heating element 5 in this way, the surface of the resistance heating element 5 can be protected by the strip-shaped insulating layer 12. For example, even if the cooling gas flows into the resistance heating element 5, there is no possibility of damaging or contaminating the surface of the resistance heating element 5, and the time variation is reduced even if heating / cooling of the resistance heating element 5 is repeated. Therefore, durability can be improved.

また、本発明のウェハ加熱装置1によれば、図5(a)に示すように、板状体2の一方の主面に絶縁層14を備え、該絶縁層14の上に複数の帯状の抵抗発熱体5と複数の帯状の絶縁層12とを備え、他方の主面にウェハを載せる載置面3を備えたヒータ部7と、前記抵抗発熱体5に電力を供給する給電端子11と、該給電端子11を包むように板状体2と接続したケース19と、該ケース19に前記ヒータ部7を冷却するノズル24と開口部23とを備え、載置面3への投影面から見て、上記ノズル24の先端が上記絶縁層12の間に位置することから、絶縁層14の表面から熱を冷却媒体である冷却ガスに直接伝えることができ、板状体2を容易に冷却することができることによってヒータ部7を繰り返し急速に冷却することができるとともに、抵抗発熱体5を絶縁層12が覆っていることによって、加熱と急速な冷却とを繰り返しても加熱冷却特性が劣化することなく優れた特性を得ることができる。   Further, according to the wafer heating apparatus 1 of the present invention, as shown in FIG. 5A, an insulating layer 14 is provided on one main surface of the plate-like body 2, and a plurality of strip-like shapes are provided on the insulating layer 14. A heater section 7 having a resistance heating element 5 and a plurality of strip-like insulating layers 12 and having a mounting surface 3 on which the wafer is placed on the other main surface; a power supply terminal 11 for supplying power to the resistance heating element 5; The case 19 includes a case 19 connected to the plate-like body 2 so as to enclose the power supply terminal 11, and the case 19 includes a nozzle 24 and an opening 23 for cooling the heater unit 7, and is viewed from the projection surface onto the placement surface 3. In addition, since the tip of the nozzle 24 is positioned between the insulating layers 12, heat can be directly transferred from the surface of the insulating layer 14 to the cooling gas that is a cooling medium, and the plate-like body 2 is easily cooled. If the heater part 7 can be repeatedly and rapidly cooled by being able to Moni, by the resistance heating element 5 covers the insulation layer 12, heating and cooling characteristics by repeating the heating and rapid cooling can be obtained excellent characteristics without degradation.

本発明のウェハ加熱装置1は、図5(a)に示すように、帯状の抵抗発熱体5の表面を覆う帯状の絶縁層12を備えていることが好ましい。抵抗発熱体5は、貴金属からなる導電性粒子がガラス質の絶縁性組成物の中に分散したもので、抵抗発熱体5が露出していると経時変化したり、抵抗発熱体5に冷却ガスが当たって脱落したりする虞があるが、帯状の絶縁層12がこれらを防止する作用があり好ましい。そして、帯状の絶縁層12は、抵抗発熱体5の表面を覆うことで抵抗発熱体5を保護することができる。この帯状の絶縁層12を形成することで、抵抗発熱体5に冷却ガスが当たっても抵抗発熱体5が破損したり脱落することを防止できるので、ウェハ加熱装置1において加熱強制冷却を繰り返しても抵抗発熱体1の各部の抵抗値が変化する虞がなく、耐久性が優れるとともにウェハWの表面を均一に加熱することができる。また、この帯状の絶縁層12は抵抗発熱体5を覆うことができる範囲に備えていることが好ましく、絶縁層12や抵抗発熱体5が板状体2を覆っていない部分から冷却ガスにより板状体2を強制冷却できることから、各抵抗発熱体ゾーン4a,4b,4cd,4ehに対応して絶縁層12a,12b,12cd,12ehが独立していることが好ましい。   As shown in FIG. 5A, the wafer heating apparatus 1 of the present invention preferably includes a strip-shaped insulating layer 12 that covers the surface of the strip-shaped resistance heating element 5. The resistance heating element 5 is formed by dispersing conductive particles made of a noble metal in a glassy insulating composition. If the resistance heating element 5 is exposed, the resistance heating element 5 changes with time, or the resistance heating element 5 has a cooling gas. However, the strip-shaped insulating layer 12 is preferable because it has an action to prevent these. The strip-shaped insulating layer 12 can protect the resistance heating element 5 by covering the surface of the resistance heating element 5. By forming this strip-shaped insulating layer 12, it is possible to prevent the resistance heating element 5 from being damaged or falling off even when the cooling gas hits the resistance heating element 5, so that the forced heating cooling is repeated in the wafer heating apparatus 1. In addition, there is no possibility that the resistance value of each part of the resistance heating element 1 is changed, the durability is excellent, and the surface of the wafer W can be heated uniformly. The strip-like insulating layer 12 is preferably provided in a range that can cover the resistance heating element 5, and a plate is formed by cooling gas from a portion where the insulating layer 12 and the resistance heating element 5 do not cover the plate-like body 2. Since the state body 2 can be forcibly cooled, it is preferable that the insulating layers 12a, 12b, 12cd, and 12eh are independent corresponding to the resistance heating element zones 4a, 4b, 4cd, and 4eh.

図5(b)は板状体2と帯状の絶縁層12とノズル24の先端24aとの位置関係を示す概略図である。本発明のウェハ加熱装置1は、ノズル24から空気等の冷却ガスが抵抗発熱体5の間に向けて噴射される。ここで、ノズル24の先端24aが帯状の絶縁層12の間に位置するとは、ノズル24の先端24aの中心が図5(b)中にAPで示す帯状の絶縁層12の間に位置していることであり、このようになっていることで、板状体2の表面の絶縁層14に直接冷却ガスを当てることができる。この帯状の絶縁層12の間は、すなわち帯状の絶縁層12がないことから、絶縁層14を通して板状体2の熱を効率よく伝えることができる。そのため、ノズル24から噴射された冷却ガスが板状体2の表面の絶縁層14を直接冷却することができるので、板状体2を効率的に冷却することが可能となって短時間でヒータ部7の熱を奪い取ることができ、ヒータ部7の冷却時間を短縮することができる。   FIG. 5B is a schematic diagram showing the positional relationship between the plate-like body 2, the strip-like insulating layer 12, and the tip 24 a of the nozzle 24. In the wafer heating apparatus 1 of the present invention, a cooling gas such as air is injected from the nozzle 24 toward the resistance heating element 5. Here, the tip 24a of the nozzle 24 is positioned between the strip-shaped insulating layers 12. The center of the tip 24a of the nozzle 24 is positioned between the strip-shaped insulating layers 12 indicated by AP in FIG. In this way, the cooling gas can be directly applied to the insulating layer 14 on the surface of the plate-like body 2. Between the strip-shaped insulating layers 12, that is, since there is no strip-shaped insulating layer 12, the heat of the plate-like body 2 can be efficiently transmitted through the insulating layer 14. Therefore, since the cooling gas injected from the nozzle 24 can directly cool the insulating layer 14 on the surface of the plate-like body 2, the plate-like body 2 can be efficiently cooled, and the heater can be obtained in a short time. The heat of the part 7 can be taken away, and the cooling time of the heater part 7 can be shortened.

図6は、抵抗発熱体5の表面に帯状の絶縁層12を形成した他の例を示す拡大断面図である。帯状の絶縁層12は抵抗発熱体5の上面と同時に絶縁層14の上にかけても形成されている。載置面3への投影面から見て抵抗発熱体5の間は、帯状の絶縁層12aや絶縁層14で板状体2は覆われているが、抵抗発熱体5の帯の上の帯状の絶縁層12bより絶縁層14aの表面から板状体2までの熱伝達が容易であり、板状体2を冷却するには抵抗発熱体5の帯の間にノズル24の先端を配置することで、ノズル24から噴射されたガスが抵抗発熱体5の帯の間の絶縁層14を冷却して板状体2を効率よく冷却することができる。   FIG. 6 is an enlarged cross-sectional view showing another example in which a strip-like insulating layer 12 is formed on the surface of the resistance heating element 5. The strip-shaped insulating layer 12 is formed over the insulating layer 14 simultaneously with the upper surface of the resistance heating element 5. The plate-like body 2 is covered with the band-like insulating layer 12a and the insulating layer 14 between the resistance heating elements 5 when viewed from the projection surface onto the mounting surface 3, but the band-like shape above the band of the resistance heating element 5 is covered. It is easy to transfer heat from the surface of the insulating layer 14a to the plate-like body 2 from the insulating layer 12b, and to cool the plate-like body 2, the tip of the nozzle 24 is disposed between the bands of the resistance heating element 5. Thus, the gas injected from the nozzle 24 cools the insulating layer 14 between the bands of the resistance heating element 5, and the plate-like body 2 can be efficiently cooled.

また、図3(a)は本発明の抵抗発熱体ゾーン4の一例を示す。抵抗発熱体ゾーン4は、板状体2がその一方の主面に複数の抵抗発熱体ゾーン4を備えているものであり、板状体2の中心部に円形の抵抗発熱体ゾーン4aと、その外側の同心円の2つまたは3つの円環状の抵抗発熱体ゾーン4bおよび/または4cdと、抵抗発熱体ゾーン4ehとを備えることが好ましい。なお、4aは4bと連結して一つの抵抗発熱体ゾーンとしてもよい。また、ウェハWの均熱性を改善するために、抵抗発熱体5を3個または4個の抵抗発熱体ゾーン4に対応して分割していることがより好ましい。円板状のウェハWの表面を均一に加熱するには、ウェハW周辺の雰囲気やウェハWに対向する壁面やガスの流れの影響を受けるが、円板状のウェハWの表面温度をばらつかせないために、ウェハWの周囲や上面の対向面や雰囲気ガスの流れはウェハWに対し中心を対称中心として点対称となるように設計することが好ましい。ウェハWを均一に加熱するには、ウェハWに対し中心を対称中心として点対称な上記環境に合わせたウェハ加熱装置1が必要で、載置面3をウェハWの中心を対称中心として点対称に分割して円、円環状や扇状の形となるように抵抗発熱体ゾーン4を形成することが好ましい。   FIG. 3A shows an example of the resistance heating element zone 4 of the present invention. The resistance heating element zone 4 is a plate-like body 2 having a plurality of resistance heating element zones 4 on one main surface thereof, and a circular resistance heating element zone 4a at the center of the plate-like body 2. It is preferable to provide two or three annular resistance heating element zones 4b and / or 4cd in concentric circles on the outer side and a resistance heating element zone 4eh. 4a may be connected to 4b to form one resistance heating element zone. In order to improve the thermal uniformity of the wafer W, it is more preferable that the resistance heating element 5 is divided corresponding to three or four resistance heating element zones 4. In order to uniformly heat the surface of the disk-shaped wafer W, the surface temperature of the disk-shaped wafer W varies depending on the atmosphere around the wafer W, the wall surface facing the wafer W, and the flow of gas. Therefore, it is preferable to design the flow around the wafer W, the opposed surfaces of the upper surface, and the flow of the atmospheric gas to be point-symmetric with respect to the wafer W. In order to uniformly heat the wafer W, the wafer heating apparatus 1 that matches the above-mentioned environment that is point-symmetric with respect to the center of the wafer W is required, and the mounting surface 3 is point-symmetric with the center of the wafer W as the center of symmetry. The resistance heating element zone 4 is preferably formed so as to be divided into a circle, an annular shape or a fan shape.

特に、直径が300mm以上のウェハWの表面温度を均一に加熱するには、同心円の円環状の抵抗発熱体ゾーン4は2または3つであることが好ましい。   In particular, in order to uniformly heat the surface temperature of the wafer W having a diameter of 300 mm or more, the number of concentric annular resistance heating element zones 4 is preferably two or three.

さらに、上記のように複数の抵抗発熱体5を有するウェハ加熱装置1は、ウェハ加熱装置1を納める容器の側壁等の周囲の環境から生じる左右前後の微妙な非対称性や、点対称な抵抗発熱体5の厚みばらつきを、独立した抵抗発熱体5の最大径を小さくできることによって補正できるとともに、独立した抵抗発熱体5内の厚みのバラツキが小さくなるので、ウェハWの面内温度差がより小さくなることが分かった。   Further, as described above, the wafer heating apparatus 1 having the plurality of resistance heating elements 5 has a subtle asymmetry on the left and right sides and a point-symmetric resistance heating generated from the surrounding environment such as the side wall of the container in which the wafer heating apparatus 1 is housed. Variations in the thickness of the body 5 can be corrected by reducing the maximum diameter of the independent resistance heating element 5, and variations in the thickness of the independent resistance heating element 5 are reduced, so that the in-plane temperature difference of the wafer W is smaller. I found out that

図3(b)は、本発明のウェハ加熱装置1の抵抗発熱体ゾーン4の一例を示す概略図である。左右前後を独立した抵抗発熱体ゾーン4c,4d,4e,4f,4g,4hで加熱量を調整できるようにすることから、前記3つの円環状の抵抗発熱体ゾーン4のうち、外側の抵抗発熱体ゾーン4ehは円環を4等分した4個の扇状であり、その内側の抵抗発熱体ゾーン4cdは円環を円周方向に2等分した2個の扇状であることが好ましい。さらに、各抵抗発熱体ゾーン4の最大径を同じような大きさにできるようにすることから、3つの円環状の抵抗発熱体ゾーン4b,4cd,4ehのうち、最も内側の円環状の抵抗発熱体ゾーン4bは、円環からなる抵抗発熱体ゾーン4bであり、その外側の抵抗発熱体ゾーン4cdは、円環を円周方向に2等分した2個の扇状の抵抗発熱体ゾーン4c,4dであり、その外側の抵抗発熱体ゾーン4ehは、円環を円周方向に4等分した4個の扇状の抵抗発熱体ゾーン4e,4f,4g,4hからなっていることが、ウェハWの表面温度を均一にする上で好ましい。   FIG. 3B is a schematic view showing an example of the resistance heating element zone 4 of the wafer heating apparatus 1 of the present invention. Since the heating amount can be adjusted by the independent resistance heating element zones 4c, 4d, 4e, 4f, 4g, and 4h on the left and right and front and rear sides, the outer resistance heating value of the three annular resistance heating element zones 4 can be adjusted. It is preferable that the body zone 4eh has four fan shapes obtained by dividing the annular ring into four equal parts, and the resistance heating element zone 4cd inside the body zone 4eh has two fan shapes obtained by dividing the annular ring into two equal parts in the circumferential direction. Furthermore, since the maximum diameter of each resistance heating element zone 4 can be made the same size, among the three annular resistance heating element zones 4b, 4cd, 4eh, the innermost annular resistance heating value is formed. The body zone 4b is a resistance heating element zone 4b made of a ring, and the outer resistance heating element zone 4cd is two fan-shaped resistance heating element zones 4c, 4d obtained by dividing the ring into two equal parts in the circumferential direction. The outer resistance heating element zone 4eh is composed of four fan-shaped resistance heating element zones 4e, 4f, 4g, and 4h obtained by dividing the ring into four equal parts in the circumferential direction. It is preferable for making the surface temperature uniform.

上記ウェハ加熱装置1の各抵抗発熱体ゾーン4a〜4gは、ウェハWの面内温度の左右前後の温度差や周辺部と外周部との温度差を調整できる点からは、独立して発熱でき、各抵抗発熱体ゾーン4a〜4gに対応して抵抗発熱体5a〜5gを備えていることが好ましい。   Each of the resistance heating element zones 4a to 4g of the wafer heating apparatus 1 can generate heat independently from the point that the temperature difference between the front and rear of the wafer W and the temperature difference between the peripheral portion and the outer peripheral portion can be adjusted. The resistance heating elements 5a to 5g are preferably provided corresponding to the resistance heating element zones 4a to 4g.

しかし、抵抗発熱体ゾーン4aと抵抗発熱体ゾーン4bとは、ウェハ加熱装置1の外部環境でもある設置場所が頻繁に変更されるのでなければ、並列または直列に接続して一つの回路として制御することもできる。このような構成とするのは、抵抗発熱体ゾーン4aと抵抗発熱体ゾーン4bとの間に所定の間隔を設定できることから、ウェハWを持ち上げるウェハリフトピン25が貫通する貫通孔を容易に設置することができるようになる点で好ましい。   However, the resistance heating element zone 4a and the resistance heating element zone 4b are connected in parallel or in series and controlled as one circuit unless the installation location, which is also the external environment of the wafer heating device 1, is frequently changed. You can also. The reason for this configuration is that a predetermined interval can be set between the resistance heating element zone 4a and the resistance heating element zone 4b, so that a through-hole through which the wafer lift pin 25 for lifting the wafer W passes is easily installed. It is preferable at the point which becomes possible.

なお、円環状の抵抗発熱体ゾーン4cd,4ehはそれぞれ放射方向に2分割,4分割したが、これに限るものではない。   The annular resistance heating element zones 4cd and 4eh are divided into two and four in the radial direction, respectively, but the invention is not limited to this.

図3(b)に示す例の抵抗発熱体ゾーン4c,4dの境界線は直線であるが、この境界は必ずしも直線状である必要はなく、波線状であってもよい。ただ、ウェハWの中心点に対し点対称であることによってウェハW面内の温度差を小さくするよう細かく調整できるので、抵抗発熱体ゾーン4c,4dが同心円の発熱体ゾーンの中心に対して、その中心を対称中心とした点対称であることが好ましい。   Although the boundary line of the resistance heating element zones 4c and 4d in the example shown in FIG. 3B is a straight line, this boundary is not necessarily a straight line, and may be a wavy line. However, since the temperature difference in the wafer W surface can be finely adjusted by being point symmetric with respect to the center point of the wafer W, the resistance heating element zones 4c and 4d are in the center of the concentric heating element zone. It is preferably point-symmetric with the center as the center of symmetry.

同様に、抵抗発熱体ゾーンの4eと4f、4fと4g、4gと4h、4hと4eとのそれぞれの境界線も必ずしも直線である必要はなく、波線であってもよく、上記と同様の理由から、同心円の発熱体ゾーンの中心に対して、その中心を対称中心とした点対称であることが好ましい。   Similarly, the boundary lines of the resistance heating element zones 4e and 4f, 4f and 4g, 4g and 4h, 4h and 4e do not necessarily have to be straight lines, and may be wavy lines for the same reason as above. Therefore, it is preferable that the center of the concentric heating element zone is point-symmetric with respect to the center.

上記の各抵抗発熱体5は、電気導電性のある板状体2との絶縁性を得るとの点からは、絶縁層14の上に印刷法等で作製し、抵抗発熱体5の帯は1〜5mmの幅で厚みを5〜50μmとして形成することが好ましい。この抵抗発熱体5の印刷については、一度に印刷する印刷面が大きくなると印刷面の左右や前後でスキージとスクリーンとの間の圧力の違いから印刷厚みが一定とならない虞が生じる。特に、抵抗発熱体5の大きさが大きくなると、抵抗発熱体5の左右前後の厚みが異なり設計した発熱量がばらつく虞があった。発熱量がばらつくとウェハWの面内温度差が大きくなり好ましくない。この抵抗発熱体5の厚みのばらつきから生じる温度ばらつきを小さくするには、一つの抵抗発熱体からなる外径の大きな個々の抵抗発熱体5を分割することが有効であることが判明した。   Each of the resistance heating elements 5 is manufactured on the insulating layer 14 by a printing method or the like from the viewpoint of obtaining insulation from the electrically conductive plate-like body 2. It is preferable that the width is 1 to 5 mm and the thickness is 5 to 50 μm. Regarding the printing of the resistance heating element 5, if the printing surface to be printed at a time becomes large, the printing thickness may not be constant due to the difference in pressure between the squeegee and the screen on the left, right, front and back of the printing surface. In particular, when the size of the resistance heating element 5 is increased, the right and left thicknesses of the resistance heating element 5 are different and the designed heat generation may vary. If the amount of generated heat varies, the in-plane temperature difference of the wafer W increases, which is not preferable. In order to reduce the temperature variation caused by the variation in the thickness of the resistance heating element 5, it has been found that it is effective to divide the individual resistance heating elements 5 each having a large outer diameter made of one resistance heating element.

そこで、ウェハW載置面3の中心部を除く同心円環状の抵抗発熱体ゾーン4cdは左右に2分割し、さらに大きな円環状の抵抗発熱体ゾーン4ehは4分割することで、抵抗発熱体ゾーン4にある抵抗発熱体5の印刷する大きさを小さくすることができることから、抵抗発熱体5の各部の厚みを均一にすることができ、さらにウェハWの前後左右の微妙な温度差を補正することができるので、ウェハWの表面温度が小さくなり好ましいものとなる。また、さらに各抵抗発熱体5の帯の抵抗値を微調整するためには、抵抗発熱体5に沿って、帯状の抵抗発熱体5の厚みの大きな部分にその帯に沿って帯の上にレーザ等で長溝を形成することによって、抵抗値を調整することもできる。   Therefore, the concentric annular resistance heating element zone 4cd excluding the central portion of the wafer W mounting surface 3 is divided into left and right parts, and the larger annular resistance heating element zone 4eh is divided into four parts so that the resistance heating element zone 4 is divided. Since the printing size of the resistance heating element 5 can be reduced, the thickness of each part of the resistance heating element 5 can be made uniform, and further, a subtle temperature difference between the front, rear, left and right of the wafer W can be corrected. Therefore, the surface temperature of the wafer W is reduced, which is preferable. Further, in order to finely adjust the resistance value of the band of each resistance heating element 5, along the resistance heating element 5, the thick portion of the band-shaped resistance heating element 5 is placed on the band along the band. The resistance value can be adjusted by forming a long groove with a laser or the like.

なお、図2に示す抵抗発熱体5a,5b,5c,5d,5e,5f,5g,5hの形状は、それぞれ円弧状の帯と、折り返し帯として円弧状の帯とから構成されている。折り返し帯は直線状であるよりも円弧状であると、よりウェハWの面内温度差が小さくなるので好ましい。   Note that each of the resistance heating elements 5a, 5b, 5c, 5d, 5e, 5f, 5g, and 5h shown in FIG. 2 is composed of an arc-shaped band and an arc-shaped band as a folding band. It is preferable that the folding band is arcuate rather than linear because the in-plane temperature difference of the wafer W becomes smaller.

また、本発明のウェハ加熱装置1は、図3(a)に示すように、中心部に備えた円形の抵抗発熱体ゾーン4aまたはその外側の同心円の円環状の抵抗発熱体ゾーン4bと、円形の抵抗発熱体4aまたは円環状の抵抗発熱体ゾーン4bの外側の円環状の抵抗発熱体ゾーン4cdとの間隔S2と、円環状の抵抗発熱体ゾーン4cdと最も外側の円環状の抵抗発熱体ゾーン4ehとの間隔S3とを備え、間隔S3が間隔S2より大きいことが好ましい。このように、円環状の抵抗発熱体ゾーン4を2つあるいは3つ備え、間隔S3が間隔S2より大きいと、抵抗発熱体5の無い間隔S3の円環の幅が大きくなることから、板状体2の表面に抵抗発熱体5に覆われない露出部を大きくとることができ、放冷効果が大きくなるので好ましい。また、露出部を構成する絶縁層14を介した板状体2の熱伝導率が大きくなるので、冷却効率が向上しヒータ部7の冷却速度が大きくなり好ましい。   Further, as shown in FIG. 3A, the wafer heating apparatus 1 of the present invention includes a circular resistance heating element zone 4a provided at the center or a concentric annular resistance heating element zone 4b provided on the outer side, and a circular shape. S2 between the resistance heating element 4a or the annular resistance heating element zone 4b outside the annular resistance heating element zone 4b and the annular resistance heating element zone 4cd and the outermost annular resistance heating element zone 4cd. It is preferable that the distance S3 is greater than the distance S2. As described above, when two or three annular resistance heating element zones 4 are provided and the interval S3 is larger than the interval S2, the width of the ring of the interval S3 without the resistance heating element 5 is increased. The exposed portion that is not covered with the resistance heating element 5 can be made large on the surface of the body 2, which is preferable because the cooling effect is increased. Moreover, since the thermal conductivity of the plate-like body 2 through the insulating layer 14 constituting the exposed portion is increased, the cooling efficiency is improved and the cooling rate of the heater portion 7 is increased, which is preferable.

さらに、載置面3からの投影面から見て、最も外側の円環状の抵抗発熱体ゾーン4ehとその内側の抵抗発熱体ゾーン4cdとの間にノズル24の先端24aを複数個備えていることが好ましい。間隔S3の環状の領域は抵抗発熱体5が無く、熱伝導率の大きな板状体2を絶縁層14や帯状の絶縁層12が覆っているが表面から板状体2までの熱伝達が大きく、この部分にノズル24の先端24aから噴射した冷却ガスが直接当たり、板状体2の熱を効率良く奪うことができることから、ヒータ部7の温度を急速に低下させることができて好ましい。この冷却ノズル24の先端24aが間隔S3に沿って複数あることが好ましく。例えば直径200〜300mmのウェハ用であればノズル24の数は好ましくは4〜16個であると効果的にヒータ部7を冷却することができる。なお、間隔S3に対応したノズル24を説明したが、間隔S3だけでは中央部の温度が低下し難いので、中央部にも円周上に複数のノズル24を備えることが好ましい。   Further, a plurality of tips 24a of the nozzle 24 are provided between the outermost annular resistance heating element zone 4eh and the inner resistance heating element zone 4cd when viewed from the projection surface from the mounting surface 3. Is preferred. In the annular region of the interval S3, the resistance heating element 5 is not present, and the plate-like body 2 having a large thermal conductivity is covered with the insulating layer 14 or the strip-like insulating layer 12, but heat transfer from the surface to the plate-like body 2 is large. Since the cooling gas sprayed from the tip 24a of the nozzle 24 directly hits this portion and the heat of the plate-like body 2 can be taken efficiently, it is preferable because the temperature of the heater section 7 can be rapidly lowered. It is preferable that there are a plurality of tips 24a of the cooling nozzle 24 along the interval S3. For example, in the case of a wafer having a diameter of 200 to 300 mm, the heater section 7 can be effectively cooled when the number of nozzles 24 is preferably 4 to 16. In addition, although the nozzle 24 corresponding to the space | interval S3 was demonstrated, since the temperature of a center part cannot fall easily only by space | interval S3, it is preferable to provide the nozzle part 24 on the circumference also in the center part.

また、本発明のウェハ加熱装置1は、絶縁層12,14および/または抵抗発熱体5の表面が凹凸面であることが好ましい。図4や図5に示すノズル位置にある絶縁層14や図6に示す絶縁層12aの表面が凹凸面であると、ノズル24から噴射された冷却ガスが絶縁層14,12の表面の凹凸面に当たり板状体2の絶縁層14,12を介して冷却ガスに熱が伝わり易くなることから、冷却ガスによる凹凸面での熱交換が容易となるので、ヒータ部7を冷却する効果が大きくなり好ましい。また、図4に示す抵抗発熱体5の表面が凹凸面であると、絶縁層14に衝突した冷却ガスの一部が絶縁層14に沿って流れ、抵抗発熱体5の表面を通過する際に抵抗発熱体5の凹凸面での熱交換が容易となり、抵抗発熱体を介してヒータ部7の熱を取り除く効果が大きいからである。より好ましくは、冷却ガスが凹部に滞留する時間が大きくなり熱交換が容易となることから、絶縁層14,12の表面が凹凸面であることがよい。   In the wafer heating apparatus 1 of the present invention, the surfaces of the insulating layers 12 and 14 and / or the resistance heating element 5 are preferably uneven surfaces. When the surface of the insulating layer 14 at the nozzle position shown in FIGS. 4 and 5 or the surface of the insulating layer 12a shown in FIG. 6 is an uneven surface, the cooling gas injected from the nozzle 24 is uneven on the surfaces of the insulating layers 14 and 12. Since the heat is easily transferred to the cooling gas through the insulating layers 14 and 12 of the plate-like body 2, the heat exchange on the uneven surface by the cooling gas is facilitated, and the effect of cooling the heater portion 7 is increased. preferable. Further, when the surface of the resistance heating element 5 shown in FIG. 4 is an uneven surface, a part of the cooling gas colliding with the insulating layer 14 flows along the insulating layer 14 and passes through the surface of the resistance heating element 5. This is because heat exchange on the uneven surface of the resistance heating element 5 is facilitated, and the effect of removing the heat of the heater unit 7 through the resistance heating element is great. More preferably, the surfaces of the insulating layers 14 and 12 are uneven surfaces because the time for the cooling gas to stay in the recesses is increased and heat exchange is facilitated.

なお、この凹凸面は、載置面3から見て凹凸面の凹部が直線状に形成されていたり、その凹部が滑らかな曲線から形成されていたりすると、冷却ガスと凹凸面との接触距離が大きくなり熱交換が容易となる。   In addition, this concave-convex surface has a contact distance between the cooling gas and the concave-convex surface when the concave portion of the concave-convex surface is formed in a straight line as viewed from the mounting surface 3 or the concave portion is formed from a smooth curve. Larger and easier heat exchange.

さらに、絶縁層12,14や抵抗発熱体5の表面に上記凹凸面があると、絶縁層12,14や抵抗発熱体5と板状体2との熱膨張差から生じる熱応力により絶縁層12,14や抵抗発熱体5に微小クラックが仮に発生しても、表面の凹凸面によりこのクラック先端の応力を緩和する作用が働き、クラックの進展を防止する効果があり好ましい。   Furthermore, if the insulating layers 12 and 14 and the surface of the resistance heating element 5 have the uneven surface, the insulating layer 12 is caused by thermal stress caused by a difference in thermal expansion between the insulating layers 12 and 14 and the resistance heating element 5 and the plate-like body 2. 14 and the resistance heating element 5, even if a microcrack is generated, the uneven surface of the surface acts to relieve the stress at the tip of the crack and is effective in preventing the progress of the crack.

また、上記凹凸面は略格子状の溝であることが好ましい。絶縁層12の表面が凹凸面からなる一例を図7に部分拡大斜視図で示す。図7において、40は凹凸面を示し、41は凸部を、42は凹部を示している。載置面3への投影面からみて、冷却ノズル24の先端24aが抵抗発熱体5の間の凹凸面にあると、冷却ガスが凹凸面に当たり冷却ガスと凹凸面との熱交換が容易となるので、凹凸面を介してヒータ部7を冷却する効果が大きく好ましい。そして、凹凸面は略格子状の溝で形成されたものであると、冷却ガスが凹部に衝突した後、凸部の側面に当たり熱交換できること、および直線状に繋がる溝部に沿って冷却ガスを遠くまで流すことができることによって凹凸面により熱交換が容易となるからである。従って、凹凸面は略格子状の溝からなるものであると、凹凸面と冷却ガスとの熱交換が大きくなりヒータ部7を短時間に冷却することが容易となり好ましい。   The uneven surface is preferably a substantially lattice-shaped groove. An example in which the surface of the insulating layer 12 is an uneven surface is shown in a partially enlarged perspective view in FIG. In FIG. 7, reference numeral 40 denotes an uneven surface, 41 denotes a convex portion, and 42 denotes a concave portion. When the tip 24a of the cooling nozzle 24 is on the uneven surface between the resistance heating elements 5 when viewed from the projection surface onto the mounting surface 3, the cooling gas hits the uneven surface and heat exchange between the cooling gas and the uneven surface is facilitated. Therefore, the effect of cooling the heater portion 7 through the uneven surface is greatly preferable. If the concave / convex surface is formed by a substantially lattice-shaped groove, the cooling gas collides with the concave portion, and then can contact the side surface of the convex portion to exchange heat, and the cooling gas is moved away along the linearly connected groove portion. This is because heat exchange is facilitated by the uneven surface. Therefore, it is preferable that the concave / convex surface is composed of substantially lattice-shaped grooves because heat exchange between the concave / convex surface and the cooling gas is increased, and the heater portion 7 can be easily cooled in a short time.

また、このような略格子状の溝は、1mm幅当たりの形成本数で0.2〜80本、さらに望ましくは0.4〜40本とすることが好ましい。この溝が1mm幅当たり0.2本を下回ると、熱交換作用による冷却の効果が小さく、また、抵抗発熱体4を繰り返し加熱冷却すると絶縁層12,14や抵抗発熱体5が剥離したりクラックが発生したりする虞があった。   Further, the number of such substantially lattice-shaped grooves formed per 1 mm width is preferably 0.2 to 80, more preferably 0.4 to 40. If the number of grooves is less than 0.2 per 1 mm width, the cooling effect due to the heat exchange action is small, and when the resistance heating element 4 is repeatedly heated and cooled, the insulating layers 12 and 14 and the resistance heating element 5 are peeled off or cracked. May occur.

また、この略格子状の溝の形成本数が1mm当たり80本を超えると、凹部への冷却ガスの流れが悪く冷却効率が低下する虞があった。また、溝が小さ過ぎて凹部42から絶縁層12,14や抵抗発熱体5にクラックが入る虞があった。従って、凹凸面40の溝を1mm当たり0.4〜80本とすることによって、ヒータ部7と冷却ガスとの熱交換がより容易となり、板状体2と絶縁層12,14や抵抗発熱体5との熱膨張差を吸収しつつ、抵抗発熱体5の劣化損傷を抑えることができ、信頼性の高いウェハ加熱装置1を提供することができる。   Further, when the number of the substantially lattice-shaped grooves formed exceeds 80 per 1 mm, the flow of the cooling gas to the recesses is poor and the cooling efficiency may be lowered. In addition, the groove is too small, and there is a possibility that the insulating layers 12 and 14 and the resistance heating element 5 may crack from the recess 42. Accordingly, by setting the grooves on the uneven surface 40 to 0.4 to 80 per mm, the heat exchange between the heater unit 7 and the cooling gas becomes easier, and the plate-like body 2 and the insulating layers 12 and 14 and the resistance heating element. While the thermal expansion difference from 5 is absorbed, deterioration damage of the resistance heating element 5 can be suppressed, and a highly reliable wafer heating apparatus 1 can be provided.

なお、一見、抵抗発熱体5の劣化損傷を抑えるには、絶縁層12の厚みを厚くすればよいかのように思えるが、保護層となる絶縁層12といえども抵抗発熱体5とは異なる材料であるため、厚くしすぎると相互の熱膨張差によって応力緩和効果が薄れてしまう。すなわち、厚すぎる絶縁層12は逆効果となり、絶縁層12を焼き付けた段階で絶縁層12に大きな応力が働き、信頼性が低下してしまう虞があるからである。そこで、本発明のウェハ加熱装置1では、絶縁層12全体を厚くすることなく抵抗発熱体5の劣化損傷を防ぐ手段として、板状体2の抵抗発熱体5および/または絶縁層12,14の表面を凹凸面とし、望ましくは略格子状の形状とすることが有効であることを見いだした。   At first glance, it seems that the thickness of the insulating layer 12 may be increased in order to suppress the deterioration damage of the resistance heating element 5, but the insulating layer 12 serving as a protective layer is different from the resistance heating element 5. Since it is a material, if it is too thick, the stress relaxation effect is reduced due to a difference in mutual thermal expansion. That is, the insulating layer 12 that is too thick has an adverse effect, and a large stress acts on the insulating layer 12 when the insulating layer 12 is baked, which may reduce reliability. Therefore, in the wafer heating apparatus 1 of the present invention, the resistance heating element 5 and / or the insulating layers 12 and 14 of the plate-like body 2 are used as a means for preventing deterioration damage of the resistance heating element 5 without increasing the thickness of the entire insulating layer 12. It has been found that it is effective to make the surface an uneven surface, preferably a substantially lattice shape.

すなわち、抵抗発熱体5を覆う絶縁層12の表面を凹凸面とし、略格子状とすることで、絶縁層12の略格子状の面における突起部分が強力に抵抗発熱体5を抑え込み、抵抗発熱体5の剥離を生じせしめることがないのである。   That is, by making the surface of the insulating layer 12 covering the resistance heating element 5 into an uneven surface and having a substantially lattice shape, the protrusions on the substantially lattice-shaped surface of the insulating layer 12 strongly suppress the resistance heating element 5, thereby generating resistance heat. It does not cause the body 5 to peel off.

また、絶縁層12全体が厚いわけではなく、略格子状の凹凸面における凹部42では熱膨張差による応力が緩和されているので、クラック等の不具合を発生することもない。このことは、板状体2と絶縁層14や抵抗発熱体5との関係にも同じことがいえ、抵抗発熱体5自身の表面もまた略格子状の形状にする方がよい。   In addition, the entire insulating layer 12 is not thick, and the stress due to the difference in thermal expansion is relieved in the recesses 42 on the substantially lattice-shaped uneven surface, so that defects such as cracks do not occur. The same can be said for the relationship between the plate-like body 2 and the insulating layer 14 or the resistance heating element 5, and the surface of the resistance heating element 5 itself should also have a substantially lattice shape.

また、上記の凹凸面40は、凹部42の厚み(tv)と凸部41の厚み(tp)との比(tp/tv)×100(%)が102〜200%であり、かつ抵抗発熱体5または絶縁層12,14の平均厚みが3〜60μmであると好ましい。このようにすることで、特に板状体2と抵抗発熱体5の熱膨張差を吸収しつつ、抵抗発熱体5の劣化損傷を抑えることができ、極めて信頼性の高いウェハ加熱装置1とすることができる。   Further, the uneven surface 40 has a ratio (tp / tv) × 100 (%) of the thickness (tv) of the concave portion 42 and the thickness (tp) of the convex portion 41 of 102 to 200%, and a resistance heating element 5 or the average thickness of the insulating layers 12 and 14 is preferably 3 to 60 μm. By doing in this way, especially the thermal expansion difference of the plate-like body 2 and the resistance heating element 5 can be absorbed, deterioration damage of the resistance heating element 5 can be suppressed, and the highly reliable wafer heating apparatus 1 is obtained. be able to.

比(tp/tv)×100(%)の値が102%未満だと、熱交換が悪くクラックが発生するまでの昇降温試験回数が、例えば静電チャックとして通常の製造においては2年間の使用が可能とされる耐久性の基準である4200回を下回る虞があり好ましくない。なお、昇温試験回数は、60℃から200℃に3分間で加熱し、2分間温度保持した後、60℃まで冷却する温度サイクルを1回として数えている。   When the ratio (tp / tv) × 100 (%) is less than 102%, the number of temperature rise / fall tests until cracks occur due to poor heat exchange is, for example, 2 years in normal production as an electrostatic chuck. This is not preferable because there is a possibility that it may fall below 4200 times, which is the standard of durability. The number of temperature increase tests was counted as one temperature cycle in which heating was performed from 60 ° C. to 200 ° C. over 3 minutes, holding the temperature for 2 minutes, and then cooling to 60 ° C.

また、この比の値が200%を超えると、凸部41と凹部42との高さの差が大きすぎて温度差が大きくなり、クラックが発生する昇降温試験回数が低下する虞があった。   Moreover, if the value of this ratio exceeds 200%, the difference in height between the convex portions 41 and the concave portions 42 is so large that the temperature difference becomes large, and there is a possibility that the number of heating / cooling tests in which cracks occur is reduced. .

また、絶縁層12,14の平均厚みが3μm未満だと、印刷法で抵抗発熱体5を形成すると厚みばらつきが30%以上と大きくなり、ウェハWの表面温度差が大きくなる虞があった。   Further, if the average thickness of the insulating layers 12 and 14 is less than 3 μm, when the resistance heating element 5 is formed by the printing method, the thickness variation becomes as large as 30% or more, and the surface temperature difference of the wafer W may be increased.

また、絶縁層12,14の平均厚みが60μmを超えると、板状体2との熱膨張係数の違いから絶縁層12,14に微小なクラックが発生し易くなるという問題がある。   Further, when the average thickness of the insulating layers 12 and 14 exceeds 60 μm, there is a problem that minute cracks are likely to be generated in the insulating layers 12 and 14 due to a difference in thermal expansion coefficient from the plate-like body 2.

なお、凹部の厚み(tv)は、各凹部42の中心の5箇所の平均値で示すことができる。また、凸部の厚み(tp)は各凸部41の最大厚み5箇所の平均として求めることができる。さらに、平均厚みは凹部42の厚みと凸部41の厚みとの平均値として求めることができる。   In addition, the thickness (tv) of a recessed part can be shown by the average value of five places of the center of each recessed part 42. FIG. Moreover, the thickness (tp) of a convex part can be calculated | required as an average of the maximum thickness five places of each convex part 41. FIG. Furthermore, the average thickness can be obtained as an average value of the thickness of the concave portion 42 and the thickness of the convex portion 41.

図5(b)は、本発明のウェハ加熱装置1の絶縁層12の一例を示す概略図である。3つの円環状の抵抗発熱体ゾーン4のうち、外側の抵抗発熱体ゾーン4ehを覆う絶縁層12ehは、円環状であることが好ましい。3つの円環状の絶縁層12a,12b,12cdは、ウェハWの表面温度を均一にする抵抗発熱体ゾーン4a,4b,4cdを個別に覆うことが好ましく、これらに対応して絶縁層12が形成されていることが好ましい。   FIG. 5B is a schematic view showing an example of the insulating layer 12 of the wafer heating apparatus 1 of the present invention. Of the three annular resistance heating element zones 4, the insulating layer 12eh covering the outer resistance heating element zone 4eh is preferably annular. The three annular insulating layers 12a, 12b, and 12cd preferably cover the resistance heating element zones 4a, 4b, and 4cd that make the surface temperature of the wafer W uniform, and the insulating layer 12 is formed corresponding to these. It is preferable that

絶縁層12,14の表面や抵抗発熱体5の表面に凹凸面を形成するには、印刷法におけるメッシュサイズと絶縁層12,14や抵抗発熱体5となるペーストの粘度を例えば10ポイズ以下に調整すればよい。また、凹凸面は、表面が平坦な絶縁層12,14や抵抗発熱体5を形成した後、凹凸面の形状に合わせたマスクを使用してガラスビーズやセラミックスビーズを使ったサンドブラスト法によっても形成することができる。   In order to form a concavo-convex surface on the surface of the insulating layers 12 and 14 and the surface of the resistance heating element 5, the mesh size in the printing method and the viscosity of the paste used as the insulation layers 12 and 14 and the resistance heating element 5 are, for example, 10 poises or less. Adjust it. The irregular surface is also formed by sandblasting using glass beads or ceramic beads using a mask that matches the shape of the irregular surface after the insulating layers 12 and 14 and the resistance heating element 5 having a flat surface are formed. can do.

また、本発明のウェハ加熱装置1は、図5(b)に示すように、中心部に備えた円形の絶縁層12aとその外側の同心円の円環状の絶縁層12bとの間隔S4と、該円環状の絶縁層12bとその外側の円環状の絶縁層12cdとの間隔S5と、該円環状の絶縁層12cdと最も外側の円環状の絶縁層12ehとの間隔S6とを備え、間隔S6が他の間隔S4,S5より大きいことが好ましい。このように、円環状の絶縁層12を3つ備え、間隔S6がS4,S5より大きいと、絶縁層12のない幅S6の円環が大きくなることから板状体2の露出部を大きくとることができ、放冷効果が大きくなるので好ましい。また、露出部を構成する絶縁層12,14の熱伝導が大きく、熱伝導性の板状体2の熱伝導率が大きくなり、冷却効率が向上しヒータ部7の冷却速度が大きくなるので好ましい。   Further, as shown in FIG. 5 (b), the wafer heating apparatus 1 of the present invention includes an interval S4 between a circular insulating layer 12a provided at the center and a concentric annular insulating layer 12b on the outer side, An interval S5 between the annular insulating layer 12b and the outer annular insulating layer 12cd and an interval S6 between the annular insulating layer 12cd and the outermost annular insulating layer 12eh are provided. It is preferably larger than the other intervals S4 and S5. As described above, when the three annular insulating layers 12 are provided and the interval S6 is larger than S4 and S5, the circular ring having the width S6 without the insulating layer 12 becomes large, so that the exposed portion of the plate-like body 2 is made large. This is preferable because the cooling effect is increased. Further, the heat conduction of the insulating layers 12 and 14 constituting the exposed portion is large, the heat conductivity of the heat conductive plate 2 is increased, the cooling efficiency is improved, and the cooling rate of the heater portion 7 is increased, which is preferable. .

また、本発明のウェハ加熱装置1は、図5(a)に示すノズル24の先端と板状体2との間隔Lが0.1〜10mmであることが好ましい。   In the wafer heating apparatus 1 of the present invention, the distance L between the tip of the nozzle 24 and the plate-like body 2 shown in FIG. 5A is preferably 0.1 to 10 mm.

より高速で冷却ガスを板状体2に衝突させるためには、ノズル24の先端と板状体2との間隔Lは重要であり、0.1〜10mmとすることが望ましい。このように配置すると、噴射された冷却ガスは、極端に速度低下することなく十分な速度で板状体2に衝突する。このため、効率良く熱を奪うことができる。   In order to cause the cooling gas to collide with the plate-like body 2 at a higher speed, the distance L between the tip of the nozzle 24 and the plate-like body 2 is important, and is preferably 0.1 to 10 mm. When arranged in this manner, the injected cooling gas collides with the plate-like body 2 at a sufficient speed without extremely reducing the speed. For this reason, heat can be efficiently taken away.

板状体2とノズル24の先端との距離Lが0.1mmより小さいと、噴射されて板状体2に衝突したガスの吹き返しがガスの噴射を阻害することとなり、冷却効率が落ちてしまう。逆に、板状体2とノズル24の先端との距離Lが10mmより大きいと、噴射ガスは拡散してしまい、板状体2に衝突する際に流速が低下し、また、流量も減少するため、冷却効率が落ちる。   If the distance L between the plate-like body 2 and the tip of the nozzle 24 is smaller than 0.1 mm, the blow-back of the gas that has been jetted and collided with the plate-like body 2 hinders the gas injection, resulting in a decrease in cooling efficiency. . On the contrary, if the distance L between the plate-like body 2 and the tip of the nozzle 24 is larger than 10 mm, the jet gas diffuses, the flow velocity decreases when colliding with the plate-like body 2, and the flow rate also decreases. Therefore, the cooling efficiency is lowered.

また、載置面3への投影面から見てノズル24の先端の中心から抵抗発熱体5までの最短距離が3〜10mmであることが好ましい。載置面3への投影面から見てノズル24の先端の中心から抵抗発熱体5までの最短距離が3mmよりも小さい場合は、ノズル24から噴射されたエアー等の冷却ガスの一部は抵抗発熱体5の表面に当たってしまう。抵抗発熱体5は、ガラス層を含んでいるために熱伝導率が小さい。抵抗発熱体5の表面から板状体2に熱が伝導する場合は、熱伝導の小さな、抵抗発熱体5が、また抵抗発熱体5と板状体2との界面が存在するために、熱伝導時間が長くなる。このため、この部分を冷却しても、冷却効率が悪く冷却時間が大きくなってしまう。   Moreover, it is preferable that the shortest distance from the center of the tip of the nozzle 24 to the resistance heating element 5 is 3 to 10 mm when viewed from the projection surface onto the placement surface 3. When the shortest distance from the center of the tip of the nozzle 24 to the resistance heating element 5 when viewed from the projection surface onto the mounting surface 3 is smaller than 3 mm, a part of the cooling gas such as air jetted from the nozzle 24 is resistant. It hits the surface of the heating element 5. Since the resistance heating element 5 includes a glass layer, the thermal conductivity is small. When heat is conducted from the surface of the resistance heating element 5 to the plate-like body 2, the resistance heating element 5 having a small heat conduction and the interface between the resistance heating element 5 and the plate-like body 2 exist. The conduction time becomes longer. For this reason, even if this portion is cooled, the cooling efficiency is poor and the cooling time is increased.

一方、載置面3への投影面から見てノズル24の先端の中心から抵抗発熱体5までの最短距離が10mmよりも大きい場合は、板状体2上で抵抗発熱体5が無い面積が大きくなり冷却速度は大きくなるが、抵抗発熱体5が無い部分に対応するウェハWの表面の温度が低下して、ウェハW面内で温度ばらつきが大きくなり不均一な温度分布となる。このため、板状体2に抵抗発熱体5を配置するには、ウェハW面内の温度分布を均一にするために、抵抗発熱体5が無い面積を小さくするほうがよいからである。   On the other hand, when the shortest distance from the center of the tip of the nozzle 24 to the resistance heating element 5 when viewed from the projection surface on the mounting surface 3 is larger than 10 mm, there is an area on the plate-like body 2 where the resistance heating element 5 is not present. Although the temperature is increased and the cooling rate is increased, the temperature of the surface of the wafer W corresponding to the portion without the resistance heating element 5 is lowered, and the temperature variation is increased in the wafer W surface, resulting in an uneven temperature distribution. For this reason, in order to arrange the resistance heating element 5 on the plate-like body 2, it is better to reduce the area where the resistance heating element 5 is not provided in order to make the temperature distribution in the wafer W surface uniform.

また、一般的な冷却ガス圧縮機のガス圧力によって冷却に必要なガス流速を確保するためには、ノズル24の口径を0.5〜3.0mmとすることが望ましい。ノズル24の口径が3.0mmを超えると、流速が遅くなりすぎて冷却効率が著しく低下する。逆に0.5mm未満では、口径が小さすぎて圧力損失が大きく冷却ガスの流量が小さくなり、冷却効率が低下するので好ましくない。なお、例えば冷却ガスは常温とし、冷却ガスの総流量は120(リットル/分)とすればよい。   Moreover, in order to ensure the gas flow rate required for cooling with the gas pressure of a general cooling gas compressor, it is desirable that the diameter of the nozzle 24 be 0.5 to 3.0 mm. When the diameter of the nozzle 24 exceeds 3.0 mm, the flow rate becomes too slow and the cooling efficiency is remarkably lowered. On the other hand, if the diameter is less than 0.5 mm, the diameter is too small, the pressure loss is large, the flow rate of the cooling gas is reduced, and the cooling efficiency is lowered. For example, the cooling gas may be at room temperature, and the total flow rate of the cooling gas may be 120 (liters / minute).

さらに、ノズル24は、板状体2に対して80〜100°の角度で設置されていることが好ましい。そのように設置すると、噴射された冷却ガスが板状体2に強く衝突することになり効率よく冷却できる。ノズル24が板状体2に対して80°未満、または100°を超えると、噴射された冷却ガスは板状体2に斜めに当たり、大部分が板状体2に平行に進むことから、冷却効率が低下し好ましくない。   Further, the nozzle 24 is preferably installed at an angle of 80 to 100 ° with respect to the plate-like body 2. If it installs in that way, the injected cooling gas will collide strongly with the plate-shaped body 2, and it can cool efficiently. When the nozzle 24 is less than 80 ° or more than 100 ° with respect to the plate-like body 2, the injected cooling gas strikes the plate-like body 2 at an angle, and most of the gas travels parallel to the plate-like body 2. The efficiency is lowered, which is not preferable.

ノズル24は、ステンレス(Fe−Ni−Cr合金),ニッケル(Ni)等の耐酸化性金属や、一般鋼(Fe),チタン(Ti)にニッケルメッキやニッケルメッキ上に金メッキを重ねて耐酸化処理を施した金属材料を用いる。または、ジルコニア(ZrO)などのセラミックスを用いることがよい。このようなノズル24は、熱による酸化で噴射口の内径が変化することなく流速を安定させられるし、ウェハ熱処理に有害なガスやパーティクルの発生のない信頼性の高いウェハ加熱装置1とすることができる。 The nozzle 24 is oxidation resistant metal such as stainless steel (Fe-Ni-Cr alloy), nickel (Ni), etc., general steel (Fe), titanium (Ti) with nickel plating or gold plating on the nickel plating. A treated metal material is used. Alternatively, ceramics such as zirconia (ZrO 2 ) are preferably used. Such a nozzle 24 is capable of stabilizing the flow velocity without changing the inner diameter of the injection port due to oxidation by heat, and is a highly reliable wafer heating apparatus 1 that does not generate gas or particles harmful to wafer heat treatment. Can do.

また、万が一冷却ガスに油分や水分などの不純物が混入していた場合でも、直接抵抗発熱体5や絶縁層14,12にダメージを与えることを防止できるが、冷却ガスはクリーンフィルターなどを通して不純物を除去することでさらに信頼性を高めることができるのは言うまでもない。   Moreover, even if impurities such as oil and moisture are mixed in the cooling gas, it is possible to prevent the resistance heating element 5 and the insulating layers 14 and 12 from being damaged directly, but the cooling gas removes impurities through a clean filter or the like. Needless to say, the reliability can be further improved.

また、ここで供給された冷却ガスを外に排出するために、ケース19のベースプレート21には、その面積の5〜70%の開口部23が形成されていることが好ましい。この開口部23の面積が5%未満であると、ケース19の容積の中でノズル24から噴射されるガスと排出されるべきガスとが混合されて、冷却効率が低下してしまう。また、開口部23の面積が70%を超えると、給電端子11やノズル24を保持するスペースが確保できなくなる。また、ケース19の強度が不足して、板状体2の平坦度が大きくなり、均熱性、特に昇温時などの過渡的な均熱性が悪くなる。   Moreover, in order to discharge | emit the cooling gas supplied here outside, it is preferable that the opening part 23 of 5-70% of the area is formed in the base plate 21 of case 19. As shown in FIG. If the area of the opening 23 is less than 5%, the gas injected from the nozzle 24 and the gas to be discharged are mixed in the volume of the case 19 and the cooling efficiency is lowered. If the area of the opening 23 exceeds 70%, a space for holding the power supply terminal 11 and the nozzle 24 cannot be secured. In addition, the strength of the case 19 is insufficient, the flatness of the plate-like body 2 is increased, and the thermal uniformity, in particular, the transient thermal uniformity, such as when the temperature is raised, is deteriorated.

このように、ベースプレート21に開口部23を設けることにより、冷却時はノズル24から噴射された冷却ガスが板状体2の表面の熱を奪い、ケース19の内部に滞留することなく開口部23から順次ウェハ加熱装置1外に排出され、ノズル24から噴射される新しい冷却ガスで板状体2の表面を効率的に冷却できるので、冷却時間を短縮することができる。   In this way, by providing the opening 23 in the base plate 21, the cooling gas sprayed from the nozzle 24 takes the heat of the surface of the plate-like body 2 at the time of cooling, and the opening 23 does not stay inside the case 19. Since the surface of the plate-like body 2 can be efficiently cooled with new cooling gas sequentially discharged from the wafer heating apparatus 1 and injected from the nozzle 24, the cooling time can be shortened.

次に、本発明のウェハ加熱装置1のその他の構成について説明する。   Next, the other structure of the wafer heating apparatus 1 of this invention is demonstrated.

本発明のウェハ加熱装置1の中心部の抵抗発熱体ゾーン4aの外径D1は、外周部の抵抗発熱体ゾーン4ehの外径Dの20〜40%であり、その外側の抵抗発熱体ゾーン4bcの外径D2は、外周部の抵抗発熱体ゾーンの外径Dの40〜55%であり、最外周の抵抗発熱体ゾーンの内径D3は、最外周の抵抗発熱体ゾーンの外径Dの55〜85%であるものとすると、ウェハWの面内温度差を小さくすることができるので好ましい。   The outer diameter D1 of the resistance heating element zone 4a at the center of the wafer heating apparatus 1 of the present invention is 20 to 40% of the outer diameter D of the outer resistance heating element zone 4eh, and the outer resistance heating element zone 4bc. The outer diameter D2 is 40 to 55% of the outer diameter D of the outer peripheral resistance heating element zone, and the inner diameter D3 of the outermost resistance heating element zone is 55 of the outer diameter D of the outermost resistance heating element zone. It is preferable that it is ˜85% because the in-plane temperature difference of the wafer W can be reduced.

なお、外周部の抵抗発熱体ゾーン4ehの外径Dとは、板状セラミック体2の一方の主面に平行な投影面で見て、抵抗発熱体ゾーン4ehを構成する抵抗発熱体5ehを囲む外接円の直径である。また、同様に、抵抗発熱体ゾーン4bの外径D2とは、抵抗発熱体ゾーン4bを構成する抵抗発熱体5bに外接する円の直径である。また、D3は、抵抗発熱体5cdに内接する円の直径である。なお、外接円は、給電部に接続する抵抗発熱体の突出部は除き、同心円状の円弧に沿って求めることができる。   The outer diameter D of the resistance heating element zone 4eh on the outer periphery surrounds the resistance heating element 5eh constituting the resistance heating element zone 4eh when viewed in a projection plane parallel to one main surface of the plate-like ceramic body 2. The diameter of the circumscribed circle. Similarly, the outer diameter D2 of the resistance heating element zone 4b is a diameter of a circle circumscribing the resistance heating element 5b constituting the resistance heating element zone 4b. D3 is the diameter of a circle inscribed in the resistance heating element 5cd. The circumscribed circle can be obtained along a concentric circular arc except for the protruding portion of the resistance heating element connected to the power feeding unit.

外径D1がDの20%未満では、中心部の抵抗発熱体ゾーン4aの外径が小さ過ぎることから、抵抗発熱体ゾーン4aの発熱量を大きくしても、抵抗発熱体ゾーン4aの中心部の温度が上がらず中心部の温度が低下する虞があるからである。また、外径D1が40%を超えると、中心部の抵抗発熱体ゾーン4aの外径が大き過ぎることから、中心部の温度を上げた際に抵抗発熱体ゾーン4aの周辺部の温度も上がり、抵抗発熱体ゾーン4aの周辺部の温度が高くなり過ぎる虞があるからである。なお、好ましくは、外径D1はDの20〜30%であり、さらに好ましくは、外径D1はDの23〜27%とすることでウェハWの面内温度差をさらに小さくすることができる。   When the outer diameter D1 is less than 20% of D, the outer diameter of the resistance heating element zone 4a at the center is too small. Therefore, even if the heating value of the resistance heating element zone 4a is increased, the center of the resistance heating element zone 4a is increased. This is because there is a possibility that the temperature of the center portion does not rise and the temperature of the central portion is lowered. Further, if the outer diameter D1 exceeds 40%, the outer diameter of the resistance heating element zone 4a at the center is too large, so when the temperature at the center is increased, the temperature at the periphery of the resistance heating element zone 4a also increases. This is because the temperature around the resistance heating element zone 4a may become too high. Preferably, the outer diameter D1 is 20 to 30% of D, and more preferably, the in-plane temperature difference of the wafer W can be further reduced by setting the outer diameter D1 to 23 to 27% of D. .

また、外径D2が外径Dの40%未満では、ウェハ加熱装置1の周辺部が冷却され易いことから、ウェハW周辺の温度の低下を防ごうと抵抗発熱体ゾーン4cdの発熱量を増大した際に、ウェハWの中心に近い抵抗発熱体ゾーン4cdの内側の温度が高くなり、ウェハWの面内温度差が大きくなる虞があった。また、外径D2が外径Dの55%を超えると、ウェハW周辺の温度の低下を防ごうと抵抗発熱体ゾーン4cdの発熱量を大きくしても、抵抗発熱体ゾーン4cdの温度は上がるが、ウェハW周辺の温度の低下の影響が抵抗発熱体ゾーン4bに達し、抵抗発熱体ゾーン4bの外側の温度が低くなる虞があった。好ましくは、外径D2が外径Dの41%〜53%であり、さらに好ましくは43〜49%とするとウェハWの面内温度差はさらに小さくできた。   Further, when the outer diameter D2 is less than 40% of the outer diameter D, the peripheral portion of the wafer heating device 1 is easily cooled, so that the amount of heat generated in the resistance heating element zone 4cd is increased in order to prevent a decrease in the temperature around the wafer W. In this case, the temperature inside the resistance heating element zone 4cd near the center of the wafer W becomes high, and the in-plane temperature difference of the wafer W may be increased. Further, when the outer diameter D2 exceeds 55% of the outer diameter D, the temperature of the resistance heating element zone 4cd rises even if the heating value of the resistance heating element zone 4cd is increased in order to prevent the temperature around the wafer W from being lowered. However, there is a possibility that the temperature decrease around the wafer W reaches the resistance heating element zone 4b and the temperature outside the resistance heating element zone 4b is lowered. Preferably, when the outer diameter D2 is 41% to 53% of the outer diameter D, and more preferably 43 to 49%, the in-plane temperature difference of the wafer W can be further reduced.

また、外径D3が外径Dの55%未満では、ウェハ加熱装置1の周辺部が冷却され易いことから、ウェハW周辺の温度の低下を防ごうと抵抗発熱体ゾーン4ehの発熱量を増大した際に、ウェハWの中心に近い抵抗発熱体ゾーン4ehの内側の温度が高くなり、ウェハWの面内温度差が大きくなる虞があった。また、外径D3が外径Dの85%を超えると、ウェハW周辺の温度の低下を防ごうと抵抗発熱体ゾーン4ehの発熱量を大きくしても、抵抗発熱体ゾーン4ehの温度は上がるが、ウェハW周辺の温度の低下の影響が抵抗発熱体ゾーン4cdに達し、抵抗発熱体ゾーン4cdの外側の温度が低くなる虞があった。好ましくは、外径D3が外径Dの65%〜85%であり、さらに好ましくは67〜70%とするとウェハWの面内温度差はさらに小さくできた。   Further, when the outer diameter D3 is less than 55% of the outer diameter D, the peripheral portion of the wafer heating device 1 is easily cooled, so that the amount of heat generated in the resistance heating element zone 4eh is increased in order to prevent a decrease in the temperature around the wafer W. In this case, the temperature inside the resistance heating element zone 4eh near the center of the wafer W is increased, and the in-plane temperature difference of the wafer W may be increased. Further, when the outer diameter D3 exceeds 85% of the outer diameter D, the temperature of the resistance heating element zone 4eh rises even if the heat generation amount of the resistance heating element zone 4eh is increased to prevent the temperature around the wafer W from being lowered. However, there is a possibility that the temperature decrease around the wafer W reaches the resistance heating element zone 4cd, and the temperature outside the resistance heating element zone 4cd is lowered. Preferably, when the outer diameter D3 is 65% to 85% of the outer diameter D, and more preferably 67 to 70%, the in-plane temperature difference of the wafer W can be further reduced.

また、抵抗発熱体5に電力を供給する給電部6と、該給電部6を囲む金属ケース19とからなり、板状セラミック体2の他方の主面に載置面3を備え、他方の主面に平行な投影面でみて、抵抗発熱体5の外接円Cの直径Dが板状セラミック体2の直径DPの90〜97%であることが好ましい。   Further, the power supply unit 6 that supplies power to the resistance heating element 5 and a metal case 19 that surrounds the power supply unit 6 are provided with the mounting surface 3 on the other main surface of the plate-like ceramic body 2, and the other main surface. The diameter D of the circumscribed circle C of the resistance heating element 5 is preferably 90 to 97% of the diameter DP of the plate-like ceramic body 2 when viewed from a projection plane parallel to the plane.

抵抗発熱体5の外接円Cの直径Dが板状セラミック体2の直径DPの90%より小さいと、ウェハを急速に昇温したり急速に降温したりする時間が大きくなり、ウェハWの温度応答特性が劣る。また、ウェハWの周辺部の温度を下げないようウェハWの表面温度を均一に加熱するには、直径DはウェハWの直径の1.02倍程度の僅かに大きいことが好ましいことから、ウェハWの大きさに対して板状セラミック体2の直径DPが大きくなり、均一に加熱できるウェハWの大きさが板状セラミック体2の直径DPに比較して小さくなり、ウェハWを加熱する投入電力に対しウェハWを加熱する加熱効率が悪くなる。さらに、板状セラミック体2が大きくなることから、ウェハ製造装置の設置面積が大きくなり、最小の設置面積で最大の生産を行なう必要がある半導体製造装置の設置面積に対する稼働率を低下させることとなるので好ましくない。   If the diameter D of the circumscribed circle C of the resistance heating element 5 is smaller than 90% of the diameter DP of the plate-like ceramic body 2, the time for rapidly raising or lowering the temperature of the wafer increases, and the temperature of the wafer W increases. Response characteristics are inferior. In order to uniformly heat the surface temperature of the wafer W so as not to lower the temperature of the peripheral portion of the wafer W, the diameter D is preferably slightly larger than the diameter of the wafer W by about 1.02 times. The diameter DP of the plate-like ceramic body 2 increases with respect to the size of W, and the size of the wafer W that can be heated uniformly becomes smaller than the diameter DP of the plate-like ceramic body 2, and the wafer W is heated. Heating efficiency for heating the wafer W with respect to electric power is deteriorated. Furthermore, since the plate-like ceramic body 2 becomes large, the installation area of the wafer manufacturing apparatus becomes large, and the operation rate with respect to the installation area of the semiconductor manufacturing apparatus that needs to perform the maximum production with the minimum installation area is reduced. This is not preferable.

抵抗発熱体5の外接円Cの直径Dが板状セラミック体2の直径DPの97%より大きいと、接触部材17と抵抗発熱体5の外周との間隔が小さくなって抵抗発熱体5の外周部から熱が接触部材17に不均一に流れ、特に、外周部の外接円Cに接する円弧状パターン51が存在しない部分からも熱が流れるようになるので、外周部の円弧状パターン51が板状セラミック体2の中心部へ曲がっていることから抵抗発熱体5を囲む外接円Cに沿って円弧状パターン51が欠落する部分Pの温度が低下し、ウェハWの面内温度差を大きくする虞がある。より好ましくは、抵抗発熱体5の外接円Cの直径Dが板状セラミック体2の直径DPの92〜95%である。   When the diameter D of the circumscribed circle C of the resistance heating element 5 is larger than 97% of the diameter DP of the plate-like ceramic body 2, the distance between the contact member 17 and the outer periphery of the resistance heating element 5 becomes small, and the outer periphery of the resistance heating element 5. Since the heat flows non-uniformly to the contact member 17 from the portion, and particularly from the portion where the arc-shaped pattern 51 in contact with the circumscribed circle C on the outer peripheral portion does not exist, the arc-shaped pattern 51 on the outer peripheral portion is the plate. Since the bent portion is bent toward the center of the ceramic body 2, the temperature of the portion P where the arc-shaped pattern 51 is missing is reduced along the circumscribed circle C surrounding the resistance heating element 5, and the in-plane temperature difference of the wafer W is increased. There is a fear. More preferably, the diameter D of the circumscribed circle C of the resistance heating element 5 is 92 to 95% of the diameter DP of the plate-like ceramic body 2.

さらに、本発明のウェハ加熱装置1において、例えば図2に示す抵抗発熱体5の外接円Cと接する円弧状パターン51と、該円弧状の帯51と連続して繋がった連結パターンである小円弧状の帯52とを備え、外接円Cの一部に円弧状のパターンのない空白域Pの間隔L1が、板状セラミック体の直径DPと外接円Cの直径Dとの差(以下、LLと略する。)より小さいことが好ましい。間隔L1がLLより大きいと、空白域Pの熱が板状セラミック体の周辺部へ流れ、空白域Pの温度が下がる虞がある。しかし、間隔L1がLLより小さいと、空白域Pの温度が下がり難くなるので、板状セラミック体2の載置面3に載せたウェハWの周辺部の一部の温度が低下せず、ウェハW面内の温度差が小さくなり好ましい。   Furthermore, in the wafer heating apparatus 1 of the present invention, for example, an arc-shaped pattern 51 that contacts the circumscribed circle C of the resistance heating element 5 shown in FIG. 2 and a small circle that is a continuous pattern continuously connected to the arc-shaped band 51. An interval L1 of a blank area P having an arc-shaped band 52 and having no arc-shaped pattern in a part of the circumscribed circle C is a difference between the diameter DP of the plate-like ceramic body and the diameter D of the circumscribed circle C (hereinafter referred to as LL). It is preferable to be smaller. If the distance L1 is larger than LL, the heat of the blank area P flows to the peripheral part of the plate-like ceramic body, and the temperature of the blank area P may decrease. However, if the distance L1 is smaller than LL, the temperature of the blank area P is difficult to decrease, so the temperature of a part of the periphery of the wafer W placed on the mounting surface 3 of the plate-like ceramic body 2 does not decrease, and the wafer The temperature difference in the W plane is preferably reduced.

空白域Pの温度を下げないためには、空白域Pの温度を上げる必要があり、空白域Pを加熱する連結パターン52の抵抗を同等かあるいは僅かに大きくして発熱量を増大すると、空白域Pの温度が下がる虞が小さくなり、ウェハWの面内温度が均一となり好ましい。印刷法等で作成した抵抗発熱体5が面状の場合は、円弧状パターン51の線幅Wpより連結パターンである小円弧状の帯52の線幅Wsを1〜5%小さくすることで、連結パターン52の抵抗を大きくすることができ、連結パターンである小円弧状の帯52の温度を円弧状パターン51の温度より高めることによってウェハWの面内温度を均一とすることができる。   In order not to lower the temperature of the blank area P, it is necessary to increase the temperature of the blank area P. If the resistance of the connection pattern 52 that heats the blank area P is equal or slightly increased to increase the heat generation amount, the blank area P The possibility that the temperature of the region P decreases is reduced, and the in-plane temperature of the wafer W becomes uniform, which is preferable. When the resistance heating element 5 created by a printing method or the like is planar, by reducing the line width Ws of the small arc-shaped band 52 that is a connection pattern from the line width Wp of the arc-shaped pattern 51 by 1 to 5%, The resistance of the connection pattern 52 can be increased, and the in-plane temperature of the wafer W can be made uniform by raising the temperature of the small arc-shaped band 52 that is the connection pattern higher than the temperature of the arc-shaped pattern 51.

また、板厚が1〜7mmの板状セラミック体2の他方の主面側を、ウェハを載せる載置面3とするとともに、板状セラミック体2の下面(一方の主面)に抵抗発熱体5を備えたウェハ加熱装置1において、抵抗発熱体5の厚みが5〜50μmであるとともに、板状セラミック体2の主面に平行な投影面で見て、抵抗発熱体5を囲む外接円Cの面積に対し、外接円Cに占める抵抗発熱体5の面積の比率が5〜30%であることが好ましい。   The other main surface side of the plate-like ceramic body 2 having a plate thickness of 1 to 7 mm is used as a mounting surface 3 on which a wafer is placed, and a resistance heating element is provided on the lower surface (one main surface) of the plate-like ceramic body 2. In the wafer heating apparatus 1 having 5, the thickness of the resistance heating element 5 is 5 to 50 μm, and the circumscribed circle C surrounding the resistance heating element 5 when viewed in a projection plane parallel to the main surface of the plate-like ceramic body 2. It is preferable that the ratio of the area of the resistance heating element 5 to the circumscribed circle C is 5 to 30% with respect to the area.

すなわち、抵抗発熱体5を囲む外接円Cの面積に対し、外接円C内に占める抵抗発熱体5の面積の比率を5%未満とすると、抵抗発熱体5の相対向する対向領域において、対向領域の対向間隔でもあるL1、L2、・・・が大きくなり過ぎることから、抵抗発熱体5のない間隔L1に対応した載置面3の表面温度が他の部分と比較して小さくなり、載置面3の温度を均一にすることが難しいからである。逆に、抵抗発熱体5を囲む外接円Cの面積に対し、外接円C内に占める抵抗発熱体5の面積の比率が30%を超えると、板状セラミック体2と抵抗発熱体5との間の熱膨張係数差を2.0×10−6/℃以下に近似させたとしても、両者の間に作用する熱応力が大きすぎることから、板状セラミック体2は変形し難いセラミック焼結体からなるものの、その板厚tが1mm〜7mmと薄いことから、抵抗発熱体5を発熱させると、載置面3側が凹となるように板状セラミック体2に反りが発生する虞がある。その結果、ウェハWの中心部の温度が周縁よりも小さくなり、温度ばらつきが大きくなる虞がある。 That is, when the ratio of the area of the resistance heating element 5 in the circumscribed circle C to the area of the circumscribed circle C surrounding the resistance heating element 5 is less than 5%, Since L1, L2,..., Which are also the opposing intervals of the regions, become too large, the surface temperature of the mounting surface 3 corresponding to the interval L1 without the resistance heating element 5 becomes smaller than the other portions, and This is because it is difficult to make the temperature of the mounting surface 3 uniform. Conversely, if the ratio of the area of the resistance heating element 5 in the circumscribed circle C to the area of the circumscribed circle C surrounding the resistance heating element 5 exceeds 30%, the plate-like ceramic body 2 and the resistance heating element 5 Even if the thermal expansion coefficient difference between them is approximated to 2.0 × 10 −6 / ° C. or less, the thermal stress acting between the two is too large, so that the plate-like ceramic body 2 is not easily deformed. Although it is made of a body, the plate thickness t is as thin as 1 to 7 mm. Therefore, when the resistance heating element 5 is heated, the plate-like ceramic body 2 may be warped so that the mounting surface 3 side becomes concave. . As a result, the temperature of the central portion of the wafer W becomes lower than the peripheral edge, and there is a possibility that the temperature variation becomes large.

なお、好ましくは、抵抗発熱体5を囲む外接円Cの面積に対し、外接円C内に占める抵抗発熱体5の面積の比率を7%〜20%、さらには8%〜15%とすることが好ましい。   Preferably, the ratio of the area of the resistance heating element 5 in the circumscribed circle C to the area of the circumscribed circle C surrounding the resistance heating element 5 is 7% to 20%, more preferably 8% to 15%. Is preferred.

より具体的には、抵抗発熱体5は外周部に相対向する対向領域を有し、対向領域の間隔L1が0.5mm以上で、板状セラミック体2の板厚の3倍以下であることが好ましい。対向領域の間隔L1が0.5mm以下では抵抗発熱体5を印刷し形成する際に抵抗発熱体5の対向領域でひげ状の突起が発生しその部分が短絡する虞がある。また、対向領域の間隔L1が板状体2の厚みの3倍を超えると、対向領域L1に対応するウェハWの表面にクールゾーンが発生し、ウェハWの面内温度差を大きくする虞があるからである。さらに、このような効果を効率良く発現させるには、抵抗発熱体5の膜厚を5〜50μmとすることが好ましい。   More specifically, the resistance heating element 5 has opposing areas opposite to each other on the outer periphery, and the distance L1 between the opposing areas is 0.5 mm or more and 3 times or less the plate thickness of the plate-like ceramic body 2. Is preferred. When the distance L1 between the opposed regions is 0.5 mm or less, when the resistance heating element 5 is printed and formed, whisker-like protrusions may be generated in the opposed region of the resistance heating element 5 and the portion may be short-circuited. Further, when the distance L1 between the opposing regions exceeds three times the thickness of the plate-like body 2, a cool zone is generated on the surface of the wafer W corresponding to the opposing region L1, and the in-plane temperature difference of the wafer W may be increased. Because there is. Furthermore, in order to efficiently exhibit such an effect, the thickness of the resistance heating element 5 is preferably set to 5 to 50 μm.

抵抗発熱体5の膜厚が5μmを下回ると、抵抗発熱体5をスクリーン印刷法で膜厚を均一に印刷することが困難となるからであり、また、抵抗発熱体5の厚みが50μmを超えると、外接円cに対し、抵抗発熱体5の占める面積の比率を30%以下としても抵抗発熱体5の厚みが大きく、抵抗発熱体5の剛性が大きくなり、板状体2の温度変化により抵抗発熱体5の伸び縮みによる影響で板状体2が変形する虞がある。また、スクリーン印刷で均一の厚みに印刷することが難しく、ウェハWの表面の温度差が大きくなったりする虞があるからである。なお、好ましい抵抗発熱体5の厚みとしては10〜30μmとすることがよい。   This is because if the thickness of the resistance heating element 5 is less than 5 μm, it is difficult to print the resistance heating element 5 uniformly by screen printing, and the thickness of the resistance heating element 5 exceeds 50 μm. Even if the ratio of the area occupied by the resistance heating element 5 to the circumscribed circle c is 30% or less, the thickness of the resistance heating element 5 is increased, the rigidity of the resistance heating element 5 is increased, and the temperature of the plate-like body 2 is increased. There is a possibility that the plate-like body 2 is deformed by the influence of the expansion and contraction of the resistance heating element 5. In addition, it is difficult to print to a uniform thickness by screen printing, and the temperature difference on the surface of the wafer W may increase. A preferable thickness of the resistance heating element 5 is 10 to 30 μm.

また、ヒータ部7の温度は、独立して加熱できる抵抗発熱体5に対応して板状体2にその先端が埋め込まれた複数の温度センサー27により測定する。温度センサー27としては、その応答性と保持の作業性の観点から、外径0.8mm以下のシース型の熱電対を使用することが好ましいが、外径0.5mm以下の素線の熱電対やRTDなどの測温抵抗体を用いても何ら差し支えない。この温度センサー27の先端部は、板状体2の形成された孔の中に設置された固定部材により孔の内壁面に押圧固定することが、測温の信頼性を向上させるために好ましい。   Further, the temperature of the heater section 7 is measured by a plurality of temperature sensors 27 whose tips are embedded in the plate-like body 2 corresponding to the resistance heating element 5 that can be heated independently. As the temperature sensor 27, it is preferable to use a sheath type thermocouple having an outer diameter of 0.8 mm or less from the viewpoint of responsiveness and workability of holding, but a bare wire thermocouple having an outer diameter of 0.5 mm or less. There is no problem even if a resistance temperature detector such as RTD is used. In order to improve the reliability of temperature measurement, it is preferable that the tip of the temperature sensor 27 be pressed and fixed to the inner wall surface of the hole by a fixing member installed in the hole in which the plate-like body 2 is formed.

また、板状体2を炭化珪素質焼結体または窒化アルミニウム質焼結体により形成すると、熱を加えても変形が小さく、板厚を薄くできるため、所定の処理温度に加熱するまでの昇温時間および所定の処理温度から室温付近に冷却するまでの冷却時間を短くすることができ、生産性を高めることができるとともに、板状体2は10W/(m・K)以上の熱伝導率を有することから、薄い板厚でも抵抗発熱体5のジュール熱を素早く伝達し、載置面3の温度ばらつきを極めて小さくすることができる。熱伝導率が10W/(m・K)以下では、所定の処理温度に加熱するまでの昇温時間および所定の処理温度から室温付近に冷却するまでの時間が多くかかってしまう虞がある。   In addition, when the plate-like body 2 is formed of a silicon carbide sintered body or an aluminum nitride sintered body, deformation is small even when heat is applied, and the plate thickness can be reduced. It is possible to shorten the warm time and the cooling time from the predetermined treatment temperature to the vicinity of room temperature, increase productivity, and the plate-like body 2 has a thermal conductivity of 10 W / (m · K) or more. Therefore, even with a thin plate thickness, the Joule heat of the resistance heating element 5 can be quickly transmitted, and the temperature variation of the mounting surface 3 can be extremely reduced. When the thermal conductivity is 10 W / (m · K) or less, there is a possibility that it takes a long time for heating to a predetermined processing temperature and a long time for cooling from the predetermined processing temperature to room temperature.

板状体2の厚みは、2〜7mmとすることが好ましい。板状体2の厚みが2mmより薄いと、板状体2の強度が弱くなり、抵抗発熱体5の発熱による加熱時に、ノズル24からの冷却流体を吹き付けた際に冷却時の熱応力に耐えきれず、板状体2にクラックが発生する場合がある。また、板状体2の厚みが7mmを超えると、板状体2の熱容量が大きくなるので、加熱および冷却時の温度が安定するまでの時間が長くなり好ましくない。   The thickness of the plate-like body 2 is preferably 2 to 7 mm. When the thickness of the plate-like body 2 is less than 2 mm, the strength of the plate-like body 2 is weakened and withstands the thermal stress during cooling when the cooling fluid is sprayed from the nozzle 24 when heated by the heat generated by the resistance heating element 5. In some cases, cracks may occur in the plate-like body 2. On the other hand, if the thickness of the plate-like body 2 exceeds 7 mm, the heat capacity of the plate-like body 2 becomes large, so that it takes a long time to stabilize the temperature during heating and cooling, which is not preferable.

また、板状体2の熱伝導率が絶縁層14の熱伝導率よりも大きいことが好ましい。板状体2の熱伝導率が大きいと、冷却ガスが当たり板状体2が冷やされても、板状体2の内部から熱が伝わり、ヒータ部7の冷却スピードが大きくなり好ましい。具体的には、絶縁層12や絶縁層14はガラスや絶縁性樹脂からなることが好ましく、その熱伝導率は1〜10W/(m・K)である。また、板状体2は炭化物や窒化物からなり、熱伝導率が50〜280W/(m・K)のセラミック体がより好ましい。   In addition, the thermal conductivity of the plate-like body 2 is preferably larger than the thermal conductivity of the insulating layer 14. When the thermal conductivity of the plate-like body 2 is large, even if the cooling gas hits and the plate-like body 2 is cooled, heat is transmitted from the inside of the plate-like body 2 and the cooling speed of the heater section 7 is increased, which is preferable. Specifically, the insulating layer 12 and the insulating layer 14 are preferably made of glass or insulating resin, and their thermal conductivity is 1 to 10 W / (m · K). The plate-like body 2 is made of a carbide or nitride, and a ceramic body having a thermal conductivity of 50 to 280 W / (m · K) is more preferable.

抵抗発熱体5は、導電性の金属粒子にガラスフリットや金属酸化物を含む電極ペーストを印刷法で板状体2に印刷・焼き付けしたもので、金属粒子としては、比較的電気抵抗が小さいAu,Ag,Cu,Pd,Pt,Rhの少なくとも一種の金属を用いることが好ましく、またガラスフリットとしては、B,Si,Znを含む酸化物からなり、板状体2の熱膨張係数より小さな4.5×10−6/℃以下の低膨張ガラスを用いることが好ましい。さらに、金属酸化物としては、酸化珪素,酸化硼素,アルミナ,チタニアから選ばれた少なくとも一種を用いることが好ましい。 The resistance heating element 5 is obtained by printing and baking an electrode paste containing glass frit or metal oxide on conductive metal particles on the plate-like body 2 by a printing method. As the metal particles, Au having a relatively low electrical resistance is used. , Ag, Cu, Pd, Pt, Rh are preferably used, and the glass frit is made of an oxide containing B, Si, Zn and has a coefficient of thermal expansion smaller than that of the plate-like body 2. It is preferable to use a low expansion glass of 5 × 10 −6 / ° C. or less. Furthermore, it is preferable to use at least one selected from silicon oxide, boron oxide, alumina, and titania as the metal oxide.

また、上記ガラスフリットとして、B,Si,Znを含む酸化物からなり、抵抗発熱体5を構成する金属粒子の熱膨張係数が板状体2の熱膨張係数より大きいことから、抵抗発熱体5の熱膨張係数を板状体2の熱膨張係数に近づけるには、板状体2の熱膨張係数より小さな4.5×10−6/℃以下の低膨張ガラスを用いることが好ましいからである。 The glass frit is made of an oxide containing B, Si, Zn, and the thermal expansion coefficient of the metal particles constituting the resistance heating element 5 is larger than the thermal expansion coefficient of the plate-like body 2. This is because it is preferable to use a low expansion glass having a thermal expansion coefficient of 4.5 × 10 −6 / ° C. or less, which is smaller than the thermal expansion coefficient of the plate-like body 2, in order to bring the coefficient of thermal expansion close to that of the plate-like body 2. .

また、金属酸化物としては、酸化珪素,酸化硼素,アルミナ,チタニアから選ばれた少なくとも一種を用いるのは、抵抗発熱体5の中の金属粒子と密着性が優れ、しかも熱膨張係数が板状体2の熱膨張係数と近く、板状体2との密着性も優れるからである。   Further, as the metal oxide, the use of at least one selected from silicon oxide, boron oxide, alumina, and titania is excellent in adhesion to the metal particles in the resistance heating element 5 and has a plate-like thermal expansion coefficient. This is because the thermal expansion coefficient is close to that of the body 2 and the adhesion to the plate-like body 2 is also excellent.

ただし、抵抗発熱体5に対し、金属酸化物の含有量が50%を超えると、板状体2との密着力を増すものの、抵抗発熱体5の抵抗値が大きくなり、好ましくない。そのため、金属酸化物の含有量は60%以下とすることがよい。   However, when the content of the metal oxide exceeds 50% with respect to the resistance heating element 5, although the adhesion with the plate-like body 2 is increased, the resistance value of the resistance heating element 5 is increased, which is not preferable. Therefore, the content of the metal oxide is preferably 60% or less.

そして、導電性の金属粒子とガラスフリットや金属酸化物からなる抵抗発熱体5は、板状体2との熱膨張係数差が3.0×10−6/℃以下であるものを用いることが好ましい。 The resistance heating element 5 made of conductive metal particles and glass frit or metal oxide should have a thermal expansion coefficient difference of 3.0 × 10 −6 / ° C. or less from the plate-like body 2. preferable.

すなわち、抵抗発熱体5と板状体2との熱膨張係数差を0.1×10−6/℃以下とすることは製造上難しく、逆に抵抗発熱体5と板状体2との熱膨張係数差が3.0×10−6/℃を超えると、抵抗発熱体5を発熱させた時、板状体2との間に作用する熱応力によって、載置面3側が凹状に反る虞があるからである。 That is, it is difficult to make the difference in thermal expansion coefficient between the resistance heating element 5 and the plate-like body 2 to be 0.1 × 10 −6 / ° C. or less, and conversely the heat between the resistance heating element 5 and the plate-like body 2. When the difference in expansion coefficient exceeds 3.0 × 10 −6 / ° C., when the resistance heating element 5 is heated, the mounting surface 3 side warps in a concave shape due to thermal stress acting between the resistance heating element 5 and the plate-like body 2. This is because there is a fear.

また、この絶縁層12を形成するガラスの特性としては、結晶質または非晶質のいずれでもよく、耐熱温度が200℃以上でかつ0℃〜200℃の温度域における熱膨張係数差が板状セラミック体2を構成するセラミックスの熱膨張係数に対し±1×10−6/℃以内であることが好ましく、さらに好ましくは−5×10−7/℃〜+5×10−7/℃の範囲にあるものを適宜選択して用いることがよい。すなわち、熱膨張係数が前記範囲を外れたガラスを用いると、板状体2を形成するセラミックスとの熱膨張差が大きくなりすぎるため、ガラスの焼付け後の冷却時においてクラックや剥離等の欠陥が生じ易いからである。 Further, the glass forming the insulating layer 12 may be crystalline or amorphous, and has a plate-like thermal expansion coefficient difference in a temperature range of 200 ° C. or higher and a temperature range of 0 ° C. to 200 ° C. The thermal expansion coefficient of the ceramics constituting the ceramic body 2 is preferably within ± 1 × 10 −6 / ° C., more preferably in the range of −5 × 10 −7 / ° C. to + 5 × 10 −7 / ° C. It is good to select and use a certain thing suitably. That is, if a glass whose thermal expansion coefficient is out of the above range is used, the difference in thermal expansion from the ceramic forming the plate-like body 2 becomes too large, so that there are defects such as cracks and peeling during cooling after baking the glass. It is because it is easy to occur.

また、絶縁層12,14をなすガラス層は、SiOを主成分とし、B,Mg,Ca,Pb,Biの少なくとも1種類以上を酸化物換算で10重量以上含有する非晶質のガラスにて構成し、As,Sbの酸化物を実質的に含有していない(酸化物換算にて0.05重量%以下)ガラスを用いることが好ましい。 The glass layers forming the insulating layers 12 and 14 are amorphous glass containing SiO 2 as a main component and containing at least one of B, Mg, Ca, Pb, and Bi in an amount of 10 weight or more in terms of oxide. It is preferable to use a glass that is substantially free of As and Sb oxides (0.05% by weight or less in terms of oxides).

上記組成のガラスを用いることで、ガラスの高温での粘性を低下させることが可能である。B,Mg,Ca,Pb,Biについては、SiOガラス中に分散させ、見掛けのガラスの粘性を下げることを狙ったものである。特に、PbO,B,Biは結晶化せず、ガラス中に残留してガラスの粘性・融点を下げる効果があり、ガラス中の気泡の発生を抑えることに有効である。 By using the glass having the above composition, it is possible to reduce the viscosity of the glass at a high temperature. B, Mg, Ca, Pb and Bi are intended to be dispersed in SiO 2 glass to lower the apparent viscosity of the glass. In particular, PbO, B 2 O 3 and Bi 2 O 3 do not crystallize and remain in the glass and have an effect of lowering the viscosity and melting point of the glass, which is effective in suppressing the generation of bubbles in the glass.

ガラスの粘性を下げることによって、絶縁層12,14中に発生してしまった気泡を絶縁層12,14表面に浮き上がらせ、オープンポアにすることで絶縁層12,14中の気泡を少なくすることができる。以上のことにより絶縁層12,14の厚み方向にて気泡の無い領域が10μm以上連続しているガラス層を形成することができる。また、非晶質のガラスを用いれば、後述している結晶化ガラスよりも気泡の少ない絶縁層12、14を形成するのに好ましい。これによって、消泡・脱泡効果のある毒劇物のAsやSbの酸化物を添加することなく絶縁層12,14中の気泡を少なくすることができる。   By reducing the viscosity of the glass, bubbles generated in the insulating layers 12 and 14 are floated on the surfaces of the insulating layers 12 and 14 and open pores to reduce the bubbles in the insulating layers 12 and 14. Can do. As described above, it is possible to form a glass layer in which regions without bubbles are continuously 10 μm or more in the thickness direction of the insulating layers 12 and 14. Further, if amorphous glass is used, it is preferable to form the insulating layers 12 and 14 having fewer bubbles than the crystallized glass described later. As a result, the bubbles in the insulating layers 12 and 14 can be reduced without the addition of oxides of As and Sb, which are poisonous and deleterious substances having a defoaming and defoaming effect.

一方、B,Mg,Ca,Pb,Biの添加量が酸化物換算で10重量%未満である場合はガラスの高温での粘性が十分に低下せず、気泡を少なくすることが困難である。また結晶化ガラスを用いた場合は、ガラスが結晶核を生成する過程において膨張・収縮が発生する。この膨張・収縮過程において結晶核の周りに多数の微少な気泡が存在してしまい。この結晶核の周りに存在する微少な気泡のため絶縁・耐電圧特性が低下してしまう。このため結晶化ガラスを用いることは非晶質のガラスを用いた場合に比べ、絶縁層12,14をなすガラスの層の欠陥を防止することが困難であるため好ましくない。   On the other hand, when the amount of B, Mg, Ca, Pb, Bi added is less than 10% by weight in terms of oxide, the viscosity at high temperature of the glass is not sufficiently lowered, and it is difficult to reduce bubbles. When crystallized glass is used, expansion and contraction occur in the process of generating crystal nuclei. In this expansion / contraction process, a large number of minute bubbles exist around the crystal nucleus. Due to the minute bubbles existing around the crystal nucleus, the insulation and withstand voltage characteristics are degraded. Therefore, it is not preferable to use crystallized glass because it is difficult to prevent defects in the glass layers forming the insulating layers 12 and 14 as compared to the case of using amorphous glass.

また、絶縁層12,14のガラスはアルカリ含有量を2重量%以下にすることが好ましい。アルカリ成分についてはガラスに添加することでガラスの粘性を下げることには有効であるが、ガラス成分のマイグレーションにより耐久性に問題があるため、絶縁層12,14のガラス中のアルカリ含有量を2重量%以下とすれば、抵抗発熱体5に直流電源を印加して加熱した際の耐久試験において、耐久性が向上することを見出した。すなわち、絶縁層12,14のガラス中のアルカリ含有量が2重量%以下の場合には250℃の連続耐久試験における寿命を1000時間までさらにアルカリ含有量が1重量%以下の場合には5000時間まで伸ばすことができることを見出した。ここで、アルカリと称しているのは、LiO,NaO,KOのようなアルカリ金属酸化物のことである。 The glass of the insulating layers 12 and 14 preferably has an alkali content of 2% by weight or less. Although it is effective to lower the viscosity of the glass by adding the alkali component to the glass, there is a problem in durability due to migration of the glass component, so the alkali content in the glass of the insulating layers 12 and 14 is 2 It was found that the durability improved in a durability test when the resistance heating element 5 was heated by applying a DC power source if the weight was not more than% by weight. That is, when the alkali content in the glass of the insulating layers 12 and 14 is 2% by weight or less, the lifetime in a continuous durability test at 250 ° C. is up to 1000 hours, and when the alkali content is 1% by weight or less, 5000 hours. I found out that it can be extended. Here, what is called an alkali is an alkali metal oxide such as Li 2 O, Na 2 O, K 2 O.

また、絶縁層12,14のガラスは、平均粒径D50が15μm以下でありかつ平均粒径がD50が20%以上離れている複数のガラスを配合したペーストを塗布し、かつ脱バインダー工程での残炭量がガラスの重量の1重量%以下となるようにして形成することが好ましい。 In addition, the glass of the insulating layers 12 and 14 is applied with a paste containing a plurality of glasses having an average particle size D 50 of 15 μm or less and an average particle size D 50 of 20% or more, and a binder removal step. It is preferable to form such that the amount of remaining charcoal is 1% by weight or less of the weight of the glass.

このように粒径の異なる複数のガラス原料を配合することにより、粉末状態での充填が密になり絶縁層中の気泡を少なくすることができる。また脱バインダー工程での残炭量をガラスの重量の1重量%以下になるように脱バインダー工程を行なうことで、バインダー成分のCとガラスのOとの反応が少なくなることと、脱バインダー工程後におけるガラス粉末の充填率を高くすることにより、より容易に厚み方向にて気泡のない領域が10μm以上連続しているガラス層を形成することが可能となる。   By blending a plurality of glass raw materials having different particle diameters in this way, filling in a powder state becomes dense, and bubbles in the insulating layer can be reduced. Further, by performing the debinding step so that the amount of residual carbon in the debinding step is 1% by weight or less of the weight of the glass, the reaction between the binder component C and the glass O is reduced, and the debinding step By increasing the filling rate of the glass powder later, it is possible to more easily form a glass layer in which regions without bubbles are continuous in the thickness direction by 10 μm or more.

一方、絶縁層12,14を形成する製造工程において平均粒径D50が15μmより大きいか、または平均粒径D50にて20%未満離れているガラスを配合した場合には、ガラスの充填が十分に密な状態ではなく、ガラスの粒子間に存在している空間を十分に埋めることは困難である。また同様に脱バインダー工程での残炭量がガラスの重量の1重量%より多い場合にも気泡の発生を抑えることは困難である。 On the other hand, when blended with glass where the average particle diameter D 50 is either 15μm greater, or at an average particle size D 50 apart less than 20% in the manufacturing process for forming the insulating layer 12, 14 is filled in the glass It is difficult to sufficiently fill the space existing between the glass particles, rather than being sufficiently dense. Similarly, it is difficult to suppress the generation of bubbles when the amount of residual carbon in the debinding step is more than 1% by weight of the glass.

また、ガラスの焼き付け温度においては、作業点温度(ガラスの粘度にて10ポイズ以下)以上の温度とすることが好ましい。 Further, the glass baking temperature is preferably a working point temperature (10 4 poise or less in terms of glass viscosity) or higher.

なお、板状体2が炭化珪素質焼結体または窒化アルミニウム質焼結体からなる場合には、板状体2を酸化雰囲気中で800〜1200℃の温度で加熱処理して板状体2の表面に絶縁性の酸化膜を形成し絶縁層14として使うこともできる。   When the plate-like body 2 is made of a silicon carbide sintered body or an aluminum nitride-based sintered body, the plate-like body 2 is heat-treated at a temperature of 800 to 1200 ° C. in an oxidizing atmosphere. An insulating oxide film can be formed on the surface of the insulating layer 14 and used.

また、リング状の断熱部材18の断面は多角形や円形の何れでもよいが、板状体2と断熱部材18とが平面で接触する場合において、板状体2と断熱部材18との接する接触部の幅は0.1〜13mmであれば、板状体2の熱が断熱部材18を介して有底の金属ケース19に流れる量を小さくすることができる。さらに好ましくは、0.1〜8mmである。断熱部材18の接触部の幅が0.1以下では、板状体2と接触固定した際に接触部が変形し、断熱部材18が破損するおそれがある。また、断熱部材18の接触部の幅が13mmを超える場合には、板状体2の熱が断熱部材18に流れ、板状体2の周辺部の温度が低下しウェハWを均一に加熱することが難しくなる。好ましくは、断熱部材18と板状体2との接触部の幅は0.1〜8mmであり、さらに好ましくは0.1〜2mmである。   In addition, the ring-shaped heat insulating member 18 may have a polygonal or circular cross section, but when the plate-like body 2 and the heat-insulating member 18 are in contact with each other in a plane, the plate-like body 2 and the heat-insulating member 18 are in contact with each other. If the width | variety of a part is 0.1-13 mm, the quantity which the heat | fever of the plate-shaped body 2 flows into the metal case 19 with a bottom via the heat insulation member 18 can be made small. More preferably, it is 0.1-8 mm. If the width of the contact portion of the heat insulating member 18 is 0.1 or less, the contact portion may be deformed when the plate 2 is contacted and fixed, and the heat insulating member 18 may be damaged. When the width of the contact portion of the heat insulating member 18 exceeds 13 mm, the heat of the plate-like body 2 flows to the heat insulating member 18, the temperature of the peripheral portion of the plate-like body 2 is lowered, and the wafer W is uniformly heated. It becomes difficult. Preferably, the width of the contact portion between the heat insulating member 18 and the plate-like body 2 is 0.1 to 8 mm, and more preferably 0.1 to 2 mm.

また、断熱部材18の熱伝導率は板状体2の熱伝導率より小さいことが好ましい。断熱部材18の熱伝導率が板状体2の熱伝導率より小さければ、板状体2に載せたウェハW面内の温度分布を均一に加熱することができるとともに、板状体2の温度を上げたり下げたりする際に、断熱部材18との熱の伝達量が小さく、有底の金属ケース19との熱的干渉が少なく、迅速に温度を変更することが容易となる。   Further, the thermal conductivity of the heat insulating member 18 is preferably smaller than the thermal conductivity of the plate-like body 2. If the thermal conductivity of the heat insulating member 18 is smaller than the thermal conductivity of the plate-like body 2, the temperature distribution in the wafer W surface placed on the plate-like body 2 can be heated uniformly, and the temperature of the plate-like body 2. When raising or lowering the temperature, the amount of heat transferred to the heat insulating member 18 is small, the thermal interference with the bottomed metal case 19 is small, and the temperature can be easily changed quickly.

断熱部材18の熱伝導率が板状体2の熱伝導率の10%より小さいヒータ14では、板状体の熱が有底のケース19に流れにくく、雰囲気ガス(ここでは空気)による伝熱や輻射伝熱により流れる熱が多くなり、逆に効果が小さい。   In the heater 14 in which the thermal conductivity of the heat insulating member 18 is smaller than 10% of the thermal conductivity of the plate-like body 2, the heat of the plate-like body is difficult to flow to the bottomed case 19, and heat transfer by the atmospheric gas (here, air) The heat that flows due to radiant heat transfer increases, and the effect is small.

断熱部材18の熱伝導率が板状体2の熱伝導率より大きい場合は、板状体2の周辺部の熱が断熱部材18を介して有底のケース19に流れ、有底のケース19を加熱するとともに、板状体2の周辺部の温度が低下しウェハW面内の温度差が大きくなり好ましくない。また、有底のケース19が加熱されることから、ノズル24からエアーを噴射して板状体2を冷却しようとしても、有底のケース19の温度が高いことから冷却する時間が大きくなったり、一定温度に加熱する際に、一定温度になるまでの時間が大きくなったりする虞がある。   When the heat conductivity of the heat insulating member 18 is larger than the heat conductivity of the plate-like body 2, the heat around the plate-like body 2 flows to the bottomed case 19 through the heat insulating member 18, and the bottomed case 19 Is not preferable because the temperature of the peripheral portion of the plate-like body 2 is lowered and the temperature difference in the wafer W surface is increased. Moreover, since the bottomed case 19 is heated, even if it tries to cool the plate-like body 2 by injecting air from the nozzle 24, the temperature of the bottomed case 19 is high. When heating to a certain temperature, there is a possibility that the time until the temperature reaches a certain temperature may be increased.

一方、断熱部材18を構成する材料としては、小さな接触部を保持するために、断熱部材18のヤング率は1GPa以上が好ましく、さらに好ましくは10GPa以上である。このようなヤング率とすることで、接触部の幅が0.1〜8mmと小さく、板状体2を有底のケース19に断熱部材18を介して固定しても、断熱部材18が変形することがなく、板状体2が位置ずれしたり平行度が変化したりすることなく、精度良く保持することができる。   On the other hand, as a material constituting the heat insulating member 18, the Young's modulus of the heat insulating member 18 is preferably 1 GPa or more, and more preferably 10 GPa or more in order to retain a small contact portion. By setting such a Young's modulus, the width of the contact portion is as small as 0.1 to 8 mm, and the heat insulating member 18 is deformed even if the plate-like body 2 is fixed to the bottomed case 19 via the heat insulating member 18. Therefore, the plate-like body 2 can be held with high accuracy without being displaced or changing the parallelism.

断熱部材18の材質としては、鉄とカーボンからなる炭素鋼やニッケル,マンガン,クロムを加えた特殊鋼等のヤング率の大きな金属が好ましい。また、熱伝導率の小さな材料としては、ステンレス鋼やFe−Ni−Co系合金が好ましく、板状体2の熱伝導率より小さくなるように断熱部材18の材料を選択することが好ましい。   The material of the heat insulating member 18 is preferably a metal with a large Young's modulus, such as carbon steel made of iron and carbon, or special steel added with nickel, manganese, or chromium. Further, as the material having a low thermal conductivity, stainless steel or Fe—Ni—Co alloy is preferable, and the material of the heat insulating member 18 is preferably selected so as to be smaller than the thermal conductivity of the plate-like body 2.

さらに、断熱部材18と板状体2との接触部を小さく、かつ接触部が小さくても接触部が欠損しパーティクルを発生するおそれが小さく安定な接触部を保持できるために、板状体2に垂直な面で切断した断熱部材18の断面は多角形より円形が好ましく、断面の直径1mm以下の円形のワイヤを断熱部材18として使用すると、板状体2と有底のケース19の位置が変化することなくウェハWの表面温度を均一に、しかも迅速に昇降温することが可能である。   Furthermore, since the contact portion between the heat insulating member 18 and the plate-like body 2 is small, and the contact portion is small, the contact portion is not likely to be lost and particles may be generated, so that the stable contact portion can be held. The cross section of the heat insulating member 18 cut along a plane perpendicular to the polygonal shape is preferably circular rather than polygonal. When a circular wire having a cross section diameter of 1 mm or less is used as the heat insulating member 18, the positions of the plate-like body 2 and the bottomed case 19 are It is possible to raise and lower the surface temperature of the wafer W uniformly and quickly without changing.

なお、有底のケース19の深さは10〜50mmで、ベースプレート13は板状体2から10〜50mmの距離に設置することが望ましい。さらに好ましくは、20〜30mmである。これは、板状体2と有底のケース19との相互の輻射熱により載置面3の均熱化が容易となると同時に、外部との断熱効果があるので、載置面3の温度が一定で均一な温度となるまでの時間が短くなるためである。   The bottomed case 19 has a depth of 10 to 50 mm, and the base plate 13 is preferably installed at a distance of 10 to 50 mm from the plate-like body 2. More preferably, it is 20-30 mm. This is because heat equalization of the mounting surface 3 is facilitated by mutual radiant heat between the plate-like body 2 and the bottomed case 19, and at the same time, there is a heat insulating effect from the outside, so the temperature of the mounting surface 3 is constant. This is because the time until the temperature becomes uniform is shortened.

さらに、抵抗発熱体5への給電方法については、有底のケース19に設置した給電端子11を板状体2の表面に形成した給電部6に不図示の弾性体で押圧することにより、接続を確保し給電する。これは、板状体2に金属からなる端子部を埋設して形成すると、該端子部の熱容量により均熱性が悪くなるからである。そのため、本発明のウェハ加熱装置1におけるように、給電端子11を弾性体で押圧して電気的接続を確保することにより、板状体2とその有底のケース19との間の温度差による熱応力は緩和し、高い信頼性で電気的導通を維持できる。さらに、接点が点接触となるのを防止するため、弾性のある導体を中間層として挿入しても構わない。この中間層は単に箔状のシートを挿入するだけでも効果がある。そして、給電端子11の給電部6側の径は、1.5〜5mmとすることが好ましい。   Furthermore, as for the method of feeding power to the resistance heating element 5, the feeding terminal 11 installed on the bottomed case 19 is connected to the feeding part 6 formed on the surface of the plate-like body 2 by pressing it with an elastic body (not shown). Secure and supply power. This is because if the terminal portion made of metal is embedded in the plate-like body 2, the thermal uniformity is deteriorated due to the heat capacity of the terminal portion. Therefore, as in the wafer heating apparatus 1 of the present invention, the power supply terminal 11 is pressed with an elastic body to ensure electrical connection, thereby causing a temperature difference between the plate-like body 2 and the bottomed case 19. Thermal stress is alleviated and electrical conduction can be maintained with high reliability. Further, an elastic conductor may be inserted as an intermediate layer in order to prevent the contact from becoming a point contact. This intermediate layer is effective by simply inserting a foil-like sheet. And it is preferable that the diameter by the side of the electric power feeding part 6 of the electric power feeding terminal 11 shall be 1.5-5 mm.

なお、板状体2の他方の主面である載置面3には、図1に示すように、複数のウェハ支持ピン8を設け、板状体2の他方の主面より一定の距離をおいてウェハWを保持するようにしても構わない。   As shown in FIG. 1, a plurality of wafer support pins 8 are provided on the mounting surface 3, which is the other main surface of the plate-like body 2, and a certain distance from the other main surface of the plate-like body 2 is provided. In this case, the wafer W may be held.

熱伝導率が100W/(m・K)の炭化珪素質焼結体に研削加工を施し、板厚3mm、外径330mm円形の板状体を複数製作した。   A silicon carbide sintered body with a thermal conductivity of 100 W / (m · K) was ground to produce a plurality of plate-like bodies having a plate thickness of 3 mm and an outer diameter of 330 mm.

次いで、板状体上にガラスペーストをスクリーン印刷法で板状体の片面の全面に絶縁層を印刷し、150℃で加熱し乾燥した後、さらに550℃で30分間脱脂処理した。その後、800〜950℃の温度で絶縁層を焼付けした。抵抗発熱体および給電部を被着するため、導電材としてAg粉末およびPt粉末と、バインダーを添加したガラスペーストとを混練して作製した導電体ペーストをスクリーン印刷法にて絶縁層の上に図2に示す抵抗発熱体の形状に印刷した後、150℃に加熱して有機溶剤を乾燥させ、さらに550℃で30分間脱脂処理を施した後、700〜900℃の温度で焼き付けを行なうことにより、厚みが55μmの抵抗発熱体を形成した。ここで、給電部は抵抗発熱体よりも比抵抗が小さくなるように金属成分とガラス成分の比率を調整した。   Next, an insulating layer was printed on the entire surface of one side of the plate-like body by screen printing on the plate-like body, heated at 150 ° C. and dried, and further degreased at 550 ° C. for 30 minutes. Thereafter, the insulating layer was baked at a temperature of 800 to 950 ° C. A conductive paste prepared by kneading Ag powder and Pt powder as conductive materials and a glass paste to which a binder is added in order to adhere the resistance heating element and the power feeding portion onto the insulating layer by screen printing. After printing in the shape of the resistance heating element shown in Fig. 2, the organic solvent is dried by heating to 150 ° C, degreased at 550 ° C for 30 minutes, and then baked at a temperature of 700 to 900 ° C. A resistance heating element having a thickness of 55 μm was formed. Here, the ratio of the metal component and the glass component was adjusted so that the specific resistance of the power feeding unit was smaller than that of the resistance heating element.

また、抵抗発熱体を覆うように帯状に絶縁層12を形成したヒータ部と、抵抗発熱体の全面を覆う絶縁層12を形成したヒータ部とを作製した。   Moreover, the heater part which formed the insulating layer 12 in the strip | belt shape so that a resistance heating element might be covered, and the heater part which formed the insulating layer 12 which covers the whole surface of a resistance heating element were produced.

また、ケースは、厚み3.0mmのSUS304からなるベースプレートを基礎にして、同じくSUS304からなる側壁部とネジ締めにて固定して構成した。   Further, the case was configured by fixing a side wall portion made of SUS304 to the side plate and screwing on the basis of a base plate made of SUS304 having a thickness of 3.0 mm.

その後、ケースの上に、板状体を重ね、その外周部にボルトを貫通させ、板状体とケースとが直接当たらないように、断熱部材を介在させ、ケース側よりナットを螺着し固定することによりウェハ加熱装置とした。   After that, a plate-like body is stacked on the case, a bolt is passed through the outer periphery, a heat insulating member is interposed so that the plate-like body and the case do not directly contact, and a nut is screwed and fixed from the case side. Thus, a wafer heating apparatus was obtained.

試料No.1のノズルの先端は、板状体(図3(a)に示すAP)の位置にあり、図4に示す例と同様に、冷却ノズルの先端が抵抗発熱体5の間に位置している。また、抵抗発熱体の上に絶縁層はない。   Sample No. The tip of one nozzle is at the position of the plate-like body (AP shown in FIG. 3A), and the tip of the cooling nozzle is located between the resistance heating elements 5 as in the example shown in FIG. . There is no insulating layer on the resistance heating element.

また、上記ヒータ部と同じものを作製し、各抵抗発熱体の上にガラスフリットをペースト状にして印刷した。そして、加熱して絶縁層を形成した。絶縁層は図2に示す抵抗発熱体ゾーンに対応して形成し、各抵抗発熱体ゾーンの間隔S1は30mm,S2は33mm,S3は42mmとして、これに対応して各絶縁層の間隔は25mm,25mm,35mmとした。そして、上記と同様に断熱部材とケースとを組み付け、ノズルを配設したウェハ加熱装置を作製した。   Moreover, the same thing as the said heater part was produced, and the glass frit was paste-formed and printed on each resistance heating element. And it heated and formed the insulating layer. The insulating layers are formed corresponding to the resistance heating element zones shown in FIG. 2, and the intervals S1 between the resistance heating element zones are 30 mm, S2 is 33 mm, and S3 is 42 mm. 25 mm and 35 mm. Then, a heat insulating member and a case were assembled in the same manner as described above, and a wafer heating apparatus provided with a nozzle was produced.

試料No.2のノズルの先端は、抵抗発熱体の間に位置している。また、抵抗発熱体の上に各環状ゾーンを個別に覆う絶縁層が形成されている(図5)。最も外側の抵抗発熱体ゾーンを覆う絶縁層とその内側の抵抗発熱体ゾーンを覆う絶縁層との間隔が35mm幅であり、それら絶縁層の間にノズルの先端を配設した。   Sample No. The tip of the second nozzle is located between the resistance heating elements. In addition, an insulating layer that individually covers each annular zone is formed on the resistance heating element (FIG. 5). The distance between the insulating layer covering the outermost resistance heating element zone and the insulating layer covering the inner resistance heating element zone was 35 mm wide, and the tip of the nozzle was disposed between these insulating layers.

試料No.3のノズルの先端は、抵抗発熱体の間に位置している。また、抵抗発熱体の上の全面に一様に絶縁層が形成されている(図6)。   Sample No. The tip of the nozzle 3 is located between the resistance heating elements. In addition, an insulating layer is uniformly formed on the entire surface of the resistance heating element (FIG. 6).

試料No.4はノズルの位置を最も外側の抵抗発熱体の上に配置した。なお、抵抗発熱体の上の全面に一様に絶縁層が形成されている。   Sample No. No. 4 arrange | positioned the position of the nozzle on the outermost resistance heating element. Note that an insulating layer is uniformly formed on the entire surface of the resistance heating element.

なお、ノズルの先端の口径は直径1.2mmとし、ノズルの先端からヒータ部までの距離を6mmとした。また、試料No.1〜4の外側のノズルの数は8個とし、板状体の中心から2番目の円環状の抵抗発熱体ゾーンにノズルを4個配設した。   The diameter of the nozzle tip was 1.2 mm, and the distance from the nozzle tip to the heater was 6 mm. Sample No. The number of outer nozzles 1 to 4 was eight, and four nozzles were arranged in the second annular resistance heating element zone from the center of the plate-like body.

そして、各ウェハ加熱装置の給電端子に通電して140℃保持時のウェハW表面の温度ばらつきが±0.5℃となるように調整し、140℃に保持した。温度設定値を、90℃に変更後、直ちに、全てのノズルから冷却ガスを噴射し、90℃まで温度が低下し、ウェハW表面の温度ばらつきが±0.5℃となるまでの時間を冷却時間とした。今までの冷却効率を改善させるために、目標の冷却時間は180秒以内とした。ウェハW表面の温度ばらつきについては、直径300mmのウェハ表面に測温センサーを29箇所埋めこんだ測温用ウェハを用いて評価した。   Then, the power supply terminals of the respective wafer heating devices were energized, adjusted so that the temperature variation on the surface of the wafer W when held at 140 ° C. became ± 0.5 ° C., and held at 140 ° C. Immediately after changing the temperature setting value to 90 ° C, cooling gas is injected from all nozzles, and the time until the temperature drops to 90 ° C and the temperature variation on the surface of the wafer W becomes ± 0.5 ° C is cooled. It was time. In order to improve the conventional cooling efficiency, the target cooling time was set to be within 180 seconds. The temperature variation on the surface of the wafer W was evaluated using a temperature measuring wafer in which 29 temperature measuring sensors were embedded in the wafer surface having a diameter of 300 mm.

作製したウェハ加熱装置の評価は、25℃の恒温室内で行ない、冷却ガスは常温とし、冷却ガスの総流量は120(リットル/分)とした。   The produced wafer heating apparatus was evaluated in a constant temperature room at 25 ° C., the cooling gas was set to room temperature, and the total flow rate of the cooling gas was 120 (liters / minute).

まず、冷却位置が冷却時間に与える影響を評価した。   First, the influence of the cooling position on the cooling time was evaluated.

その後、ウェハ加熱装置30℃から200℃に5分で昇温し5分間保持した後、30分間強制冷却する加熱冷却サイクルを1000サイクル繰り返した後、室温から200℃に設定し、10分後のウェハ温度の最大値と最小値との差を定常時のウェハWの温度差として測定した。   Thereafter, the wafer heating apparatus was heated from 30 ° C. to 200 ° C. over 5 minutes and held for 5 minutes, and then the heating / cooling cycle for forced cooling for 30 minutes was repeated 1000 cycles, then the temperature was set from room temperature to 200 ° C. The difference between the maximum value and the minimum value of the wafer temperature was measured as the temperature difference of the wafer W at the steady state.

その結果を表1に示した。

Figure 2006332410
The results are shown in Table 1.
Figure 2006332410

試料No.1は、ノズルの先端が抵抗発熱体の帯の間(図3に示すAP)にあり、冷却時間が135秒と小さく、また加熱冷却サイクル後の定常時のウェハの温度差が0.32℃と小さく、優れた特性を示した。   Sample No. No. 1 is that the tip of the nozzle is between the strips of the resistance heating element (AP shown in FIG. 3), the cooling time is as short as 135 seconds, and the temperature difference of the wafer in the steady state after the heating / cooling cycle is 0.32 ° C. It was small and showed excellent characteristics.

また、試料No.2は、抵抗発熱体の上に帯状の絶縁層があり、冷却時間が140秒と小さく、かつ加熱冷却サイクル後の定常時のウェハの温度差が0.24℃と小さく好ましいことが分かった。   Sample No. No. 2 has a strip-like insulating layer on the resistance heating element, and the cooling time is as small as 140 seconds, and the temperature difference of the wafer at the steady state after the heating and cooling cycle is as small as 0.24 ° C., which is preferable.

また、板状体の上に絶縁層14を形成し、その上に抵抗発熱体を形成し、さらに抵抗発熱体の上に絶縁層を形成し、抵抗発熱体の間の絶縁層に冷却ガスを当ててヒータ部を冷却した試料No.3は、冷却時間が152秒と小さいとともに、加熱冷却サイクル後の定常時のウェハの温度差が0.25℃と小さく、耐久性が優れていることが分かった。   Further, the insulating layer 14 is formed on the plate-like body, the resistance heating element is formed thereon, the insulating layer is further formed on the resistance heating element, and the cooling gas is supplied to the insulating layer between the resistance heating elements. Sample no. In No. 3, the cooling time was as short as 152 seconds, and the temperature difference between the wafers in a steady state after the heating and cooling cycle was as small as 0.25 ° C., indicating that the durability was excellent.

載置面への投影面から見て、ノズルの先端が板状体に熱が伝わり易い抵抗発熱体の間にあり、板状体を絶縁層を介して冷却すると、冷却時間が短く優れた特性を示すことが分かった。   When viewed from the projection surface onto the mounting surface, the tip of the nozzle is located between the resistance heating elements where heat is easily transferred to the plate-like body. Cooling the plate-like body through an insulating layer shortens the cooling time and has excellent characteristics. It was found that

一方、抵抗発熱体の上に絶縁層を形成し、その上に抵抗発熱体を形成し、さらにその上に絶縁層を形成したもので、抵抗発熱体の上の絶縁層の上から冷却ガスを噴射して冷却した試料No.4は、冷却時間が358秒と大きく好ましくなかった。   On the other hand, an insulating layer is formed on the resistance heating element, a resistance heating element is formed thereon, and an insulating layer is further formed thereon. Cooling gas is supplied from above the insulating layer on the resistance heating element. Sample no. No. 4 was not preferable because the cooling time was 358 seconds.

実施例1の試料No.1〜3を作製し、各絶縁層の上面に凹凸をサンドブラスト法で形成した。凹凸面は略格子状の溝が形成されたものとし、溝の幅は30μmで、凸部の形状は正方形でその一辺の長さは40μmとし、凹部の深さは20μmとした。そして、実施例1と同様に評価した。その結果を表2に示す。

Figure 2006332410
Sample No. 1 of Example 1 1 to 3 were prepared, and irregularities were formed on the upper surface of each insulating layer by a sandblasting method. The uneven surface was formed with a substantially lattice-shaped groove, the groove width was 30 μm, the convex shape was square, the length of one side was 40 μm, and the depth of the concave portion was 20 μm. And it evaluated similarly to Example 1. FIG. The results are shown in Table 2.
Figure 2006332410

試料No.21〜23の何れも冷却時間が95秒,102秒,108秒と、試料No.1〜3の冷却時間135秒,140秒,152秒より格段に小さく、絶縁層の上面が凹凸面であると優れた冷却特性を示すことが分かった。   Sample No. In all of Nos. 21 to 23, the cooling times were 95 seconds, 102 seconds, and 108 seconds. It was found that the cooling time of 1 to 3 was much shorter than 135 seconds, 140 seconds, and 152 seconds, and excellent cooling characteristics were exhibited when the upper surface of the insulating layer was an uneven surface.

なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更を加えることは何ら差し支えない。例えば、凹凸面の凹部の形状は、載置面から見て載置面の中心から同心円上の環と中心から放射状に伸びる直線とからなる蜘蛛の巣状としてもよい。その場合には、冷却ガスが凹部を一様に通過することから、凹部と冷却ガスとの熱交換が大きくなるので、凹部を介して凹部から冷却ガスに熱が容易に伝わり凹部を急速に冷却することができるものとなる。   In addition, this invention is not limited to the example of the above embodiment, A various change may be added in the range which does not deviate from the summary of this invention. For example, the shape of the concave portion of the concavo-convex surface may be a spider web formed of a ring concentric from the center of the mounting surface and a straight line extending radially from the center. In that case, since the cooling gas passes through the recess uniformly, the heat exchange between the recess and the cooling gas is increased, so that heat is easily transferred from the recess to the cooling gas via the recess and the recess is rapidly cooled. Will be able to do.

(a)は本発明のウェハ加熱装置の例を示す断面図であり、(b)はその上面図である。(A) is sectional drawing which shows the example of the wafer heating apparatus of this invention, (b) is the top view. 本発明のウェハ加熱装置の例における抵抗発熱体の形状を示す正面図である。It is a front view which shows the shape of the resistance heating element in the example of the wafer heating apparatus of this invention. (a)は本発明のウェハ加熱装置における抵抗発熱体ゾーンを示す概略図であり、(b)は環状の抵抗発熱体ゾーンを分割した一例を示す概略図である。(A) is the schematic which shows the resistance heating element zone in the wafer heating apparatus of this invention, (b) is the schematic which shows an example which divided | segmented the cyclic | annular resistance heating element zone. 本発明のウェハ加熱装置の板状体と板状体の上に形成した絶縁層と抵抗発熱体とノズルの先端との位置関係を示す拡大断面図である。It is an expanded sectional view which shows the positional relationship of the insulating layer formed on the plate-shaped body of the wafer heating apparatus of this invention, a plate-shaped body, a resistance heating element, and the front-end | tip of a nozzle. (a)は本発明のウェハ加熱装置の板状体に形成した抵抗発熱体を覆う絶縁層とノズルの先端との位置関係を示す拡大断面図であり、(b)は本発明のウェハ加熱装置における板状体と絶縁層とノズルの先端との位置関係の一例を示す概略図である。(A) is an expanded sectional view which shows the positional relationship of the insulating layer which covers the resistance heating element formed in the plate-shaped body of the wafer heating apparatus of this invention, and the front-end | tip of a nozzle, (b) is the wafer heating apparatus of this invention. It is the schematic which shows an example of the positional relationship of the plate-shaped body in this, an insulating layer, and the front-end | tip of a nozzle. 他の本発明のウェハ加熱装置の板状体に形成した絶縁層と抵抗発熱体と、それを覆う絶縁層とノズルの先端との位置を示す拡大断面図である。It is an expanded sectional view which shows the position of the insulating layer and resistance heating element which were formed in the plate-shaped object of the other wafer heating apparatus of this invention, the insulating layer which covers it, and the front-end | tip of a nozzle. 本発明の抵抗発熱体の間に位置する絶縁層の表面が凹凸面であることを示す部分拡大斜視図である。It is a partial expansion perspective view which shows that the surface of the insulating layer located between the resistance heating elements of this invention is an uneven surface. 本発明のウェハ加熱装置におけるヒータ部の抵抗発熱体の形状を示す正面図である。It is a front view which shows the shape of the resistance heating element of the heater part in the wafer heating apparatus of this invention. 従来のウェハ加熱装置の一例を示す断面図である。It is sectional drawing which shows an example of the conventional wafer heating apparatus. 従来のウェハ加熱装置におけるヒータ部の抵抗発熱体の形状を示す正面図である。It is a front view which shows the shape of the resistance heating element of the heater part in the conventional wafer heating apparatus.

符号の説明Explanation of symbols

W:半導体ウェハ
1:ウェハ加熱装置
2:板状体(板状セラミック体)
3:載置面
5:抵抗発熱体
6:給電部
8:ウェハ支持ピン
10:温度センサー
11:給電端子
12,14:絶縁層
18:断熱部材
19:ケース
21:ベースプレート
22:側壁部
23:開口部
24:ノズル
27:温度センサー
W:半導体ウェハ
AP:ノズルの先端の位置(抵抗発熱体の帯の間)
W: Semiconductor wafer 1: Wafer heating device 2: Plate body (plate ceramic body)
3: Placement surface 5: Resistance heating element 6: Power supply unit 8: Wafer support pin 10: Temperature sensor 11: Power supply terminal 12, 14: Insulating layer 18: Thermal insulation member 19: Case 21: Base plate 22: Side wall 23: Opening Part 24: Nozzle 27: Temperature sensor W: Semiconductor wafer AP: Position of the tip of the nozzle (between the strips of the resistance heating element)

Claims (10)

板状体の一方の主面に絶縁層を備え、該絶縁層の上に帯状の抵抗発熱体を備え、他方の主面にウェハを載せる載置面を備えたヒータ部と、上記抵抗発熱体に電力を供給する給電端子と、該給電端子を包むように板状体と接続したケースとを有するとともに、該ケースに上記ヒータ部を冷却するノズルと開口部とを備え、上記載置面への投影面から見て、上記ノズルの先端が上記抵抗発熱体の間に位置することを特徴とするウェハ加熱装置。 A heater unit comprising an insulating layer on one main surface of the plate-like body, a strip-like resistance heating element on the insulating layer, and a mounting surface on which the wafer is placed on the other main surface; and the resistance heating element And a case connected to a plate-like body so as to wrap the power supply terminal, and provided with a nozzle and an opening for cooling the heater portion in the case. A wafer heating apparatus, wherein the tip of the nozzle is located between the resistance heating elements when viewed from the projection plane. 板状体の一方の主面に絶縁層を備え、該絶縁層の上に複数の帯状の抵抗発熱体を備え、他方の主面にウェハを載せる載置面を備えたヒータ部と、前記抵抗発熱体に電力を供給する給電端子と、該給電端子を包むように板状体と接続したケースとを有するとともに、該ケースに上記ヒータ部を冷却するノズルと開口部とを備え、上記載置面への投影面から見て、上記抵抗発熱体は略同一の幅を有する円弧状の帯と折り返し帯とを連続させて略同心円状に配設され、上記ノズルの先端が上記複数の抵抗発熱体の間に位置することを特徴とするウェハ加熱装置。 A heater unit comprising an insulating layer on one main surface of the plate-like body, a plurality of strip-like resistance heating elements on the insulating layer, and a mounting surface on which a wafer is placed on the other main surface; The mounting surface includes a power supply terminal that supplies power to the heating element, and a case connected to the plate-like body so as to wrap the power supply terminal, and the case includes a nozzle and an opening for cooling the heater unit. When viewed from the projection surface, the resistance heating element is arranged in a substantially concentric manner by continuing an arc-shaped band and a folding band having substantially the same width, and the tip of the nozzle is the plurality of resistance heating elements A wafer heating apparatus located between the two. 上記帯状の抵抗発熱体の上面の全てまたは一部に絶縁層を設けたことを特徴とする請求項1または2に記載のウェハ加熱装置。 3. The wafer heating apparatus according to claim 1, wherein an insulating layer is provided on all or part of the upper surface of the strip-shaped resistance heating element. 上記複数の帯状の抵抗発熱体は、上記板状体の中心部に備えた円形の抵抗発熱体ゾーンと、その外側の同心円の2つまたは3つの円環状の抵抗発熱体ゾーンとからなることを特徴とする請求項1〜3の何れかに記載のウェハ加熱装置。 The plurality of strip-shaped resistance heating elements include a circular resistance heating element zone provided at the center of the plate-like body and two or three concentric annular resistance heating element zones on the outer side. The wafer heating apparatus according to any one of claims 1 to 3. 上記円環状の抵抗発熱体ゾーンのうち、最も外側の抵抗発熱体ゾーンは、円環を4等分した4個の扇状であり、その内側の抵抗発熱体ゾーンは、円環を円周方向に2等分した2個の扇状であることを特徴とする請求項4に記載のウェハ加熱装置。 Among the annular resistance heating element zones, the outermost resistance heating element zone has four fan-like shapes obtained by dividing the ring into four equal parts, and the inner resistance heating element zone has an annular shape in the circumferential direction. 5. The wafer heating apparatus according to claim 4, wherein the wafer heating apparatus is divided into two equal parts. 上記中心部に備えた円形の抵抗発熱体ゾーンまたはその外側の同心円の円環状の抵抗発熱体ゾーンと、上記円形の抵抗発熱体ゾーンまたは上記円環状の抵抗発熱体ゾーンの外側の円環状の抵抗発熱体ゾーンとの間隔S2と、上記外側の円環状の抵抗発熱体ゾーンと最も外側の円環状の抵抗発熱体ゾーンとの間隔S3とを備え、該間隔S3が上記間隔S2より大きいことを特徴とする請求項4または5に記載のウェハ加熱装置。 A circular resistance heating element zone provided in the central portion or a concentric annular resistance heating element zone outside the circular resistance heating element zone; and an annular resistance outside the circular resistance heating element zone or the annular resistance heating element zone. A space S2 between the heating element zone and a distance S3 between the outer annular resistance heating element zone and the outermost annular resistance heating element zone, the interval S3 being larger than the interval S2. The wafer heating apparatus according to claim 4 or 5. 上記載置面への投影面から見て、上記最も外側の円環状の抵抗発熱体ゾーンとその内側の抵抗発熱体ゾーンとの間に上記ノズルの先端を複数個備えていることを特徴とする請求項4〜6の何れかに記載のウェハ加熱装置。 A plurality of nozzle tips are provided between the outermost annular resistance heating element zone and the inner resistance heating element zone when viewed from the projection surface onto the placement surface. The wafer heating apparatus according to claim 4. 上記絶縁層および/または上記抵抗発熱体の表面が凹凸面であることを特徴とする請求項1〜7の何れかに記載のウェハ加熱装置。 The wafer heating apparatus according to claim 1, wherein a surface of the insulating layer and / or the resistance heating element is an uneven surface. 上記凹凸面は略格子状の溝であることを特徴とする請求項1〜8の何れかに記載のウェハ加熱装置。 9. The wafer heating apparatus according to claim 1, wherein the uneven surface is a substantially lattice-shaped groove. 請求項1〜9の何れかに記載のウェハ加熱装置を用いた半導体製造装置。 A semiconductor manufacturing apparatus using the wafer heating apparatus according to claim 1.
JP2005155054A 2005-05-27 2005-05-27 Device for heating wafer and device for manufacturing semiconductor using it Pending JP2006332410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005155054A JP2006332410A (en) 2005-05-27 2005-05-27 Device for heating wafer and device for manufacturing semiconductor using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005155054A JP2006332410A (en) 2005-05-27 2005-05-27 Device for heating wafer and device for manufacturing semiconductor using it

Publications (1)

Publication Number Publication Date
JP2006332410A true JP2006332410A (en) 2006-12-07

Family

ID=37553771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005155054A Pending JP2006332410A (en) 2005-05-27 2005-05-27 Device for heating wafer and device for manufacturing semiconductor using it

Country Status (1)

Country Link
JP (1) JP2006332410A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110169A1 (en) * 2009-03-24 2010-09-30 東京エレクトロン株式会社 Mounting table structure and treatment device
JP2014186872A (en) * 2013-03-23 2014-10-02 Kyocera Corp Ceramic heater
WO2018221436A1 (en) * 2017-05-29 2018-12-06 京セラ株式会社 Sample holder
WO2018230232A1 (en) * 2017-06-14 2018-12-20 住友電気工業株式会社 Wafer heating heater and semiconductor manufacturing device
JP2019062137A (en) * 2017-09-28 2019-04-18 京セラ株式会社 Sample holder

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135684A (en) * 1999-08-23 2001-05-18 Ibiden Co Ltd Wafer prober device
JP2001168022A (en) * 1999-09-30 2001-06-22 Tokyo Electron Ltd Device and method for heating treatment
JP2001297858A (en) * 1999-11-24 2001-10-26 Ibiden Co Ltd Ceramic heater
JP2001297857A (en) * 1999-11-24 2001-10-26 Ibiden Co Ltd Ceramic heater for semiconductor manufacture and inspection device
WO2002003434A1 (en) * 2000-07-03 2002-01-10 Ibiden Co., Ltd. Ceramic heater for semiconductor manufacturing/testing apparatus
JP2002083848A (en) * 2000-07-03 2002-03-22 Ibiden Co Ltd Semiconductor manufacturing and inspecting apparatus
JP2002100460A (en) * 2000-09-22 2002-04-05 Ibiden Co Ltd Ceramic heater and hot plate unit
JP2002373846A (en) * 2001-06-14 2002-12-26 Ibiden Co Ltd Ceramic heater and hot plate unit for semiconductor manufacturing and inspection apparatus
JP2003347177A (en) * 2002-05-27 2003-12-05 Kyocera Corp Wafer supporting member
JP2004031593A (en) * 2002-06-25 2004-01-29 Kyocera Corp Wafer supporting member
JP2006013199A (en) * 2004-06-28 2006-01-12 Kyocera Corp Wafer heating apparatus and its manufacturing method
JP2006093496A (en) * 2004-09-27 2006-04-06 Kyocera Corp Wafer heating unit and semiconductor manufacturing device using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001135684A (en) * 1999-08-23 2001-05-18 Ibiden Co Ltd Wafer prober device
JP2001168022A (en) * 1999-09-30 2001-06-22 Tokyo Electron Ltd Device and method for heating treatment
JP2001297858A (en) * 1999-11-24 2001-10-26 Ibiden Co Ltd Ceramic heater
JP2001297857A (en) * 1999-11-24 2001-10-26 Ibiden Co Ltd Ceramic heater for semiconductor manufacture and inspection device
WO2002003434A1 (en) * 2000-07-03 2002-01-10 Ibiden Co., Ltd. Ceramic heater for semiconductor manufacturing/testing apparatus
JP2002083848A (en) * 2000-07-03 2002-03-22 Ibiden Co Ltd Semiconductor manufacturing and inspecting apparatus
JP2002100460A (en) * 2000-09-22 2002-04-05 Ibiden Co Ltd Ceramic heater and hot plate unit
JP2002373846A (en) * 2001-06-14 2002-12-26 Ibiden Co Ltd Ceramic heater and hot plate unit for semiconductor manufacturing and inspection apparatus
JP2003347177A (en) * 2002-05-27 2003-12-05 Kyocera Corp Wafer supporting member
JP2004031593A (en) * 2002-06-25 2004-01-29 Kyocera Corp Wafer supporting member
JP2006013199A (en) * 2004-06-28 2006-01-12 Kyocera Corp Wafer heating apparatus and its manufacturing method
JP2006093496A (en) * 2004-09-27 2006-04-06 Kyocera Corp Wafer heating unit and semiconductor manufacturing device using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010110169A1 (en) * 2009-03-24 2010-09-30 東京エレクトロン株式会社 Mounting table structure and treatment device
JP2010225941A (en) * 2009-03-24 2010-10-07 Tokyo Electron Ltd Mounting base structure and processing device
US20120031889A1 (en) * 2009-03-24 2012-02-09 Tokyo Electron Limited Mounting table structure and processing apparatus
CN102362332A (en) * 2009-03-24 2012-02-22 东京毅力科创株式会社 Mounting table structure and treatment device
JP2014186872A (en) * 2013-03-23 2014-10-02 Kyocera Corp Ceramic heater
WO2018221436A1 (en) * 2017-05-29 2018-12-06 京セラ株式会社 Sample holder
JPWO2018221436A1 (en) * 2017-05-29 2020-03-19 京セラ株式会社 Sample holder
WO2018230232A1 (en) * 2017-06-14 2018-12-20 住友電気工業株式会社 Wafer heating heater and semiconductor manufacturing device
JP2019062137A (en) * 2017-09-28 2019-04-18 京セラ株式会社 Sample holder

Similar Documents

Publication Publication Date Title
KR101185794B1 (en) Wafer heating equipment and semiconductor manufacturing equipment
KR100782395B1 (en) Ceramic heater, wafer heating device using it, and method for producing semiconductor substrate
US20050045618A1 (en) Ceramic heater and ceramic joined article
JP2006127883A (en) Heater and wafer heating device
KR20060048119A (en) Heater, wafer heating device and method for fabricating the heater
JP2006332410A (en) Device for heating wafer and device for manufacturing semiconductor using it
JP2005340439A (en) Heater, wafer heating device, and manufacturing method thereof
JP4658913B2 (en) Wafer support member
JP3904986B2 (en) Wafer support member
JP3588457B2 (en) Wafer heating device
JP4845389B2 (en) Heater and wafer heating device
JP4931360B2 (en) Wafer heating device
JP2003077779A (en) Wafer heater
JP2006093496A (en) Wafer heating unit and semiconductor manufacturing device using the same
JP4693429B2 (en) Heater, wafer heating heater and wafer heating apparatus using the same
JP3921143B2 (en) Wafer heating device
JP4671592B2 (en) Ceramic heater
JP4776156B2 (en) Ceramic heater
JP4596790B2 (en) Ceramic heater and wafer support member using the same
JP3924513B2 (en) Wafer support member
JP3894871B2 (en) Wafer support member
JP4789790B2 (en) Wafer support member
JP4109227B2 (en) Wafer heating device
JP2005050834A (en) Wafer supporting member
JP4721658B2 (en) Wafer support member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101012