JP2006329893A - Disconnection detection system - Google Patents

Disconnection detection system Download PDF

Info

Publication number
JP2006329893A
JP2006329893A JP2005156382A JP2005156382A JP2006329893A JP 2006329893 A JP2006329893 A JP 2006329893A JP 2005156382 A JP2005156382 A JP 2005156382A JP 2005156382 A JP2005156382 A JP 2005156382A JP 2006329893 A JP2006329893 A JP 2006329893A
Authority
JP
Japan
Prior art keywords
phase
disconnection
voltage
disconnection detection
detection system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005156382A
Other languages
Japanese (ja)
Other versions
JP4655207B2 (en
Inventor
Kenji Abiko
堅二 安孫子
Masaya Takahashi
雅弥 高橋
Mutsuo Magara
睦雄 眞柄
Yoshiyuki Karube
良行 軽部
Yoshitoku Omachi
良徳 大町
Suketomo Takai
祐知 高井
Yukio Kamihira
幸雄 上平
Jun Abe
純 阿部
Hiroyuki Yamaguchi
博行 山口
Takeshi Hamagumi
剛 浜組
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOHOKU KEIKI KOGYO KK
Osaki Electric Co Ltd
Tohoku Electric Power Co Inc
Original Assignee
TOHOKU KEIKI KOGYO KK
Osaki Electric Co Ltd
Tohoku Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOHOKU KEIKI KOGYO KK, Osaki Electric Co Ltd, Tohoku Electric Power Co Inc filed Critical TOHOKU KEIKI KOGYO KK
Priority to JP2005156382A priority Critical patent/JP4655207B2/en
Publication of JP2006329893A publication Critical patent/JP2006329893A/en
Application granted granted Critical
Publication of JP4655207B2 publication Critical patent/JP4655207B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect a disconnection fault which a phase change on appearance by a small grounding is inhibited, and to enable distinguishing of the small grounding faults and the grounding faults. <P>SOLUTION: A plurality of switches 4-1 to 4-5, 5-1 to 5-9, which divide a power distribution line of a three phase into the plurality of feeder divided sections 8-1 to 8-10, and the three phase voltage of the switches are detected. The phase voltages of the detected three phase are synthesized or obtained through a three-phase line voltage from a three phase power source transformer. By using the phase change and the duration time from a standard 120-degree phase difference of the three phase line voltage, disconnection detection system performs the detection of the disconnection by the loading side of the fault dot with a high-voltage power distribution line of the three phase non-grounding system mounting the disconnection detection devices 2-1, 2-2, 3-1 to 3-12 detecting the disconnecting line phase between the distribution divided sections that include a three-phase induction motor. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、三相非接地系高圧配電線の断線を検出する断線検出システムおよび断線検出システムを構成する断線検出装置ならびに断線検出方法に関する。   The present invention relates to a disconnection detection system that detects a disconnection of a three-phase non-grounded high-voltage distribution line, a disconnection detection device that constitutes the disconnection detection system, and a disconnection detection method.

近年の配電線はすべて絶縁電線で構築され、風害、雷害、部分劣化等により断線が発生しても、接地抵抗が変電所の地絡継電器で検知不能なレベルを維持する場合があり、早期検知による事故の迅速な復旧と、感電事故を未然に防止することが課題となっていた。   All of the distribution lines in recent years are constructed of insulated wires, and even if a breakage occurs due to wind damage, lightning damage, partial deterioration, etc., the ground resistance may maintain a level that cannot be detected by the ground fault relay of the substation. The problem was to quickly recover from accidents by detection and to prevent electric shock accidents.

断線を検出するには、断線箇所の電源側すなわち変電所側で検出する方法と断線箇所の負荷側で検出する方法および断線箇所の両側の情報で検出する方法があるが、もっとも確実な方法は、断線箇所の負荷側で断線検出する方法である。   There are two methods for detecting disconnection: the method of detecting the disconnection location on the power supply side, that is, the substation side, the detection method of the disconnection location on the load side, and the detection method using information on both sides of the disconnection location. This is a method of detecting disconnection on the load side of the disconnection point.

断線箇所の電源側で断線を検出する方法には、断線により発生する負荷電流の不平衡成分、零相電圧または零相電流の変化を検出する方法、何らかの測定手段により配電線の対地インピーダンスの変化を検出する方法等が提案されている。これらの方法には、常時存在しかつ変動する負荷電流の不平衡成分或いは零相成分の変化分と断線により発生する変化分との確実な分離、あるいは配電系統の制御および負荷の変動で変化するインピーダンス変動との確実な分離が必要であり、検出レベルの整定に技術を必要とする。   The method for detecting the disconnection on the power source side of the disconnection location includes a method for detecting an unbalanced component of the load current, a zero phase voltage or a zero phase current caused by the disconnection, and a change in the ground impedance of the distribution line by some measuring means. There have been proposed methods for detecting the above. These methods vary depending on reliable separation of changes in the unbalanced component or zero-phase component of the load current that always exists and fluctuates from changes caused by disconnection, or control of the distribution system and load fluctuations. A reliable separation from the impedance variation is required, and a technique is required for setting the detection level.

断線箇所の両端の情報で検知する方法には、断線箇所の電源側と負荷側で零相電圧の位相が異なることを利用して判定する方法、零相電圧レベルの分布により判定する方法等が提案されている。この方法も零相成分を検知情報に用いていること、複数の計測情報をシステム的に収集して判定する必要があることから、検出・判定レベルの整定とシステムの運用に技術を必要とする。   Methods for detecting the information at both ends of the disconnection location include a determination method utilizing the fact that the phase of the zero phase voltage is different between the power source side and the load side of the disconnection location, a determination method based on the distribution of the zero phase voltage level, etc. Proposed. Since this method also uses zero-phase components for detection information and it is necessary to collect and determine multiple measurement information systematically, it requires technology to set the detection / judgment level and operate the system. .

これに対して、断線箇所の負荷側で断線を検出する方法は、断線によって負荷側の電源状態が直接影響を受け、大きく変化することから最も確実な方法と言える。本発明は、この断線箇所の負荷側で検出する方法を採用し、配電自動化システムの機能とする場合の方式および機器・システムの構成方法に関する。   On the other hand, the method of detecting the disconnection on the load side of the disconnection location is the most reliable method because the power supply state on the load side is directly affected by the disconnection and changes greatly. The present invention relates to a method and a device / system configuration method in which the method of detecting the disconnection portion on the load side is adopted and used as a function of a distribution automation system.

断線箇所の負荷側では、電源が不平衡となり電圧、電流、位相ともに変化することから、従来の方法は、相電圧または線間電圧の低下を一定の閾値で検出し、この低下検出箇所の分布により断線箇所を特定する方法が提案されている(例えば、特許文献1参照)。また、高圧三相配電線に接続された柱上単相変圧器の設置柱毎に子局を配設し、この子局において柱上単相変圧器の二次側電圧をもとに配電系統の断線を検出し、通信ネットワークを通じて親局に断線検出信号を送出する断線検出装置において、各子局に電圧低下検出レベルαを0.6〜0.8として配電系統の断線を検出する第1の断線検出部と電圧低下検出レベルを1−αとして第2の断線検出部とを設け異なる特定検出レベルで配電系統の断線区間および断線を検出する方法があった(例えば、特許文献2参照)。
特公昭61−974号公報 特開平7−113838号公報
Since the power supply becomes unbalanced and the voltage, current, and phase change on the load side of the disconnection location, the conventional method detects a decrease in the phase voltage or line voltage with a certain threshold, and the distribution of this decrease detection location Has proposed a method of identifying the disconnection location (see, for example, Patent Document 1). In addition, a slave station is installed for each installation pole of the pole-mounted single-phase transformer connected to the high-voltage three-phase distribution line. In this slave station, the distribution system is based on the secondary side voltage of the pole-mounted single-phase transformer. In a disconnection detection device that detects disconnection and sends a disconnection detection signal to a master station through a communication network, a first detection of disconnection of a distribution system with a voltage drop detection level α set to 0.6 to 0.8 for each slave station There has been a method in which a disconnection detection unit and a voltage drop detection level are set to 1-α and a second disconnection detection unit is provided to detect a disconnection section and disconnection of a distribution system at different specific detection levels (see, for example, Patent Document 2).
Japanese Patent Publication No.61-974 JP-A-7-113838

しかしながらこれらの方法は,一般的に配電系統には負荷として各種容量の電動機が存在し、この内、三相誘導電動機が断線した負荷側の区間に存在すると、電動機負荷としての進相コンデンサ容量と電動機容量との比率、断線区間の負荷容量等が一定の条件下にある場合に三相誘導電動機が発電機として作用し、断線が発生しても顕著な電圧の低下が発生せず検出できない場合があった。   However, these methods generally have electric motors of various capacities as loads in the distribution system. Among them, if there is a section on the load side where the three-phase induction motor is disconnected, the phase-advancing capacitor capacity as the motor load and When the three-phase induction motor acts as a generator when the ratio to the motor capacity, the load capacity of the disconnection section, etc. are under certain conditions, and a significant voltage drop does not occur even if a disconnection occurs and cannot be detected was there.

誘導電動機は、普通のかご形または二次短絡の巻線形回転子に外力を加えて同期速度以上に回転すると、すべりs<0の領域で他励式誘導発電機として動作することが知られている。これにより、一相断線時においても見かけ上、健全時と同等の電圧が発生し、この場合電圧の低下度のみの判定では、断線を検出することが困難であった。これに対して通常の場合、その電圧位相は正常時の位相と異なる様相を呈するので、これを安定的に検出する方式が求められていた。   It is known that an induction motor operates as a separately-excited induction generator in a region where slip s <0 when an external force is applied to an ordinary squirrel-cage or secondary short-circuited wound rotor to rotate beyond a synchronous speed. . As a result, even when one-phase disconnection occurs, a voltage that is apparently the same as that during normal operation is generated. In this case, it is difficult to detect disconnection only by determining the degree of voltage decrease. On the other hand, in the normal case, the voltage phase exhibits a different aspect from the normal phase, and a method for stably detecting this voltage phase has been demanded.

また、断線の検出がなされた場合は、断線相の特定が事故復旧時の初動作業の重要な情報となることから、従来の方法として三相配電線に接続された柱上単相変圧器の設置柱毎に子局を配設し、この子局において柱上単相変圧器の二次側電圧を収集し、通信ネットワークを通じて上位系にて前後の子局データ(変圧器の接続データ)を総合的に判断し、可能性のある断線候補の2相を判定する方法があった。しかし、この方法では、断線相の1相を判断することおよび子局端で断線相を判断できない欠点があった。   In addition, when disconnection is detected, the identification of the disconnection phase is important information for the initial operation at the time of accident recovery, so installation of a single-phase transformer on a pole connected to a three-phase distribution line as a conventional method A slave station is arranged for each pillar, and the secondary side voltage of the single-phase transformer on the pole is collected in this slave station, and the slave station data (transformer connection data) before and after is integrated in the host system through the communication network. There is a method of judging two phases of potential disconnection candidates. However, this method has a drawback that it is impossible to determine one phase of the disconnection phase and to determine the disconnection phase at the end of the slave station.

本発明は、配電線の断線を事故点の負荷側で検出する場合に、微地絡による見かけ上の位相変化を抑制した安定な断線事故を検出し、また、微地絡事故と断線事故との区分を可能とすることを目的とする。さらに、本発明は、配電線の断線を事故点の負荷側で検出する場合に、断線相を判定することを目的とする。また、本発明は、配電線の断線を事故点の負荷側で検出する場合に、電圧検出器および断線検出回路の特性誤差を吸収してより高い安定性を実現することを目的としている。   The present invention detects a stable disconnection accident that suppresses an apparent phase change due to a fine ground fault when detecting a disconnection of a distribution line on the load side of the fault point. The purpose is to enable the classification. Furthermore, an object of this invention is to determine a disconnection phase, when detecting the disconnection of a distribution line on the load side of an accident point. Another object of the present invention is to realize higher stability by absorbing characteristic errors of the voltage detector and the disconnection detection circuit when the disconnection of the distribution line is detected on the load side of the accident point.

上記課題を解決するために、本発明は、配電線の断線を事故点の負荷側で検出する場合に、検出した断線判定情報は、電源側と負荷側に単相変圧器を設置してある子局端においては、いずれか片側に単相変圧器を1台のみ追加して三相変圧器とするか、または三相電源変圧器に置き換え、順送点では断線相に関係しないいずれか健全な電源相を選択して断線判定情報を断線検出親局へ送信する。常開点においても同様であるが、片側が停電となった場合は、健全側の断線検出親局に断線判定情報を送信することとする。また、片側だけに電源変圧器を設置してある子局においては、単相変圧器を2台追加して三相変圧器とするか、または三相電源変圧器を新設して、断線相に関係しないいずれか健全な電源相を選択して断線判定情報を断線検出親局に送信する。このことにより設備の追加を最小限とすることが可能となる。   In order to solve the above-mentioned problem, the present invention detects the disconnection of the distribution line on the load side of the accident point, and the detected disconnection determination information includes a single-phase transformer on the power supply side and the load side. At the slave station end, add only one single-phase transformer on either side to make a three-phase transformer, or replace it with a three-phase power transformer, which is not related to the disconnection phase at the progressive point. A power source phase is selected and disconnection determination information is transmitted to the disconnection detection master station. The same applies to the normally open point, but when one side has a power failure, the disconnection determination information is transmitted to the disconnection detection master station on the healthy side. In a slave station with a power transformer installed on only one side, add two single-phase transformers to make a three-phase transformer, or install a new three-phase power transformer to Select any sound power phase that is not relevant and send disconnection judgment information to the disconnection detection master station. This makes it possible to minimize the addition of equipment.

さらに、分岐端末においては、三相電源変圧器を1台のみ設置し、断線検出時には健全な電源相を選択して断線判定情報を断線検出親局に送信する。この場合、断線の検出は、開閉器端と同様に三相電源変圧器の三相線間電圧の位相変化と継続時間で検出する。   Further, in the branch terminal, only one three-phase power transformer is installed, and when disconnection is detected, a healthy power phase is selected and disconnection determination information is transmitted to the disconnection detection master station. In this case, the disconnection is detected by the phase change and the duration of the three-phase line voltage of the three-phase power transformer as in the case of the switch end.

本発明は、上記課題を解決するために、三相非接地系の高圧配電線における断線の検出を、三相電源変圧器の相電圧から合成した線間電圧または三相PDの相電圧合成した線間電圧標準120度位相差からの位相変化を検出することで行い、微地絡等による見かけ上の位相変化を抑制した安定な検出を実現し、また、地絡事故との区分を可能とした。   In order to solve the above-mentioned problems, the present invention detects the disconnection in a three-phase non-grounded high-voltage distribution line by combining a line voltage synthesized from a phase voltage of a three-phase power transformer or a phase voltage of a three-phase PD. By detecting the phase change from the standard 120-degree phase difference between the line voltages, it is possible to realize stable detection that suppresses the apparent phase change due to fine ground faults, etc., and to distinguish from ground faults did.

また、断線を検出する際、断線検出装置の設置時に系統が健全であるとして、このときの位相関係をメモリに初期値として記憶し、この初期値を補正値として使用して変化を検出することで、電圧検出器および検出回路の特性誤差を吸収してより高い検出安定性を実現できる。   Also, when detecting a disconnection, it is assumed that the system is healthy when the disconnection detector is installed, and the phase relationship at this time is stored as an initial value in the memory, and a change is detected using this initial value as a correction value. Thus, it is possible to realize higher detection stability by absorbing characteristic errors of the voltage detector and the detection circuit.

上記課題を解決するために、本発明は、三相非接地系の高圧配電線で断線の検出を事故点の負荷側で行なう断線検出システムにおいて、三相の配電線を複数のフィーダ区間に区切る複数の開閉器と、前記開閉器の三相電圧を検出し、検出した三相の相電圧を合成するか、三相電源変圧器から三相線間電圧を得て、三相線間電圧の標準120度位相差からの位相変化と継続時間を用いて三相誘導電動機を含む配電区間の断線相を検出する断線検出装置を設けた。   In order to solve the above-mentioned problems, the present invention provides a disconnection detection system in which disconnection is detected on the load side of an accident point with a three-phase ungrounded high-voltage distribution line, and the three-phase distribution line is divided into a plurality of feeder sections. Detect the three-phase voltage of multiple switches and the switch, synthesize the detected three-phase voltage, or obtain the three-phase line voltage from the three-phase power transformer, the three-phase line voltage A disconnection detection device for detecting a disconnection phase of a distribution section including a three-phase induction motor using a phase change from a standard 120-degree phase difference and a duration is provided.

さらに、本発明は、上記断線検出システムにおいて、断線検出装置に、三相線間電圧の位相関係を判定する位相関係の補正値と位相変化閾値と継続時間判定閾値を記憶する書換え可能な不揮発性メモリと、位相関係補正値と位相変化閾値と継続時間から断線を検出する手段とを具備した。また、本発明は、上記断線検出システムにおいて、断線検出装置に、断線相以外の健全な相を選択して配電線搬送方式を実行する手段を設けた。   Further, according to the present invention, in the disconnection detection system, the disconnection detection device stores a phase relationship correction value for determining the phase relationship of the three-phase line voltage, a phase change threshold value, and a continuation time determination threshold value. A memory, means for detecting disconnection from the phase relationship correction value, the phase change threshold value, and the duration are provided. Moreover, this invention provided the means to select the healthy phase other than a disconnection phase, and to perform a distribution line conveyance system in the disconnection detection apparatus in the said disconnection detection system.

本発明は、三相非接地系の高圧配電線で断線の検出を事故点の負荷側で行なう断線検出システムを構成する断線検出装置において、三相の配電線を複数のフィーダ区間に区切る複数の開閉器の三相電圧を検出し、検出した三相の相電圧を合成するか、三相電源変圧器から三相線間電圧を得る手段と、三相線間電圧の標準120度位相差からの位相変化と継続時間を用いて配電区間の断線相を検出する断線相検出手段を設けた。また、本発明は、上記断線検出装置において、三相線間電圧の位相関係を判定する位相関係の補正値と位相変化閾値と継続時間判定閾値を記憶する書換え可能な不揮発性メモリを設け、断線相検出手段が位相関係補正値と位相変化閾値と継続時間から断線を検出するようにした。さらに、本発明は、この断線検出装置において、三相線間電圧の位相関係を判定する位相関係の補正値と位相変化閾値と継続時間判定閾値を、機器設置時または随時の手動操作もしくは遠方制御指令を受けた時点の三相線間電圧の位相関係を補正値として記憶するようにした。   The present invention relates to a disconnection detecting device that constitutes a disconnection detection system that performs disconnection detection on the load side of an accident point with a three-phase non-grounded high-voltage distribution line, and a plurality of three-phase distribution lines are divided into a plurality of feeder sections. From the means to detect the three-phase voltage of the switch and synthesize the detected three-phase voltage or obtain the three-phase line voltage from the three-phase power transformer, and the standard 120-degree phase difference of the three-phase line voltage The disconnection phase detection means for detecting the disconnection phase of the power distribution section using the phase change and the duration time is provided. Further, according to the present invention, in the above disconnection detecting device, a rewritable nonvolatile memory for storing a phase relationship correction value for determining a phase relationship between three-phase line voltages, a phase change threshold value, and a duration determination threshold value is provided. The phase detection means detects the disconnection from the phase relationship correction value, the phase change threshold value, and the duration. Further, according to the present invention, in this disconnection detection device, the phase relationship correction value, the phase change threshold value, and the duration determination threshold value for determining the phase relationship of the three-phase line voltage are set to the manual operation or remote control at the time of equipment installation or at any time. The phase relationship of the three-phase line voltage at the time of receiving the command is stored as a correction value.

本発明は、上記断線検出装置において、断線相以外の健全な相を選択して配電線搬送方式を実行する手段を設け、断線検出時の各相電圧計測値または相電圧の大小関係の情報を単相線間配電線搬送方式で送信する場合に、選択した電源相の情報を親局に送信するようにした。   According to the present invention, in the disconnection detection device, means for selecting a healthy phase other than the disconnection phase and executing the distribution line conveyance method is provided, and each phase voltage measurement value or phase voltage magnitude information at the time of disconnection detection is provided. When transmitting with the single-phase line distribution line transport method, the information of the selected power supply phase is transmitted to the master station.

本発明は、三相非接地系の高圧配電線で断線の検出を事故点の負荷側で行なう断線検出方法において、三相の高圧配電線に接続された開閉器から、検出した三相の相電圧を合成して三相線間電圧を得るか、または三相電源変圧器から得た三相線間電圧を得て、三相線間電圧の標準120度位相差からの位相変化と継続時間を用いて三相誘導電動機を含む配電区間の断線相を検出するようにした。さらに、本発明は、上記断線検出方法において、三相線間電圧の位相関係を判定する位相関係の補正値と位相変化閾値と継続時間判定閾値を用いて三相誘導電動機を含む配電区間の断線相を検出するようにし、配電区間の断線相を検出する予め不揮発性メモリに記憶しておくか、必要に応じて手動または遠方制御指令で書き換えるようにした。   The present invention relates to a disconnection detection method for detecting a disconnection on a load side at an accident point in a three-phase ungrounded high-voltage distribution line, and detecting the detected three-phase phase from a switch connected to the three-phase high-voltage distribution line. Synthesize the voltage to obtain the three-phase line voltage, or obtain the three-phase line voltage obtained from the three-phase power transformer, the phase change and duration from the standard 120 degree phase difference of the three-phase line voltage Is used to detect the disconnection phase of the distribution section including the three-phase induction motor. Further, according to the present invention, in the disconnection detection method, the disconnection of the distribution section including the three-phase induction motor using the phase relationship correction value, the phase change threshold value, and the duration determination threshold value for determining the phase relationship of the three-phase line voltage. The phase is detected and stored in a non-volatile memory in advance to detect the disconnection phase of the distribution section, or rewritten with a manual or remote control command as necessary.

また、本発明は、上記断線検出方法において、断線検出装置子局で検出した断線検出時の各相電圧計測値または相電圧の大小関係の情報を単相線間配電線搬送方式で断線検出装置親局へ送信する場合に、選択した健全な電源相の情報を前記断線検出装置親局に送信することで、前記断線検出親局側での断線相の判定を可能とした。さらに、本発明は、上記断線検出方法において、断線検出に関わる信号の送受信を単相の線間配電線搬送方式とする場合に、断線検出装置の電源変圧器を三相電源変圧器または単相変圧器をΔ結線として断線相に関係しない健全な回路を選択可能とし、断線を検出した断線検出装置子局からの信号を受信した電源側の断線検出装置親局は、前記断線検出装置子局からの信号中に含まれる相選択情報に基づき、前記断線検出装置子局の送信相と同一の相に指令信号を送信し、前記断線検出装置子局は信号の受信相を信号の送信相と同様に健全ないずれかの相を選択するようにし、開閉器の両端に単相変圧器を設置してある開閉器制御システムにおいては、いずれか片側に単相変圧器を一台のみ追加することで全体として三相電源変圧器を構成し、断線検出時の信号送受信を、順送点では断線相に関係しないいずれか健全な回路に、常開点ではいずれか健全側のフィーダに送信するようにした。   In addition, the present invention provides a disconnection detecting device that uses the single-phase inter-distribution line distribution system to measure each phase voltage measurement value or phase voltage magnitude information at the time of disconnection detection detected by the disconnection detection device slave station. When transmitting to the master station, the information on the selected healthy power supply phase is transmitted to the master station of the disconnection detection apparatus, thereby enabling determination of the disconnection phase on the disconnection detection master station side. Furthermore, in the disconnection detection method, the present invention provides a three-phase power transformer or a single-phase power transformer as the power transformer of the disconnection detection device when the signal transmission / reception related to the disconnection detection is a single-phase inter-line distribution line transport system. It is possible to select a healthy circuit that is not related to the disconnection phase by using a transformer as a Δ connection, and the disconnection detection device master station on the power source side that has received the signal from the disconnection detection device slave station that detects the disconnection is the disconnection detection device slave station. Based on the phase selection information included in the signal from, the command signal is transmitted to the same phase as the transmission phase of the disconnection detection device slave station, and the disconnection detection device slave station uses the signal reception phase as the signal transmission phase. Similarly, in a switch control system in which one of the healthy phases is selected and single-phase transformers are installed at both ends of the switch, only one single-phase transformer should be added to either side. As a whole, a three-phase power transformer is configured. The signal transmission and reception at the time of disconnection detection, in any sound circuit in progressive points not related to the disconnection phase, and to transmit to any healthy side of the feeder normally open point.

本発明によれば、簡易な回路構成で配電区間の断線を確実に検出し、また、地絡事故と断線事故を明確に区分して検出することが可能となる。さらに、本発明によれば、電圧検出器および検出回路の初期特性、温度変化、経年変化の影響を排除し、系統ごとの条件に整合した断線判定が可能となる。   According to the present invention, it is possible to reliably detect a disconnection in a power distribution section with a simple circuit configuration, and to clearly detect and detect a ground fault and a disconnection accident. Furthermore, according to the present invention, it is possible to eliminate the influence of the initial characteristics of the voltage detector and the detection circuit, the temperature change, and the secular change, and to perform the disconnection determination that matches the conditions for each system.

さらに、本発明によれば、断線事故後も安定した信号の送受信が可能となる。   Furthermore, according to the present invention, stable signal transmission / reception is possible even after a disconnection accident.

三相非接地系高圧配電線が健全であるときには、図1(a)に示すように、各相の電圧ベクトルV,V,Vおよび線間電圧ベクトルVR−S,VT−R,VS−Tは平衡している。三相非接地系高圧配電線に三相誘導電動機が負荷として接続されており、例えばR相に断線が発生した場合には、三相誘導電動機が発電機として作用し、図1(b)に示すように、R相電圧Vは破線で示すV´にθ度移相するので、線間電圧VR−S,VT−RはそれぞれVR−S´,VT−R´に移相して、三相の電圧位相関係には僅かな変化(不平衡成分)が発生するので、すべての発送電、配電系統に渡って管理された健全状態での電圧位相関係と安定的に区分可能であれば、簡易な回路構成により安定的に断線の検出をすることが可能となる。これは、前述した各種の実験およびシミュレーション結果において、三相誘導型電動機の定格容量が比較的小容量、進相コンデンサ容量が想定される定格の数倍、断線箇所以降の負荷電流が軽負荷等の条件によっては、通常状態と比べ電圧位相関係が全く区分不可能な状態を発生させることは可能であるが、実配電系統を想定すれば、その条件が合致することは殆ど無いことからである。また、前記した三相誘導電動機が断線区間に存在せず主に抵抗負荷が存在する場合は、R相に断線が発生すると、区間に供給される電源は単相電源となるので、各電源の位相関係とレベルには顕著な変化が生じるので、図1(c)に示すように、R相電圧ベクトルVは消滅し相電圧の位相関係のみの判定で確実に断線を検出することができる。 When the three-phase ungrounded high-voltage distribution line is healthy, as shown in FIG. 1A, the voltage vectors V R , V S , V T and the line voltage vectors V R-S , V T- R 1 and V S−T are in equilibrium. A three-phase induction motor is connected as a load to a three-phase non-grounded high-voltage distribution line. For example, when a disconnection occurs in the R-phase, the three-phase induction motor acts as a generator, as shown in FIG. as shown, 'since the θ degree phase shift, the line voltage V R-S, respectively V T-R V R-S ' is R-phase voltage V R V R indicated by a broken line, in V T-R ' Since the phase shift causes a slight change (unbalanced component) in the three-phase voltage phase relationship, the voltage phase relationship in a healthy state that is managed across all dispatched and distributed power systems is stable. If classification is possible, it becomes possible to detect disconnection stably with a simple circuit configuration. This is because, in the various experiments and simulation results described above, the rated capacity of the three-phase induction motor is relatively small, several times the rated capacity of the advanced phase capacitor, the load current after the disconnection is light, etc. Depending on the conditions, it is possible to generate a state in which the voltage phase relationship is completely indistinguishable compared to the normal state, but if an actual power distribution system is assumed, the condition will hardly be met. . In addition, when the three-phase induction motor described above does not exist in the disconnection section and there is mainly a resistive load, when a disconnection occurs in the R phase, the power supplied to the section becomes a single-phase power supply. since significant change in the phase relationship and level occurs, as shown in FIG. 1 (c), can be detected reliably disconnected at determining the phase relationship between the R-phase voltage vector V R is extinguished phase voltage only .

上記位相変化による検出方法を採ると、位相関係の変化のみの検出でよいことから、電圧レベルの測定要素、逆相成分の合成回路等を必要とせず、検出回路を単純な回路で構成することが可能となる。しかし、断線を位相関係の変化で検出する場合に、電圧検出器としてPD等による三相の相電圧検出器を使用する時は以下のような課題がある。すなわち、相電圧の位相変化を検出する場合、配電線に多い微地絡が発生すると、基準電位が大地であるため、見かけ上の三相の位相関係に直接影響するので、微小な位相変化を安定的に検出することができない。すなわち、配電線の事故で最も多い地絡事故が発生した場合、相電圧そのものの位相関係も大きく変化するので、地絡が発生した場合は、断線の有無に関わらず断線も同時に検出する。この場合は事故様相の特定ができないので事故復旧に対する初動にも不都合を生じることになる。   If the detection method based on the above phase change is adopted, only the change in the phase relationship may be detected, so that a voltage level measurement element, a synthesis circuit for anti-phase components, etc. are not required, and the detection circuit is configured with a simple circuit. Is possible. However, when a disconnection is detected by a change in phase relationship, there are the following problems when a three-phase phase voltage detector such as a PD is used as a voltage detector. In other words, when detecting a phase change in the phase voltage, if there are many fine ground faults in the distribution line, the reference potential is the ground, which directly affects the apparent three-phase phase relationship. It cannot be detected stably. That is, when the most frequent ground faults are caused by distribution line faults, the phase relationship of the phase voltage itself also changes greatly. Therefore, when a ground fault occurs, the disconnection is simultaneously detected regardless of the presence or absence of the disconnection. In this case, since the aspect of the accident cannot be specified, an inconvenience is caused in the initial action for the accident recovery.

本発明では、この課題に対して、非接地配電線のR相に地絡事故が発生したときの相電圧波形と線間電圧波形例は、それぞれ図2(a)、図2(b)、に示すようになり、相電圧に発生した地絡発生時の高周波振動成分が、線間電圧による観測ではその影響が排除されていることが分かる。すなわち、断線の検出を前記相電圧または三相電源変圧器の相電圧で行なう場合は、相電圧から三相の線間電圧を合成し、地絡事故の検出は相電圧の合成で得られる零相電圧で行ない、断線の検出は、対地相電圧の変化に直接的な影響を受けない前記した線間電圧の位相関係の変化で行なうこととした。これにより微小な位相変化をより安定的に検出可能となり、また事故様相の区分が容易に実現できることになるので、事故復旧の初動にも有効作用することとなる。図2では、相電圧に発生した地絡発生時の高周波振動成分が、線間電圧による観測ではその影響が排除されていることが分かる。   In the present invention, for this problem, the phase voltage waveform and the line voltage waveform example when a ground fault occurs in the R phase of the ungrounded distribution line are respectively shown in FIG. 2 (a), FIG. 2 (b), Thus, it can be seen that the influence of the high-frequency vibration component at the time of occurrence of the ground fault generated in the phase voltage is eliminated by the observation by the line voltage. That is, when the disconnection is detected by the phase voltage or the phase voltage of the three-phase power transformer, the three-phase line voltage is synthesized from the phase voltage, and the ground fault is detected by the combination of the phase voltages. The detection of the disconnection is performed by the phase voltage, and the detection of the disconnection is performed by the change of the phase relationship of the line voltage which is not directly influenced by the change of the ground voltage. As a result, a minute phase change can be detected more stably, and an accident aspect can be easily classified. In FIG. 2, it can be seen that the influence of the high-frequency vibration component at the time of occurrence of the ground fault generated in the phase voltage is eliminated in the observation by the line voltage.

また、配電系統では系統の制御時あるいは大容量負荷の投入時等に瞬時的な電圧変化のみでなく、瞬時的な位相変化も発生する可能性があるので、位相関係の変化を検出する場合に、数秒程度の時間継続性も判定回路中に具備させることが必須であり、本発明では回路中に継続時間判定要素を加えて安定した検出性能を実現している。   Also, in the power distribution system, not only instantaneous voltage changes but also instantaneous phase changes may occur when controlling the system or turning on a large capacity load. In addition, it is essential to provide the determination circuit with a time continuity of about several seconds. In the present invention, a stable detection performance is realized by adding a duration determination element to the circuit.

図3(a)、(b)、(c)を用いて、本発明における断線検出回路の例を説明する。断線検出回路1は、入力端子11,11、11と、高周波成分を除去するフィルタ12,12,12と、隣接する相間の電圧を比較する加減算器13,13,13と、加減算器13の出力をパルスに変換するパルス変換回路14,14,14と、パルス変換回路14の出力から断線を検出するマイコン15とを有して構成される。入力端子11,11、11に入力された三相電圧V,V,Vは、フィルタ11,11、11で高周波成分を除去され高調波や雑音などの位相計測の誤差となる要因が最小とされ、加減算回路13,13,13に入力される。加減算回路13,13,13において、線間電圧VR−S,VS−T,VT−Rに変換される。それぞれの線間電圧VR−S,VS−T,VT−Rは、パルス変換回路14,14,14により2値信号PR−S,PS−T,PT−Rとなり、マイコン15のタイマ機能を持つキャプチャー端子へ入力される。マイコン内部では、タイマ機能およびキャプチャー機能により、線間電圧の立上り時間差(T,T,T)を計測し、これから周期計算により位相差とし、断線検出を行う。 With reference to FIGS. 3A, 3B, and 3C, an example of the disconnection detection circuit in the present invention will be described. The disconnection detection circuit 1 includes input terminals 11 R , 11 S , 11 T , filters 12 R , 12 S , 12 T for removing high-frequency components, and adders / subtractors 13 R , 13 S , for comparing voltages between adjacent phases. 13 T , a pulse conversion circuit 14 R , 14 S , 14 T that converts the output of the adder / subtractor 13 into a pulse, and a microcomputer 15 that detects disconnection from the output of the pulse conversion circuit 14. The three-phase voltages V R , V S , and V T input to the input terminals 11 R , 11 S , and 11 T are subjected to phase measurement such as harmonics and noise by removing high frequency components by the filters 11 R , 11 S , and 11 T. The factor causing the error is minimized, and is input to the addition / subtraction circuits 13 R , 13 S , and 13 T. In addition / subtraction circuits 13 R , 13 S , and 13 T , they are converted into line voltages V R−S , V S−T , and V T−R . The respective line voltages V R-S , V S-T , V T-R are converted into binary signals P R-S , P S-T , P T-R by the pulse conversion circuits 14 R , 14 S , 14 T , respectively. And input to the capture terminal of the microcomputer 15 having a timer function. Inside the microcomputer, the rise time difference (T R , T S , T T ) of the line voltage is measured by the timer function and the capture function, and from this, the phase difference is calculated by period calculation to detect disconnection.

健全時には、図3(b)に示すように、パルス変換回路14,14,14の出力は、それぞれPR−S,PS−T,PT−Rであり、各出力の間の位相差はそれぞれT,T,Tとなる。例えば、R相に断線が発生すると、図3(c)に示すように、パルス変換回路14,14,14の出力は、それぞれPR−SはΔTR−S進み、PS−Tは変わらず、PT−RではΔTT−R遅れ、各出力の間の位相差はそれぞれT´,T´,T´となる。 When healthy, as shown in FIG. 3B, the outputs of the pulse conversion circuits 14 R , 14 S , and 14 T are P R-S , P S-T , and P T-R , respectively. composed of the phase difference, respectively T S, T T, and T R. For example, when the disconnection R phase occurs, as shown in FIG. 3 (c), the output of the pulse conversion circuit 14 R, 14 S, 14 T is, P R-S respectively proceeds ΔT R-S, P S- T does not change, and P T-R has a delay of ΔT T-R , and phase differences between the outputs are T S ′, T T ′, and T R ′, respectively.

図4の流れ図を用いて、マイコン15における断線判定処理を説明する。処理がスタートすると、初期処理により各閾値等を設定して新たな処理を可能とする(S1)。次いで、マイコンのタイマ機能および、キャプチャー機能により、線間電圧|PR−S|と|PS−T|の立上り時間を計測して立上り時間差Tを計測する(S2)。同様に、線間電圧|PS−T|と|PT−R|の立上り時間を計測して立上り時間の差Tを得る(S3)。さらに、線間電圧|PT−R|と|PR−S|の立上り時間を計測して立上り時間の差Tを得る(S4)。次に、各立上り時間の差の間の位相差θ,θ,θを下記(1)式から(3)式を用いて算出する(S5)。 The disconnection determination process in the microcomputer 15 will be described with reference to the flowchart of FIG. When the process starts, each threshold value and the like are set by the initial process to enable a new process (S1). Next, the rise time difference T S is measured by measuring the rise time of the line voltages | P R−S | and | P S−T | by the timer function and the capture function of the microcomputer (S2). Similarly, the rise time of the line voltage | P S−T | and | P T−R | is measured to obtain a rise time difference T T (S3). Further, the rise time of the line voltage | P T−R | and | P R−S | is measured to obtain a rise time difference T R (S4). Next, the phase differences θ R , θ S , θ T between the rise time differences are calculated using the following equations (1) to (3) (S5).

Figure 2006329893
Figure 2006329893

その後、位相変化分θを、下記(4)式を用いて算出する(S6)。   Thereafter, the phase change θ is calculated using the following equation (4) (S6).

Figure 2006329893
Figure 2006329893

次いで、位相変化分θが事前に設定された位相変化閾値θd以上であるかどうかを判定する(S7)。位相変化分θが、位相変化閾値θdに満たないときは、継続時間(T)をクリアしてステップ2に戻る。ステップ7において、位相変化分θが、位相変化閾値θd以上であるときは、継続時間(T)の計測を開始する(S9)。次いで、継続時間(T)が継続時間判定閾値Td以上であるかどうかを判定する(S10)。継続時間(T)が継続時間判定閾値(Td)に満たないときには、ステップ2に戻る。継続時間(T)が継続時間判定閾値(Td)以上であるときには、断線と判定し(S11)、ステップ2に戻る。   Next, it is determined whether or not the phase change amount θ is equal to or larger than a preset phase change threshold value θd (S7). When the phase change θ is less than the phase change threshold θd, the duration (T) is cleared and the process returns to step 2. In step 7, when the phase change θ is equal to or greater than the phase change threshold θd, the measurement of the duration (T) is started (S9). Next, it is determined whether or not the duration (T) is greater than or equal to the duration determination threshold Td (S10). When the duration (T) is less than the duration determination threshold (Td), the process returns to Step 2. When the duration (T) is equal to or greater than the duration determination threshold (Td), it is determined that the disconnection has occurred (S11), and the process returns to step 2.

すなわち、このシステムでは、電気所内の全フィーダ区間の負荷側から電源側の断線状態を検出し、中央装置へ集約するシステム構成において、断線が発生した場合その断線判定情報は、断線発生個所を含む負荷側区間から通知される。この例では、断線は第2のフィーダのフィーダ区間8−5で発生し、断線判定情報が通知されるのは、フィーダ区間8−5,8−6,8−7からとなる。中央装置6では、この通知のあったフィーダ区間の接続情報を持っているので、その区間中最も電源側に接続されている区間が断線区間であると判定する。   That is, in this system, in the system configuration in which the disconnection state from the load side to the power supply side of all feeder sections in the electric station is detected and aggregated to the central device, when disconnection occurs, the disconnection determination information includes the disconnection occurrence location. It is notified from the load side section. In this example, the disconnection occurs in the feeder section 8-5 of the second feeder, and the disconnection determination information is notified from the feeder sections 8-5, 8-6, and 8-7. Since the central device 6 has the connection information of the feeder section in which this notification has been made, it is determined that the section connected to the power supply side in the section is the disconnection section.

図5を用いて、本発明による電気所内の断線判定情報を各フィーダ区間毎に収集し中央装置へ集約するシステムの構築例を説明する。図5において、主変圧器71から遮断器(CB)72−1,72−2を介して2のフィーダ区間8−1,8−2が設けられる。フィーダ区間8−1,8−2にはそれぞれ断線検出装置親局2−1,2−2が接続された順送開閉器5−1,5−2が設けられる。フィーダ区間8−1,8−2の負荷のフィーダ区間8−3,8−4はそれぞれ断線検出装置子局3−1,3−2が接続された順送開閉器5−3,5−4が設けられるとともに、各フィーダ区間8−3,8−4間には、断線検出装置子局3−3が接続された常開開閉器4−1が設けられる。フィーダ区間8−5には、断線検出装置子局3−4,3−5が接続された順送開閉器5−5,5−6が設けられる。フィーダ区間8−6には、断線検出装置子局3−6が接続された常開開閉器4−2が設けられる。フィーダ区間8−7には、断線検出装置子局3−7,3−8が接続された常開開閉器4−3,4−4が設けられる。フィーダ区間8−8には、断線検出装置子局3−9,3−10が接続された順送開閉器5−7,5−8が設けられる。フィーダ区間8−9には、断線検出装置子局3−8,3−11が接続された常開開閉器4−4、4−5が設けられる。フィーダ区間8−10には、断線検出装置子局3−12が接続された順送開閉器5−9が設けられる。   The construction example of the system which collects the disconnection determination information in the electric station according to the present invention for each feeder section and aggregates it to the central device will be described with reference to FIG. In FIG. 5, two feeder sections 8-1 and 8-2 are provided from the main transformer 71 through circuit breakers (CB) 72-1 and 72-2. The feeder sections 8-1 and 8-2 are provided with sequential switches 5-1 and 5-2, to which the disconnection detecting device master stations 2-1 and 2-2 are connected, respectively. Feeder sections 8-3 and 8-4 of the loads of the feeder sections 8-1 and 8-2 are sequential switches 5-3 and 5-4 connected to the disconnection detecting device slave stations 3-1 and 3-2, respectively. And a normally open switch 4-1 connected to the disconnection detecting device slave station 3-3 is provided between the feeder sections 8-3 and 8-4. In the feeder section 8-5, progressive switches 5-5 and 5-6 to which the disconnection detecting device slave stations 3-4 and 3-5 are connected are provided. In the feeder section 8-6, a normally open switch 4-2 to which the disconnection detecting device slave station 3-6 is connected is provided. In the feeder section 8-7, normally open switches 4-3 and 4-4 to which disconnection detecting device slave stations 3-7 and 3-8 are connected are provided. In the feeder section 8-8, progressive switches 5-7 and 5-8 to which the disconnection detecting device slave stations 3-9 and 3-10 are connected are provided. In the feeder section 8-9, normally open switches 4-4 and 4-5 to which disconnection detecting device slave stations 3-8 and 3-11 are connected are provided. The feeder section 8-10 is provided with a progressive switch 5-9 connected to the disconnection detecting device slave station 3-12.

断線検出装置親局2は、自己の開閉器の線間電圧を監視し断線発生時に断線判定情報を作成して配電線搬送通信の健全な相を用いて中央装置6へ送信する働きと、負荷側の断線検出装置子局3から配電線搬送通信によって送られてきた断線判定情報などを配電線搬送通信の健全な相を用いて中央装置6へ送信する働きを有している。断線検出装置子局3は、それぞれの開閉器5の線間電圧を監視し断線発生時に断線判定情報を作成機能および作成した断線判定情報を健全な相を用いて電源の断線検出装置親局2へ配電線搬送通信によって送信する手段である。   The disconnection detection device master station 2 monitors the line voltage of its own switch, creates disconnection determination information when a disconnection occurs, and transmits it to the central device 6 using a sound phase of distribution line carrier communication, and load It has the function of transmitting the disconnection judgment information and the like sent from the side disconnection detecting device slave station 3 by distribution line carrier communication to the central device 6 using a healthy phase of distribution line carrier communication. The disconnection detection device slave station 3 monitors the line voltage of the respective switches 5 and creates a disconnection determination information when a disconnection occurs, and the generated disconnection determination information uses a healthy phase as a disconnection detection device master station 2 of the power source. It is a means to transmit to a distribution line conveyance communication.

常開開閉器4は通常開とされる開閉器であり、電源側および負荷側の双方の線間電圧を監視する働きを有している。順送開閉器5は通常閉とされる開閉器であり、電源側の線間電圧を監視する働きを有している。   The normally open switch 4 is a switch that is normally opened, and has a function of monitoring the line voltage on both the power supply side and the load side. The progressive switch 5 is a normally closed switch and has a function of monitoring the line voltage on the power supply side.

中央装置6は、断線検出システムの中心となる装置であり、断線検出親局2や、断線検出子局3から送られてくる断線判定情報に基づいて、電気所内の電力供給を制御する。   The central device 6 is a central device of the disconnection detection system, and controls the power supply in the electric station based on the disconnection determination information sent from the disconnection detection master station 2 or the disconnection detection slave station 3.

いま、フィーダ区間8−5の×印で示した箇所に断線が発生したとする。断線判定区間は二重の四角枠で示され、断線検出エリアは破線の四角枠で示される。断線箇所から負荷側にある常開開閉器4−2,4−3,4−4の電圧を監視する断線検出装置子局3−6,3−7,3−8は電源側に断線を検出すると電源側に断線判定情報を健全な相を用いて送信する。負荷側から断線判定情報を受けた順相開閉器5−5,5−6の断線検出装置子局3−4,3−5は電源側すなわちフィーダ区間8−5の断線を検出し、健全な相を用いて断線判定情報を電源側に送信する。断線判定情報は、順送開閉器5−4を介して断線検出装置親局2−2へ送信され、中央装置6へ送信される。中央装置6は、断線判定情報を受け取ったフィーダ区間の接続情報を有しており、その区間の最も電源側に接続されている区間が断線発生箇所と判定することができる。このようにシステムを構築することによって、電気所内の断線発生エリアおよび、断線発生区間を判定することが可能となる。   Now, it is assumed that a disconnection occurs at a position indicated by a cross in the feeder section 8-5. The disconnection determination section is indicated by a double square frame, and the disconnection detection area is indicated by a dashed square frame. Disconnection detectors 3-6, 3-7, and 3-8 that detect the voltage of normally open switches 4-2, 4-3, and 4-4 on the load side from the disconnection location detect disconnections on the power supply side Then, the disconnection determination information is transmitted to the power source side using a sound phase. The disconnection detecting devices 3-4 and 3-5 of the normal phase switches 5-5 and 5-6 that have received the disconnection determination information from the load side detect the disconnection of the power source side, that is, the feeder section 8-5, and The disconnection determination information is transmitted to the power supply side using the phase. The disconnection determination information is transmitted to the disconnection detection device master station 2-2 via the sequential switch 5-4 and is transmitted to the central device 6. The central device 6 has connection information of the feeder section that has received the disconnection determination information, and can determine that the section connected to the most power supply side in that section is the disconnection occurrence location. By constructing the system in this way, it is possible to determine the disconnection occurrence area and the disconnection occurrence section in the electric station.

厳密に管理された三相の電源の位相関係は、前記した通り断線の検出に使用できるが、断線検出装置を構成する電圧検出器および位相検出回路は、素子定数のバラツキによる相毎の特性差、温度的または経年的な特性差の発生が想定される。選別され初期値が確認された同一の物性を持つ素子で構成すれば、三相の位相情報に相対的な変動は発生しないが、電圧検出器も含む機器の実現を容易にするためには、可能な限り回路構成要素の初期値および特性変動の影響を受けない方法をとる必要がある。   Although the phase relationship of the strictly controlled three-phase power supply can be used for detection of disconnection as described above, the voltage detector and the phase detection circuit constituting the disconnection detection device are different in the characteristic difference for each phase due to variations in element constants. The occurrence of characteristic differences over time or over time is assumed. If it is composed of elements with the same physical properties that have been selected and their initial values confirmed, there will be no relative fluctuation in the three-phase phase information, but in order to facilitate the realization of a device that also includes a voltage detector, It is necessary to adopt a method that is not affected by the initial values of circuit components and fluctuations in characteristics as much as possible.

本発明では、この問題を解消するため三相線間電圧の位相関係を比較・判定する回路に比較用の位相関係の情報を記憶する書換え可能な不揮発性メモリを具備させ、機器設置時すなわち配電系統が健全な場合の電圧検出器および位相検出回路の初期値を位相関係の補正値として記憶させ、位相変化を固定的な120度からの絶対値比較でなく、この記憶した補正値を加味して行なうことで、電圧検出器および位相検出回路固有の位相誤差の影響を解消した。   In the present invention, in order to solve this problem, the circuit for comparing and determining the phase relationship of the three-phase line voltage is provided with a rewritable nonvolatile memory for storing the phase relationship information for comparison. The initial value of the voltage detector and phase detection circuit when the system is healthy is stored as a phase-related correction value, and the phase change is not compared with a fixed absolute value from 120 degrees, but the stored correction value is taken into account. This eliminates the influence of the phase error inherent to the voltage detector and the phase detection circuit.

また、断線判定に使用する位相変化閾値および継続時間判定閾値についても、位相関係補正値と同様に書換え可能な不揮発性メモリに格納することとし、随時に手動または遠方制御指令により書換え可能とすることで、系統条件に応じた運用を実現した。すなわち、図6に示すように、補正処理を含む処理は、処理がスタートすると、初期処理を行い新たな処理を可能とする(S21)。次いで、|PR−S|と、|PS−T|の立上り時間を計測して立上り時間の差Tを得る(S22)。同様に、|PS−T|と|PT−R|の立上り時間を計測して立上り時間の差Tを得る(S23)。さらに、|PT−R|と|PR−S|の立上り時間を計測して立上り時間の差Tを得る(S24)。 Also, the phase change threshold value and duration determination threshold value used for disconnection determination should be stored in a rewritable nonvolatile memory in the same manner as the phase relationship correction value, and can be rewritten at any time by manual or remote control commands. Thus, operation according to system conditions was realized. That is, as shown in FIG. 6, in the process including the correction process, when the process starts, an initial process is performed to enable a new process (S21). Next, the rise time of | P R−S | and | P S−T | is measured to obtain a rise time difference T S (S22). Similarly, the rise time of | P S−T | and | P T−R | is measured to obtain the rise time difference T T (S23). Furthermore, | P T-R | a | P R-S | by measuring the rise time to obtain a difference T R of rise time (S24).

次いで、それぞれの立上り時間差の補正処理を行う(S25)。この補正処理は、機器設置時または適宜手動もしくは遠隔指令によって、健全時の位相差を補正値として不揮発性メモリへ記憶し、常時行う断線検出アルゴリズムにおいて、補正処理を行うことで、測定回路系の誤差や経年に伴なう測定精度の劣化による誤差を防ぐことができる。   Next, each rise time difference correction process is performed (S25). This correction processing is performed by storing the phase difference at the time of sounding as a correction value in the nonvolatile memory at the time of installation of the device or by manual or remote command as appropriate, and performing the correction processing in the disconnection detection algorithm that is always performed, so that the measurement circuit system It is possible to prevent errors and errors due to deterioration in measurement accuracy due to aging.

次に、各立上り時間の差の間の位相差θ,θ,θを算出する(S26)。その後、位相変化分θを算出し(S27)、位相変化分θが位相変化閾値θd以上であるかどうかを判定する(S28)。位相変化分θが、位相変化閾値θdに満たないときは、継続時間(T)をクリアして(S29)ステップ2に戻る。ステップ7において、位相変化分θが、位相変化閾値θd以上であるときは、継続時間(T)をカウントアップする(S30)。次いで、継続時間(T)が継続時間判定閾値Td以上であるかどうかを判定する(S31)。継続時間(T)が継続時間判定閾値(Td)に満たないときには、ステップ2に戻る。継続時間(T)が継続時間判定閾値(Td)以上であるときには、断線と判定し(S32)、ステップ2に戻る。 Next, the phase differences θ R , θ S , θ T between the rise time differences are calculated (S 26). Thereafter, the phase change θ is calculated (S27), and it is determined whether or not the phase change θ is equal to or greater than the phase change threshold θd (S28). When the phase change θ is less than the phase change threshold θd, the duration (T) is cleared (S29), and the process returns to step 2. If the phase change amount θ is equal to or greater than the phase change threshold θd in step 7, the duration time (T) is counted up (S30). Next, it is determined whether or not the duration (T) is greater than or equal to the duration determination threshold Td (S31). When the duration (T) is less than the duration determination threshold (Td), the process returns to Step 2. When the duration (T) is equal to or greater than the duration determination threshold value (Td), it is determined that there is a disconnection (S32), and the process returns to step 2.

以上の補正処理を定期的に行うことを前提とし、その周期内における測定系が受ける温度変化や経年変化、重負荷から軽負荷に至る負荷状況の変化から影響を受ける、健全時の測定誤差範囲を概ね±1°未満と算出し、断線現象を誤り無く確実に検出する位相変化閾値をθd=3〜5°とし、運用にて変更可能とすることができる。   Assuming that the above correction processing is performed periodically, the measurement error range during sound conditions affected by temperature changes, aging changes, and changes in load conditions from heavy loads to light loads during the cycle Is approximately less than ± 1 °, and the phase change threshold for reliably detecting the disconnection phenomenon without error is θd = 3 to 5 °, which can be changed in operation.

次に、本発明の第3の実施例について説明する。いずれかの相に断線の検出がなされた場合は、断線相を特定することが事故復旧時の初動作業の重要な情報となる。これに対しては、断線を線間電圧の位相関係で検出してその情報を親局装置に通知する際に、同時に各相電圧の計測値または電圧の大小関係を通知することで、親局側の断線相の判定に使用できる。前記した三相誘導電動機の存在が無ければ断線した相の相電圧は健全な他の相と比較して低レベルとなっているからである。この相電圧情報は、前記したとおり必ずしも電圧の計測値そのものである必要はなく、各相電圧を簡単なコンパレータで比較した大小関係のみでもよい。   Next, a third embodiment of the present invention will be described. When a disconnection is detected in any phase, specifying the disconnection phase is important information for the initial operation at the time of accident recovery. For this, by detecting the disconnection from the phase relationship of the line voltage and notifying the information to the master station device, the master station can be notified by simultaneously notifying the measured value of each phase voltage or the voltage magnitude relationship. Can be used to determine the open phase on the side. This is because the phase voltage of the disconnected phase is lower than that of other healthy phases if there is no such three-phase induction motor. As described above, the phase voltage information does not necessarily have to be a measured value of the voltage itself, and may be only a magnitude relationship in which each phase voltage is compared with a simple comparator.

三相相電圧V,V,Vは、フィルタ12を経由し高周波成分を除去され、高調波や雑音など位相計測の誤差となる要因を最小とする。絶対値回路16および、平滑回路17により直流成分とされた三相相電圧を、図7(a)では基準電圧と比較し、図7(b)では相互の相電圧と比較され、断線判定を行う。 The three-phase phase voltages V R , V S , and V T have high frequency components removed through the filter 12 to minimize factors that cause phase measurement errors such as harmonics and noise. The three-phase phase voltage converted into the DC component by the absolute value circuit 16 and the smoothing circuit 17 is compared with the reference voltage in FIG. 7A, and compared with the mutual phase voltage in FIG. Do.

すなわち、図7(a)に示すように、相電圧を基準電圧18と比較する回路を加えた断線検出回路1は、三相電圧が入力される入力端子11,11、11と、高調波雑音など位相計測の誤差の要因を最小とするために高周波成分を除去するフィルタ12,12,12と、入力電圧の絶対値を得る絶対値回路16,16,16と、それぞれの絶対値回路の出力を平滑して直流成分とする平滑回路17,17,17と、各平滑回路の出力と基準電圧18の差を演算する加減算回路13,13,13とを有して構成される。加減算回路13からは、それぞれP,P,Pが出力される。 That is, as shown in FIG. 7A, the disconnection detection circuit 1 including a circuit for comparing the phase voltage with the reference voltage 18 has input terminals 11 R , 11 S , 11 T to which three-phase voltages are input, Filters 12 R , 12 S , 12 T for removing high frequency components to minimize the cause of phase measurement errors such as harmonic noise, and absolute value circuits 16 R , 16 S , 16 T for obtaining the absolute value of the input voltage And smoothing circuits 17 R , 17 S , 17 T that smooth the outputs of the respective absolute value circuits into DC components, and addition / subtraction circuits 13 R , 13 S that calculate the difference between the output of each smoothing circuit and the reference voltage 18. configured to have a 13 T. The addition and subtraction circuit 13, respectively P R, P S, P T is output.

また、図7(b)に示すように、相電圧比較回路を加えた断線検出回路1は、三相電圧が入力される入力端子11,11、11と、高調波雑音など位相計測の誤差の要因を最小とするために高周波成分を除去するフィルタ12,12,12と、入力電圧の絶対値を得る絶対値回路16,16,16と、それぞれの絶対値回路の出力を平滑して直流成分とする平滑回路17,17,17と、各相間電圧を比較する加減算回路13,13,13とを有して構成される。加減算回路13からは、それぞれPR−S、PS−T,PT−Rが出力される。 Further, as shown in FIG. 7B, the disconnection detection circuit 1 to which the phase voltage comparison circuit is added includes the input terminals 11 R , 11 S , 11 T to which the three-phase voltage is input, and phase measurement such as harmonic noise. Filter 12 R , 12 S , 12 T for removing high-frequency components in order to minimize the cause of the error, absolute value circuits 16 R , 16 S , 16 T for obtaining the absolute value of the input voltage, and respective absolute values The circuit includes a smoothing circuit 17 R , 17 S , 17 T that smoothes the output of the circuit to make a DC component, and an addition / subtraction circuit 13 R , 13 S , 13 T that compares the voltages between the phases. The addition and subtraction circuit 13, respectively P R-S, P S- T, is P T-R are output.

また、断線の検出を、線間金属回路を使用する単相配電線搬送方式で通知するシステムにおいては、健全な線間を自立的に選択して送信する必要があるが、この選択基準としては、各三相線間電圧を比較して最も大きい線間を選択することになる。すなわち断線相に関わる2相は、三相誘導電動機等が存在しない通常の負荷構成の場合、健全相のみで構成される他の相と比較して低い電圧となるからである。この時、配電線搬送方式による通知情報中にこの選択した情報を含ませることで、前記した相電圧の計測値または電圧の比較結果情報と同様に親局側での断線相判定に使用することができる。図8を用いて、配電線搬送信号送信相選択用の線間電圧比較回路19の例を説明する。線間電圧比較回路19は、図7(b)に示した相間電圧比較回路を加えた断線検出回路1の出力PR−S、PS−T,PT−Rの積をとる論理積回路191,191,191からなり、最小電圧値を判定して、搬送信号送信切替選択リレー信号Ry(S−T)、Ry(T−R),Ry(R−S)を出力する。 In addition, in the system that notifies the detection of disconnection by a single-phase distribution line conveyance method using a metal circuit between lines, it is necessary to independently select and transmit between healthy lines. The three-phase line voltages are compared to select the largest line. That is, the two phases related to the disconnection phase have a lower voltage than the other phases composed only of the healthy phase in the case of a normal load configuration in which a three-phase induction motor or the like does not exist. At this time, by including this selected information in the notification information by the distribution line conveyance method, it can be used for the disconnection phase determination on the master station side as in the case of the phase voltage measurement value or voltage comparison result information described above. Can do. An example of the line voltage comparison circuit 19 for selecting a distribution line carrier signal transmission phase will be described with reference to FIG. The line voltage comparison circuit 19 is a logical product circuit that takes the product of the outputs P R-S , P S-T , P T-R of the disconnection detection circuit 1 to which the phase voltage comparison circuit shown in FIG. It consists of 191 R , 191 S , 191 T , determines the minimum voltage value, and outputs carrier signal transmission switching selection relay signals Ry ( ST ) , Ry (TR) , Ry (RS) .

さらに、前記線間電圧比較回路19の電圧低下度による断線相の判定を断線検出装置子局(親局)側で行なう場合は、前述した例と同様に、その判定に使用する閾値を書換え可能な不揮発性メモリに格納することとし、随時に手動または遠方制御により、予め設定される標準値に対して変更可能とすることで、系統条件に応じたシステムの運用を可能とすることができる。   Further, when the disconnection phase is determined on the side of the disconnection detecting device slave station (master station) based on the voltage drop degree of the line voltage comparison circuit 19, the threshold value used for the determination can be rewritten as in the above example. By storing the data in a non-volatile memory and changing the standard value set in advance by manual or remote control as needed, the system can be operated in accordance with the system conditions.

図9を用いて、断線検出信号の送信に単相の線間配電線搬送方式を使用する場合について説明する。断線検出信号の送信に単相の線間配電線搬送方式を使用する場合は、断線の発生を検出した時、信号の送信に使用する回路に断線相が関係しない回路を選択する必要がある。この場合健全区間にある断線検出装置親局2から断線検出装置子局3への信号の送信もこの回路に整合させる必要がある。   The case where a single-phase line distribution line conveyance system is used for transmission of a disconnection detection signal is demonstrated using FIG. When using the single-phase inter-line distribution line conveyance method for transmitting the disconnection detection signal, it is necessary to select a circuit that does not relate to the disconnection phase as the circuit used for signal transmission when the occurrence of disconnection is detected. In this case, the signal transmission from the disconnection detecting device master station 2 in the healthy section to the disconnection detecting device slave station 3 also needs to be matched with this circuit.

この整合について、前記図7および図8に示された選択電源相の情報を活用して相互の信号送信相を合わせるようにした。また当然のことながら断線検出を検出した断線検出装置子局3の信号受信相についても、送信相に合わせて健全相を自立的に選択して行なうこととした。   For this matching, the information on the selected power supply phase shown in FIG. 7 and FIG. Also, as a matter of course, the signal reception phase of the disconnection detection device slave station 3 that detects the disconnection detection is also performed by selecting the sound phase autonomously in accordance with the transmission phase.

従来の配電自動化システムの開閉器制御子局に断線検出機能を付加する場合、通常開閉器制御子局の電源変圧器は、開閉器の両端に設置して併給する場合が多い。この電源変圧器に関して、断線時も信号の送受信を可能とする必要があるが、本発明のシステムでは、少なくとも片側に単相変圧器を1台追加して全体として三相変圧器とするか、または、1つの単相変圧器を三相電源変圧器に置き換えることした。   When a disconnection detection function is added to a switch control slave station of a conventional distribution automation system, the power transformer of the normal switch control slave station is often installed at both ends of the switch and supplied together. Regarding this power transformer, it is necessary to be able to transmit and receive signals even at the time of disconnection, but in the system of the present invention, at least one single-phase transformer is added to one side to form a three-phase transformer as a whole, Alternatively, one single-phase transformer was replaced with a three-phase power transformer.

図9を用いて開閉器制御子局の変圧器設置例を説明する。すなわち、変圧器接続例図9(a)は、既設の開閉器制御子局39順送点における標準的な接続例である。図9(b)は、本発明による機能を持つ断線検出装置子局31を既設順送点に設置する際に1台の変圧器を追加する場合の接続例であり、電源側1台および負荷側2台の変圧器の接続相が、全て異なっている。図9(c)は、例えば負荷側の単相変圧器を1台の三相変圧器33交換する場合の接続例である。   A transformer installation example of the switch control slave station will be described with reference to FIG. That is, the transformer connection example FIG. 9A is a standard connection example in the existing switch control slave station 39 forward transmission point. FIG. 9B is a connection example in the case where one transformer is added when the disconnection detecting device slave station 31 having the function according to the present invention is installed at the existing sequential transmission point. The connection phases of the two transformers on the side are all different. FIG. 9C shows a connection example in the case where the single-phase transformer on the load side is replaced with one three-phase transformer 33, for example.

図9(a)に示すように、既存の自動化子局である開閉器制御子局39の順送点における標準的な場合には、R相配電線43、S相配電線43,T相配電線43に接続された電圧検出器内臓遠方制御開閉器41の電源側と負荷側にそれぞれ単相変圧器32T−R,32T−Rを例えばR相配電線43とT相配電線43間にそれぞれ接続し、それぞれの2次出力を開閉器制御子局39に入力することによって構成されている。 As shown in FIG. 9 (a), in the standard case at the progressive point of the switch control slave station 39 which is an existing automated slave station, the R-phase distribution line 43 R , the S-phase distribution line 43 S , and the T-phase distribution line 43 T The single-phase transformers 32 T-R and 32 T-R are respectively connected to the power supply side and the load side of the remote control switch 41 built in the voltage detector connected to T , for example, between the R-phase distribution line 43 R and the T-phase distribution line 43 T. Are connected to each other, and the respective secondary outputs are input to the switch control slave station 39.

図9(b)に示すように、本発明による断線検出機能を持つ断線検出装置子局31を、既設順送点に設置する際に1台の変圧器を追加する場合には、R相配電線43、S相配電線43、T相配電線43に接続された電圧検出器内臓遠方制御開閉器41の電源側にR相配電線43とT相配電線43間に単相変圧器32T−RとR相配電線43およびS相配電線43間に単相変圧器32R−Sを、負荷側にS相配電線43とT相配電線43間に単相変圧器32S−Tをそれぞれ接続し、それぞれの2次出力を断線検出装置子局31に入力することによって構成することができる。さらに、図9(c)に示すように、本発明による断線検出機能を持つ断線検出装置子局31を、既設順送点に設置する際に負荷側の単相変圧器に代えて1台の三相変圧器33とする場合には、R相配電線43、S相配電線43、T相配電線43に接続された電圧検出器内臓遠方制御開閉器41の電源側にR相配電線43とT相配電線43間に1台の単相変圧器32T−Rを、負荷側に三相変圧器33を接続し、それぞれの2次出力を断線検出装置子局21の入力することによって構成することができる。 As shown in FIG. 9 (b), when a single transformer is added when the disconnection detecting device slave station 31 having the disconnection detecting function according to the present invention is installed at the existing progressive point, the R-phase distribution line 43 R , S-phase distribution line 43 S , T-phase distribution line 43 T Single-phase transformer 32 T between R-phase distribution line 43 R and T-phase distribution line 43 T on the power supply side of remote control switch 41 with built-in voltage detector -R and R-phase distribution line 43 Single-phase transformer 32 RS between R and S-phase distribution line 43 S, and single - phase transformer 32 S-T between S-phase distribution line 43 S and T-phase distribution line 43 T on the load side Are connected to each other, and the respective secondary outputs are input to the disconnection detecting device slave station 31. Further, as shown in FIG. 9 (c), when the disconnection detecting device slave station 31 having the disconnection detecting function according to the present invention is installed at the existing sequential transmission point, a single-phase transformer on the load side is replaced with one unit. when the three-phase transformer 33, R-phase distribution line 43 R, S-phase distribution line 43 S, R-phase distribution line 43 to the power supply voltage is connected to the T-phase distribution line 43 T detector visceral distant control switch 41 R And a T-phase distribution line 43 by connecting a single-phase transformer 32 TR between the T and a three-phase transformer 33 on the load side, and inputting the respective secondary outputs to the disconnection detecting device slave station 21. Can be configured.

すなわち、片側のみの変圧器の変更または新設であっても、本発明を運用可能とすることで、設備の変更を最小限とすることができる。但し、単相変圧器をV字結線として使用する場合は、開閉器の逆側の単相変圧器は、前記単相変圧器をV字結線とした接続相以外の相を選択する必要がある。   That is, even if the transformer is changed or newly installed only on one side, the change of equipment can be minimized by making the present invention operable. However, when a single-phase transformer is used as a V-shaped connection, it is necessary to select a phase other than the connection phase in which the single-phase transformer is a V-shaped connection as the single-phase transformer on the reverse side of the switch .

本発明による断線発生を検出した断線検出情報を単相の線間配電線搬送方式で伝送する場合の親局と子局間で信号注入相および、配電線搬送信号受信相を正しく選択する必要がある。10図を用いて、親局と子局間のR相配電線43が断線し、子局から伝送された断線相情報により、親局は、健全相であるS相および、T相間に信号を注入し、同時に子局側でも信号受信相をS相および、T相間を選択することで、断線が発生した場合でも安定的に配電線搬送通信を継続することを可能とする。 It is necessary to correctly select the signal injection phase and the distribution line carrier signal reception phase between the master station and the slave station when the disconnection detection information that detects the occurrence of disconnection according to the present invention is transmitted by the single-phase line-to-line distribution line conveyance method. is there. Using FIG. 10, the R-phase distribution line 43 R between the master station and the slave station is disconnected, and the master station transmits a signal between the S phase and the T phase, which are healthy phases, based on the disconnection phase information transmitted from the slave station. At the same time, by selecting the signal reception phase between the S phase and the T phase on the slave station side as well, it is possible to continue the distribution line transport communication stably even when a disconnection occurs.

すなわち、断線信号検出装置親局21は、配電線搬送信号受信回路211と、配電線搬送信号切替回路212と、配電線搬送信号注入回路213を有している。一方、断線検出装置子局31は、配電線搬送信号受信回路311と、配電線搬送信号切替回路312と、配電線搬送信号注入回路313を有している。断線検出装置子局21から健全な相を用いて送られた段線検出情報を配電線搬送信号受信回路211で受信した断線検出装置親局31は、断線箇所および断線相を判断し、健全な相を配電線搬送信号切替回路212で選択して配電線搬送信号注入回路213からの信号を健全な相(例えば、43,43T)に送出する。 That is, the disconnection signal detection device master station 21 includes a distribution line carrier signal reception circuit 211, a distribution line carrier signal switching circuit 212, and a distribution line carrier signal injection circuit 213. On the other hand, the disconnection detecting device slave station 31 includes a distribution line carrier signal reception circuit 311, a distribution line carrier signal switching circuit 312, and a distribution line carrier signal injection circuit 313. The disconnection detection device master station 31 that has received the stepped line detection information sent from the disconnection detection device slave station 21 using the healthy phase by the distribution line carrier signal reception circuit 211 determines the disconnection location and the disconnection phase, and is healthy. The phase is selected by the distribution line carrier signal switching circuit 212 and the signal from the distribution line carrier signal injection circuit 213 is sent to a healthy phase (for example, 43 S , 43T).

断線検出装置子局21は、断線検出装置親局31から健全な相(例えば、43,43T)を用いて送られた信号を配電線搬送信号受信回路211で受信する。このようにして、フィーダ区間に断線が発生した場合でも、断線検出装置親局31と断線検出装置子局31との間で、健全な相を用いて線間配電線搬送方式で通信することが可能となる。 The disconnection detection device slave station 21 receives the signal transmitted from the disconnection detection device master station 31 using a healthy phase (for example, 43 S , 43T) by the distribution line carrier signal reception circuit 211. In this way, even when a disconnection occurs in the feeder section, it is possible to communicate between the disconnection detection device master station 31 and the disconnection detection device slave station 31 by using the line-to-line distribution line transport method using a healthy phase. It becomes possible.

上記方式では、片側のみ単相変圧器をV字結線とするか、または三相電源変圧器とした場合で、開閉器が投入されている状態では、断線検出時に前記したように三相の内、健全な相を選択して信号を送信すればよい。逆に開閉器が開放されている場合は、開閉器の片側の系統は健全であるから、何れかの方向の健全な相を選択して信号を送信すればよい。   In the above method, when the single-phase transformer is V-connected on one side or a three-phase power transformer, and when the switch is turned on, as described above, Select a sound phase and send a signal. On the contrary, when the switch is opened, the system on one side of the switch is healthy, and it is only necessary to select a healthy phase in any direction and transmit a signal.

健全時の三相相電圧と線間電圧ベクトルの例Example of healthy three-phase voltage and line voltage vector 三相誘導型電動機が負荷として存在する系統において、断線が発生した場合の三相相電圧と線間電圧ベクトルの例Example of three-phase voltage and line voltage vector when a disconnection occurs in a system with a three-phase induction motor as a load 三相誘導型電動機が負荷として存在せず、主に抵抗負荷とする系統において、断線が発生した場合の三相相電圧と線間電圧ベクトルの例Example of three-phase phase voltage and line voltage vector when a disconnection occurs in a system in which a three-phase induction motor does not exist as a load and is mainly a resistive load 非接地配電線の1線を地絡した場合の、相電圧波形の例Example of phase voltage waveform when one of the ungrounded distribution lines is grounded 非接地配電線の1線を地絡した場合の線間電圧波形の例Example of line voltage waveform when one line of ungrounded distribution line is grounded 本発明における断線検出回路の構成を説明する図The figure explaining the structure of the disconnection detection circuit in this invention パルス変換回路の出力の位相関係を説明する図(健全時)Diagram explaining the phase relationship of the output of the pulse converter (when healthy) パルス変換回路の出力の位相関係を説明する図(R相断線時)The figure explaining the phase relation of the output of the pulse conversion circuit (R phase disconnection) 本発明における断線判定アルゴリズムの例Example of disconnection determination algorithm in the present invention 本発明にかかる断線検出システムの構成例を説明する図The figure explaining the structural example of the disconnection detection system concerning this invention 本発明における断線判定アルゴリズムに補正処理を追加した例Example in which correction processing is added to the disconnection determination algorithm in the present invention 本発明にかかる断線検出回路に相電圧を絶対値と比較する回路を付加した構成を説明する図The figure explaining the structure which added the circuit which compares a phase voltage with an absolute value to the disconnection detection circuit concerning this invention 本発明にかかる断線検出回路に相電圧相互を比較する回路を付加した構成を説明する図The figure explaining the structure which added the circuit which compares a phase voltage mutually to the disconnection detection circuit concerning this invention 本発明における線間電圧比較回路を付加した断線検出回路の構成を説明する図The figure explaining the structure of the disconnection detection circuit which added the line voltage comparison circuit in this invention 従来の電圧検出回路を備えた開閉器の構造を説明する図The figure explaining the structure of the switch provided with the conventional voltage detection circuit 本発明における断線検出装置子局における変圧器の接続状態を説明する図(単相変圧器追加)The figure explaining the connection state of the transformer in the disconnection detecting device slave station in the present invention (single-phase transformer addition) 本発明における断線検出装置子局における変圧器の接続状態を説明する図(三相変圧器接続)The figure explaining the connection state of the transformer in the disconnection detecting device slave station in the present invention (three-phase transformer connection) 本発明における信号送受信選択回路の例を説明する図The figure explaining the example of the signal transmission / reception selection circuit in this invention

符号の説明Explanation of symbols

1:断線検出回路
2:断線検出装置親局
3:断線検出装置子局
4:常開開閉器
5:順送開閉器
6:中央装置
71:主変圧器
72:遮断器(CB)
8:フィーダ区間
11:電圧入力端子
12:フィルタ
13:加減算回路
14:パルス変換回路
15:マイコン
16:絶対値回路
17:平滑回路
18:基準電圧発生回路
19:線間電圧比較回路
191:論理積回路
21:断線検出装置親局
22:単相変圧器
23:三相変圧器
31:断線検出装置子局
32:単相変圧器
33:三相変圧器
39:開閉器制御子局(自動化用子局)
41:電圧検出器内蔵遠方制御開閉器
43R:R相配電線
43S:S相配電線
43T:T相配電線
211,311:配電線搬送信号受信回路
212,312:配電線搬送信号切替回路
213,313:配電線搬送信号注入回路
:R相電圧
:S相電圧
:T相電圧
1: Disconnection detection circuit 2: Disconnection detection device master station 3: Disconnection detection device slave station 4: Normally open switch 5: Progressive switch 6: Central device 71: Main transformer 72: Breaker (CB)
8: Feeder section 11: Voltage input terminal 12: Filter 13: Addition / subtraction circuit 14: Pulse conversion circuit 15: Microcomputer 16: Absolute value circuit 17: Smoothing circuit 18: Reference voltage generation circuit 19: Line voltage comparison circuit 191: Logical product Circuit 21: Disconnection detection device master station 22: Single phase transformer 23: Three phase transformer 31: Disconnection detection device slave station 32: Single phase transformer 33: Three phase transformer 39: Switch control slave station (automated slave Bureau)
41: Remote control switch with built-in voltage detector 43R: R-phase distribution line 43S: S-phase distribution line 43T: T-phase distribution line 211, 311: Distribution line conveyance signal reception circuit 212, 312: Distribution line conveyance signal switching circuit 213, 313: Distribution Electric wire carrier signal injection circuit V R : R phase voltage V S : S phase voltage V T : T phase voltage

Claims (7)

三相非接地系の高圧配電線で断線の検出を事故点の負荷側で行なう断線検出システムにおいて、
三相の配電線を複数のフィーダ区間に区切る複数の開閉器と、
前記開閉器の三相電圧を検出し、検出した三相の相電圧を合成するか、三相電源変圧器から三相線間電圧を得て、三相線間電圧の標準120度位相差からの位相変化と継続時間を用いて配電区間の断線相を検出する断線検出装置を設けた
ことを特徴とする断線検出システム。
In a disconnection detection system that detects disconnection on the load side of the accident point with a three-phase ungrounded high-voltage distribution line,
A plurality of switches for dividing a three-phase distribution line into a plurality of feeder sections;
Detect the three-phase voltage of the switch, synthesize the detected three-phase voltage, or obtain the three-phase line voltage from the three-phase power transformer, from the standard 120-degree phase difference of the three-phase line voltage A disconnection detection system comprising a disconnection detection device that detects a disconnection phase of a power distribution section using a phase change and a duration time.
請求項1記載の断線検出システムにおいて、
断線検出装置に、三相線間電圧の位相関係を判定する位相関係の補正値と位相変化閾値と継続時間判定閾値を記憶する書換え可能な不揮発性メモリと、
位相関係補正値と位相変化閾値と継続時間から断線を検出する手段とを具備した
ことを特徴とする断線検出システム。
The disconnection detection system according to claim 1,
A rewritable nonvolatile memory for storing a phase relationship correction value, a phase change threshold value, and a duration determination threshold value for determining the phase relationship of the three-phase line voltage in the disconnection detector,
A disconnection detection system comprising a phase relationship correction value, a phase change threshold, and a means for detecting disconnection from a duration.
請求項2記載の断線検出システムおいて、
三相線間電圧の位相関係を判定する位相関係の補正値と位相変化閾値と継続時間判定閾値を、機器設置時または随時の手動操作もしくは遠方制御指令を受けた時点の三相線間電圧の位相関係を補正値として記憶する
ことを特徴とする断線検出システム。
In the disconnection detection system according to claim 2,
The phase-related correction value, phase change threshold value, and duration determination threshold value for determining the phase relationship of the three-phase line voltage are set to the three-phase line voltage at the time of installation or when receiving manual operation or remote control command. A disconnection detection system, wherein the phase relationship is stored as a correction value.
請求項1ないし請求項3のいずれか1項記載の断線検出システムにおいて、
断線検出装置に、断線相以外の健全な相を選択して配電線搬送方式を実行する手段を設けた
ことを特徴とする断線検出システム。
The disconnection detection system according to any one of claims 1 to 3,
A disconnection detection system, wherein the disconnection detection device is provided with means for selecting a healthy phase other than the disconnection phase and executing the distribution line transport system.
請求項4記載の断線検出システムにおいて、
断線検出時の各相電圧計測値または相電圧の大小関係の情報を単相線間配電線搬送方式で送信する場合に、選択した電源相の情報を親局に送信する
ことを特徴とする断線検出システム。
The disconnection detection system according to claim 4,
A disconnection characterized by sending information on the selected power supply phase to the master station when transmitting the measured value of each phase voltage at the time of disconnection detection or information on the magnitude relation of the phase voltage using the single-phase line distribution line transport method Detection system.
請求項4または請求項5記載の断線検出システムにおいて、
断線検出に関わる信号の送受信を単相の線間配電線搬送方式とする場合に、断線検出装置の電源変圧器を三相電源変圧器または単相変圧器をΔ結線として断線相に関係しない健全な回路を選択可能とし、断線を検出した断線検出装置子局からの信号を受信した電源側の断線検出装置親局は、前記断線検出装置子局からの信号中に含まれる相選択情報に基づき、前記断線検出装置子局の送信相と同一の相に指令信号を送信し、前記断線検出装置子局は信号の受信相を信号の送信相と同様に健全ないずれかの相を選択するようにしたことを特徴とする断線検出システム。
In the disconnection detection system according to claim 4 or 5,
When the transmission / reception of signals related to disconnection detection is to be a single-phase inter-line distribution system, the power transformer of the disconnection detection device is a three-phase power transformer or a single-phase transformer is a Δ connection and is not related to the disconnection phase. The disconnection detecting device master station on the power source side that has received the signal from the disconnection detecting device slave station that has detected the disconnection is based on the phase selection information included in the signal from the disconnection detecting device slave station. The disconnection detection device slave station transmits a command signal to the same phase as the transmission phase of the disconnection detection device slave station, and the disconnection detection device slave station selects a sound reception phase in the same manner as the signal transmission phase. A disconnection detection system characterized by that.
請求項6記載の断線検出システムにおいて、
開閉器の両端に単相変圧器を設置してある開閉器制御システムにおいては、いずれか片側に単相変圧器を一台のみ追加することで全体として三相電源変圧器を構成し、断線検出時の信号送受信を、順送点では断線相に関係しないいずれか健全な回路に、常開点ではいずれか健全側のフィーダに送信することを特徴とする断線検出システム。
The disconnection detection system according to claim 6,
In a switch control system in which single-phase transformers are installed at both ends of the switch, a single-phase transformer is added on either side to form a three-phase power transformer as a whole, detecting disconnection A disconnection detection system that transmits signal transmission / reception to a sound circuit that is not related to a disconnection phase at a sequential transmission point and to a sound side feeder at a normally open point.
JP2005156382A 2005-05-27 2005-05-27 Disconnection detection system Active JP4655207B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005156382A JP4655207B2 (en) 2005-05-27 2005-05-27 Disconnection detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005156382A JP4655207B2 (en) 2005-05-27 2005-05-27 Disconnection detection system

Publications (2)

Publication Number Publication Date
JP2006329893A true JP2006329893A (en) 2006-12-07
JP4655207B2 JP4655207B2 (en) 2011-03-23

Family

ID=37551721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005156382A Active JP4655207B2 (en) 2005-05-27 2005-05-27 Disconnection detection system

Country Status (1)

Country Link
JP (1) JP4655207B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014132242A (en) * 2013-01-07 2014-07-17 Daihen Corp Device and method for detecting open circuit
CN104777397A (en) * 2015-04-16 2015-07-15 王金泽 Distribution line single-phase break line judgment and positioning method based on line voltage vector criterion
CN105866615A (en) * 2016-06-16 2016-08-17 山东大学 10kV power distribution line disconnection fault judging method based on three-phase voltage current
CN109613386A (en) * 2019-01-04 2019-04-12 常熟开关制造有限公司(原常熟开关厂) The detection method and device of three phase mains inlet wire zero curve misconnection, automatic change-over
CN111025081A (en) * 2019-11-07 2020-04-17 广州南方电力集团科技发展有限公司 Residential voltage monitoring method for power distribution area
CN113050620A (en) * 2019-12-26 2021-06-29 南京德朔实业有限公司 Self-driven equipment system and boundary line breakage detection method thereof
CN113447852A (en) * 2021-05-07 2021-09-28 华能澜沧江水电股份有限公司 Method for detecting disconnection of PT loop at generator terminal without influence of operation condition of generator
KR20220125890A (en) * 2021-03-05 2022-09-15 한국전력공사 Apparatus and method for detecting open phase conductors in distribution systems

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859345A (en) * 1971-11-27 1973-08-20
JPS5886825A (en) * 1981-11-16 1983-05-24 富士電機株式会社 Accident zone detecting system for power distribution line
JPS59203967A (en) * 1983-05-04 1984-11-19 Hitachi Ltd Detection system for wire breaking of ungrounded system distribution line
JPS61974B2 (en) * 1979-01-18 1986-01-13 Omron Tateisi Electronics Co
JPS6176014A (en) * 1984-09-21 1986-04-18 大崎電気工業株式会社 Disconnection detector
JPS61189119A (en) * 1985-02-13 1986-08-22 株式会社明電舎 Disconnection detector
JPH04138384A (en) * 1990-09-29 1992-05-12 Chubu Electric Power Co Inc Detector for disconnection and open phase
JPH10341191A (en) * 1997-06-05 1998-12-22 Mitsubishi Electric Corp Transmission source detector
JP2001235505A (en) * 2000-02-25 2001-08-31 Hioki Ee Corp Circuit board inspection device
JP2001313595A (en) * 2000-04-27 2001-11-09 Mitsubishi Electric Corp Power line carrier communication method and power line carrier communication system
JP2003337003A (en) * 2002-03-12 2003-11-28 Omron Corp Proximity sensor
JP2004053554A (en) * 2002-07-24 2004-02-19 Hitachi Ltd Distribution line disconnection detection system

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859345A (en) * 1971-11-27 1973-08-20
JPS61974B2 (en) * 1979-01-18 1986-01-13 Omron Tateisi Electronics Co
JPS5886825A (en) * 1981-11-16 1983-05-24 富士電機株式会社 Accident zone detecting system for power distribution line
JPS59203967A (en) * 1983-05-04 1984-11-19 Hitachi Ltd Detection system for wire breaking of ungrounded system distribution line
JPS6176014A (en) * 1984-09-21 1986-04-18 大崎電気工業株式会社 Disconnection detector
JPS61189119A (en) * 1985-02-13 1986-08-22 株式会社明電舎 Disconnection detector
JPH04138384A (en) * 1990-09-29 1992-05-12 Chubu Electric Power Co Inc Detector for disconnection and open phase
JPH10341191A (en) * 1997-06-05 1998-12-22 Mitsubishi Electric Corp Transmission source detector
JP2001235505A (en) * 2000-02-25 2001-08-31 Hioki Ee Corp Circuit board inspection device
JP2001313595A (en) * 2000-04-27 2001-11-09 Mitsubishi Electric Corp Power line carrier communication method and power line carrier communication system
JP2003337003A (en) * 2002-03-12 2003-11-28 Omron Corp Proximity sensor
JP2004053554A (en) * 2002-07-24 2004-02-19 Hitachi Ltd Distribution line disconnection detection system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014132242A (en) * 2013-01-07 2014-07-17 Daihen Corp Device and method for detecting open circuit
CN104777397A (en) * 2015-04-16 2015-07-15 王金泽 Distribution line single-phase break line judgment and positioning method based on line voltage vector criterion
CN105866615A (en) * 2016-06-16 2016-08-17 山东大学 10kV power distribution line disconnection fault judging method based on three-phase voltage current
CN109613386A (en) * 2019-01-04 2019-04-12 常熟开关制造有限公司(原常熟开关厂) The detection method and device of three phase mains inlet wire zero curve misconnection, automatic change-over
CN109613386B (en) * 2019-01-04 2020-10-02 常熟开关制造有限公司(原常熟开关厂) Method and device for detecting misconnection of zero lines of three-phase power supply incoming line and automatic change-over switch
CN111025081A (en) * 2019-11-07 2020-04-17 广州南方电力集团科技发展有限公司 Residential voltage monitoring method for power distribution area
CN113050620A (en) * 2019-12-26 2021-06-29 南京德朔实业有限公司 Self-driven equipment system and boundary line breakage detection method thereof
KR20220125890A (en) * 2021-03-05 2022-09-15 한국전력공사 Apparatus and method for detecting open phase conductors in distribution systems
KR102485092B1 (en) * 2021-03-05 2023-01-09 한국전력공사 Apparatus and method for detecting open phase conductors in distribution systems
CN113447852A (en) * 2021-05-07 2021-09-28 华能澜沧江水电股份有限公司 Method for detecting disconnection of PT loop at generator terminal without influence of operation condition of generator

Also Published As

Publication number Publication date
JP4655207B2 (en) 2011-03-23

Similar Documents

Publication Publication Date Title
JP4655207B2 (en) Disconnection detection system
US10739414B2 (en) Determining status of electric power transmission lines in an electric power transmission system
US10333291B2 (en) Multiple generator ground fault detection
US8866487B2 (en) Directional fault sectionalizing system
US6654216B2 (en) Distributed monitoring and protection system for a distributed power network
CN102576999B (en) System and method for polyphase ground-fault circuit-interrupters
US20180316188A1 (en) Power restoration in nested microgrids
US8736297B2 (en) Method for production of a fault signal, and an electrical protective device
US9264008B2 (en) Filter apparatus, a method for filtering harmonics in an electrical power transmission or distribution system, and such a system
US9784781B2 (en) Islanding detection reliability in electricity distribution network
US9494635B2 (en) Islanding detection in electricity distribution network
CN104777397A (en) Distribution line single-phase break line judgment and positioning method based on line voltage vector criterion
CN101958526B (en) Power distribution system and electrical switching apparatus employing a filter trap circuit to provide arc fault trip coordination
CN107438929A (en) Method for being protected in combined power transmission line
US7579712B2 (en) Power system protection system
JP6408785B2 (en) Insulation monitoring device
KR101227537B1 (en) Cabinet panel of built-in neutral line repair function
US9164148B2 (en) Systems and methods for detecting over/under excitation faults
CN102959670B (en) Impulse current restraining device and control method thereof
KR101999606B1 (en) Protective Apparatus and Method for Zero Harmonic Filter
Laaksonen Need for new islanding detection schemes and prioritization with generator grid code requirements
EP1134865B1 (en) Detecting wire break in electrical network
Chhetija et al. A communication-free fault detection and classification scheme for industrial microgrids
Shkrabets et al. Modern development principles of protection and diagnostics in mining facilities mains and distribution grids
KR101825891B1 (en) Distributions Board Built in Zero Harmonic Reduction Apparatus equipped with Protective Functions of Phase Comparison

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080116

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4655207

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250