JP2006329628A - Measuring method of deformation amount in structure - Google Patents

Measuring method of deformation amount in structure Download PDF

Info

Publication number
JP2006329628A
JP2006329628A JP2005148851A JP2005148851A JP2006329628A JP 2006329628 A JP2006329628 A JP 2006329628A JP 2005148851 A JP2005148851 A JP 2005148851A JP 2005148851 A JP2005148851 A JP 2005148851A JP 2006329628 A JP2006329628 A JP 2006329628A
Authority
JP
Japan
Prior art keywords
amount
aberration
deformation
displacement
camera device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005148851A
Other languages
Japanese (ja)
Other versions
JP4836067B2 (en
Inventor
Satoshi Yoneyama
聡 米山
Hisao Kikuta
久雄 菊田
Yasuhiro Shimahashi
安廣 嶋橋
Takeshi Matsuo
岳嗣 松尾
Akikazu Kitagawa
彰一 北側
Yukitsugu Kitamura
幸嗣 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Osaka University NUC
Osaka Prefecture University PUC
Original Assignee
Hitachi Zosen Corp
Osaka University NUC
Osaka Prefecture University PUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp, Osaka University NUC, Osaka Prefecture University PUC filed Critical Hitachi Zosen Corp
Priority to JP2005148851A priority Critical patent/JP4836067B2/en
Publication of JP2006329628A publication Critical patent/JP2006329628A/en
Application granted granted Critical
Publication of JP4836067B2 publication Critical patent/JP4836067B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method of a deformation amount capable of measuring easily the deformation amount in a structure by inexpensive equipment. <P>SOLUTION: This method includes steps for: detecting the deformation amount in a prescribed area on two photographed images by applying a digital image correlation method on the both images with the structure photographed by an optical camera device before a load is applied and after force is applied ; and correcting a distortion due to a lens with respect to the deformation amount The correcting step has steps for: obtaining the two photographed images in positions shifted with respect to a prescribed area of the structure by the camera device; detecting a moving amount in the prescribed area by applying the digital image correlation method on the two photographed images; determining each coefficient of a displacement amount calculation expression, using a method of least squares, with substitution with the moving amount in the displacement amount calculation expression provided by adding an aberration model amount to a moved amount calculation expression on a plane when the camera device is shifted with respect to the structure; and finding an aberration amount using the displacement amount calculation expression with the respective determined coefficients. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、橋梁などの構造物における変形量計測方法に関する。   The present invention relates to a deformation measurement method for a structure such as a bridge.

従来、橋梁などの鋼構造物における撓み、すなわち変位(変形量ともいう)を計測する方法としては、3次元光波測定儀、歪ゲージや高精度の傾斜計を用いるものがあり(例えば、特許文献1参照)、また最近では、光ファイバーケーブルを用いて構造物の変位・形状などの状態変化を検知するものが提案されている(例えば、特許文献2参照)。
特開2001−159517 特開2004−163294
Conventionally, as a method for measuring the deflection in a steel structure such as a bridge, that is, a displacement (also referred to as a deformation amount), there is a method using a three-dimensional light wave measuring instrument, a strain gauge, or a high-precision inclinometer (for example, Patent Documents). Recently, there has been proposed an optical fiber cable that detects a change in state such as displacement and shape of a structure (for example, see Patent Document 2).
JP 2001-159517 A JP 2004-163294 A

しかしながら、三次元光波測定儀、歪ゲージや高精度の傾斜計は、構造物のごく限られた範囲だけで変位を計測し得るものであり、例えば広範囲で変位を計測しようとすると、多くの計器を当該構造物に設置する必要があり、計測作業が煩雑になってしまう。   However, three-dimensional light wave measuring instruments, strain gauges, and high-precision inclinometers can measure displacement only within a very limited range of the structure. For example, when measuring displacement over a wide range, many instruments Must be installed in the structure, and the measurement work becomes complicated.

また、光ファイバーケーブルを用いたものでは、比較的、広範囲の変位を計測することができるが、構造物に設置するものであり、一度、設置すると長期間使用できるが、光ファイバーケーブル自体が高価であり、計測装置が高くつくという問題がある。   In addition, with a fiber optic cable, a relatively wide range of displacement can be measured, but it is installed in a structure, and once installed, it can be used for a long time, but the fiber optic cable itself is expensive. There is a problem that the measuring device is expensive.

そこで、本発明は、構造物の変位すなわち変形量を広範囲に亘って且つ安価な機器でしかも容易に計測し得る構造物における変形量計測方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a deformation amount measuring method in a structure that can easily measure the displacement, that is, the deformation amount of the structure over a wide range and with an inexpensive device.

上記課題を解決するため、本発明の構造物における変形量計測方法は、構造物に力を付与した際の変形量を計測する方法であって、
力の付与前と力の付与後とにおける所定領域を光学式カメラ装置で撮影するステップと、このカメラ装置で撮影された少なくとも2枚の撮影画像にデジタル画像相関法を適用して両撮影画像上の所定領域における変形量を検出するステップと、上記検出された変形量に対して、上記光学式カメラ装置のレンズによる歪曲収差を補正する収差補正ステップとを具備し、
且つ上記収差補正ステップに、上記カメラ装置により構造物の所定領域に対してずれた位置で少なくとも2枚の撮影画像を得るステップと、この少なくとも2枚の撮影画像にデジタル画像相関法を適用して両撮影画像上での所定領域の移動量を検出するステップと、上記カメラ装置を構造物に対してずらした際の平面上での移動量算出式に、収差モデル量を加えてなる変位量算出式に上記移動量を代入し、最小二乗法を用いて当該変位量算出式における各係数を決定するステップと、上記各係数が決定された変位量算出式を用いて収差量を求めるステップとを有せしめた方法である。
In order to solve the above problem, the deformation amount measuring method in the structure of the present invention is a method of measuring the deformation amount when a force is applied to the structure,
A step of photographing a predetermined area before and after the application of force with an optical camera device, and applying a digital image correlation method to at least two photographed images taken with the camera device on both photographed images. Detecting a deformation amount in the predetermined region, and an aberration correction step of correcting distortion by the lens of the optical camera device with respect to the detected deformation amount,
In addition, in the aberration correction step, a step of obtaining at least two photographed images at positions shifted from a predetermined region of the structure by the camera device, and applying a digital image correlation method to the at least two photographed images. Detecting the amount of movement of a predetermined area on both captured images and calculating the amount of displacement by adding the aberration model amount to the equation for calculating the amount of movement on the plane when the camera device is displaced with respect to the structure Substituting the amount of movement into the equation, determining each coefficient in the displacement amount calculation formula using the least square method, and obtaining an aberration amount using the displacement amount calculation formula in which each coefficient is determined. This is the method that you have.

また、上記変形量計測方法における光学式カメラ装置のレンズとしてシフトレンズを用いた方法である。   In addition, a shift lens is used as a lens of the optical camera device in the deformation amount measuring method.

上記変形量計測方法によると、力を付与した構造物の変形量を光学式カメラ装置を用いて、力の付与前と付与後とにおいてそれぞれ撮影した撮影画像から、デジタル画像相関法を用いて計測し、しかも、この変形量に対し、レンズによる歪曲収差量を補正するようにしたので、例えば計測機器を構造物に設置する必要がなく、また光ファイバーケーブルなども用いる必要がないため、安価な計測機器を用いることができるとともに、簡単な計測作業にて、構造物の変形量を精度良く計測することができる。   According to the above deformation amount measurement method, the deformation amount of the structure to which force is applied is measured using the digital image correlation method from the captured images taken before and after the force is applied using the optical camera device. In addition, since the amount of distortion due to the lens is corrected for the amount of deformation, for example, there is no need to install a measuring instrument on the structure, and there is no need to use an optical fiber cable or the like. A device can be used, and the deformation amount of the structure can be accurately measured by a simple measurement operation.

[実施の形態]
以下、本発明の実施の形態に係る構造物における変形量計測方法を、図面に基づき説明する。
[Embodiment]
Hereinafter, a deformation measurement method for a structure according to an embodiment of the present invention will be described with reference to the drawings.

本実施の形態においては、例えば橋梁などの長尺物の構造物の老化状態を調べるために、当該構造物に荷重(力)を付与して、撓みなどの変形量をデジタル画像相関法を用いて計測するとともに、この計測に用いられる光学式カメラ装置における光学レンズによる撮影画像に生じている歪曲収差についても補正を行うようにしたものである。   In this embodiment, for example, in order to examine the aging state of a long structure such as a bridge, a load (force) is applied to the structure, and the amount of deformation such as bending is calculated using a digital image correlation method. In addition, the distortion aberration generated in the image taken by the optical lens in the optical camera device used for the measurement is also corrected.

すなわち、本実施の形態においては、光学レンズとしてシフトレンズが装着された光学式カメラ装置(具体的には、デジタルカメラである)を用いて、構造物を撮影するとともに、このカメラで撮影された構造物の撮影画像に基づき当該構造物の変形量を計測する際に、レンズの歪曲収差による誤差分(以下、歪曲収差量という)を除去するようにした変形量計測方法について説明する。   That is, in the present embodiment, an optical camera device (specifically, a digital camera) equipped with a shift lens as an optical lens is used to photograph a structure and the photograph is taken with this camera. A deformation amount measuring method for removing an error due to lens distortion (hereinafter referred to as distortion amount) when measuring the deformation amount of the structure based on a captured image of the structure will be described.

ここで、シフトレンズについて説明しておく。
通常、カメラの倍率は、レンズから被写体までの距離aとレンズからフィルムまでの距離bとの比(b/a)で決まる。このため、被写体とフィルムとの関係が平行である場合、相似の関係より被写体の両端の倍率は等しくなり、逆に、平行でない場合には、両端の倍率が異なってくる。つまり、シフトレンズとは、レンズを被写体と平行にずらせることによって、両端の倍率を保つことができるレンズをいう。
Here, the shift lens will be described.
Usually, the magnification of the camera is determined by the ratio (b / a) between the distance a from the lens to the subject and the distance b from the lens to the film. Therefore, when the relationship between the subject and the film is parallel, the magnifications at both ends of the subject are equal because of the similar relationship. Conversely, when the relationship between the subject and film is not parallel, the magnifications at both ends are different. That is, the shift lens is a lens that can maintain the magnifications at both ends by shifting the lens parallel to the subject.

本実施の形態に係る変形量計測方法は、構造物、すなわち撮影対象物の所定領域(以下、計算領域ともいう)を、荷重を付与しない変形前および荷重を付与した変形後を撮影した少なくとも2枚の撮影画像に、デジタル画像相関法を適用して、構造物での所定領域(例えば、荷重の付与部分)における変形量を計測するとともに、この変形量に対して歪曲収差量を補正するようにしたものである。   In the deformation amount measuring method according to the present embodiment, a predetermined area (hereinafter, also referred to as a calculation area) of a structure, that is, an object to be imaged, is imaged before and after deformation without applying a load. A digital image correlation method is applied to a single photographed image to measure the amount of deformation in a predetermined region (for example, a portion to which a load is applied) in the structure, and to correct the amount of distortion with respect to the amount of deformation. It is a thing.

まず、デジタル画像相関法を用いて、構造物の変形量を計測する方法について説明する。
デジタル画像相関法においては、計算領域の変形量を輝度値分布の相関を用いて検出する。これは、物体表面の乱反射像は物体表面と共に移動し、変形の前後でその特徴が保存されるということに基づくもので、変形前後の画像における輝度値の相関は下記(1)式で求められる。
First, a method for measuring the amount of deformation of a structure using the digital image correlation method will be described.
In the digital image correlation method, the deformation amount of the calculation region is detected using the correlation of the luminance value distribution. This is based on the fact that the diffuse reflection image of the object surface moves together with the object surface, and the feature is preserved before and after the deformation. The correlation of the luminance values in the image before and after the deformation is obtained by the following equation (1). .

Figure 2006329628
Figure 2006329628

ここで、I(x,y)は変形前画像の座標(x,y)における輝度値、I(x,y)は変形後画像の座標(x,y)における輝度値である。座標(x,y)と(x,y)との間には下記(2)式の関係がある。 Here, I y (x, y) is the luminance value at the coordinates (x, y) of the image before deformation, and I d (x * , y * ) is the luminance value at the coordinates (x * , y * ) of the image after deformation. It is. The relationship of the following formula (2) exists between the coordinates (x, y) and (x * , y * ).

Figure 2006329628
Figure 2006329628

ここで、図1に示すように、uおよびuはそれぞれ計算領域画像の中心におけるx方向およびy方向の変位であり、ΔxおよびΔyは計算領域画像の中心から点(x,y)までの距離である。なお、図1は変形前後の計算領域の関係を表している。変形前のP点が変形後P′点に、Q点がQ′点に移動したとすると、P点の移動量が変位u,uとなり、Q′点の座標が上記(2)式で表される。 Here, as shown in FIG. 1, u x and u y are displacements in the x direction and y direction at the center of the calculation region image, respectively, and Δx and Δy are from the center of the calculation region image to the point (x, y). Is the distance. FIG. 1 shows the relationship between calculation areas before and after deformation. If the P point before deformation is moved to the P ′ point after deformation and the Q point is moved to the Q ′ point, the movement amount of the P point becomes displacement u x , u y , and the coordinates of the Q ′ point are expressed by the above equation (2). It is represented by

上記(1)式のSを最小とする変位u,uおよび変位勾配∂u/∂x,∂u/∂y,∂u/∂x,∂u/∂yの6つの変数を探索することにより変位、すなわち変形量を決定することができる。このとき、1画素以下の解像度で変位を検出する場合には、双一次関数または3次のスプライン関数を利用して、輝度値を補間すればよい。また、計算速度を短縮するため、実際の相関演算方法としては、ニュートン・ラフソン法などが用いられる。すなわち、上記(1)式を6つの未知変数で偏微分して得られる6つの値が全てゼロになるように繰り返し演算を行う。 Six of displacement u x and u y and displacement gradient ∂u x / ∂x, ∂u x / ∂y, ∂u y / ∂x, and ∂u y / ∂y that minimize S in the above equation (1) The displacement, that is, the deformation amount can be determined by searching for the variable. At this time, when detecting a displacement with a resolution of one pixel or less, a luminance value may be interpolated using a bilinear function or a cubic spline function. In order to reduce the calculation speed, Newton-Raphson method or the like is used as an actual correlation calculation method. That is, the calculation is repeated so that the six values obtained by partial differentiation of the above equation (1) with six unknown variables are all zero.

上述したデジタル画像相関法により求められた変位すなわち変形量には、レンズの歪曲収差量が含まれており、以下、この歪曲収差量を補正する方法について説明する。
この歪曲収差量を求める際にも、上述したデジタル画像相関法が用いられる。
The displacement, that is, the deformation amount obtained by the digital image correlation method described above includes the distortion amount of the lens, and a method for correcting the distortion amount will be described below.
The digital image correlation method described above is also used when determining the amount of distortion.

なお、構造物の変形量を求める際には、計算領域の変形について考慮したが、ここでは、レンズによる歪曲収差量を求めだけであるため、すなわち荷重を付与することなく、カメラ装置にて所定距離ずれた位置で撮影して得られた2枚の撮影画像から歪曲収差量を求めるものであり、したがって変形させる必要がないため、剛体変位{この変位には、剛体並進変位(剛体並行移動ともいう)と剛体回転変位(剛体回転移動ともいう)とがある}という語句を用いて説明する。   Note that when calculating the deformation amount of the structure, the deformation of the calculation region was considered, but here, only the amount of distortion due to the lens is obtained, that is, a predetermined amount is not set by the camera device without applying a load. Since the amount of distortion is obtained from two captured images obtained by photographing at a position shifted from each other, and therefore, there is no need to deform the rigid body displacement {this displacement includes rigid body translational displacement (both rigid body parallel displacement and And a rigid body rotational displacement (also referred to as rigid body rotational movement)}.

次に、上述したデジタル画像相関法とほぼ同様の内容ではあるが、再度、所定領域(上述と同様に計算領域と称し、具体的には、数十画素×数十画素の範囲)を用いて移動量を計測する方法について説明しておく。この移動量を用いてレンズによる歪曲収差を補正するものである。   Next, the content is almost the same as that of the digital image correlation method described above, but again using a predetermined region (referred to as a calculation region as described above, specifically, a range of several tens of pixels by several tens of pixels). A method for measuring the movement amount will be described. This amount of movement is used to correct distortion aberration caused by the lens.

移動前後の画像における輝度値の相関は下記(3)式で求められる。   The correlation between the luminance values in the images before and after the movement is obtained by the following equation (3).

Figure 2006329628
Figure 2006329628

(3)式中、I(x,y)は移動前画像の座標(x,y)における輝度値、I(x,y)は移動後画像の座標(x,y)における輝度値である。座標(x,y)と(x,y)との間には下記(4)式の関係がある。 In equation (3), I y (x, y) is the luminance value at the coordinates (x, y) of the image before movement, and I d (x * , y * ) is the coordinates (x * , y * ) of the image after movement. The luminance value at. The relationship of the following formula (4) exists between the coordinates (x, y) and (x * , y * ).

Figure 2006329628
Figure 2006329628

図2に示すように、(4)式中のUおよびUはそれぞれ計算領域画像の中心におけるx方向およびy方向の移動量である。移動前のP点が移動後にP′点に移動したとすると、P点の移動量がU,Uになる。 As shown in FIG. 2, U x and U y in the equation (4) are movement amounts in the x and y directions at the center of the calculation area image, respectively. If the P point before the movement is moved to the P ′ point after the movement, the movement amounts of the P point are U x and U y .

そして、上記(3)式のSを最小とする移動量U,Uを決定すればよい。なお、1画素以下の解像度で変位を検出する場合には、双一次関数または3次のスプライン関数を利用して、輝度値を補間すればよい。また、計算速度を短縮するため、実際の相関演算方法としては、ニュートン・ラフソン法などが用いられる。 Then, the movement amounts U x and U y that minimize S in the above equation (3) may be determined. When detecting displacement with a resolution of 1 pixel or less, a luminance value may be interpolated using a bilinear function or a cubic spline function. In order to reduce the calculation speed, Newton-Raphson method or the like is used as an actual correlation calculation method.

次に、歪曲収差について説明する。
歪曲収差とは、例えば直線である物体が曲線となって撮影される現象を言い、収差の中心(多くの場合は、画像の中心であるが、そうでない場合もある)からの距離を用いてモデル化することができる。
Next, distortion will be described.
Distortion refers to a phenomenon in which a straight object is photographed as a curve, for example, using the distance from the center of the aberration (in many cases the center of the image, but not always) Can be modeled.

例えば、図3に示すように、本来、A点の位置に写るべき点が歪曲収差によりB点に写ったとする。
このA点とB点の距離(収差の量)は、半径方向(放射方向)歪曲収差αと円周方向歪曲収差αθとに分解することができる。
For example, as shown in FIG. 3, it is assumed that a point that should originally appear at the position of point A is reflected at point B due to distortion.
The distance between the points A and B (the amount of aberration) can be decomposed into a radial direction (radial direction) distortion alpha r and circumferential distortion alpha theta.

そして、円周方向歪曲収差αθは半径方向歪曲収差αに比べて十分に小さく、例えば円周方向歪曲収差αθを無視した場合、半径方向歪曲収差αは、収差の中心からの距離rの関数として、下記(5)式にて表される。 The circumferential distortion aberration α θ is sufficiently smaller than the radial distortion aberration α r . For example, when the circumferential distortion aberration α θ is ignored, the radial distortion aberration α r is a distance from the center of the aberration. As a function of r, it is expressed by the following equation (5).

Figure 2006329628
Figure 2006329628

ここで、k,k,k,・・・は収差の量を表す係数である。多くの場合、高次項を無視できるので、(5)式は下記(6)式にて近似することができる。 Here, k 1 , k 2 , k 3 ,... Are coefficients representing the amount of aberration. In many cases, higher-order terms can be ignored, so equation (5) can be approximated by equation (6) below.

Figure 2006329628
Figure 2006329628

すなわち、画像上の歪曲収差の量(幾何学的なずれ量)は収差の中心からの距離rの3乗に比例し、その係数kを決定することで歪曲収差の量を知ることができ、これに基づき補正を行うことができる。 That is, the amount of distortion of the image (geometric deviation amount) is proportional to the cube of the distance r from the center of the aberration, it is possible to know the amount of distortion by determining the coefficients k 1 Based on this, correction can be performed.

そして、上記半径方向歪曲収差αをx方向およびy方向に分解した場合、すなわち直交座標系における歪曲収差の量は、下記(7)式で表される。 When the radial distortion aberration α r is decomposed in the x direction and the y direction, that is, the amount of distortion aberration in the orthogonal coordinate system is expressed by the following equation (7).

Figure 2006329628
Figure 2006329628

ここで、θ=arctan(x,y)である。
上述したように、デジタル画像相関法により、撮影対象物をそのまま移動させた場合、すなわち剛体変位をさせた場合の移動前後における撮影画像から、画像における輝度値の相関を用いて当該撮影対象物の移動量を検出することができる。言い換えれば、この方法を用いることにより、撮影対象物の剛体並進変位(以下、並行移動という)の分布を求めることができる。また、剛体回転変位(以下、回転移動という)の分布も求めることができる。
Here, θ = arctan (x, y).
As described above, when the subject is moved as it is by the digital image correlation method, that is, from the taken images before and after the movement when the rigid body is displaced, the correlation of the luminance value in the image is used. The amount of movement can be detected. In other words, by using this method, the distribution of the rigid translational displacement (hereinafter referred to as parallel movement) of the object to be imaged can be obtained. Further, a distribution of rigid body rotational displacement (hereinafter referred to as rotational movement) can also be obtained.

図4は、x方向(水平方向)に撮影対象物を移動させた場合にデジタル画像相関法で得られた変位分布を示す。レンズに歪曲収差が無い場合には、変位に分布は現れずに一様な値となる。一方、収差がある場合には、図4に示すような変位分布が現れる。この分布を用いて歪曲収差を検出することになる。なお、図4の(a)はx方向変位を示し、(b)はy方向変位を示している。   FIG. 4 shows the displacement distribution obtained by the digital image correlation method when the object to be photographed is moved in the x direction (horizontal direction). When there is no distortion in the lens, the distribution does not appear in the displacement and becomes a uniform value. On the other hand, when there is aberration, a displacement distribution as shown in FIG. 4 appears. Distortion is detected using this distribution. 4A shows the displacement in the x direction, and FIG. 4B shows the displacement in the y direction.

ここで、収差を含む点の座標値をx′,y′、収差の無い理想的な場合の点の座標をx,y、x方向およびy方向の収差の量をα,αとすると、それらの関係は下記(8)式で表される。 Here, if the coordinate value of the point including the aberration is x ′, y ′, the coordinate of the ideal point without aberration is x, y, the amount of aberration in the x direction and the y direction is α x , α y. Their relationship is expressed by the following equation (8).

Figure 2006329628
Figure 2006329628

デジタル画像相関法により得られる移動量、すなわち収差を含んだx方向およびy方向の移動量u′,u′は下記(9)式で表される。 The amount of movement obtained by the digital image correlation method, that is, the amounts of movement u ′ x and u ′ y in the x direction and y direction including aberration are expressed by the following equation (9).

Figure 2006329628
Figure 2006329628

ここで、x′は移動前のx座標(収差を含む)、y′は移動前のy座標(収差を含む)、x′は移動後のx座標(収差を含む)、y′は移動後のy座標(収差を含む)、αxuは点(x,y)におけるx方向収差、αyuは点(x,y)におけるy方向収差、αxdは点(x,y)におけるx方向収差、αydは点(x,y)におけるy方向収差、xは移動前のx座標(収差を含まず)、yは移動前のy座標(収差を含まず)、xは移動後のx座標(収差を含まず)、yは移動後のy座標(収差を含まず)、uはx方向移動量(収差を含まず)、uはy方向移動量(収差を含まず)である。 Here, x ′ u is the x coordinate before movement (including aberration), y ′ u is the y coordinate before movement (including aberration), x ′ d is the x coordinate after movement (including aberration), y ′ d (including aberration) y-coordinate after movement, alpha xu is the point (x u, y u) x-direction aberration in, alpha yu is the point (x u, y u) y-direction aberration in, alpha xd is the point ( x direction aberration at x d , y d ), α yd is the y direction aberration at point (x d , y d ), x u is the x coordinate before movement (excluding aberration), and yu is the y coordinate before movement. (Without aberration), x d is the x coordinate after movement (without aberration), y d is the y coordinate after movement (without aberration), and u x is the amount of movement in the x direction (without aberration) , U y are y-direction movement amounts (not including aberrations).

ところで、撮影対象物が剛体並行移動および剛体回転移動(剛体変位である)した場合を考えてみると、その移動量については、平面を表す方程式(移動量算出式)でもって近似し得るという知見を得た。   By the way, considering the case where the object to be imaged is a rigid body parallel movement and a rigid body rotational movement (rigid body displacement), the knowledge that the movement amount can be approximated by an equation representing a plane (movement amount calculation formula). Got.

すなわち、撮影対象物が剛体並行移動した場合には、移動量uおよびuは、下記(10)式にて表すことができる。 That is, when the object to be imaged is moved in parallel with the rigid body, the movement amounts u x and u y can be expressed by the following equation (10).

Figure 2006329628
Figure 2006329628

ここで、移動量uおよびuは撮影画像上で一様の値(定数)となる。一方、撮影対象物が剛体回転移動した場合には、移動前座標と移動後座標との関係は回転行列を用いて、下記(11)式にて表される。 Here, the movement amounts u x and u y are uniform values (constants) on the captured image. On the other hand, when the object to be imaged is rotated and rotated rigidly, the relationship between the coordinates before movement and the coordinates after movement is expressed by the following equation (11) using a rotation matrix.

Figure 2006329628
Figure 2006329628

したがって、撮影対象物が剛体回転移動した場合の移動量uおよびuは、下記(12)式で表すことができる。 Therefore, the movement amounts u x and u y when the object to be imaged is rotationally moved by a rigid body can be expressed by the following equation (12).

Figure 2006329628
Figure 2006329628

ここで、θは回転角度であるので、撮影した特定の画像に対して定数となる。
すなわち、剛体並行移動を測定した場合には、上記(9)式におけるuおよびuは一定値(測定領域内で一様)となる。一方、剛体並行移動と剛体回転移動の両者を測定した場合には、uおよびuは2次元の平面として表すことができるため、測定した移動量は下記(13)式で示す変位量算出式にて表される。
Here, since θ is a rotation angle, it is a constant for a specific photographed image.
That is, when measured rigid body parallel movement, u x and u y in the above equation (9) becomes a constant value (uniform in the measurement region). On the other hand, when measured both rigid translational movement and the rigid rotation movement, since u x and u y may be represented as a two-dimensional plane, the movement amount measured displacement amount calculation represented by the following formula (13) It is expressed by a formula.

Figure 2006329628
Figure 2006329628

収差のモデルは収差を含まない座標の関数として表されているが、測定結果は収差を含む座標の関数として得られる。
ところで、デジタル画像相関法により得られる移動量は、収差を含む点(x′,y′)の関数として得られるが、(13)式の収差のモデルは当該収差を含まない点(x,y)の関数として与えられている。そのため、各係数を直接決定することはできない。そこで、最小二乗法と繰返し演算を組み合わせて各係数を決定する。
Although the aberration model is expressed as a function of coordinates including no aberration, the measurement result is obtained as a function of coordinates including aberration.
By the way, the movement amount obtained by the digital image correlation method is obtained as a function of the point (x ′, y ′) including the aberration, but the aberration model of the equation (13) does not include the aberration (x, y ) As a function. Therefore, each coefficient cannot be determined directly. Therefore, each coefficient is determined by combining the least square method and the iterative calculation.

まず、収差を含む座標値(x′,y′)を(x,y)に初期値として代入し、最小二乗法により各係数の近似値を決定する.すなわち、下記(14)式にて計算することができる。勿論、最小二乗法を用いる場合には、複数の画素について計算が行われる。   First, a coordinate value (x ′, y ′) including aberration is substituted as an initial value for (x, y), and an approximate value of each coefficient is determined by a least square method. That is, it can be calculated by the following equation (14). Of course, when the least square method is used, calculation is performed for a plurality of pixels.

Figure 2006329628
Figure 2006329628

ここで、   here,

Figure 2006329628
Figure 2006329628

上記式中、下付添字の1・・・nはデータ点のインデックスを示す。以上の計算により得られた各係数の近似値を用い、収差を含まない座標(x,y)の近似値を計算する。その座標値(x,y)を用い、再び、同様の最小二乗法により各係数を計算する。これを各係数の値が収束するまで繰り返すことにより、各係数を決定することができる。   In the above formula, subscripts 1... N indicate data point indexes. Using the approximate value of each coefficient obtained by the above calculation, the approximate value of coordinates (x, y) not including aberration is calculated. Using the coordinate value (x, y), each coefficient is calculated again by the same least square method. By repeating this until the value of each coefficient converges, each coefficient can be determined.

なお、収差の中心を求める必要がある場合には、収差の中心座標を未知数とし、非線形最小二乗法を用いればよい。
そして、上述したように、収差モデル量すなわち収差量が決定されると、この収差量を用いて、デジタル画像相関法にて計測された構造物における変形量の補正が行われる。なお、撮影画像の歪みを補正する場合、例えば画像の輝度値補間法などが用いられる。
If it is necessary to determine the center of aberration, the center coordinate of the aberration is set as an unknown and a nonlinear least square method may be used.
As described above, when the aberration model amount, that is, the aberration amount is determined, the deformation amount of the structure measured by the digital image correlation method is corrected using the aberration amount. In addition, when correcting distortion of a captured image, for example, an image luminance value interpolation method or the like is used.

上述した各事項を踏まえて、構造物、例えば橋梁における変形量計測方法について、簡単に説明する。
まず、図5および図6の模式図に示すように、橋梁1から或る距離だけ離れた位置に光学式カメラ装置2を配置した後、荷重Wを付与する位置の橋梁部分を所定範囲(所定領域、計算領域でもある)に亘って撮影する。
Based on the above items, a method for measuring the amount of deformation in a structure, for example, a bridge, will be briefly described.
First, as shown in the schematic diagrams of FIGS. 5 and 6, after the optical camera device 2 is arranged at a position away from the bridge 1 by a certain distance, the bridge portion at the position where the load W is applied is set within a predetermined range (predetermined). Area and calculation area).

次に、その位置に荷重Wを付与した状態で、所定範囲を撮影する。
そして、荷重Wの付与前と付与後との撮影画像に、デジタル画像相関法を適用して、その変形量を求める。
Next, a predetermined range is photographed with a load W applied to the position.
Then, the digital image correlation method is applied to the photographed images before and after the application of the load W to obtain the deformation amount.

次に、上記光学式カメラ装置2を用いて、荷重Wを付与しない状態で、上記所定領域を撮影した後、所定距離L(例えば、Uに相当)だけずれた位置で、同じく、カメラ装置2にて上記所定領域(計算領域)を撮影する。 Next, after photographing the predetermined area with the optical camera apparatus 2 without applying the load W, the camera apparatus is similarly used at a position shifted by a predetermined distance L (for example, equivalent to U x ). In step 2, the predetermined area (calculation area) is photographed.

次に、これらの撮影画像にデジタル画像相関法を用いて、所定領域についての移動量を検出する。
次に、この移動量を、最小二乗法の(14)式に代入して、(13)式の変位量算出式における各係数を決定した後、この変位量算出式を用いて、所定領域における歪曲収差量を求める。
Next, the amount of movement for a predetermined region is detected using a digital image correlation method for these captured images.
Next, after substituting this amount of movement into the equation (14) of the least square method and determining each coefficient in the equation (13) for calculating the amount of displacement, using this equation for calculating the amount of displacement, Determine the amount of distortion.

そして、この歪曲収差量を用いて、上記求められた変形量に対して補正を行うことにより、歪曲収差の影響を受けない、すなわち橋梁の変形量を精度良く計測することができる。   Then, by correcting the obtained deformation amount using the distortion amount, it is possible to accurately measure the deformation amount of the bridge without being affected by the distortion aberration.

ここで、上述した変形量計測方法をステップ様式にて記載しておく。
すなわち、この変形量計測方法は、構造物に力を付与した際の変形量を計測する方法であって、力の付与前と力の付与後とにおける所定領域を光学式カメラ装置で撮影するステップと、このカメラ装置で撮影された少なくとも2枚の撮影画像にデジタル画像相関法を適用して両撮影画像上の所定領域における変形量を検出するステップと、上記検出された変形量に対して、上記光学式カメラ装置のレンズによる歪曲収差を補正する収差補正ステップとを具備し、
且つ上記収差補正ステップに、上記カメラ装置により構造物の所定領域に対してずれた位置で少なくとも2枚の撮影画像を得るステップと、この少なくとも2枚の撮影画像にデジタル画像相関法を適用して両撮影画像上での所定領域の移動量を検出するステップと、上記カメラ装置を構造物に対してずらした際の平面上での移動量算出式に、収差モデル量を加えてなる変位量算出式に上記移動量を代入し、最小二乗法を用いて当該変位量算出式における各係数を決定するステップと、上記各係数が決定された変位量算出式を用いて収差量を求めるステップとを有せしめた方法である。
Here, the deformation amount measuring method described above is described in a step format.
That is, this deformation amount measuring method is a method of measuring a deformation amount when a force is applied to a structure, and is a step of photographing a predetermined area before and after the application of force with an optical camera device. And applying a digital image correlation method to at least two captured images captured by the camera device to detect a deformation amount in a predetermined region on both captured images, and for the detected deformation amount, An aberration correction step for correcting distortion by the lens of the optical camera device,
In addition, in the aberration correction step, a step of obtaining at least two photographed images at positions shifted from a predetermined region of the structure by the camera device, and applying a digital image correlation method to the at least two photographed images. Detecting the amount of movement of a predetermined area on both captured images and calculating the amount of displacement by adding the aberration model amount to the equation for calculating the amount of movement on the plane when the camera device is displaced with respect to the structure Substituting the amount of movement into the equation, determining each coefficient in the displacement amount calculation formula using the least square method, and obtaining an aberration amount using the displacement amount calculation formula in which each coefficient is determined. This is the method that you have.

さらに、上記収差補正ステップをより詳しく説明すれば、当該収差補正ステップに、カメラ装置にてしかも構造物の所定領域に対してずれた位置で少なくとも2枚の撮影画像を得るステップと、これら少なくとも2枚の撮影画像にデジタル画像相関法を適用して両撮影画像上での所定領域の移動量(u′,u′)を検出するステップと、収差を表す収差モデル量(α,α)にずれによる回転移動および並行移動を考慮した平面の式で表される移動量算出式を加えて得られる下記(A)式および(B)式で示される変位量算出式に、上記ステップで検出された移動量を代入し、最小二乗法を用いて当該変形量算出式の少なくとも収差モデル量を表す係数を決定するステップと、上記各係数が決定された変位量算出式を用いて収差量を求めるステップとを有せしめた方法である。 Further, the aberration correction step will be described in more detail. In the aberration correction step, at least two shot images are obtained at a position shifted by the camera device and with respect to a predetermined region of the structure, and at least two of these A step of detecting a movement amount (u ′ x , u ′ y ) of a predetermined region on both captured images by applying a digital image correlation method to the captured images, and an aberration model amount (α x , α representing aberration) In addition to the displacement amount calculation formula shown by the following formulas (A) and (B) obtained by adding a movement amount calculation formula expressed by a plane formula in consideration of rotational movement and parallel movement due to deviation to y ), the above step Substituting the amount of movement detected in step (2), determining a coefficient representing at least an aberration model amount of the deformation amount calculation formula using the least square method, and using the displacement amount calculation formula in which each coefficient is determined amount A method of the steps was allowed chromatic seeking.

u′=ax+ay+a+α ・・・(A)
u′=ax+ay+a+α ・・・(B)
上述したように、荷重を付与した構造物の変形量をシフトレンズを有する光学式カメラ装置を用いて、荷重の付与前と付与後とにおいてそれぞれ撮影した撮影画像から、デジタル画像相関法を用いて計測し、しかも、この変形量に対し、レンズによる歪曲収差量を補正するようにしたので、例えば計測機器を構造物に設置する必要がなく、また光ファイバーケーブルなども用いる必要がないため、安価な計測機器を用いることができるとともに、簡単な計測作業にて、構造物の変形量を精度良く計測することができる。延いては、構造物の経年状態を精度良く計測することができる。
u ′ x = a 1 x + a 2 y + a 3 + α x (A)
u ′ y = a 4 x + a 5 y + a 6 + α y (B)
As described above, the digital image correlation method is used to calculate the amount of deformation of a structure to which a load is applied from an image photographed before and after the application of the load using an optical camera device having a shift lens. Measurement is performed and the amount of distortion due to the lens is corrected for the amount of deformation. For example, it is not necessary to install a measuring instrument on the structure, and it is not necessary to use an optical fiber cable. A measuring device can be used, and the deformation amount of the structure can be accurately measured by a simple measuring operation. As a result, the aged state of the structure can be accurately measured.

なお、上記実施の形態においては、構造物に荷重を付与した際の変形量を検出するステップを説明した後に、収差補正ステップを説明したが、逆に、収差補正ステップを先に行い、後から、荷重を付与した際の変形量を検出するステップを行うようにしてもよい。   In the above embodiment, the aberration correction step is described after the step of detecting the deformation amount when the load is applied to the structure, but the aberration correction step is performed first. The step of detecting the deformation amount when the load is applied may be performed.

本発明の実施の形態に係る変形量計測方法を説明するための変形部での位置関係を示す図である。It is a figure which shows the positional relationship in the deformation | transformation part for demonstrating the deformation amount measuring method which concerns on embodiment of this invention. 同変形量計測方法での歪曲収差の補正方法を説明するための位置関係を示す図である。It is a figure which shows the positional relationship for demonstrating the correction method of the distortion aberration in the deformation amount measuring method. 同補正方法を説明するための歪曲収差を示す図である。It is a figure which shows the distortion aberration for demonstrating the correction method. 同歪曲収差補正方法における剛体変位を測定した際の変位分布を示す図で、(a)はx方向変位、(b)はy方向変位を示す。It is a figure which shows the displacement distribution at the time of measuring the rigid body displacement in the same distortion correction method, (a) shows displacement in x direction, (b) shows displacement in y direction. 同変形量計測方法を具体的に説明するための橋梁の模式側面図である。It is a model side view of the bridge for demonstrating the deformation amount measuring method concretely. 同変形量計測方法を具体的に説明するための橋梁の模式平面図である。It is a schematic plan view of the bridge for demonstrating the deformation amount measuring method concretely.

符号の説明Explanation of symbols

W 荷重
1 橋梁
2 カメラ装置
W load 1 Bridge 2 Camera device

Claims (2)

構造物に力を付与した際の変形量を計測する方法であって、
力の付与前と力の付与後とにおける所定領域を光学式カメラ装置で撮影するステップと、
このカメラ装置で撮影された少なくとも2枚の撮影画像にデジタル画像相関法を適用して両撮影画像上の所定領域における変形量を検出するステップと、
上記検出された変形量に対して、上記光学式カメラ装置のレンズによる歪曲収差を補正する収差補正ステップとを具備し、
且つ上記収差補正ステップに、
上記カメラ装置により構造物の所定領域に対してずれた位置で少なくとも2枚の撮影画像を得るステップと、
この少なくとも2枚の撮影画像にデジタル画像相関法を適用して両撮影画像上での所定領域の移動量を検出するステップと、
上記カメラ装置を構造物に対してずらした際の平面上での移動量算出式に、収差モデル量を加えてなる変位量算出式に上記移動量を代入し、最小二乗法を用いて当該変位量算出式における各係数を決定するステップと、
上記各係数が決定された変位量算出式を用いて収差量を求めるステップと
を有せしめたことを特徴とする構造物における変形量計測方法。
A method for measuring the amount of deformation when a force is applied to a structure,
Photographing a predetermined area before and after applying force with an optical camera device; and
Applying a digital image correlation method to at least two photographed images photographed by the camera device to detect a deformation amount in a predetermined region on both photographed images;
An aberration correction step for correcting distortion by the lens of the optical camera device with respect to the detected deformation amount,
And in the aberration correction step,
Obtaining at least two photographed images at positions displaced from a predetermined region of the structure by the camera device;
Applying a digital image correlation method to the at least two captured images to detect a movement amount of a predetermined region on both captured images;
The displacement is calculated by adding the aberration model amount to the displacement amount calculation formula obtained by adding the aberration model amount to the movement amount calculation equation on the plane when the camera device is displaced with respect to the structure, and the displacement is calculated using the least square method. Determining each coefficient in the quantity formula,
A method for measuring a deformation amount in a structure, comprising: calculating an aberration amount using a displacement amount calculation formula in which each coefficient is determined.
光学式カメラ装置のレンズとしてシフトレンズを用いたことを特徴とする請求項1に記載の構造物における変形量計測方法。
2. The deformation amount measuring method for a structure according to claim 1, wherein a shift lens is used as a lens of the optical camera device.
JP2005148851A 2005-05-23 2005-05-23 Deformation measurement method for structures Expired - Fee Related JP4836067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005148851A JP4836067B2 (en) 2005-05-23 2005-05-23 Deformation measurement method for structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005148851A JP4836067B2 (en) 2005-05-23 2005-05-23 Deformation measurement method for structures

Publications (2)

Publication Number Publication Date
JP2006329628A true JP2006329628A (en) 2006-12-07
JP4836067B2 JP4836067B2 (en) 2011-12-14

Family

ID=37551481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005148851A Expired - Fee Related JP4836067B2 (en) 2005-05-23 2005-05-23 Deformation measurement method for structures

Country Status (1)

Country Link
JP (1) JP4836067B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343160A (en) * 2005-06-08 2006-12-21 Kanazawa Inst Of Technology Displacement amount measuring method and stress measuring method in structure using picked up image
JP2009264852A (en) * 2008-04-23 2009-11-12 Wakayama Univ Phase analysis method of grid image and displacement measurement method of object using the same, and shape measurement method of object
CN102221341A (en) * 2011-03-16 2011-10-19 中国人民解放军国防科学技术大学 Quick digital image correlation measurement method based on stochastic parallel gradient descent optimization technology
WO2012029658A1 (en) * 2010-08-30 2012-03-08 チームラボ株式会社 Imaging device, image-processing device, image-processing method, and image-processing program
CN102384726A (en) * 2011-12-31 2012-03-21 中国矿业大学 Digital speckle relevant deformation analyzing method of dynamic fracture-containing material
JP2013007624A (en) * 2011-06-23 2013-01-10 Ohbayashi Corp Displacement observation method and displacement observation system
CN102944184A (en) * 2012-10-31 2013-02-27 黄凯 Device and method for machine vision detection of plastic deformation of girder or cargo boom of lifting appliance
CN103017672A (en) * 2012-12-06 2013-04-03 中铁大桥局集团武汉桥梁科学研究院有限公司 Non-contact nondestructive testing method for bridge structure
WO2013103114A1 (en) * 2012-01-06 2013-07-11 グローブライド株式会社 System for designing long resin member
CN103398667A (en) * 2013-08-06 2013-11-20 温州大学 Optical principle based fast plane deformation measuring device and method
CN103575227A (en) * 2013-09-23 2014-02-12 西安新拓三维光测科技有限公司 Vision extensometer implementation method based on digital speckles
CN103837084A (en) * 2014-02-18 2014-06-04 浙江华东工程安全技术有限公司 Three-direction displacement measurement method based on laser speckle imaging technology
CN103884291A (en) * 2014-03-27 2014-06-25 河海大学 Building surface flexible deformation monitoring method based on NURBS parametric surface
CN105157594A (en) * 2015-09-05 2015-12-16 辽宁工程技术大学 Half-subarea-segmentation-method-based digital image correlation method
CN105469398A (en) * 2015-11-23 2016-04-06 南京航空航天大学 Deformation speckle generation method based on reverse mapping method
JP2016084579A (en) * 2014-10-23 2016-05-19 国立研究開発法人産業技術総合研究所 Monitoring method and monitoring device for deflection amount distribution of structure
CN105783735A (en) * 2016-05-10 2016-07-20 中国科学技术大学 Real-time extensometer measurement method based on two-dimensional digital image correlative compensation algorithm
CN105976356A (en) * 2016-04-26 2016-09-28 南京航空航天大学 Robust digital image correlation method based on correlation entropy criterion
JP2017142185A (en) * 2016-02-10 2017-08-17 国立研究開発法人産業技術総合研究所 Displacement measuring device, displacement measuring method, and program thereof
JP6322817B1 (en) * 2017-01-25 2018-05-16 パナソニックIpマネジメント株式会社 Rigidity measuring apparatus and rigidity measuring method
WO2018138943A1 (en) * 2017-01-25 2018-08-02 パナソニックIpマネジメント株式会社 Rigidity measurement device and rigidity measurement method
CN108917632A (en) * 2018-05-15 2018-11-30 河北工程大学 A kind of high-efficiency high-precision digital picture correlation displacement post-processing approach
CN110617775A (en) * 2019-09-26 2019-12-27 杭州鲁尔物联科技有限公司 Method, device and system for monitoring bridge deflection based on visual perception
WO2022172507A1 (en) * 2021-02-15 2022-08-18 三菱電機株式会社 Deformation calculation device, deformation measurement device, and deformation calculation method
CN116989733A (en) * 2023-06-29 2023-11-03 中国人民解放军海军工程大学 Method for monitoring deformation and rigid displacement of complex floating raft structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105486244B (en) * 2016-01-28 2018-11-09 广州大学 The Two-dimensional strain measuring system measured based on superhigh precision digital picture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001133225A (en) * 1999-11-01 2001-05-18 Ohbayashi Corp Method of measuring dimension and shape using digital camera
JP2001255125A (en) * 2000-03-09 2001-09-21 Kobe Steel Ltd Optical shape measuring instrument
JP2004077409A (en) * 2002-08-22 2004-03-11 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for measuring distance between mark line and cutting end
JP2005099012A (en) * 2003-09-05 2005-04-14 Fukuoka Prefecture Method and device for surface displacement measurement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001133225A (en) * 1999-11-01 2001-05-18 Ohbayashi Corp Method of measuring dimension and shape using digital camera
JP2001255125A (en) * 2000-03-09 2001-09-21 Kobe Steel Ltd Optical shape measuring instrument
JP2004077409A (en) * 2002-08-22 2004-03-11 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for measuring distance between mark line and cutting end
JP2005099012A (en) * 2003-09-05 2005-04-14 Fukuoka Prefecture Method and device for surface displacement measurement

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343160A (en) * 2005-06-08 2006-12-21 Kanazawa Inst Of Technology Displacement amount measuring method and stress measuring method in structure using picked up image
JP2009264852A (en) * 2008-04-23 2009-11-12 Wakayama Univ Phase analysis method of grid image and displacement measurement method of object using the same, and shape measurement method of object
WO2012029658A1 (en) * 2010-08-30 2012-03-08 チームラボ株式会社 Imaging device, image-processing device, image-processing method, and image-processing program
JP2012050013A (en) * 2010-08-30 2012-03-08 Team Lab Inc Imaging apparatus, image processing device, image processing method, and image processing program
CN102221341A (en) * 2011-03-16 2011-10-19 中国人民解放军国防科学技术大学 Quick digital image correlation measurement method based on stochastic parallel gradient descent optimization technology
JP2013007624A (en) * 2011-06-23 2013-01-10 Ohbayashi Corp Displacement observation method and displacement observation system
CN102384726A (en) * 2011-12-31 2012-03-21 中国矿业大学 Digital speckle relevant deformation analyzing method of dynamic fracture-containing material
JP2013153740A (en) * 2012-01-06 2013-08-15 Globeride Inc Design system for long resin member
WO2013103114A1 (en) * 2012-01-06 2013-07-11 グローブライド株式会社 System for designing long resin member
CN102944184A (en) * 2012-10-31 2013-02-27 黄凯 Device and method for machine vision detection of plastic deformation of girder or cargo boom of lifting appliance
CN103017672A (en) * 2012-12-06 2013-04-03 中铁大桥局集团武汉桥梁科学研究院有限公司 Non-contact nondestructive testing method for bridge structure
CN103398667A (en) * 2013-08-06 2013-11-20 温州大学 Optical principle based fast plane deformation measuring device and method
CN103398667B (en) * 2013-08-06 2015-11-04 温州大学 The quick measurement mechanism of a kind of plane deformation based on optical principle and method
CN103575227A (en) * 2013-09-23 2014-02-12 西安新拓三维光测科技有限公司 Vision extensometer implementation method based on digital speckles
CN103575227B (en) * 2013-09-23 2016-07-06 西安新拓三维光测科技有限公司 A kind of vision extensometer implementation method based on digital speckle
CN103837084A (en) * 2014-02-18 2014-06-04 浙江华东工程安全技术有限公司 Three-direction displacement measurement method based on laser speckle imaging technology
CN103837084B (en) * 2014-02-18 2017-01-04 浙江华东工程安全技术有限公司 Three direction displacement method for measurement based on laser facula imaging technique
CN103884291A (en) * 2014-03-27 2014-06-25 河海大学 Building surface flexible deformation monitoring method based on NURBS parametric surface
JP2016084579A (en) * 2014-10-23 2016-05-19 国立研究開発法人産業技術総合研究所 Monitoring method and monitoring device for deflection amount distribution of structure
CN105157594A (en) * 2015-09-05 2015-12-16 辽宁工程技术大学 Half-subarea-segmentation-method-based digital image correlation method
CN105469398A (en) * 2015-11-23 2016-04-06 南京航空航天大学 Deformation speckle generation method based on reverse mapping method
CN105469398B (en) * 2015-11-23 2018-05-08 南京航空航天大学 A kind of deformation speckle generation method based on back mapping method
JP2017142185A (en) * 2016-02-10 2017-08-17 国立研究開発法人産業技術総合研究所 Displacement measuring device, displacement measuring method, and program thereof
WO2017138314A1 (en) * 2016-02-10 2017-08-17 国立研究開発法人産業技術総合研究所 Displacement measurement device, displacement measurement method, and program for same
CN105976356A (en) * 2016-04-26 2016-09-28 南京航空航天大学 Robust digital image correlation method based on correlation entropy criterion
CN105976356B (en) * 2016-04-26 2019-10-22 南京航空航天大学 A kind of Robust digital figure correlation technique based on joint entropy criterion
CN105783735A (en) * 2016-05-10 2016-07-20 中国科学技术大学 Real-time extensometer measurement method based on two-dimensional digital image correlative compensation algorithm
WO2018138943A1 (en) * 2017-01-25 2018-08-02 パナソニックIpマネジメント株式会社 Rigidity measurement device and rigidity measurement method
JP2019117201A (en) * 2017-01-25 2019-07-18 パナソニックIpマネジメント株式会社 Measuring apparatus and measuring method
JP6322817B1 (en) * 2017-01-25 2018-05-16 パナソニックIpマネジメント株式会社 Rigidity measuring apparatus and rigidity measuring method
CN108917632A (en) * 2018-05-15 2018-11-30 河北工程大学 A kind of high-efficiency high-precision digital picture correlation displacement post-processing approach
CN110617775A (en) * 2019-09-26 2019-12-27 杭州鲁尔物联科技有限公司 Method, device and system for monitoring bridge deflection based on visual perception
WO2022172507A1 (en) * 2021-02-15 2022-08-18 三菱電機株式会社 Deformation calculation device, deformation measurement device, and deformation calculation method
JP7391252B2 (en) 2021-02-15 2023-12-04 三菱電機株式会社 Deformation calculation device, deformation measurement device, and deformation calculation method
CN116989733A (en) * 2023-06-29 2023-11-03 中国人民解放军海军工程大学 Method for monitoring deformation and rigid displacement of complex floating raft structure
CN116989733B (en) * 2023-06-29 2024-05-31 中国人民解放军海军工程大学 Method for monitoring deformation and rigid displacement of complex floating raft structure

Also Published As

Publication number Publication date
JP4836067B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4836067B2 (en) Deformation measurement method for structures
JP5013047B2 (en) Correction method for displacement measurement using captured images
JP6664000B2 (en) Calibration device, calibration method, optical device, photographing device, and projection device
CN111263142B (en) Method, device, equipment and medium for testing optical anti-shake of camera module
JPWO2009141998A1 (en) Calibration method, calibration apparatus, and calibration system including the apparatus
JP5082941B2 (en) Mark position measurement device, mark position measurement program, and mark mark
JP5388921B2 (en) Three-dimensional distance measuring apparatus and method
JP2012058076A (en) Three-dimensional measurement device and three-dimensional measurement method
EP3548838B1 (en) Wire rope measuring device and wire rope measuring method
JP4775540B2 (en) Distortion correction method for captured images
JP4108085B2 (en) Optical distortion correction apparatus and optical distortion correction method
WO2018168757A1 (en) Image processing device, system, image processing method, article manufacturing method, and program
CN109990801B (en) Level gauge assembly error calibration method based on plumb line
JP2014138332A (en) Image processing system and program
JP6634842B2 (en) Information processing apparatus, information processing method and program
JP4775541B2 (en) Distortion correction method for captured images
JP2012013592A (en) Calibration method for three-dimensional shape measuring machine, and three-dimensional shape measuring machine
JP2019011984A (en) Displacement acquisition device, displacement acquisition method, and program
JP6533914B2 (en) Computer readable recording medium recording measurement method, measurement device, measurement program and measurement program
CN114018167A (en) Bridge deflection measuring method based on monocular three-dimensional vision
Bergues et al. Misalignment contribution to the autocollimator's scale distortion
Su et al. High-accurate camera calibration in three-dimensional visual displacement measurements based on ordinary planar pattern and analytical distortion model
CN112729160A (en) Projection calibration method, device and system based on telecentric imaging and storage medium
JP4240215B2 (en) Video type three-dimensional position measuring device, video type extensometer and video type width meter
WO2022172507A1 (en) Deformation calculation device, deformation measurement device, and deformation calculation method

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110920

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4836067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees