JP2006329081A - Controller for internal combustion engine - Google Patents

Controller for internal combustion engine Download PDF

Info

Publication number
JP2006329081A
JP2006329081A JP2005154133A JP2005154133A JP2006329081A JP 2006329081 A JP2006329081 A JP 2006329081A JP 2005154133 A JP2005154133 A JP 2005154133A JP 2005154133 A JP2005154133 A JP 2005154133A JP 2006329081 A JP2006329081 A JP 2006329081A
Authority
JP
Japan
Prior art keywords
intake
cylinder
residual gas
intake pipe
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005154133A
Other languages
Japanese (ja)
Other versions
JP4424257B2 (en
Inventor
Eiji Itakura
英二 板倉
Zenichi Naemura
善一 苗村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005154133A priority Critical patent/JP4424257B2/en
Publication of JP2006329081A publication Critical patent/JP2006329081A/en
Application granted granted Critical
Publication of JP4424257B2 publication Critical patent/JP4424257B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately calculate quantity of air filled into a cylinder irrespective of an operation condition of an engine. <P>SOLUTION: Quantity of air filled into the cylinder at steady time being quantity of air filled into the cylinder when assuming that a current operation condition of the engine is a steady condition is calculated using a primary function expression of intake pipe pressure IM when closing an intake valve. Coefficient of compensation decided in accordance with difference between amount of remaining gas when assuming that the current operation condition of the engine is the steady condition and amount of remaining gas in the current operation condition of the engine is calculated. By compensating the quantity of air filled into the cylinder at the steady time by the coefficient of compensation, the quantity of air filled into the cylinder in the current operation condition of the engine is calculated. Amount of fuel injection is calculated based on the quantity of air filled into the cylinder. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine.

スロットル弁から吸気弁までの吸気通路部分を吸気管と称し、吸気管内の圧力を吸気管圧力と称すると、従来より、筒内に充填された空気の流量である筒内充填空気量を、吸気弁閉弁時における吸気管圧力である吸気弁閉弁時吸気管圧力の一次関数を用いて算出できることが理論的及び経験的に知られている。   The intake passage portion from the throttle valve to the intake valve is referred to as an intake pipe, and the pressure in the intake pipe is referred to as the intake pipe pressure. Conventionally, the amount of air charged in the cylinder, which is the flow rate of air charged in the cylinder, It is theoretically and empirically known that it can be calculated using a linear function of the intake pipe pressure when the intake valve is closed, which is the intake pipe pressure when the valve is closed.

そこで、例えば機関運転状態に基づいて吸気弁閉弁時吸気管圧力の一次関数式を決定し、この一次関数式を用いて筒内充填空気量を算出するようにした内燃機関が公知である(特許文献1参照)。   Therefore, for example, an internal combustion engine is known in which a linear function equation of an intake pipe pressure at the time of closing of an intake valve is determined based on an engine operating state, and a cylinder charge air amount is calculated using this linear function equation ( Patent Document 1).

ところで、燃焼の後に排気行程が行われても、筒内のすべての既燃ガスが排気通路内に排出されるわけではなく、既燃ガスの一部は残留ガスとして筒内に残留する。この残留ガスは吸気弁が開弁するといったん吸気管内に逆流し、次いで空気と共に筒内に流入する。従って、吸気管から筒内へは空気ばかりでなく残留ガスも吸入され、筒内には空気及び残留ガスが充填されることになる。   By the way, even if the exhaust stroke is performed after the combustion, not all the burned gas in the cylinder is discharged into the exhaust passage, and a part of the burned gas remains in the cylinder as a residual gas. This residual gas once flows back into the intake pipe once the intake valve is opened, and then flows into the cylinder together with air. Therefore, not only air but also residual gas is sucked into the cylinder from the intake pipe, and the cylinder is filled with air and residual gas.

上述の特許文献1では、このようにな残留ガス量を考慮した一次関数式を用いて筒内充填空気量が算出されている。   In the above-described Patent Document 1, the cylinder charge air amount is calculated using a linear function formula taking such residual gas amount into consideration.

特開2004−197617号公報JP 2004-197617 A 特開2001−41095号公報JP 2001-41095 A

上述した一次関数式を特定するパラメータは例えば機関を定常運転させながら実験して決定することができる。ところが、このようにして特定された一次関数式を用いる場合、定常運転時には筒内充填空気量を正確に算出できるけれども、過渡運転時には筒内充填空気量を正確に算出することができないおそれがある。   The parameter specifying the above-described linear function equation can be determined by experimentation while the engine is in steady operation, for example. However, when the linear function specified in this way is used, the in-cylinder charged air amount can be accurately calculated during steady operation, but the in-cylinder charged air amount may not be accurately calculated during transient operation. .

詳しく説明すると、吸気管内に逆流する残留ガスの量は残留ガスが吸気管内に逆流し始める時点即ち例えば排気弁閉弁時における吸気管圧力である排気弁閉弁時吸気管圧力に依存し、従って筒内に充填される残留ガス量も排気弁閉弁時吸気管圧力に依存することになる。ところが、例えば加速運転時と定常運転時とを比較すると、吸気弁閉弁時吸気管圧力が同じ場合であっても、加速運転時における排気弁閉弁時吸気管圧力が定常運転時におけるよりも低くなっており、このため加速運転時に吸気通路内に逆流する残留ガス量は定常運転時におけるよりも一定量だけ多くなる。   More specifically, the amount of residual gas that flows back into the intake pipe depends on the time when the residual gas starts to flow back into the intake pipe, that is, the intake pipe pressure when the exhaust valve is closed, for example, the intake pipe pressure when the exhaust valve is closed. The amount of residual gas filled in the cylinder also depends on the intake pipe pressure when the exhaust valve is closed. However, for example, when comparing the acceleration operation and the steady operation, even if the intake pipe pressure when the intake valve is closed is the same, the intake pipe pressure when the exhaust valve is closed during the acceleration operation is higher than that during the steady operation. For this reason, the amount of residual gas that flows back into the intake passage during acceleration operation is increased by a fixed amount than during steady operation.

従って、定常運転を行って特定された上述の一次関数式を用い加速運転時における筒内充填空気量を算出すると、この算出された筒内充填空気量は実際の筒内充填空気量よりも上述の一定量だけ多くなるということになる。   Accordingly, when the in-cylinder charged air amount at the time of the acceleration operation is calculated using the above-described linear function formula determined by performing the steady operation, the calculated in-cylinder charged air amount is greater than the actual in-cylinder charged air amount. This means that only a certain amount will increase.

そこで本発明は、機関運転状態にかかわらず筒内充填空気量を正確に算出できるようにする内燃機関の制御装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a control device for an internal combustion engine that can accurately calculate the in-cylinder charged air amount regardless of the engine operating state.

前記課題を解決するために1番目の発明によれば、現在の機関運転状態が予め定められた基準状態であると仮定したときの筒内充填空気量である基準時筒内充填空気量を現在の機関運転状態に基づいて算出する基準時空気量算出手段と、現在の機関運転状態が該基準状態であると仮定したときの残留ガス量と現在の機関運転状態における残留ガス量との差に応じて定まる補正係数を算出する補正係数算出手段と、基準時筒内充填空気量を該補正係数でもって補正することにより、現在の機関運転状態における筒内充填空気量を算出する実空気量手段と、該筒内充填空気量に基づいて機関制御を行う制御手段と、を具備した内燃機関の制御装置が提供される。   In order to solve the above-described problem, according to the first aspect of the present invention, the reference-time cylinder charge air amount, which is the cylinder charge air amount when assuming that the current engine operating state is a predetermined reference state, The reference air amount calculation means for calculating based on the engine operating state of the engine and the difference between the residual gas amount when the current engine operating state is assumed to be the reference state and the residual gas amount in the current engine operating state Correction coefficient calculating means for calculating a correction coefficient that is determined in accordance with this, and actual air amount means for calculating the in-cylinder charged air amount in the current engine operating state by correcting the reference-time in-cylinder charged air amount with the correction coefficient. And a control means for performing engine control based on the in-cylinder charged air amount.

また、2番目の発明によれば1番目の発明において、前記基準状態が定常状態であり、前記基準時空気量算出手段は、吸気弁閉弁時における吸気管圧力の一次関数式を用いて基準時筒内充填空気量を算出する。   According to a second aspect, in the first aspect, the reference state is a steady state, and the reference-time air amount calculating means uses a linear function equation of an intake pipe pressure when the intake valve is closed as a reference. The hourly cylinder charge air amount is calculated.

また、3番目の発明によれば1番目の発明において、前記補正係数算出手段は、筒内から吸気通路への残留ガスが逆流する逆流期間の初期における吸気管圧力と、吸気弁閉弁時における吸気管圧力とに基づいて前記補正係数を算出する。   Further, according to a third aspect, in the first aspect, the correction coefficient calculating means is configured such that the intake pipe pressure at the initial stage of the backflow period in which the residual gas flows back from the cylinder into the intake passage, and the intake valve is closed. The correction coefficient is calculated based on the intake pipe pressure.

また、4番目の発明によれば3番目の発明において、前記補正係数算出手段は、逆流期間の初期における吸気管圧力及び残留ガスの温度と、吸気弁閉弁時における吸気管圧力及び残留ガスの温度とに基づいて前記補正係数を算出する。   According to a fourth aspect, in the third aspect, the correction coefficient calculation means includes the intake pipe pressure and the residual gas temperature at the initial stage of the backflow period, and the intake pipe pressure and the residual gas at the time of closing the intake valve. The correction coefficient is calculated based on the temperature.

機関運転状態にかかわらず筒内充填空気量を正確に算出することができる。   The cylinder charge air amount can be accurately calculated regardless of the engine operating state.

図1は本発明を火花点火式内燃機関に適用した場合を示している。しかしながら、本発明を圧縮着火式内燃機関に適用することもできる。   FIG. 1 shows a case where the present invention is applied to a spark ignition type internal combustion engine. However, the present invention can also be applied to a compression ignition type internal combustion engine.

図1を参照すると、1は例えば4つの気筒を備えた機関本体、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は吸気弁、7は吸気ポート、8は排気弁、9は排気ポート、10は点火栓をそれぞれ示す。吸気ポート7は対応する吸気枝管11を介してサージタンク12に連結され、サージタンク12は吸気ダクト13を介してエアクリーナ14に連結される。各吸気枝管11内には燃料噴射弁15が配置され、吸気ダクト13内にはステップモータ16により駆動されるスロットル弁17が配置される。なお、本明細書では、スロットル弁17下流の吸気ダクト13、サージタンク12、吸気枝管11、及び吸気ポート7からなる吸気通路部分を吸気管IMと称している。   Referring to FIG. 1, for example, 1 is an engine body having four cylinders, 2 is a cylinder block, 3 is a cylinder head, 4 is a piston, 5 is a combustion chamber, 6 is an intake valve, 7 is an intake port, and 8 is an exhaust. A valve, 9 is an exhaust port, and 10 is a spark plug. The intake port 7 is connected to a surge tank 12 via a corresponding intake branch pipe 11, and the surge tank 12 is connected to an air cleaner 14 via an intake duct 13. A fuel injection valve 15 is disposed in each intake branch pipe 11, and a throttle valve 17 driven by a step motor 16 is disposed in the intake duct 13. In the present specification, an intake passage portion including the intake duct 13, the surge tank 12, the intake branch pipe 11, and the intake port 7 downstream of the throttle valve 17 is referred to as an intake pipe IM.

一方、排気ポート9は排気マニホルド18及び排気管19を介して触媒コンバータ20に連結され、この触媒コンバータ20は図示しないマフラを介して大気に連通される。   On the other hand, the exhaust port 9 is connected to a catalytic converter 20 via an exhaust manifold 18 and an exhaust pipe 19, and this catalytic converter 20 is communicated to the atmosphere via a muffler (not shown).

各気筒の吸気弁6は吸気弁駆動装置21により開閉弁駆動される。この吸気弁駆動装置21は例えばカムシャフトと、クランク角に対するカムシャフト回転角の位相を連続的に変更するための位相変更機構とを具備する。図1に示される内燃機関では、図2に示されるように、吸気弁6の開弁時期IVOが遅角側のIVOrと進角側のIVOaとの間で変更され、吸気弁6の閉弁時期が遅角側のIVCrと進角側のIVCaとの間で変更される。この場合、遅角側のIVOaに対する、吸気弁6の開弁時期IVOの進角量VVTが例えば機関回転数及び機関負荷率(後述する)のような機関運転状態に基づいて制御される。このように吸気弁進角量VVTが変更されると、吸気弁6と排気弁8との両方が開弁しているオーバラップ期間VOWが変更される。なお、図2において、EVO,EVCは排気弁8の開弁時期及び閉弁時期をそれぞれ示している。   The intake valve 6 of each cylinder is driven to open and close by an intake valve drive device 21. The intake valve driving device 21 includes, for example, a camshaft and a phase changing mechanism for continuously changing the phase of the camshaft rotation angle with respect to the crank angle. In the internal combustion engine shown in FIG. 1, as shown in FIG. 2, the valve opening timing IVO of the intake valve 6 is changed between the retard side IVOr and the advance side IVOa, and the intake valve 6 is closed. The timing is changed between the retarded IVCr and the advanced IVCa. In this case, the advance amount VVT of the valve opening timing IVO of the intake valve 6 with respect to the retarded side IVOa is controlled based on the engine operating state such as the engine speed and the engine load factor (described later). When the intake valve advance amount VVT is changed in this way, the overlap period VOW in which both the intake valve 6 and the exhaust valve 8 are open is changed. In FIG. 2, EVO and EVC indicate the opening timing and closing timing of the exhaust valve 8, respectively.

図2に示される例では、吸気弁6のリフト量及び作用角(開弁期間)が維持されつつ開弁時期(位相)が変更される。しかしながら、吸気弁6のリフト量又は作用角が変更される場合にも本発明を適用できる。   In the example shown in FIG. 2, the valve opening timing (phase) is changed while the lift amount and the operating angle (valve opening period) of the intake valve 6 are maintained. However, the present invention can also be applied when the lift amount or operating angle of the intake valve 6 is changed.

電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35及び出力ポート36を具備する。図1と共に図3を参照すると、スロットル弁17上流の吸気ダクト13にはスロットル弁17を通過する空気流量であるスロットル弁通過空気流量mt(g/sec)を検出するためのエアフローメータ39と、大気圧Pa(kPa)を検出するための大気圧センサ40とが取り付けられる。このエアフローメータ39には大気温度Ta(K)を検出するための大気温度センサが内蔵されている。また、サージタンク12には吸気管IM内のガス温度である吸気管温度Tm(K)を検出するための吸気温度センサ41が取り付けられる。更に、アクセルペダル42にはアクセルペダル42の踏み込み量ACCを検出するための負荷センサ43が接続される。これらセンサ39,40,41,43の出力信号はそれぞれ対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ44が接続される。CPU34ではクランク角センサ44の出力パルスに基づいて機関回転数Neが算出される。一方、出力ポート36は対応する駆動回路38を介して点火栓10、燃料噴射弁15、ステップモータ16、及び吸気弁駆動装置21にそれぞれ接続され、これらは電子制御ユニット30からの出力信号に基づいて制御される。   The electronic control unit 30 is composed of a digital computer, and is connected to each other by a bidirectional bus 31. A ROM (Read Only Memory) 32, a RAM (Random Access Memory) 33, a CPU (Microprocessor) 34, an input port 35 and an output port 36. It comprises. Referring to FIG. 3 together with FIG. 1, an air flow meter 39 for detecting a throttle valve passage air flow rate mt (g / sec), which is an air flow rate passing through the throttle valve 17, in the intake duct 13 upstream of the throttle valve 17, An atmospheric pressure sensor 40 for detecting the atmospheric pressure Pa (kPa) is attached. This air flow meter 39 incorporates an atmospheric temperature sensor for detecting the atmospheric temperature Ta (K). The surge tank 12 is provided with an intake air temperature sensor 41 for detecting an intake pipe temperature Tm (K) that is a gas temperature in the intake pipe IM. Further, a load sensor 43 for detecting the depression amount ACC of the accelerator pedal 42 is connected to the accelerator pedal 42. The output signals of these sensors 39, 40, 41, and 43 are input to the input port 35 via corresponding AD converters 37, respectively. Further, a crank angle sensor 44 that generates an output pulse every time the crankshaft rotates, for example, 30 ° is connected to the input port 35. The CPU 34 calculates the engine speed Ne based on the output pulse of the crank angle sensor 44. On the other hand, the output port 36 is connected to the spark plug 10, the fuel injection valve 15, the step motor 16, and the intake valve drive device 21 through corresponding drive circuits 38, which are based on output signals from the electronic control unit 30. Controlled.

図1に示される内燃機関では、燃料噴射量QFは例えば次式(1)に基づいて算出される。   In the internal combustion engine shown in FIG. 1, the fuel injection amount QF is calculated based on the following equation (1), for example.

QF=kAF・KL (1)
ここで、kAFは空燃比設定係数を、KLは機関負荷率(%)をそれぞれ示している。
QF = kAF · KL (1)
Here, kAF represents an air-fuel ratio setting coefficient, and KL represents an engine load factor (%).

空燃比設定係数kAFは目標空燃比を表す係数であり、目標空燃比が大きくなると即ちリーンになると小さくなり、目標空燃比が小さくなると即ちリッチになると大きくなる。この空燃比設定係数kAFは機関運転状態例えば要求負荷及び機関回転数Neの関数として予めROM32内に記憶されている。   The air-fuel ratio setting coefficient kAF is a coefficient representing the target air-fuel ratio, and decreases when the target air-fuel ratio increases, that is, becomes lean, and increases when the target air-fuel ratio decreases, that is, when it becomes rich. This air-fuel ratio setting coefficient kAF is stored in advance in the ROM 32 as a function of the engine operating state, for example, the required load and the engine speed Ne.

機関負荷率KLは各気筒の筒内に充填された空気の量を表すものであり、例えば次式(2)により定義される。   The engine load factor KL represents the amount of air charged in the cylinder of each cylinder, and is defined by the following equation (2), for example.

Figure 2006329081
Figure 2006329081

この式(2)において、Mcは吸気弁6が閉弁したときに各気筒内に充填されている空気の量である筒内充填空気量(g)を、DSPは機関の排気量(リットル)を、NCYLは気筒数を、ρastdは標準状態(1気圧、25℃)における空気の密度(約1.2g/リットル)を、それぞれ示している。 In this equation (2), Mc is the in-cylinder charged air amount (g) that is the amount of air charged in each cylinder when the intake valve 6 is closed, and DSP is the engine exhaust amount (liter). NCYL represents the number of cylinders, and ρastd represents the air density (about 1.2 g / liter) in the standard state (1 atm, 25 ° C.).

この筒内充填空気量Mcは本発明による第1実施例では次式(3)により算出される。   This in-cylinder charged air amount Mc is calculated by the following equation (3) in the first embodiment of the present invention.

Mc=McS+Cegr (3)
ここで、McSは現在の機関運転状態が予め定められた基準状態例えば定常状態であると仮定したときの筒内吸入空気流量mcである定常時筒内充填空気量を、Cegrは後述する補正係数を、それぞれ表している。
Mc = McS + Cegr (3)
Here, McS is the in-cylinder intake air flow rate mc that is the in-cylinder intake air flow rate mc when it is assumed that the current engine operating state is a predetermined reference state, for example, a steady state, and Cegr is a correction coefficient described later. Respectively.

吸気管IMから筒内CYLに吸入される空気の流量を筒内吸入空気流量mc(g/sec)、現在の機関運転状態が定常状態であると仮定したときの筒内吸入空気流量mcを定常時筒内吸入空気流量mcSと称すると、定常時筒内充填空気量McSは次式(4)から算出される。   The flow rate of air sucked into the cylinder CYL from the intake pipe IM is defined as the cylinder intake air flow rate mc (g / sec), and the cylinder intake air flow rate mc when the current engine operating state is assumed to be a steady state. When the constant in-cylinder intake air flow rate mcS is referred to, the steady-state in-cylinder charged air amount McS is calculated from the following equation (4).

McS=mcS・tiv (4)
ここで、tivは各気筒において吸気行程1回に要する時間(sec)を表している。
McS = mcS · tiv (4)
Here, tiv represents the time (sec) required for one intake stroke in each cylinder.

本発明による第1実施例では、定常時筒内吸入空気流量mcSを算出し、次いで式(4)により定常時筒内充填空気量McSを算出すると共に補正係数Cegrを算出し、次いで式(3)により筒内充填空気量Mcを算出すると共に機関負荷率KLを算出し、次いで式(1)により燃料噴射量QFを算出するようにしている。次に、本発明による第1実施例の定常時筒内吸入空気流量mcSの算出方法を説明する。   In the first embodiment according to the present invention, the steady-state in-cylinder intake air flow rate mcS is calculated, then the steady-state in-cylinder charged air amount McS is calculated by the equation (4), the correction coefficient Cegr is calculated, and then the equation (3 ) To calculate the in-cylinder charged air amount Mc and the engine load factor KL, and then the fuel injection amount QF is calculated from equation (1). Next, a method for calculating the steady-state in-cylinder intake air flow rate mcS according to the first embodiment of the present invention will be described.

吸気管IM内の圧力を吸気管圧力Pm(kPa)と称し、吸気弁6が閉弁した時点での吸気管圧力Pmを吸気弁閉弁時吸気管圧力PmIVCと称すると、式(4)の定常時筒内吸入空気流量mcSは例えば次式(5)に基づいて算出される。   When the pressure in the intake pipe IM is referred to as intake pipe pressure Pm (kPa), and the intake pipe pressure Pm at the time when the intake valve 6 is closed is referred to as intake pipe pressure PmIVC when the intake valve is closed, the expression (4) The constant cylinder intake air flow rate mcS is calculated based on the following equation (5), for example.

Figure 2006329081
Figure 2006329081

ここで、ka,kbは機関運転状態に応じて定まるパラメータを表している。なお、特にオーバラップ期間が大きい場合には、定常時筒内吸入空気流量mcSを2つ又はそれ以上の一次関数により、例えば低負荷運転時用の一次関数と高負荷運転時用の一次関数とにより、表すこともできる。 Here, ka and kb represent parameters determined according to the engine operating state. In particular, when the overlap period is large, the steady-state in-cylinder intake air flow rate mcS is expressed by two or more linear functions, for example, a linear function for low load operation and a linear function for high load operation. Can also be expressed.

パラメータka,kbは機関を予め定められた基準状態例えば定常状態で運転させながら実験して得られたものであって、機関運転状態例えば機関回転数Ne及び吸気弁進角量VVTの関数として図4に示されるマップの形でROM32内に予め記憶されている。   The parameters ka and kb are obtained by experiments while operating the engine in a predetermined reference state such as a steady state, and are shown as a function of the engine operation state such as the engine speed Ne and the intake valve advance amount VVT. 4 is stored in advance in the ROM 32 in the form of a map shown in FIG.

パラメータka,kbがこのようにして定められる場合、定常運転時であれば、式(5)の算出結果は定常運転時における筒内吸入空気流量を正確に表している。   When the parameters ka and kb are determined in this way, the calculation result of Expression (5) accurately represents the in-cylinder intake air flow rate during the steady operation when the steady operation is being performed.

式(5)について詳しく説明すると、式(5)の右辺第1項((Ta/Tm)ka・PmIVC)は吸気弁閉弁時に筒内に充填された筒内充填ガス即ち空気及び残留ガスの総量を表し、式(5)の右辺第2項(−(Ta/Tm)kb)はこの筒内充填ガスのうち残留ガスの量を表すことが経験的、理論的に確認されている。   The equation (5) will be described in detail. The first term ((Ta / Tm) ka · PmIVC) on the right side of the equation (5) is the in-cylinder charged gas filled in the cylinder when the intake valve is closed, that is, air and residual gas. It represents the total amount, and it has been empirically and theoretically confirmed that the second term (− (Ta / Tm) kb) on the right side of the formula (5) represents the amount of residual gas in the in-cylinder charged gas.

即ち、定常運転時には図5(A)に示されるように、残留ガスが逆流する逆流期間の初期に残留ガス部分Xだけ吸気管IM内に逆流すると考えると、式(5)は筒内充填ガスからこのガス部分Xを控除して筒内充填空気量を算出しているということになる。   That is, in the steady operation, as shown in FIG. 5A, when it is considered that only the residual gas portion X flows back into the intake pipe IM at the beginning of the backflow period in which the residual gas flows back, the formula (5) Therefore, the amount of air charged in the cylinder is calculated by subtracting the gas portion X from the above.

ところが、過渡運転時の場合は式(5)をそのまま適用することができない。吸気弁閉弁時吸気管圧力PmIVCが同じであっても、逆流期間の初期における吸気管圧力が定常運転時と過渡運転時とで異なるからである。   However, in the case of transient operation, equation (5) cannot be applied as it is. This is because even if the intake pipe pressure PmIVC at the time of closing the intake valve is the same, the intake pipe pressure at the beginning of the backflow period is different between the steady operation and the transient operation.

即ち、例えば加速運転時には逆流期間初期における吸気管圧力は定常運転時におけるよりも低く、このため図5(B)に示されるように逆流期間初期に吸気管IM内には残留ガス部分Xのみならず残留ガス部分Yも逆流する。にもかかわらず、式(5)は残留ガス部分Xだけを控除して筒内充填空気量を算出するので、式(5)の算出結果は実際の値よりも残留ガス部分Yの分だけ多くなり、この場合の式(4)の算出結果も実際の値よりも残留ガス部分Yの分だけ多くなるのである。   That is, for example, during the acceleration operation, the intake pipe pressure at the beginning of the backflow period is lower than that during the steady operation. Therefore, as shown in FIG. The residual gas portion Y also flows backward. Nevertheless, since the formula (5) subtracts only the residual gas portion X and calculates the amount of air charged in the cylinder, the calculation result of the formula (5) is larger by the residual gas portion Y than the actual value. Thus, the calculation result of the equation (4) in this case also increases by the amount of the residual gas portion Y from the actual value.

そこで、本発明による第1実施例では、この残留ガス部分Yを表す補正係数Cegrを算出し、式(4)の算出結果をこの補正係数Cegrにより補正するようにしている。これが本発明の基本的な考え方である。当然、式(5)の算出結果を補正するようにしてもよい。   Therefore, in the first embodiment according to the present invention, the correction coefficient Cegr representing the residual gas portion Y is calculated, and the calculation result of the equation (4) is corrected by the correction coefficient Cegr. This is the basic idea of the present invention. Of course, you may make it correct | amend the calculation result of Formula (5).

なお、図5(A),(B)はパラメータka,kb及び吸気弁閉弁時吸気管圧力PmIVCがほぼ同じ2つの運転状態の、逆流期間初期における残留ガスの状態を概略的に表しており、図5(A)は定常運転時を、図5(B)は加速運転時を、それぞれ示している。   FIGS. 5 (A) and 5 (B) schematically show the state of residual gas at the beginning of the backflow period in two operating states in which the parameters ka and kb and the intake pipe pressure PmIVC when the intake valve is closed are substantially the same. FIG. 5A shows the steady operation, and FIG. 5B shows the acceleration operation.

一般的に言うと、過渡運転時における機関回転数Ne及び吸気弁進角量VVTから決定されたパラメータka,kb並びに吸気弁閉弁時吸気管圧力PmIVCを用いて得られる式(4)ないし式(5)の算出結果は、現在の機関運転状態が基準状態ないし定常状態であると仮定したときの筒内充填空気流量ないし筒内吸入空気流量を表していると考えることができる。また、上述の補正係数Cegrは、現在の機関運転状態が基準状態ないし定常状態であると仮定したときの残留ガス量と現在の機関運転状態における残留ガス量との差に応じて定められると考えることができる。   Generally speaking, the equations (4) to (4) obtained using the parameters ka and kb determined from the engine speed Ne and the intake valve advance amount VVT during transient operation and the intake pipe pressure PmIVC when the intake valve is closed. The calculation result of (5) can be considered to represent the in-cylinder charged air flow rate or the in-cylinder intake air flow rate when it is assumed that the current engine operating state is the reference state or the steady state. Further, the correction coefficient Cegr described above is determined according to the difference between the residual gas amount when the current engine operating state is assumed to be the reference state or the steady state and the residual gas amount in the current engine operating state. be able to.

上述した逆流期間の初期は概ね吸気弁開弁時から排気弁閉弁時までである。以下では、逆流期間初期における吸気管圧力として、排気弁閉弁時における吸気管圧力である排気弁閉弁時吸気管圧力PmEVCを例にとって説明する。   The initial period of the backflow period described above is generally from when the intake valve is opened to when the exhaust valve is closed. Hereinafter, the intake pipe pressure PmEVC at the exhaust valve closing time, which is the intake pipe pressure at the time of closing the exhaust valve, will be described as an example of the intake pipe pressure at the beginning of the backflow period.

吸気管圧力Pmは排気弁閉弁時から吸気弁閉弁時までの期間にPmEVCからPmIVCまで変化し、一方、この期間に残留ガスが吸気管IM内に逆流している。そうすると、吸気管IM内に逆流した残留ガスの量は排気弁閉弁時吸気管圧力PmEVC及び吸気弁閉弁時吸気管圧力PmIVCにより表されると考えることができる。   The intake pipe pressure Pm changes from PmEVC to PmIVC during the period from when the exhaust valve is closed to when the intake valve is closed. On the other hand, the residual gas flows back into the intake pipe IM during this period. Then, it can be considered that the amount of residual gas flowing back into the intake pipe IM is represented by the intake pipe pressure PmEVC when the exhaust valve is closed and the intake pipe pressure PmIVC when the intake valve is closed.

そこで本発明による第1実施例では、排気弁閉弁時吸気管圧力PmEVC及び吸気弁閉弁時吸気管圧力PmIVCに基づいて上述の補正係数Cegrを算出するようにしている。具体的に説明すると、補正係数Cegrは図6(A)に示されるように、圧力比PmIVC/PmEVC<1.0となる加速運転時には圧力比PmIVC/PmEVCが小さくなるにつれてゼロから小さくなり、圧力比PmIVC/PmEVC>1.0となる減速運転時には圧力比PmIVC/PmEVCが大きくなるにつれてゼロから大きくなる。また、補正係数Cegrは図6(B)に示されるように、機関回転数Neが高くなるにつれて小さくなり、図6(C)に示されるように吸気弁進角量VVTが大きくなってオーバラップ期間VOW(図2)が大きくなるにつれて大きくなる。この補正係数Cegrは図7に示されるマップの形で予めROM32内に記憶されている。なお、圧力差(PmIVC−PmEVC)に基づいて補正係数Cegrを算出することもできる。   Therefore, in the first embodiment of the present invention, the correction coefficient Cegr is calculated based on the intake pipe pressure PmEVC when the exhaust valve is closed and the intake pipe pressure PmIVC when the intake valve is closed. More specifically, as shown in FIG. 6A, the correction coefficient Cegr decreases from zero as the pressure ratio PmIVC / PmEVC decreases during the acceleration operation where the pressure ratio PmIVC / PmEVC <1.0. During deceleration operation where the ratio PmIVC / PmEVC> 1.0, the pressure ratio increases from zero as the pressure ratio PmIVC / PmEVC increases. Further, the correction coefficient Cegr decreases as the engine speed Ne increases as shown in FIG. 6B, and the intake valve advance amount VVT increases as shown in FIG. The period VOW (FIG. 2) increases as the period increases. This correction coefficient Cegr is stored in advance in the ROM 32 in the form of a map shown in FIG. Note that the correction coefficient Cegr can be calculated based on the pressure difference (PmIVC−PmEVC).

このように、本発明による第1実施例では、定常時筒内吸入空気流量mcS及び補正係数Cegrを算出するのに排気弁閉弁時吸気管圧力PmEVC及び吸気弁閉弁時吸気管圧力PmIVCが必要である。次に、図3を参照しながら本発明による第1実施例の吸気管圧力Pmの算出方法を説明する。   Thus, in the first embodiment according to the present invention, the exhaust pipe closing intake pipe pressure PmEVC and the intake valve closing intake pipe pressure PmIVC are used to calculate the steady-state in-cylinder intake air flow rate mcS and the correction coefficient Cegr. is necessary. Next, a method for calculating the intake pipe pressure Pm according to the first embodiment of the present invention will be described with reference to FIG.

本発明による第1実施例では、吸気管IMについての質量保存則及びエネルギ保存則に着目している。即ち、図3(A)に示されるように、吸気管IM内に流入する空気の流量はスロットル弁通過空気流量mtであり、吸気管IMから流出して筒内CYLに流入する空気の流量は筒内吸入空気流量mcであるから、吸気管IMについての質量保存則及びエネルギ保存則は次式(6),(7)でそれぞれ表される。   In the first embodiment of the present invention, attention is paid to the mass conservation law and the energy conservation law for the intake pipe IM. That is, as shown in FIG. 3A, the flow rate of air flowing into the intake pipe IM is the throttle valve passage air flow rate mt, and the flow rate of air flowing out of the intake pipe IM and flowing into the cylinder CYL is Since it is the in-cylinder intake air flow rate mc, the mass conservation law and the energy conservation law for the intake pipe IM are expressed by the following equations (6) and (7), respectively.

Figure 2006329081
Figure 2006329081

ここで、Mmは吸気管IM内に存在する空気の質量(g)を、tは時間を、Vmは吸気管IMの容積(m)を、Rは気体定数を、それぞれ表している。更に、Cvは空気の定容比熱を、Cpは空気の定圧比熱をそれぞれ表している。 Here, Mm represents the mass (g) of air existing in the intake pipe IM, t represents time, Vm represents the volume (m 3 ) of the intake pipe IM, and R represents the gas constant. Furthermore, Cv represents the constant volume specific heat of air, and Cp represents the constant pressure specific heat of air.

状態方程式(Pm・Vm=Mm・R・Tm)、マイヤーの関係式(Cp=Cv+R)、比熱比κ(=Cp/Cv)、及び圧力温度比PBYT(=Pm/Tm)を用いると、上述の式(6),(7)はそれぞれ次式(8),(9)のように書き換えられる。   Using the equation of state (Pm · Vm = Mm · R · Tm), Meyer's relational expression (Cp = Cv + R), specific heat ratio κ (= Cp / Cv), and pressure-temperature ratio PBYT (= Pm / Tm) Equations (6) and (7) are rewritten as the following equations (8) and (9), respectively.

Figure 2006329081
Figure 2006329081

このように式(8),(9)にはスロットル弁通過空気量mtが含まれている。このスロットル弁通過空気流量mtはエアフローメータ39(図1)により検出することもできるが、次のように算出することもできる。   Thus, the expressions (8) and (9) include the throttle valve passing air amount mt. The throttle valve passage air flow rate mt can be detected by the air flow meter 39 (FIG. 1), but can also be calculated as follows.

即ち、図3(B)に示されるように、スロットル弁17上流の圧力及び温度を大気圧Pa及び大気温度Taと考え、スロットル弁17下流の圧力及び温度を吸気管圧力Pm及び吸気管温度Tmと考えると、スロットル弁通過空気流量mtはスロットル弁17を通過する空気の線速度vt(m/sec)を用いて次式(10)のように表される。   That is, as shown in FIG. 3B, the pressure and temperature upstream of the throttle valve 17 are considered as the atmospheric pressure Pa and the atmospheric temperature Ta, and the pressure and temperature downstream of the throttle valve 17 are taken as the intake pipe pressure Pm and the intake pipe temperature Tm. Therefore, the throttle valve passage air flow rate mt is expressed by the following equation (10) using the linear velocity vt (m / sec) of the air passing through the throttle valve 17.

mt=μt・At・vt・ρm (10)
ここで、μtはスロットル弁17における流量係数を、Atはスロットル弁17の開口面積(m)を、ρmはスロットル弁17下流即ち吸気管IM内における空気密度(kg/m)を、それぞれ表している。
mt = μt · At · vt · ρm (10)
Here, μt is a flow coefficient in the throttle valve 17, At is an opening area (m 2 ) of the throttle valve 17, and ρm is an air density (kg / m 3 ) downstream of the throttle valve 17, that is, in the intake pipe IM. Represents.

また、スロットル弁17の前後における空気についてのエネルギ保存則は次式(11)で表される。   The energy conservation law for the air before and after the throttle valve 17 is expressed by the following equation (11).

vt/2+Cp・Tm=Cp・Ta (11)
更に、スロットル弁17の無限遠上流では吸気管断面積が無限大でありかつ空気流速がゼロであることを考えると、スロットル弁17前後における空気についての運動量保存則は次式(12)で表される。
vt 2/2 + Cp · Tm = Cp · Ta (11)
Furthermore, considering that the intake pipe cross-sectional area is infinite and the air flow velocity is zero at infinity upstream of the throttle valve 17, the momentum conservation law for air before and after the throttle valve 17 is expressed by the following equation (12). Is done.

ρm・vt=Pa−Pm (12)
従って、スロットル弁17上流における状態方程式(Pa=ρa・R・Ta、ここでρaはスロットル弁17上流即ち大気における空気密度(kg/m))、及びスロットル弁17下流における状態方程式(Pm=ρm・R・Tm)と、上述の式(10)(11)(12)とから、スロットル弁通過空気流量mtは次式(13)により表される。
ρm · vt 2 = Pa−Pm (12)
Therefore, the equation of state upstream of the throttle valve 17 (Pa = ρa · R · Ta, where ρa is the air density (kg / m 3 ) upstream of the throttle valve 17, that is, the atmosphere), and the equation of state (Pm = (ρm · R · Tm) and the above formulas (10), (11), and (12), the throttle valve passing air flow rate mt is expressed by the following formula (13).

Figure 2006329081
Figure 2006329081

ここで、kthは次式(14)により表されるスロットル係数、Φ(Pm/Pa)は次式(15)により表される圧力関数項をそれぞれ表している。   Here, kth represents a throttle coefficient represented by the following equation (14), and Φ (Pm / Pa) represents a pressure function term represented by the following equation (15).

Figure 2006329081
Figure 2006329081

スロットル弁17の流量係数μt及び開口面積Atはスロットル開度θtの関数であるので、スロットル係数kthはスロットル開度θt及び大気温度Taの関数になる。本発明による第1実施例では、スロットル係数kthはスロットル開度θt及び大気温度Taの関数として例えば図8(A)に示されるマップの形で予めROM32内に記憶されている。一方、圧力関数項Φ(Pm/Pa)は圧力比Pm/Paの関数として例えば図8(B)に示されるマップの形で予めROM32内に記憶されている。   Since the flow coefficient μt and the opening area At of the throttle valve 17 are functions of the throttle opening θt, the throttle coefficient kth is a function of the throttle opening θt and the atmospheric temperature Ta. In the first embodiment according to the present invention, the throttle coefficient kth is stored in advance in the ROM 32 as a function of the throttle opening θt and the atmospheric temperature Ta, for example, in the form of a map shown in FIG. On the other hand, the pressure function term Φ (Pm / Pa) is stored in advance in the ROM 32 as a function of the pressure ratio Pm / Pa, for example, in the form of a map shown in FIG.

上述した式(8),(9)は実際の計算では、離散間隔Δt及び計算回数を表すパラメータiを用いて次式(16),(17)のように離散化される。   In the actual calculation, the above equations (8) and (9) are discretized as the following equations (16) and (17) using the discrete interval Δt and the parameter i representing the number of calculations.

Figure 2006329081
Figure 2006329081

従って、これら式(16),(17)を解くことにより離散間隔Δtだけ先の吸気管圧力Pm及び吸気管温度Tm(=Pm/PBYT)を算出することができ、この計算を必要な回数だけ繰り返し行えば吸気弁閉弁時吸気管圧力PmIVC及び排気弁閉弁時吸気管圧力PmEVCをそれぞれ算出することができる。   Accordingly, by solving these equations (16) and (17), the intake pipe pressure Pm and the intake pipe temperature Tm (= Pm / PBYT) ahead by the discrete interval Δt can be calculated, and this calculation is performed as many times as necessary. If repeated, the intake pipe pressure PmIVC when the intake valve is closed and the intake pipe pressure PmEVC when the exhaust valve is closed can be calculated.

図9は本発明による第1実施例の燃料噴射量QFの算出ルーチンを示している。このルーチンは予め定められた設定時間毎の割り込みによって実行される。   FIG. 9 shows a routine for calculating the fuel injection amount QF according to the first embodiment of the present invention. This routine is executed by interruption every predetermined time.

図9を参照すると、ステップ100では機関回転数Ne及び吸気弁進角量VVTといった運転状態を表すパラメータが読み込まれる。続くステップ101では吸気弁閉弁時吸気管圧力PmIVC及び排気弁閉弁時吸気管圧力PmEVCが算出される。続くステップ102では定常時筒内吸入空気流量mcSが式(5)から算出される。続くステップ103では定常時筒内充填空気量McSが式(4)から算出される。続くステップ104では補正係数Cegrが図7のマップから算出される。続くステップ105では筒内充填空気量Mcが式(3)から算出される。続くステップ106では機関負荷率KLが式(2)から算出される。続くステップ107では式(1)から燃料噴射量QFが算出される。燃料噴射弁15からは燃料噴射量QFだけ燃料が噴射される。   Referring to FIG. 9, in step 100, parameters representing the operation state such as the engine speed Ne and the intake valve advance amount VVT are read. In the following step 101, the intake pipe pressure PmIVC when the intake valve is closed and the intake pipe pressure PmEVC when the exhaust valve is closed are calculated. In the subsequent step 102, the steady-state in-cylinder intake air flow rate mcS is calculated from the equation (5). In the subsequent step 103, the steady-state in-cylinder charged air amount McS is calculated from the equation (4). In the following step 104, the correction coefficient Cegr is calculated from the map of FIG. In the subsequent step 105, the in-cylinder charged air amount Mc is calculated from the equation (3). In the following step 106, the engine load factor KL is calculated from the equation (2). In the following step 107, the fuel injection amount QF is calculated from the equation (1). Fuel is injected from the fuel injection valve 15 by the fuel injection amount QF.

なお、式(3)に代えて、定常時筒内充填空気量McSに補正係数Cegrを乗算することにより筒内充填空気量Mcを算出することもできる(Mc=McS・Cegr)。当然、この場合の補正係数Cegrは図6及び7に示されるものとは別に算出する必要がある。   Instead of the equation (3), the in-cylinder charged air amount Mc can be calculated by multiplying the steady-state in-cylinder charged air amount McS by the correction coefficient Cegr (Mc = McS · Cegr). Of course, the correction coefficient Cegr in this case needs to be calculated separately from those shown in FIGS.

図6及び7に示される例では、補正係数Cegrは圧力比PmIVC/PmEVCに基づいて算出されている。しかしながら、図10に示されるように補正係数Cegrを吸気弁閉弁時吸気管圧力PmIVC及び排気弁閉弁時吸気管圧力PmEVCそれぞれに基づいて算出することもできる。この場合、補正係数Cegrは図10(A)に示されるように、PmIVC<PmEVCとなる加速運転時には、一定の吸気弁閉弁時吸気管圧力PmIVCに対し排気弁閉弁時吸気管圧力PmEVCが小さくなるにつれてゼロから小さくなり、一定の排気弁閉弁時吸気管圧力PmEVCに対し吸気弁閉弁時吸気管圧力PmIVCが小さくなるにつれて大きくなる。圧力比PmIVC>PmEVCとなる減速運転時には、一定の吸気弁閉弁時吸気管圧力PmIVCに対し排気弁閉弁時吸気管圧力PmEVCが大きくなるにつれてゼロから大きくなり、一定の排気弁閉弁時吸気管圧力PmEVCに対し吸気弁閉弁時吸気管圧力PmIVCが大きくなるにつれて大きくなる。また、補正係数Cegrは図10(B)に示されるように、機関回転数Neが高くなるにつれて小さくなり、図10(C)に示されるように吸気弁進角量VVTが大きくなるにつれて大きくなる。   In the example shown in FIGS. 6 and 7, the correction coefficient Cegr is calculated based on the pressure ratio PmIVC / PmEVC. However, as shown in FIG. 10, the correction coefficient Cegr can also be calculated based on the intake valve closing intake pipe pressure PmIVC and the exhaust valve closing intake pipe pressure PmEVC. In this case, as shown in FIG. 10A, the correction coefficient Cegr is such that, during acceleration operation where PmIVC <PmEVC, the intake pipe pressure PmEVC when the exhaust valve is closed is equal to the intake pipe pressure PmIVC when the exhaust valve is closed. As the pressure decreases, the pressure decreases from zero, and increases with a decrease in the intake valve closing intake pipe pressure PmIVC with respect to the constant exhaust valve closing intake pipe pressure PmEVC. During deceleration operation where the pressure ratio PmIVC> PmEVC, the intake pipe pressure PmEVC when the exhaust valve closes increases from zero with respect to the constant intake pipe pressure PmIVC when the intake valve closes. The intake pipe pressure PmIVC increases as the intake pipe pressure PmIVC increases with respect to the pipe pressure PmEVC. Further, as shown in FIG. 10B, the correction coefficient Cegr decreases as the engine speed Ne increases, and increases as the intake valve advance amount VVT increases as shown in FIG. 10C. .

このように、圧力比の形でなく、吸気弁閉弁時吸気管圧力PmIVC及び排気弁閉弁時吸気管圧力PmEVCそれぞれに基づいて補正係数Cegrが算出されるので、補正係数Cegrを正確に算出することができる。   Thus, since the correction coefficient Cegr is calculated not based on the pressure ratio but based on the intake pipe pressure PmIVC when the intake valve is closed and the intake pipe pressure PmEVC when the exhaust valve is closed, the correction coefficient Cegr is accurately calculated. can do.

次に、本発明による第2実施例を説明する。   Next, a second embodiment according to the present invention will be described.

現在の機関運転状態が定常状態であると仮定したときの吸気弁閉弁時における残留ガス量(g)を定常時残留ガス量MegrSと称し、現在の機関運転状態での吸気閉弁時における実際の残留ガス量(g)を実際残留ガス量MegrAと称すると、これらの差である残留ガス量差ΔMegr(=MegrS−MegrA)は図5を参照して説明した残留ガス部分Yの量を表している。   The residual gas amount (g) when the intake valve is closed when the current engine operating state is assumed to be a steady state is referred to as a steady-state residual gas amount MegrS, which is the actual amount when the intake valve is closed in the current engine operating state. When the residual gas amount (g) is referred to as the actual residual gas amount MegrA, the residual gas amount difference ΔMegr (= MegrS−MegrA), which is the difference between them, represents the amount of the residual gas portion Y described with reference to FIG. ing.

そこで、本発明による第2実施例では、定常時残留ガス量MegrS及び実際残留ガス量MegrAをそれぞれ算出して残留ガス量差ΔMegrを算出し、この残留ガス量差ΔMegrに基づいて補正係数Cegrを算出するようにしている。   Therefore, in the second embodiment according to the present invention, the steady-state residual gas amount MegrS and the actual residual gas amount MegrA are respectively calculated to calculate the residual gas amount difference ΔMegr, and the correction coefficient Cegr is calculated based on the residual gas amount difference ΔMegr. I am trying to calculate.

即ち、定常時残留ガス量MegrSが吸気弁閉弁時吸気管圧力PmIVCに基づいて算出され、実際残留ガス量MegrAが排気弁閉弁時吸気管圧力PmEVCに基づいて算出される。ここで、定常時残留ガス量MegrSは吸気弁閉弁時吸気管圧力PmIVCと機関運転状態例えば機関回転数Ne及び吸気弁進角量VVTの関数として図11(A)に示されるマップの形でROM32内に予め記憶されている。また、実際残留ガス量MegrAは排気弁閉弁時吸気管圧力PmEVCと機関運転状態例えば機関回転数Ne及び吸気弁進角量VVTとの関数として図11(B)に示されるマップの形でROM32内に予め記憶されている。   That is, the steady-state residual gas amount MegrS is calculated based on the intake valve closing intake pipe pressure PmIVC, and the actual residual gas amount MegrA is calculated based on the exhaust valve closing intake pipe pressure PmEVC. Here, the steady-state residual gas amount MegrS is in the form of a map shown in FIG. 11A as a function of the intake valve closing intake pipe pressure PmIVC and the engine operating state, for example, the engine speed Ne and the intake valve advance amount VVT. Stored in the ROM 32 in advance. The actual residual gas amount MegrA is a ROM 32 in the form of a map shown in FIG. 11B as a function of the intake pipe pressure PmEVC when the exhaust valve is closed and the engine operating state, for example, the engine speed Ne and the intake valve advance amount VVT. Is stored in advance.

次いで、残留ガス量差ΔMegrが算出され、次いで補正係数Cegrが残留ガス量差ΔMegr及び吸気弁閉弁時吸気管圧力PmIVCに基づいて算出される。この場合の補正係数Cegrは残留ガス量差ΔMegr及び吸気弁閉弁時吸気管圧力PmIVCの関数として図12に示されるマップの形で予めROM32内に記憶されている。   Next, a residual gas amount difference ΔMegr is calculated, and then a correction coefficient Cegr is calculated based on the residual gas amount difference ΔMegr and the intake pipe closing intake pipe pressure PmIVC. The correction coefficient Cegr in this case is stored in advance in the ROM 32 in the form of a map shown in FIG. 12 as a function of the residual gas amount difference ΔMegr and the intake valve closing intake pipe pressure PmIVC.

ここで、残留ガス量差ΔMegrをそのまま補正係数Cegrとしないのは、上述した残留ガス部分Y(図5)が一定の空間を占めるものであるので、残留ガス部分Yの体積を考慮する必要があるからである。このため、吸気弁閉弁時吸気管圧力PmIVCに基づいて補正係数Cegrを算出するようにしている。   Here, the reason why the residual gas amount difference ΔMegr is not directly used as the correction coefficient Cegr is that the residual gas portion Y (FIG. 5) occupies a certain space, and therefore it is necessary to consider the volume of the residual gas portion Y. Because there is. Therefore, the correction coefficient Cegr is calculated based on the intake pipe closing intake pipe pressure PmIVC.

次いで、上述の式(3)から筒内充填空気量Mcが算出される。   Next, the in-cylinder charged air amount Mc is calculated from the above equation (3).

図13は本発明による第2実施例の燃料噴射量QFの算出ルーチンを示している。このルーチンは予め定められた設定時間毎の割り込みによって実行される。   FIG. 13 shows a routine for calculating the fuel injection amount QF of the second embodiment according to the present invention. This routine is executed by interruption every predetermined time.

図13を参照すると、ステップ200では機関回転数Ne及び吸気弁進角量VVTといった運転状態を表すパラメータが読み込まれる。続くステップ201では吸気弁閉弁時吸気管圧力PmIVC及び排気弁閉弁時吸気管圧力PmEVCが算出される。続くステップ202では定常時筒内吸入空気流量mcSが式(5)から算出される。続くステップ203では定常時筒内充填空気量McSが式(4)から算出される。続くステップ204では定常時残留ガス量MegrS及び実際残留ガス量MegrAが図11(A),(B)のマップからそれぞれ算出される。続くステップ205では残留ガス量差ΔMegrが算出される(ΔMegr=MegrS−MegrA)。続くステップ206では補正係数Cegrが図12のマップから算出される。続くステップ207では筒内充填空気量Mcが式(3)から算出される。続くステップ208では機関負荷率KLが式(2)から算出される。続くステップ209では式(1)から燃料噴射量QFが算出される。燃料噴射弁15からは燃料噴射量QFだけ燃料が噴射される。その他の構成及び作用は上述した本発明による第1実施例と同様であるの説明を省略する。   Referring to FIG. 13, in step 200, parameters representing operating states such as the engine speed Ne and the intake valve advance amount VVT are read. In the following step 201, the intake pipe pressure PmIVC when the intake valve is closed and the intake pipe pressure PmEVC when the exhaust valve is closed are calculated. In the subsequent step 202, the steady-state cylinder intake air flow rate mcS is calculated from the equation (5). In the subsequent step 203, the in-cylinder charged air amount McS is calculated from the equation (4). At the next step 204, the steady-state residual gas amount MegrS and the actual residual gas amount MegrA are calculated from the maps of FIGS. 11A and 11B, respectively. In the following step 205, the residual gas amount difference ΔMegr is calculated (ΔMegr = MegrS−MegrA). In the next step 206, the correction coefficient Cegr is calculated from the map of FIG. In the subsequent step 207, the in-cylinder charged air amount Mc is calculated from the equation (3). In the following step 208, the engine load factor KL is calculated from the equation (2). In the following step 209, the fuel injection amount QF is calculated from the equation (1). Fuel is injected from the fuel injection valve 15 by the fuel injection amount QF. Other configurations and operations are the same as those of the first embodiment according to the present invention described above, and a description thereof will be omitted.

次に本発明による第3実施例を説明する。   Next, a third embodiment according to the present invention will be described.

残留ガス部分Y(図5)の体積を考慮すべきことは上述した通りである。そこで本発明による第3実施例では、定常時残留ガス量MegrS及び実際残留ガス量MegrAを吸気弁閉弁時における体積にそれぞれ換算し、次いでこれら体積の差を算出し、この体積差を質量に換算し直したものを補正係数Cegrとしている。   As described above, the volume of the residual gas portion Y (FIG. 5) should be considered. Therefore, in the third embodiment according to the present invention, the steady-state residual gas amount MegrS and the actual residual gas amount MegrA are respectively converted into volumes when the intake valve is closed, and then the difference between these volumes is calculated. The re-converted one is used as the correction coefficient Cegr.

定常時残留ガス量MegrS及び実際残留ガス量MegrAを吸気弁閉弁時における体積に換算した定常時残留ガス体積VegrS及び実際残留ガス体積VegrAは吸気弁閉弁時吸気管圧力PmIVCを用いてそれぞれ次式(18),(19)により表される。   The steady-state residual gas volume VegrS and the actual residual gas volume VegrA obtained by converting the steady-state residual gas volume MegrS and the actual residual gas volume MegrA into the volume at the time of closing the intake valve are respectively obtained using the intake pipe pressure PmIVC when the intake valve is closed. It is expressed by equations (18) and (19).

Figure 2006329081
Figure 2006329081

ここで、TegrIVCは現在の機関運転状態が定常状態であると仮定したときの吸気弁閉弁時における残留ガスの温度である定常時吸気弁閉弁時残留ガス温度(K)を、TegrEVCは現在の機関運転状態が定常状態であると仮定したときの排気弁閉弁時における残留ガスの温度である定常時排気弁閉弁時残留ガス温度(K)をそれぞれ表している。 Here, TegrIVC is the residual gas temperature (K) when the intake valve is closed, which is the temperature of the residual gas when the intake valve is closed, assuming that the current engine operating state is a steady state. Represents the residual gas temperature (K) when the exhaust valve is closed, which is the temperature of the residual gas when the exhaust valve is closed, assuming that the engine operating state is a steady state.

定常時吸気弁閉弁時残留ガス温度TegrSIVCは吸気弁閉弁時吸気管圧力PmIVCと機関運転状態例えば機関回転数Ne及び吸気弁進角量VVTの関数として図14(A)に示されるマップの形でROM32内に予め記憶されている。また、定常時排気弁閉弁時残留ガス温度TegrSEVCは排気弁閉弁時吸気管圧力PmEVCと機関運転状態例えば機関回転数Ne及び吸気弁進角量VVTとの関数として図14(B)に示されるマップの形でROM32内に予め記憶されている。なお、これら残留ガス温度を排気ガス温度で代用することもできる。   The residual gas temperature TegrSIVC at the time of constant intake valve closing is a map shown in FIG. 14A as a function of the intake pipe closing intake pipe pressure PmIVC and the engine operating state, for example, the engine speed Ne and the intake valve advance amount VVT. Is stored in the ROM 32 in advance. FIG. 14B shows the residual gas temperature TegrSEVC when the exhaust valve is closed during normal operation as a function of the intake pipe pressure PmEVC when the exhaust valve is closed and the engine operating state, for example, the engine speed Ne and the intake valve advance amount VVT. Is stored in advance in the ROM 32 in the form of a map. These residual gas temperatures can be substituted with the exhaust gas temperature.

その上で、定常時残留ガス体積VegrSと実際残留ガス体積VegrAとの差である残留ガス体積差ΔVegr(=VegrS−VegrA)を算出すれば、この残留ガス体積差ΔVegrは吸気弁閉弁時における残留ガス部分Y(図5)の体積を正確に表している。   Then, if the residual gas volume difference ΔVegr (= VegrS−VegrA), which is the difference between the steady-state residual gas volume VegrS and the actual residual gas volume VegrA, is calculated, this residual gas volume difference ΔVegr is calculated when the intake valve is closed. It accurately represents the volume of the residual gas portion Y (FIG. 5).

この残留体積差ΔVegrを質量に換算し直して得られる補正係数Cegrは次式(20)により表すことができる。   The correction coefficient Cegr obtained by converting the residual volume difference ΔVegr back to mass can be expressed by the following equation (20).

Figure 2006329081
Figure 2006329081

このようにして得られる補正係数Cegrは吸気弁閉弁時における残留ガス部分Y(図5)の質量を正確に表している。   The correction coefficient Cegr obtained in this way accurately represents the mass of the residual gas portion Y (FIG. 5) when the intake valve is closed.

従って、一般化して言うと、逆流期間の初期における吸気管圧力及び残留ガスの温度と、吸気弁閉弁時における吸気管圧力及び残留ガスの温度とに基づいて補正係数Cegrが算出されるということになる。   Therefore, in general terms, the correction coefficient Cegr is calculated based on the intake pipe pressure and the residual gas temperature at the beginning of the backflow period, and the intake pipe pressure and the residual gas temperature when the intake valve is closed. become.

図15は本発明による第3実施例の燃料噴射量QFの算出ルーチンを示している。このルーチンは予め定められた設定時間毎の割り込みによって実行される。   FIG. 15 shows a routine for calculating the fuel injection amount QF according to the third embodiment of the present invention. This routine is executed by interruption every predetermined time.

図15を参照すると、ステップ300では機関回転数Ne及び吸気弁進角量VVTといった運転状態を表すパラメータが読み込まれる。続くステップ301では吸気弁閉弁時吸気管圧力PmIVC及び排気弁閉弁時吸気管圧力PmEVCが算出される。続くステップ302では定常時筒内吸入空気流量mcSが式(5)から算出される。続くステップ303では定常時筒内充填空気量McSが式(4)から算出される。続くステップ304では定常時残留ガス量MegrS及び実際残留ガス量MegrAが図11(A),(B)のマップからそれぞれ算出される。続くステップ305では定常時残留ガス温度TegrS及び実際残留ガス温度TegrAが図14(A),(B)のマップからそれぞれ算出される。続くステップ306では式(18),(19)から定常時残留ガス体積VegrS及び実際残留ガス体積VegrAがそれぞれ算出される。続くステップ307では残留ガス体積差ΔVegrが算出される(ΔVegr=VegrS−VegrA)。続くステップ308では補正係数Cegrが式(20)から算出される。続くステップ309では筒内充填空気量Mcが式(3)から算出される。続くステップ310では機関負荷率KLが式(2)から算出される。続くステップ311では式(1)から燃料噴射量QFが算出される。燃料噴射弁15からは燃料噴射量QFだけ燃料が噴射される。その他の構成及び作用は上述した本発明による第2実施例と同様であるの説明を省略する。   Referring to FIG. 15, in step 300, parameters representing the operation state such as the engine speed Ne and the intake valve advance amount VVT are read. In the subsequent step 301, the intake pipe pressure PmIVC when the intake valve is closed and the intake pipe pressure PmEVC when the exhaust valve is closed are calculated. In the subsequent step 302, the steady-state in-cylinder intake air flow rate mcS is calculated from the equation (5). In the subsequent step 303, the cylinder air charge amount McS during normal operation is calculated from the equation (4). In the subsequent step 304, the steady-state residual gas amount MegrS and the actual residual gas amount MegrA are calculated from the maps of FIGS. 11A and 11B, respectively. In the subsequent step 305, the steady-state residual gas temperature TegrS and the actual residual gas temperature TegrA are calculated from the maps of FIGS. 14A and 14B, respectively. In the subsequent step 306, the steady-state residual gas volume VegrS and the actual residual gas volume VegrA are calculated from the equations (18) and (19), respectively. In the subsequent step 307, the residual gas volume difference ΔVegr is calculated (ΔVegr = VegrS−VegrA). In the subsequent step 308, the correction coefficient Cegr is calculated from the equation (20). In the subsequent step 309, the in-cylinder charged air amount Mc is calculated from the equation (3). In the subsequent step 310, the engine load factor KL is calculated from the equation (2). In the following step 311, the fuel injection amount QF is calculated from the equation (1). Fuel is injected from the fuel injection valve 15 by the fuel injection amount QF. Other configurations and operations are the same as those of the second embodiment according to the present invention described above, and a description thereof will be omitted.

内燃機関の全体図である。1 is an overall view of an internal combustion engine. 吸気弁及び排気弁の開閉弁時期を示す図である。It is a figure which shows the on-off valve timing of an intake valve and an exhaust valve. 筒内充填空気量の算出に用いられるパラメータを説明するための図である。It is a figure for demonstrating the parameter used for calculation of the cylinder filling air amount. パラメータka,kbを示すマップである。It is a map which shows parameters ka and kb. 筒内充填空気量の算出方法を説明するための図である。It is a figure for demonstrating the calculation method of cylinder air charge amount. 本発明による第1実施例の補正係数Cegrを示す線図である。It is a diagram showing a correction coefficient Cegr of the first embodiment according to the present invention. 本発明による第1実施例の補正係数Cegrを示すマップである。It is a map which shows the correction coefficient Cegr of 1st Example by this invention. スロットル係数kthを示すマップ及び圧力関数項図Φ(Pm/Pa)を示す線図である。FIG. 6 is a map showing a throttle coefficient kth and a diagram showing a pressure function term diagram Φ (Pm / Pa). 本発明による第1実施例の燃料噴射量QFの算出ルーチンを示すフローチャートである。It is a flowchart which shows the calculation routine of the fuel injection amount QF of 1st Example by this invention. 本発明による別の実施例の補正係数Cegrを示す線図である。It is a diagram which shows the correction coefficient Cegr of another Example by this invention. 定常時残留ガス量MegrS及び実際残留ガス量MegrAを示すマップである。It is a map which shows the steady-state residual gas amount MegrS and the actual residual gas amount MegrA. 本発明による第2実施例の補正係数Cegrを示す線図である。It is a diagram which shows the correction coefficient Cegr of 2nd Example by this invention. 本発明による第2実施例の燃料噴射量QFの算出ルーチンを示すフローチャートである。It is a flowchart which shows the calculation routine of the fuel injection amount QF of 2nd Example by this invention. 定常時吸気弁閉弁時残留ガス温度TegrSIVC及び定常時排気弁閉弁時残留ガス温度TegrSEVCを示すマップである。It is a map which shows the residual gas temperature TegrSIVC at the time of constant intake valve closing, and the residual gas temperature TegrSEVC at the time of steady exhaust valve closing. 本発明による第3実施例の燃料噴射量QFの算出ルーチンを示すフローチャートである。It is a flowchart which shows the calculation routine of the fuel injection amount QF of 3rd Example by this invention.

符号の説明Explanation of symbols

1 機関本体
15 燃料噴射弁
17 スロットル弁
IM 吸気管
1 Engine Body 15 Fuel Injection Valve 17 Throttle Valve IM Intake Pipe

Claims (4)

現在の機関運転状態が予め定められた基準状態であると仮定したときの筒内充填空気量である基準時筒内充填空気量を現在の機関運転状態に基づいて算出する基準時空気量算出手段と、現在の機関運転状態が該基準状態であると仮定したときの残留ガス量と現在の機関運転状態における残留ガス量との差に応じて定まる補正係数を算出する補正係数算出手段と、基準時筒内充填空気量を該補正係数でもって補正することにより、現在の機関運転状態における筒内充填空気量を算出する実空気量手段と、該筒内充填空気量に基づいて機関制御を行う制御手段と、を具備した内燃機関の制御装置。   Reference-time air amount calculation means for calculating a reference-time in-cylinder charged air amount that is an in-cylinder charged air amount when it is assumed that the current engine operating state is a predetermined reference state based on the current engine operating state A correction coefficient calculating means for calculating a correction coefficient determined according to a difference between a residual gas amount when the current engine operation state is the reference state and a residual gas amount in the current engine operation state; By correcting the in-cylinder charged air amount with the correction coefficient, the actual air amount means for calculating the in-cylinder charged air amount in the current engine operating state and engine control based on the in-cylinder charged air amount are performed. And a control device for the internal combustion engine. 前記基準状態が定常状態であり、前記基準時空気量算出手段は、吸気弁閉弁時における吸気管圧力の一次関数式を用いて基準時筒内充填空気量を算出する請求項1に記載の内燃機関の制御装置。   The reference state is a steady state, and the reference-time air amount calculation means calculates a reference-time cylinder charge air amount using a linear function expression of an intake pipe pressure when the intake valve is closed. Control device for internal combustion engine. 前記補正係数算出手段は、筒内から吸気通路への残留ガスが逆流する逆流期間の初期における吸気管圧力と、吸気弁閉弁時における吸気管圧力とに基づいて前記補正係数を算出する請求項1に記載の内燃機関の制御装置。   The correction coefficient calculation means calculates the correction coefficient based on an intake pipe pressure at an initial stage of a reverse flow period in which a residual gas flows backward from the cylinder into the intake passage and an intake pipe pressure when the intake valve is closed. The control apparatus for an internal combustion engine according to claim 1. 前記補正係数算出手段は、逆流期間の初期における吸気管圧力及び残留ガスの温度と、吸気弁閉弁時における吸気管圧力及び残留ガスの温度とに基づいて前記補正係数を算出する請求項3に記載の内燃機関の制御装置。   The correction coefficient calculating means calculates the correction coefficient based on the intake pipe pressure and the residual gas temperature at the initial stage of the backflow period, and the intake pipe pressure and the residual gas temperature when the intake valve is closed. The internal combustion engine control device described.
JP2005154133A 2005-05-26 2005-05-26 Control device for internal combustion engine Expired - Fee Related JP4424257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005154133A JP4424257B2 (en) 2005-05-26 2005-05-26 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005154133A JP4424257B2 (en) 2005-05-26 2005-05-26 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2006329081A true JP2006329081A (en) 2006-12-07
JP4424257B2 JP4424257B2 (en) 2010-03-03

Family

ID=37551022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005154133A Expired - Fee Related JP4424257B2 (en) 2005-05-26 2005-05-26 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4424257B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160724A1 (en) * 2011-05-23 2012-11-29 トヨタ自動車株式会社 Internal combustion engine with variable compression ratio mechanism
JP2015105654A (en) * 2013-11-28 2015-06-08 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Method and device for controlling filling amount in cylinder of internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160724A1 (en) * 2011-05-23 2012-11-29 トヨタ自動車株式会社 Internal combustion engine with variable compression ratio mechanism
CN103547780A (en) * 2011-05-23 2014-01-29 丰田自动车株式会社 Internal combustion engine with variable compression ratio mechanism
JP5569649B2 (en) * 2011-05-23 2014-08-13 トヨタ自動車株式会社 Internal combustion engine having a variable compression ratio mechanism
CN103547780B (en) * 2011-05-23 2016-03-30 丰田自动车株式会社 Possesses the internal-combustion engine of variable compression ratio
JP2015105654A (en) * 2013-11-28 2015-06-08 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Method and device for controlling filling amount in cylinder of internal combustion engine

Also Published As

Publication number Publication date
JP4424257B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
US9249740B2 (en) Control device for internal combustion engine
JP2005307847A (en) Air amount calculation device for internal combustion engine
JP4114574B2 (en) Intake air amount control device and intake air amount control method for internal combustion engine
EP3707361B1 (en) Measurement, modeling, and estimation of scavenging airflow in an internal combustion engine
JP4207718B2 (en) Control device for internal combustion engine
JP2004197616A (en) Exhaust gas recirculation gas volume calculation device of internal combustion engine
JP2006307668A (en) Egr flow rate estimating device of engine
EP2253820B1 (en) Controller for internal-combustion engine
JP4424257B2 (en) Control device for internal combustion engine
JP4348705B2 (en) Fuel injection control device for internal combustion engine
JP2006283634A (en) Engine control device
JP3945509B2 (en) Control device for internal combustion engine
JP2006112321A (en) Control device of internal combustion engine
JP5056807B2 (en) Control device for internal combustion engine
JP6686427B2 (en) Engine controller
JP4241560B2 (en) Intake air amount estimation device for internal combustion engine
JP2006063802A (en) Air amount estimating device for internal combustion engine
JP2956340B2 (en) Fuel injection control device for internal combustion engine
JP4429355B2 (en) Recirculation exhaust gas flow rate calculation device
JP2006307697A (en) Control device of internal combustion engine
JP2008038772A (en) Device and method for estimating suction air volume of internal combustion engine
JP2009121356A (en) Air quantity estimating device for internal combustion engine
JP2005248943A (en) Control device for multi-cylinder internal combustion engine
JP3945510B2 (en) In-cylinder charged air amount estimation device for internal combustion engine
JP4172359B2 (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091130

R151 Written notification of patent or utility model registration

Ref document number: 4424257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees