JP2006329042A - Diesel exhaust emission control device and operation control method - Google Patents

Diesel exhaust emission control device and operation control method Download PDF

Info

Publication number
JP2006329042A
JP2006329042A JP2005152865A JP2005152865A JP2006329042A JP 2006329042 A JP2006329042 A JP 2006329042A JP 2005152865 A JP2005152865 A JP 2005152865A JP 2005152865 A JP2005152865 A JP 2005152865A JP 2006329042 A JP2006329042 A JP 2006329042A
Authority
JP
Japan
Prior art keywords
exhaust gas
porous
intersecting
gas
flat plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005152865A
Other languages
Japanese (ja)
Inventor
Satoki Sasaki
郷紀 佐々木
Kazuki Kobayashi
和樹 小林
Takeshi Hirota
健 広田
Masaaki Ishioka
正明 石岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2005152865A priority Critical patent/JP2006329042A/en
Publication of JP2006329042A publication Critical patent/JP2006329042A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a DE exhaust emission control device which is resistant to clogging or blocking by ash and its operation control method. <P>SOLUTION: In this exhaust emission control device, a base unit comprises a pair of a porous corrugated plate and a porous flat plate. Diesel exhaust gas is flowed in from a direction of an edge line of a forming body in which pairs of the porous corrugated plate and the porous flat plate are laminated so as to alternately intersect with respect to at least each one pair of the porous corrugated plate and the porous flat plate, and an inflow path and an outflow path of exhaust gas are formed between the porous corrugated plates and porous flat plates, respectively. The diesel exhaust emission control device is provided with exhaust gas ducts communicated with a face A into which the exhaust gas is flowed, a face B in the opposite side of the face A, and a side face C intersecting the direction into which the exhaust gas is flowed, respectively and shut-off valves of the exhaust gas ducts; a gas duct bypassing the gas duct on the exhaust gas inflow face A and the gas duct on the intersecting side face C and the shut-off valve of the bypassing gas duct; and a gas duct bypassing the gas duct communicated with the intersecting side face C and the gas duct communicated with the face B in the opposite side in the back stream sides of the respective shut-off valves of these gas ducts. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ディーゼル排ガス浄化装置および運転制御方法に係り、特にディーゼルエンジン(DE)等から排出される排ガス中のばいじん、粒子状物質(Particulate Matter:PM)、窒素酸化物(NOx)、硫黄酸化物(SOx)を処理するディーゼル排ガス浄化装置および運転制御方法に関するものである。   The present invention relates to a diesel exhaust gas purification device and an operation control method, and more particularly, dust, particulate matter (Particulate Matter: PM), nitrogen oxide (NOx), sulfur oxidation in exhaust gas discharged from a diesel engine (DE) or the like. The present invention relates to a diesel exhaust gas purification apparatus and an operation control method for treating a product (SOx).

従来、特許文献1には、ディーゼルエンジンの排気ガス中に存在する粒子を濾過し、そして該粒子をエレメントを通って流れるガスから多孔質壁表面上に捕集するに適する多孔性壁の表面上に白金族金属及びアルカリ土金属酸化物の混合物を含む触媒を担持させた多孔質セラミックスハニカムの他端を閉止物で塞ぎ、排ガスを多孔質壁面を通過させて処理することにより、追加熱源無しでばいじんを捕集・燃焼しながら連続再生運転を可能にする装置が記載されている。また特許文献2には、一酸化窒素(NO)含有ディーゼル排ガスを予め酸化触媒上に通し、NOを二酸化窒素(NO2)に転換させることにより、フィルター上に捕集された微粒子をNO2と反応させ、燃焼させるディーゼル排ガスの微粒子除去方法が記載されている。さらに特許文献3には、セラミックペーパーの平板及びそれを波板状に加工した波板を交互に積層させて、ハニカム状担体を製造する方法が記載されている。
しかし、上記の従来方法では以下の問題点があった。
Conventionally, Patent Document 1 discloses a method for filtering particles present in exhaust gas of a diesel engine and on the surface of the porous wall suitable for collecting the particles from the gas flowing through the element on the surface of the porous wall. The other end of the porous ceramic honeycomb carrying a catalyst containing a mixture of a platinum group metal and an alkaline earth metal oxide is closed with a closing material, and the exhaust gas is passed through the porous wall surface, so that there is no additional heat source. An apparatus that enables continuous regeneration operation while collecting and burning dust is described. Further, in Patent Document 2, a particulate exhaust gas containing nitrogen monoxide (NO) is passed through an oxidation catalyst in advance, and NO is converted into nitrogen dioxide (NO 2 ), so that the fine particles collected on the filter are converted to NO 2 . A method for removing particulates from diesel exhaust gas to be reacted and burned is described. Further, Patent Document 3 describes a method for manufacturing a honeycomb-shaped carrier by alternately laminating a flat plate of ceramic paper and a corrugated plate processed from the corrugated plate.
However, the above conventional method has the following problems.

まず特許文献1の方法では、ディーゼルエンジンから出る排ガス中のばいじんはフィルタに捕集され、ここでフィルタの多孔質壁面に担持されている酸化触媒により、排ガス中のNOが酸化され、フィルタに捕集されたばいじん(主成分:炭素)を酸化燃焼させる。
ところが、通常のエンジンオイルには1〜2重量%程度の金属添加剤に起因する灰分が含まれており、燃料中の硫黄分と反応してCaSO4を主成分とした灰が形成される。この灰は、該酸化触媒面を被覆して触媒活性を低下させることが知られており、特許文献1に示す酸化触媒を担持したセラミックスフィルターは、一定期間以上となると触媒活性が低下し、ばいじんが燃焼されず閉塞してしまう問題があった。
First, in the method of Patent Document 1, the dust in the exhaust gas discharged from the diesel engine is collected by a filter, and the NO in the exhaust gas is oxidized by the oxidation catalyst supported on the porous wall surface of the filter, and is captured by the filter. The collected dust (main component: carbon) is oxidized and burned.
However, ordinary engine oil contains about 1 to 2% by weight of ash due to the metal additive, and reacts with sulfur in the fuel to form ash mainly composed of CaSO 4 . This ash is known to cover the oxidation catalyst surface and reduce the catalytic activity, and the ceramic filter carrying the oxidation catalyst shown in Patent Document 1 has a reduced catalytic activity when it exceeds a certain period of time. There was a problem that would not be burned and would block.

特許文献2の方法においても、酸化触媒はばいじんの多い上流側に配置するため、経時的に酸化触媒の表面に灰が堆積して閉塞し、酸化性能が低下する問題が生じる。また、該フィルタにも灰が堆積し、結局はフィルタ圧損が上昇する。
特許文献3のペーパーハニカムは、ハニカム状に形成されているため、特にばいじんを捕集するフィルタとして使われることはなく、臭気を分解したり、ばいじんを通過させる途中で燃焼させるなどの効果を狙ったものであり、ばいじんを一旦トラップして燃焼させる特許文献1、2の方法に比べて、燃焼・除去効率は低く、10〜20%のばいじんが除去できるのみである。
特公平7-106290号公報 特許第3012249号公報 特開2001−205720号公報
Also in the method of Patent Document 2, since the oxidation catalyst is disposed on the upstream side with much dust, ash accumulates on the surface of the oxidation catalyst over time, resulting in a problem that the oxidation performance is lowered. Also, ash accumulates on the filter, and the filter pressure loss eventually increases.
Since the paper honeycomb of Patent Document 3 is formed in a honeycomb shape, it is not particularly used as a filter for collecting dust, and aims to decompose odors or burn while passing the dust. Compared with the methods of Patent Documents 1 and 2, in which the dust is once trapped and burned, the combustion / removal efficiency is low and only 10 to 20% of the dust can be removed.
Japanese Patent Publication No.7-106290 Japanese Patent No. 3012249 Japanese Patent Laid-Open No. 2001-205720

上記した従来技術は、PMの捕集効率が高く、優れた性能を有するものであるが、軽油や重油を燃料とする場合や、DEを用いた定置式発電設備などに使用する場合には、(i) 微細な細孔でPMを濾過することを基本原理とするフィルタ材であり、通風損失が大きく、効率の高いDEの特質を損なうことが多い、(ii)不適切な操作により多量な煤が発生した場合に閉塞を起こしやすく、逆洗や煤の加熱燃焼など閉塞対策が必要になるものが多い、 (iii)燃料中の灰分がフィルタ材の細孔に溜り、目詰まりを発生させるために寿命が短くなる、(iv)後流部に脱硝装置を持たない場合には、煤の燃焼に使われなかったNO2が排出され、黄色煙の発生や二次公害を引き起こす等の問題点を有している。 The above-described conventional technology has high PM collection efficiency and excellent performance. However, when using light oil or heavy oil as fuel, or when using it for stationary power generation equipment using DE, (i) A filter material based on the basic principle of filtering PM through fine pores, which has a large ventilation loss and often impairs the characteristics of highly efficient DE. (ii) A large amount due to improper operation When soot is generated, it is easy to cause clogging, and there are many things that need countermeasures against clogging such as backwashing and heating and burning of soot. (Iii) Ash in fuel accumulates in the pores of the filter material, causing clogging (Iv) When there is no denitration device in the wake, NO 2 that was not used for burning soot is emitted, causing yellow smoke and secondary pollution. Has a point.

本発明の課題は、上記従来技術の問題点を解決し、目詰まりや灰分の閉塞に強く、逆洗や煤の加熱燃焼などに特別の装置を必要とせず、しかも安価な材料で構成した粒状物質の除去フィルタを用いたDE排ガス浄化装置およびその運転制御方法を提供することにある。   The problem of the present invention is to solve the above-mentioned problems of the prior art, is resistant to clogging and ash blockage, does not require a special device for backwashing or heating and burning of soot, and is made of an inexpensive material. An object of the present invention is to provide a DE exhaust gas purification apparatus using a substance removal filter and an operation control method thereof.

本発明者らは、上記課題について検討し、多孔質波板と多孔質平板の対を基本単位とし、該多孔質波板の波板稜線が少なくとも1対以上ごとに交互に交差するように積層された成形体(以下、DPFブロックまたは交差ハニカムと称することがある)をフィルタとして用い、DE排ガス中の煤塵を該フィルタで捕集するとともに、該フィルタに保持された触媒により排ガス中のPMを排ガス温度レベルで効果的に連続燃焼処理でき、かつDEの運転中にも燃焼灰を効果的に排出できる高寿命の排ガス浄化装置および方法を発明し、特願2000−099149号、2005−054449号等として出願した。本発明は上記発明をさらに発展させ、さらなる寿命向上を目指し鋭意検討を続けた結果、到達したものである。     The inventors of the present invention have studied the above-mentioned problems, and have a porous corrugated plate and a porous flat plate as a basic unit, and are laminated so that corrugated ridges of the porous corrugated plate alternately intersect at least one pair or more. The molded body (hereinafter sometimes referred to as a DPF block or a crossed honeycomb) is used as a filter, and dust in the DE exhaust gas is collected by the filter, and the PM in the exhaust gas is collected by the catalyst held in the filter. Invented a long-lived exhaust gas purification device and method that can effectively perform continuous combustion treatment at the exhaust gas temperature level and can effectively discharge combustion ash even during operation of the DE. Japanese Patent Application Nos. 2000-099149 and 2005-054449 And so on. The present invention has been achieved as a result of further development of the above-mentioned invention and intensive studies aimed at further improvement of the life.

本願で特許請求される発明は次の通りである。
(1)多孔質波板と多孔質平板の対を基本単位とし、該多孔質波板の波板稜線が少なくとも1対ごとに交互に交差するように積層された成形体の前記波板稜線と交差する側面がシールされ、前記波板の稜線の方向からディーゼル排ガスが流入し、前記多孔質平板を介して前記多孔質波板との間にそれぞれ排ガスの流入経路と流出経路が形成される排ガス浄化装置であって、該排ガスが流入する面Aおよびその反対側の面B、および排ガスが流入する方向と交差する側面Cにそれぞれ連通する排ガス煙道およびその遮断弁と、前記排ガスの流入面Aの煙道および前記交差する側面Cの煙道をバイパスする煙道およびその遮断弁と、前記交差する側面Cに連通する煙道および前記反対側の面Bに連通する煙道を各遮断弁の後流でバイパスする煙道とを備えたことを特徴とするディーゼル排ガス浄化装置。
(2)前記排ガスの流入面Aの煙道に設けられる遮断弁を省略したことを特徴とする(1)記載の装置。
The invention claimed in the present application is as follows.
(1) The corrugated plate ridgeline of a molded body having a pair of a porous corrugated plate and a porous flat plate as a basic unit and laminated so that corrugated ridgelines of the porous corrugated plate alternately intersect at least one pair; Exhaust gas in which intersecting side surfaces are sealed, diesel exhaust gas flows in from the direction of the ridgeline of the corrugated plate, and an exhaust gas inflow path and an outflow path are formed between the porous corrugated plate and the porous corrugated plate, respectively. An exhaust gas flue communicating with a surface A into which the exhaust gas flows and a surface B on the opposite side thereof, and a side surface C intersecting with the direction in which the exhaust gas flows, and a shut-off valve thereof, and the exhaust gas inflow surface A flue that bypasses the flue of A and the flue of the intersecting side C and its shutoff valve, and a flue that communicates with the intersecting side C and the flue that communicates with the opposite face B Flue bypassing downstream Diesel exhaust gas purifying apparatus comprising the.
(2) The apparatus according to (1), wherein a shutoff valve provided in the flue on the inflow surface A of the exhaust gas is omitted.

(3)前記多孔質波板および平板に排ガス中の一酸化窒素を二酸化窒素に酸化する機能を有する触媒が担持されている(1)または(2)に記載の装置。
(4)前記遮断弁の操作により、前記排ガスの流入面Aと反対側の面Bへの排ガスの通過を遮り、前記交差する側面Cへ排ガスを通過させることを特徴とする(1)ないし(3)のいずれかに記載の装置の運転制御方法。
(5)前記遮断弁の操作により、前記反対側の面Bへの排ガスの通過を遮り、前記交差する側面Cへ排ガスを通過させる操作(I)と、排ガスの流入面Aおよびその交差する側面Bより排ガスを流入させ、前記反対側の面Bへ排ガスを通過させ、前記交差する側面Cへの排ガスの流通を遮る操作(II)を、一定期間ごとに交互に行なうことを特徴とする(1)ないし(3)のいずれかに記載の装置の運転制御方法。
(3) The apparatus according to (1) or (2), wherein a catalyst having a function of oxidizing nitric oxide in exhaust gas to nitrogen dioxide is supported on the porous corrugated plate and the flat plate.
(4) The operation of the shut-off valve blocks the passage of the exhaust gas to the surface B opposite to the inflow surface A of the exhaust gas, and allows the exhaust gas to pass through the side surface C intersecting (1) to ( 3) The operation control method for an apparatus according to any one of the above.
(5) Operation (I) for blocking the passage of the exhaust gas to the opposite surface B by the operation of the shut-off valve and passing the exhaust gas to the intersecting side surface C, and the exhaust gas inflow surface A and the intersecting side surfaces An operation (II) is performed in which exhaust gas is caused to flow from B, the exhaust gas is allowed to pass through to the opposite surface B, and the flow of the exhaust gas to the intersecting side surface C is alternately performed at regular intervals ( An operation control method for an apparatus according to any one of 1) to (3).

(6)前記排ガスの流入面と反対側の面Bへの排ガスの通過を遮り、前記交差する側面Cへ排ガスを通過させる操作(I)と、排ガスの流入面Aおよびその交差する側面Cより排ガスを流入させ、前記反対側の面Bへ排ガスを通過させ、かつ排ガス流入面Aからその交差する側面Cへの排ガスの流通を遮る操作(II)と、排ガスの流入面Aから排ガスを流入させ、反対側の面Bへ排ガスを通過させるか、または、および前記交差する側面Cへの排ガスの流通を遮る操作(III)を、一定期間ごとに交互に行なうことを特徴とする(1)ないし(3)のいずれかに記載の装置の運転制御方法。
(7)前記装置の差圧または排ガス入口圧力を検知し、該差圧または入口圧力が一定値を超えた場合、または該差圧もしくは入口圧力が上昇し始めた場合、少なくとも排ガスの流入面と反対側の面Bへ排ガスを通過させ、または/および前記交差する側面Cへの排ガスの流通を遮ることを特徴とする(1)ないし(3)のいずれかに記載の装置の運転制御方法。
(6) The operation (I) of blocking the passage of exhaust gas to the surface B opposite to the exhaust gas inflow surface and passing the exhaust gas to the intersecting side surface C, and the exhaust gas inflow surface A and the intersecting side surface C An operation (II) for injecting the exhaust gas, passing the exhaust gas to the opposite surface B and blocking the exhaust gas flow from the exhaust gas inflow surface A to the intersecting side surface C, and injecting the exhaust gas from the exhaust gas inflow surface A And the operation (III) of passing the exhaust gas to the opposite surface B or blocking the flow of the exhaust gas to the intersecting side surface C is alternately performed at regular intervals (1) Thru | or the operation control method of the apparatus in any one of (3).
(7) When the differential pressure or the exhaust gas inlet pressure of the device is detected and the differential pressure or the inlet pressure exceeds a certain value, or when the differential pressure or the inlet pressure starts to increase, at least the exhaust gas inflow surface The operation control method for an apparatus according to any one of (1) to (3), wherein the exhaust gas is allowed to pass through the opposite surface B and / or the flow of the exhaust gas to the intersecting side surface C is blocked.

本発明によれば、従来のような高価なセラミックス焼結フィルタを用いることなく、高性能で低圧損の触媒付DPFを実現することができる。また高価なPtなどの酸化触媒の担持量を飛躍的に少なくしてもPMを効率よく燃焼、除去できるため、大幅なコスト低下を図ることができる。また本発明の排ガス浄化用フィルタへの排ガスの流入方向と該フィルタのシール構造を工夫することにより、煤塵等によるフィルタの閉塞等を効果的に防止できる排ガス浄化装置を実現することができる。   According to the present invention, a high performance and low pressure loss catalyst-attached DPF can be realized without using an expensive ceramic sintered filter as in the prior art. Further, PM can be efficiently burned and removed even if the amount of an expensive oxidation catalyst such as Pt is drastically reduced, so that a significant cost reduction can be achieved. Further, by devising the inflow direction of the exhaust gas to the exhaust gas purification filter of the present invention and the seal structure of the filter, it is possible to realize an exhaust gas purification device that can effectively prevent the filter from being blocked by dust or the like.

まず、交差ハニカムに交互に形成される排ガス流路のうち排ガスの流入面に対応する波板稜線方向の対抗面を閉止することで、排ガスは波板および平板を通過して流入面と交差する側面に流れ、その際に波板、平板上にPM、燃焼灰が捕集される(以下、ろ過モードと記す)。   First, by closing the facing surface in the corrugated plate ridge direction corresponding to the inflow surface of the exhaust gas in the exhaust gas flow path formed alternately in the intersecting honeycomb, the exhaust gas crosses the inflow surface through the corrugated plate and the flat plate. At that time, PM and combustion ash are collected on the corrugated plate and the flat plate (hereinafter referred to as filtration mode).

この時、燃焼灰が捕捉され続けると、平板部のろ過抵抗が増大し、DPF差圧が増加するため、一定差圧、または一定時間ごとに、閉止した波板稜線方向の対抗面を開放し、排ガスを波板稜線方向に通過させることにより、平板に付着した燃焼灰を除去することができる(以下、灰パージモードと記す)。   At this time, if the combustion ash continues to be captured, the filtration resistance of the flat plate portion increases and the DPF differential pressure increases, so that the opposed surface in the direction of the closed corrugated plate ridge line is opened at a constant differential pressure or at regular intervals. By passing the exhaust gas in the corrugated plate ridge direction, the combustion ash adhering to the flat plate can be removed (hereinafter referred to as ash purge mode).

さらに、交差ハニカム成形体に交互に形成される排ガス流路のうち排ガスの流入方向を一時的に逆方向にすることにより、ろ過面を逆洗して付着した煤塵、PM等の燃焼灰(燃えかす)を除去した後、上記排ガス流路の内、排ガスの流入方向の排ガス流路を一時的に開放することにより、運転中でも、燃えかすを系外に押し出す方向へガス流れを変更することができる(以下、逆洗モードと記す)。この逆洗モード状態でも、捕集されたPMは触媒により生成されたNOにより運転温度範囲で燃焼され、燃焼灰はパージガスに搬送されて除去されていくため、運転中もフィルタ差圧を回復、再生でき、担持された触媒の活性を維持することが可能となる。本発明は、このように逆洗モードを併用することにより、さらに飛躍的に触媒活性を長期間維持することが可能となる。 Furthermore, by temporarily reversing the inflow direction of the exhaust gas in the exhaust gas flow path formed alternately in the cross honeycomb molded body, the filter surface is backwashed and burned ash (burning dust, PM, etc.) After removing the debris, by temporarily opening the exhaust gas flow path in the exhaust gas inflow direction, the gas flow can be changed in the direction to push the debris out of the system even during operation. Yes (hereinafter referred to as backwash mode). Even in this backwash mode, the trapped PM is burned in the operating temperature range by the NO 2 generated by the catalyst, and the combustion ash is transported to the purge gas and removed, so the filter differential pressure is recovered even during operation. It is possible to regenerate and maintain the activity of the supported catalyst. In the present invention, by using the backwash mode together in this way, it becomes possible to maintain catalytic activity for a long period of time.

以下、本発明を図面により具体的に説明する。図1は、本発明の排ガス浄化装置における、煤塵捕集の原理(ろ過モードまたは操作(I))を示す説明図、図2は、本発明の排ガス浄化装置における、煤塵除去(灰パージモード)の原理を示す説明図、図3は、本発明の排ガス浄化装置に用いるフィルタ(交差ハニカム)の斜視図である。   Hereinafter, the present invention will be specifically described with reference to the drawings. FIG. 1 is an explanatory view showing the principle of dust collection (filtration mode or operation (I)) in the exhaust gas purification apparatus of the present invention, and FIG. 2 is the dust removal (ash purge mode) in the exhaust gas purification apparatus of the present invention. FIG. 3 is a perspective view of a filter (crossed honeycomb) used in the exhaust gas purifying apparatus of the present invention.

本発明に用いる排ガス浄化用フィルタ(DPF)は、図1に示すように多孔質波板1または2と多孔質平板3の対を基本単位とし、該多孔質波板の波板稜線が交互に交差するように積層された成形体を有し、該成形体の前記波板稜線と交差する側面の一つの面、または該交差する側面であって互いに隣接する二つの面がシールされている。図1では前記波板稜線と交差する側面の一つの面を閉止物4(または遮断弁)でシールした例を示す。すなわち、図1において、DPFは、前記波板1、2と平板3で構成されたブロック状の成形体(DPFブロック6と称することがある)と閉止物4を備える。該DPFブロック6は、多孔質波板1と多孔質平板2の対からなる基本単位が、図3に示すように多孔質波板1の波板稜線が交互に交差するように複数積層されたものから構成される。このようにして多孔質平板3を介して多孔質波板1との間にそれぞれ排ガス(被処理ガス)の流入経路aと排ガス(浄化ガス)の流出経路bが形成される(図3)。   As shown in FIG. 1, the exhaust gas purifying filter (DPF) used in the present invention has a porous corrugated plate 1 or 2 and a porous flat plate 3 as a basic unit, and corrugated ridges of the porous corrugated plate are alternately arranged. The molded body is laminated so as to intersect with each other, and one surface of the side surface that intersects with the corrugated plate ridge line of the molded body, or two surfaces that intersect and are adjacent to each other are sealed. FIG. 1 shows an example in which one of the side surfaces intersecting with the corrugated ridge line is sealed with a closing object 4 (or a shutoff valve). That is, in FIG. 1, the DPF includes a block-shaped molded body (sometimes referred to as a DPF block 6) formed of the corrugated plates 1 and 2 and the flat plate 3 and a closing object 4. In the DPF block 6, a plurality of basic units composed of a pair of the porous corrugated plate 1 and the porous flat plate 2 are laminated so that corrugated ridge lines of the porous corrugated plate 1 alternately intersect as shown in FIG. Composed of things. In this way, an exhaust gas (treated gas) inflow path a and an exhaust gas (purified gas) outflow path b are formed between the porous corrugated plate 1 and the porous corrugated plate 1 (FIG. 3).

本発明において、多孔質波板1、2および多孔質平板3には、シリカアルミナ系セラミックス繊維を用いた不織布や織布、金属繊維織布、コージエライトなどのセラミックスの多孔質焼結体などが用いられる。これらのうち、多孔性に優れた軽量なDPFを得る点からは0.5〜0.1mm厚のセラミックス不織布(シート)の使用が特に好ましい。多孔質波板1、2の波板の形状には特に制限はないが、上記した板厚の場合には、波のピッチを2〜10mm、高さを1〜5mmの範囲とするのが好ましい。   In the present invention, the porous corrugated plates 1 and 2 and the porous flat plate 3 are made of a non-woven fabric or woven fabric using silica-alumina ceramic fibers, a metal fiber woven fabric, a porous sintered body of ceramics such as cordierite, or the like. It is done. Among these, it is particularly preferable to use a ceramic nonwoven fabric (sheet) having a thickness of 0.5 to 0.1 mm from the viewpoint of obtaining a lightweight DPF excellent in porosity. The shape of the corrugated plate of the porous corrugated plates 1 and 2 is not particularly limited, but in the case of the above-described plate thickness, the wave pitch is preferably in the range of 2 to 10 mm and the height in the range of 1 to 5 mm. .

例えば、図1-a、1-bに示すように、波板1、2には、a1=a2=3.3mm、b1=b2=1.9mmとなる高さ、幅のセラミックス製ペーパーを用い、1枚ごとにその向きが交差するように積層することにより、DPFを構成することができる。ただし、この波板1、2は常に1枚ごと向きを交差させる必要はなく、例えば排ガス中のばいじん濃度が非常に高いと予想されるプラントに適用する場合には、入口面Aに当たる波板2の方向に、より多く積層させるなど自由に調整が可能である。また山の高さ、幅もa1、a2=6.3mm、b1=b2=2.5mmなど様々なものが用いることができ、波板1、2のサイズは必ずしも等しくしなくてもよい。さらに交差方向は直交である必要もないが、製造コスト、製造の簡便性等から直交にする方が望ましい。多孔質波板1と多孔質平板2からなる基本形状は、単に積層されているだけでもよいが、無機結合剤等により互いに接着することが好ましい。   For example, as shown in FIGS. 1-a and 1-b, the corrugated plates 1 and 2 are made of ceramic paper having a height and width of a1 = a2 = 3.3 mm and b1 = b2 = 1.9 mm. A DPF can be configured by stacking the sheets so that their directions intersect each other. However, the corrugated plates 1 and 2 do not always need to cross each other. For example, when applied to a plant where the concentration of dust in the exhaust gas is expected to be very high, the corrugated plate 2 that hits the entrance surface A is used. It is possible to adjust freely, such as stacking more in the direction of. Various heights and widths such as a1, a2 = 6.3 mm, b1 = b2 = 2.5 mm can be used, and the corrugated plates 1 and 2 are not necessarily equal in size. Further, the intersecting direction does not need to be orthogonal, but it is desirable that the intersecting direction is orthogonal in terms of manufacturing cost, manufacturing simplicity, and the like. The basic shape composed of the porous corrugated plate 1 and the porous flat plate 2 may be simply laminated, but is preferably bonded to each other with an inorganic binder or the like.

閉止物4は、多孔質波板1の波板稜線方向から流入する排ガスをその流入する面と反対側の面においてその排ガスの通過を阻止することができる機能を有するものであり、その素材やシール構造に特に制限はなく、例えば、シールする面の流路内に緻密な無機固化物を用いて栓をする方法、無機繊維マット状シール材を圧着する方法、金属板で蓋をする方法などの手段を採用することができる。   The closure 4 has a function of preventing the exhaust gas flowing from the corrugated ridge direction of the porous corrugated plate 1 from passing through the exhaust gas on the surface opposite to the inflow surface. There is no particular limitation on the sealing structure, for example, a method of plugging with a dense inorganic solidified material in the flow path of the surface to be sealed, a method of pressure bonding an inorganic fiber mat-shaped sealing material, a method of covering with a metal plate, etc. The following means can be adopted.

本発明に用いられる多孔質波板1、2および多孔質平板3には、少なくとも前述の排ガス流入側の排ガス流路において、排ガス浄化触媒、特に排ガス中のNOをNO2 に酸化する酸化触媒成分が担持されていることが望ましい。該触媒成分には、例えば、白金(Pt)などの通常の貴金属をチタニア、アルミナ、ジルコニア、シリカなどの高表面積担体に担持させた公知の触媒が用いられるが、イオウ分の多い重油を燃料とした排ガスの処理には、耐酸性に優れたチタニアの使用が特に好ましい。 The porous corrugated plates 1 and 2 and the porous flat plate 3 used in the present invention include an exhaust gas purification catalyst, particularly an oxidation catalyst component that oxidizes NO in exhaust gas to NO 2 in at least the exhaust gas flow path on the exhaust gas inflow side. Is preferably carried. As the catalyst component, for example, a known catalyst in which a normal noble metal such as platinum (Pt) is supported on a high surface area carrier such as titania, alumina, zirconia, silica, etc. is used. For the treatment of exhaust gas, it is particularly preferable to use titania having excellent acid resistance.

本発明のDPFを用いて排ガスを浄化するには、まず被処理ガスは、DPFブロック6の多孔質波板2と多孔質平板3により形成される一波板稜線方向から供給される。すなわち、図3に示すように、DPFには、多孔質波板2と多孔質平板3により形成されるA方向の流路aと、これに直交するB方向の流路bが形成されるが、A方向から流入する被処理ガスは、流路a(排ガス流入経路)にのみ流入することができる。ろ過モードでは、流路aに流入したガスは、該流路aの出口部が図4のバイパス弁4でシールされているため、図1、図4−aに示すように、多孔質平板3内の気孔を通過し、該多孔質平板3とこれに隣接する他の多孔質波板1および多孔質平板3により形成されるB方向の流路b(排ガス排出経路)に移動する。排ガスが多孔質平板3内を通過する際にはガス中に含まれるPMが、濾過・除去され、該多孔質平板3の表面に堆積する。なお、図中の5は堆積したPMである。   In order to purify the exhaust gas using the DPF of the present invention, first, the gas to be treated is supplied from the direction of the corrugated ridge formed by the porous corrugated plate 2 and the porous flat plate 3 of the DPF block 6. That is, as shown in FIG. 3, the DPF is formed with a flow path a in the A direction formed by the porous corrugated plate 2 and the porous flat plate 3 and a flow path b in the B direction perpendicular thereto. The to-be-treated gas flowing in from the A direction can flow only into the flow path a (exhaust gas inflow path). In the filtration mode, the gas flowing into the flow path a is sealed at the outlet of the flow path a by the bypass valve 4 of FIG. It passes through the inner pores and moves to the flow path b (exhaust gas discharge path) in the B direction formed by the porous flat plate 3 and another porous corrugated plate 1 and the porous flat plate 3 adjacent thereto. When the exhaust gas passes through the porous flat plate 3, PM contained in the gas is filtered and removed, and is deposited on the surface of the porous flat plate 3. In the figure, 5 is the deposited PM.

被処理ガスが、流路aおよび流路b内において、多孔質波板1、2および多孔質平板3に接触すると、該被処理ガス中のNOが、これらに担持されている酸化活性を有する触媒で酸化されてNO2 となり、このNO2 により堆積したPM(煤)がCO2に酸化されて除去される。従って、堆積するPMにより多孔質波板1および多孔質平板3の圧力損失が経時的に上昇し、閉塞するという弊害を防止することができる。 When the gas to be treated comes into contact with the porous corrugated plates 1 and 2 and the porous flat plate 3 in the flow channel a and the flow channel b, NO in the gas to be treated has the oxidation activity carried on them. is oxidized by the catalyst becomes NO 2, PM deposited by the NO 2 (soot) are removed by oxidation to CO 2. Accordingly, it is possible to prevent the adverse effect that the pressure loss of the porous corrugated plate 1 and the porous flat plate 3 increases with time due to the PM deposited, and is blocked.

本発明のDPFでは、図1に示すように、流路a内を通過するガス中のNOは、PMが堆積する多孔質平板3の前流に位置する多孔質波板2と効率よく接触することができ、NO2 を効率よく発生させる。従って、多孔質平板3の表面に堆積したPMを効率よく酸化除去することができる。このため、多孔質波板2および多孔質平板3に担持させる触媒の量および高価な貴金属の使用量を大幅に削減しても、PMの酸化を十分に進行させ、堆積物の量を常に少なくすることができ、低圧損での運転が可能となる。なお、従来のハニカム状成形体の流路を交互に埋めて形成したDPFでは、堆積した煤の下層部でNO2が生成するため、効率よく煤を燃焼させることができない。 In the DPF of the present invention, as shown in FIG. 1, NO in the gas passing through the flow path a efficiently contacts the porous corrugated plate 2 located in the upstream of the porous flat plate 3 on which PM is deposited. And generate NO 2 efficiently. Therefore, PM deposited on the surface of the porous flat plate 3 can be efficiently oxidized and removed. For this reason, even if the amount of catalyst supported on the porous corrugated plate 2 and the porous flat plate 3 and the amount of expensive noble metal used are greatly reduced, the oxidation of PM is sufficiently advanced and the amount of deposits is always reduced. It is possible to operate with low pressure loss. In addition, in the DPF formed by alternately filling the channels of the conventional honeycomb-shaped formed body, NO 2 is generated in the lower layer portion of the accumulated soot, so that the soot cannot be burned efficiently.

また、煤を濾過されたガスは流路bに移動して排出されるが、流路b内にも、NOの酸化触媒が担持された多孔質波板1と多孔質平板3が存在するため、ガス中のNOがNO2 に酸化される。従って、流路bの後流部に尿素やNH3還元用の脱硝触媒が存在する場合には、下記式 により、極めて速度の早い脱硝反応が優先的に進み、低温時から高効率で排ガス中のNOxが除去されるため、脱硝性能の向上が可能となる。 Further, the gas filtered through the soot moves to the flow path b and is discharged, but the porous corrugated plate 1 and the porous flat plate 3 carrying the NO oxidation catalyst are also present in the flow path b. NO in the gas is oxidized to NO 2 . Therefore, when a denitration catalyst for reducing urea or NH 3 is present in the downstream part of the channel b, the denitration reaction with a very high speed is preferentially advanced according to the following formula, and the exhaust gas can be efficiently introduced from a low temperature. Since NOx is removed, the denitration performance can be improved.

NO+NO2 +2NH3 → 2N2 +3H2
本発明において、排ガス中のNOをNO2 に酸化する酸化触媒は、成形体を構成する多孔質波板1、2および多孔質平板3の全てに担持されていてもよいが、排ガス流入経路を構成する流路a、具体的には排ガスの流入経路を構成する多孔質波板2の両面と該多孔質波板2と接する多孔質平板3の片面にのみ担持されていてもよい。
NO + NO 2 + 2NH 3 → 2N 2 + 3H 2 O
In the present invention, the oxidation catalyst that oxidizes NO in the exhaust gas to NO 2 may be carried on all of the porous corrugated plates 1 and 2 and the porous flat plate 3 constituting the molded body. It may be supported only on both sides of the flow path a, specifically the porous corrugated plate 2 constituting the inflow path of the exhaust gas, and the porous flat plate 3 in contact with the porous corrugated plate 2.

運転操作ミスやエンジントラブル、さらには低負荷運転を継続することによりDPFの煤酸化能を超えた煤(PM)で流路が閉塞した場合にも、弁4を開放してガスを流出させて堆積した煤を容易に抜き出したり、弁10、11を開放して緊急的に排ガスを逃がすことができ、運転を迅速に復帰させることが可能となる。   If the flow path is blocked by soot (PM) that exceeds the soot oxidation ability of the DPF by continuing operation mistakes, engine troubles, or even low-load operation, the valve 4 is opened and gas is allowed to flow out. The accumulated soot can be easily extracted or the valves 10 and 11 can be opened to let the exhaust gas escape urgently, so that the operation can be quickly returned.

また、弁4のみを開放した状態、すなわち流路aを貫通させた流れにした場合(灰パージモード)も、排ガスは酸化触媒が担持された該多孔質波板2、多孔質平板3からなる流路a内を通り、燃焼反応が進行する。また、一部の排ガスは多孔質平板3を通過するため、ろ過モードよりも効率は下がるが、PMを一部捕集しながら燃焼除去するため、排ガス中のPMは50%近く除去することができる。なお、従来のハニカム状成形体の流路を交互に埋めて形成したDPFでは、煤を燃焼させてもその燃焼灰を抜き出す手段がなく、最終的にはその燃焼灰により触媒細孔が閉塞し、活性が低下する。   Further, even when only the valve 4 is opened, that is, when the flow passes through the flow path a (ash purge mode), the exhaust gas is composed of the porous corrugated plate 2 and the porous flat plate 3 on which the oxidation catalyst is supported. The combustion reaction proceeds through the flow path a. Moreover, since some exhaust gas passes through the porous flat plate 3, the efficiency is lower than in the filtration mode. However, since PM is burned and removed while partially collecting PM, PM in the exhaust gas can be removed by nearly 50%. it can. In the DPF formed by alternately filling the channels of the conventional honeycomb-shaped formed body, there is no means for extracting the combustion ash even if the soot is burned, and eventually the catalyst pores are blocked by the combustion ash. , Activity decreases.

本発明のDPFでは、上記ろ過モードの他に定期または不定期に灰パージモードを用いることにより、燃焼灰を運転中でも抜き出すことができ、触媒活性を持続しながら、長期間、安定した運転を行なうことができる。   In the DPF of the present invention, by using the ash purge mode regularly or irregularly in addition to the filtration mode, the combustion ash can be extracted even during operation, and the catalyst activity is maintained and the operation is stable for a long time. be able to.

次に図4および5は、本発明の排ガス浄化装置の一実施例を示す説明図である。この装置は、前述のDPFブロック6と、該DPFブロック6に排ガスが流入する面Aおよびその反対側の面B、および排ガスが流入する方向と交差するDPFブロック6の側面Cにそれぞれ連通する排ガス煙道7、9、8および遮断弁4、10と、前記排ガスの流入面Aの煙道7および前記交差する側面Cの煙道8をバイパスする煙道12およびその遮断弁11と、前記交差する側面Cに連通する煙道8および前記反対側の面Bに連通する煙道9を各遮断弁4、10の後流で連結する煙道9Aとを備えている。上記構成の装置において、ろ過モードにおいては、図4のように弁4および弁11を閉、弁8を開とし、灰パージモードにおいては、弁8、11を閉、弁4を開とする。   4 and 5 are explanatory views showing an embodiment of the exhaust gas purifying apparatus of the present invention. This apparatus communicates with the aforementioned DPF block 6, the surface A through which exhaust gas flows into the DPF block 6 and the opposite surface B, and the side surface C of the DPF block 6 that intersects the direction in which exhaust gas flows. The flues 7, 9, 8 and the shutoff valves 4, 10; the flue 12 bypassing the flue 7 of the inflow surface A of the exhaust gas and the flue 8 of the intersecting side C and the shutoff valve 11 thereof; A flue 8 communicating with the side C, and a flue 9A connecting the flue 9 communicating with the opposite surface B in the downstream of the shutoff valves 4 and 10. In the apparatus configured as described above, in the filtration mode, the valves 4 and 11 are closed and the valve 8 is opened as shown in FIG. 4, and in the ash purge mode, the valves 8 and 11 are closed and the valve 4 is opened.

本発明の排ガス浄化装置において、長期間に渡って堆積した灰を抜き出さずにいたり、灰が堆積した状態でエンジンを長期停止したりして、灰の潮解温度以下となると、触媒面に灰が固着し、灰の除去が非常に困難となり触媒性能の低下の原因となる。本発明ではさらに長期安定運転のため、平板3に付着した燃焼灰を効率的に除去する運転方法を提供する。この方法は、図5において、弁4、11を開、弁10を閉にする方法であり、前記の灰パージモードに加え、運転中にろ過面となる平板3の逆側から定期的に燃焼灰を逆洗する方法を併用する方法である。   In the exhaust gas purification apparatus of the present invention, if the ash accumulated over a long period of time is not extracted or the engine is stopped for a long time with the ash accumulated, the ash is deposited on the catalyst surface when the temperature falls below the deliquescence temperature of the ash. Sticks and it is very difficult to remove ash, which causes a decrease in catalyst performance. In the present invention, an operation method for efficiently removing the combustion ash adhering to the flat plate 3 for a long-term stable operation is provided. In this method, in FIG. 5, the valves 4 and 11 are opened and the valve 10 is closed. In addition to the ash purge mode, combustion is performed periodically from the opposite side of the flat plate 3 serving as a filtration surface during operation. It is a method of using a method of backwashing ash together.

詳細に述べると、図23の最上図に示すように、ディーゼルエンジンは起動時に特にPM発生量が高いことが知られている。発生時間は瞬時であるがその濃度は定常運転時の10倍以上の数100mg/m3N程度となり、黒煙が観察できる。この濃度領域は明らかに大気汚染防止法で定められた規制値を超える値である。したがって、エンジンの起動時においては、図4などに示す弁4を閉止して排ガスを流路aから流路bへ流通させ、該多孔質平板3でのろ過操作を行い、黒煙を除去するのが望ましい。当然この段階では、DPFブロック6の温度は低い状態であるため、酸化触媒の効果は低く、捕集したPMを完全に燃焼させることは困難であり、PMの一部は該多孔質平板3上に未燃のまま捕集された状態となる。エンジンの起動を検知する手段は様々あるが、エンジン回転数により検知する方法が最も簡便である。もちろん他の手段を用いてもかまわない。   Specifically, as shown in the top diagram of FIG. 23, it is known that a diesel engine has a particularly high PM generation amount at the time of startup. Although the generation time is instantaneous, the concentration is about several hundred mg / m3N, which is more than 10 times that in steady operation, and black smoke can be observed. This concentration range is clearly a value exceeding the regulation value set by the Air Pollution Control Law. Therefore, when starting the engine, the valve 4 shown in FIG. 4 or the like is closed, the exhaust gas is circulated from the flow path a to the flow path b, the filtration operation is performed on the porous flat plate 3, and black smoke is removed. Is desirable. Naturally, at this stage, since the temperature of the DPF block 6 is low, the effect of the oxidation catalyst is low, and it is difficult to completely burn the collected PM, and a part of the PM is on the porous flat plate 3. It will be in the state where it was collected unburned. There are various means for detecting the start of the engine, but the detection method based on the engine speed is the simplest. Of course, other means may be used.

エンジン起動後、それから余裕を見て発電機による発電が開始され始めるまでの段階においては、PMの発生量が高いので、図8に示す制御装置18にエンジンの起動信号を送り、排ガスの流入面と反対側の面への排ガスの通過を遮り、排ガスが流入する方向と直交する側面へ排ガスを通過させ、前記多孔質平板3でのろ過操作を行う。もちろん、起動前、あるいは停止時にろ過操作状態にしておく方法で対応してもよい。   Since the amount of PM generated is high after the engine is started and until the generator starts to generate electricity with a margin, the engine start signal is sent to the control device 18 shown in FIG. The exhaust gas is blocked from passing to the opposite surface, and the exhaust gas is allowed to pass through the side surface orthogonal to the direction in which the exhaust gas flows, and the porous plate 3 is filtered. Of course, it may be handled by a method of setting the filtration operation state before starting or at the time of stopping.

発電を開始し、高温ガスがDPFを通過してDPFブロック6温度がPM燃焼温度以上に上昇すると、多孔質平板3に保持された未燃PMが燃焼する。PM表面の有機物(炭素、炭化水素など)が燃焼するので、燃焼灰は粒径が非常に小さく、かつ表面の粘着性が減っており、平板3への付着性が落ちるため波板稜線方向に流れるガスに乗って、系外に吐き出される。それでも平板3面に対して平行なガス流では、極少量の燃焼灰5aが平板3表面に付着したままとなる可能性がある。   When power generation is started and the hot gas passes through the DPF and the temperature of the DPF block 6 rises above the PM combustion temperature, the unburned PM held by the porous flat plate 3 burns. Since organic matter (carbon, hydrocarbons, etc.) on the PM surface burns, the combustion ash has a very small particle size and reduced surface stickiness, and adherence to the flat plate 3 is reduced. It rides on the flowing gas and is exhaled outside the system. Nevertheless, in a gas flow parallel to the surface of the flat plate 3, a very small amount of combustion ash 5a may remain attached to the surface of the flat plate 3.

そこで本発明ではさらに、排ガスの流入面への流通を遮り、その交差する側面より排ガスを流入させ、元の流入面の反対側の面へ排ガスを通過させ(波板稜線方向)、かつ交差する側面への排ガスの流通を遮る操作(II)を行なう。この操作により、平板3に付着する微量の燃焼灰をもその裏側から排ガスで逆洗することにより除去し、経時的劣化を極限まで抑えることができる。   Therefore, the present invention further blocks the flow of the exhaust gas to the inflow surface, allows the exhaust gas to flow from the intersecting side surface, passes the exhaust gas to the surface opposite to the original inflow surface (in the corrugated ridgeline direction), and intersects. Perform operation (II) to block the flow of exhaust gas to the side. By this operation, a small amount of combustion ash adhering to the flat plate 3 can be removed by back-washing with exhaust gas from the back side, and deterioration with time can be suppressed to the limit.

次に図12および13は、本発明の排ガス浄化装置の他の実施例を示す説明図である。図4および5と異なる点は、DPFブロック6の排ガス流入面Aに連通する煙道7に遮断弁15を設けたことである。このような構成とすることにより、図12に示すように、弁10、15を開、弁4、11を閉とするろ過モード、図13、14に示すように、弁4、11を開、弁10、15を閉とする逆洗モード、図15に示すように、弁4、15を開、弁10、11を閉とする灰パージモード、さらには図16に示すように、弁8、15を開、弁4、11を閉とするろ過モードを繰り返し、燃焼灰を完全に除去することが可能になる。   Next, FIGS. 12 and 13 are explanatory views showing another embodiment of the exhaust gas purifying apparatus of the present invention. 4 and 5 is that a shutoff valve 15 is provided in the flue 7 that communicates with the exhaust gas inflow surface A of the DPF block 6. With such a configuration, as shown in FIG. 12, the filtration mode in which the valves 10 and 15 are opened and the valves 4 and 11 are closed, the valves 4 and 11 are opened as shown in FIGS. Backwash mode in which the valves 10 and 15 are closed, as shown in FIG. 15, the ash purge mode in which the valves 4 and 15 are opened and the valves 10 and 11 are closed, and further, as shown in FIG. By repeating the filtration mode in which 15 is opened and valves 4 and 11 are closed, the combustion ash can be completely removed.

さらに、逆洗モードでの灰除去効果を高める方法として、図18、19に示すように閉止板16、17を図17、17−aのようにDPFブロック6の直前直後に設置し、逆洗方向および波板稜線方向のガス量比を変えながら、逆洗部位を一部に集中させることで、逆洗効果を高めることが可能となる。
より簡易的には、図4、5のように排ガス流入面方向のガス流れは閉止せず、弁11を開放してこの交差する側面にもガスを供給することでもほぼ同等の逆洗効果を得ることが可能となるが、もちろん図12〜16の方法の方が確実であり、より望ましい。なお、図11に示すように、上記排ガス流入面の交差する側面よりコンプレッサ14を用いて圧縮空気13を吹き込み、逆洗する方法も考えられる。
Further, as a method of enhancing the ash removal effect in the backwash mode, as shown in FIGS. 18 and 19, the closing plates 16 and 17 are installed immediately before and after the DPF block 6 as shown in FIGS. The backwashing effect can be enhanced by concentrating the backwashing site in part while changing the gas amount ratio in the direction and the corrugated plate ridgeline direction.
More simply, the gas flow in the direction of the exhaust gas inflow surface does not close as shown in FIGS. 4 and 5, and the valve 11 is opened and gas is supplied to the intersecting side surfaces as well. Of course, the method of FIGS. 12 to 16 is more reliable and more desirable. In addition, as shown in FIG. 11, the method of blowing in the compressed air 13 using the compressor 14 from the side surface which the said waste gas inflow surface cross | intersects, and backwashing is also considered.

定格発電量、及びその近傍で発電量が制御され、高温運転が維持される設備においても、定期的な灰パージ‐ろ過の繰り返しを行うことにより、大部分のPMを除去させつつも、PMの燃焼灰(燃えかす)が堆積し、触媒面をマスキングし、少なくとも多孔質平板3に担持した触媒性能が低下するという問題を回避することが可能である。これらの灰は運転中は該多孔質平板3の表面に軽く堆積しているのみなので、運転中にバイパス弁4を開放してガスを流出させて、堆積した灰を容易に抜き出すことができる。   Even in facilities where the power generation amount is controlled in the vicinity of the rated power generation amount and its high temperature operation is maintained, periodic ash purging and filtration are repeated to remove most of the PM. It is possible to avoid the problem that combustion ash (flakes) accumulates, masks the catalyst surface, and at least the performance of the catalyst supported on the porous flat plate 3 decreases. Since these ashes are only lightly deposited on the surface of the porous flat plate 3 during operation, the accumulated ash can be easily extracted by opening the bypass valve 4 and allowing gas to flow out during operation.

特に、長期間に渡って堆積した灰を抜き出さずにいたり、灰が堆積した状態でエンジンを長期停止したりして、灰の潮解温度以下となると、触媒面に灰が固着し、灰の除去が非常に困難となり触媒性能の低下の原因となる。停止直前まで灰パージ操作を行えば、上記性能低下は回避できる。もちろん、この定期的な逆洗モード、灰パージモードを、前述した2つの方法と併用すれば、運転中に効果的に燃焼灰の堆積を抑制することが可能となり、本DPFの寿命は飛躍的に向上する。   In particular, if the ash accumulated over a long period of time is not extracted, or if the engine is stopped for a long time with the ash accumulated, the ash will adhere to the catalyst surface and become less than the deliquescence temperature of the ash. Removal becomes very difficult and causes a decrease in catalyst performance. If the ash purge operation is performed until just before the stop, the above-mentioned performance deterioration can be avoided. Of course, if this regular backwash mode and ash purge mode are used in combination with the two methods described above, it is possible to effectively suppress the accumulation of combustion ash during operation, and the life of this DPF will be dramatically improved. To improve.

この灰パージの操作時間及び周期は、処理対象ガス中のPM濃度、排ガス組成(特に硫黄酸化物濃度)、燃料・オイルの組成・使用量、排ガス温度、処理ガス量、日々の運転状態等に応じて、PM処理負荷を考慮しながら自由な値を取ることができる。   The operation time and cycle of this ash purge depend on the PM concentration in the gas to be treated, exhaust gas composition (especially sulfur oxide concentration), fuel / oil composition and usage, exhaust gas temperature, treatment gas amount, daily operating conditions, etc. Accordingly, a free value can be taken in consideration of the PM processing load.

ろ過モードで燃焼灰が溜まっていくスピードと、灰パージモードで燃焼灰が排除されるスピードを比較すると、灰パージの方が少なくとも2〜100倍以上大きいため、一般的なエンジン・燃料を使用する場合で、ろ過/灰パージ時間比が1以下になることは少ない。ほとんどのエンジンでろ過/灰パージ時間比を2〜300とすることができると考えられるが、設備によりPM発生量が非常に少ない場合等では異なるので、例えば、0.5〜1000など自由に設定してもよい。なお、灰パージ時間は、1秒未満の短期間ではさすがにその効果が低下するため、1秒以上、望ましくは1分以上とする必要がある。   Comparing the speed at which combustion ash accumulates in filtration mode and the speed at which combustion ash is eliminated in ash purge mode, ash purge is at least 2 to 100 times larger, so use general engine fuel In some cases, the filtration / ash purge time ratio is less than one. Although it is considered that the filtration / ash purge time ratio can be set to 2 to 300 for most engines, it varies depending on the equipment when the amount of PM generated is very small. For example, 0.5 to 1000 can be set freely. Also good. It should be noted that the ash purge time needs to be 1 second or longer, preferably 1 minute or longer, because the effect is reduced in a short period of less than 1 second.

従来のコージエライト製あるいはSiC製等のセラミック製市販DPFでは寿命は一般的に500〜2000hであったが、上記運転制御を用いた本DPFを用いることで、その5〜10倍の10000〜20000h程度の耐久性を持たせることが可能である。
以下、実施例に基づいて本発明を説明するが、本発明はこれらに限定されるものではない。
The lifetime of conventional ceramic DPF made of cordierite or SiC is generally 500 to 2000 h, but by using this DPF using the above operation control, it is about 10,000 to 20000 h, which is 5 to 10 times longer. It is possible to provide durability.
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to these.

シリカアルミナ繊維の不織布からなる板厚0.2mmの多孔質波板と板厚0.2mmの多孔性平板との積層体(交差コルゲートハニカム、波板ピッチ3.3mm、平板平板間隔1.9mm、ニチアス社製、外寸300mm×300mm×300mm)に、15%のTiO2 ゾル(石原産業社製)を含浸させ、エアーブローにより液切りし、150℃で乾燥し、その後、ジニトロジアンミン白金溶液(Pt濃度:1.33g/L)を含浸させ、再度乾燥後、600℃で焼成してPt担持量0.2g/Lの酸化触媒付DPF用基材を作製した。 A laminate of a 0.2 mm thick porous corrugated plate made of silica alumina fiber nonwoven fabric and a 0.2 mm thick porous flat plate (cross corrugated honeycomb, corrugated pitch 3.3 mm, flat plate spacing 1.9 mm, Nichias Co., Ltd., outer dimensions 300 mm × 300 mm × 300 mm) were impregnated with 15% TiO 2 sol (Ishihara Sangyo Co., Ltd.), drained by air blow, dried at 150 ° C., and then dinitrodiammine platinum solution ( Pt concentration: 1.33 g / L) was impregnated, dried again, and calcined at 600 ° C. to prepare a DPF substrate with an oxidation catalyst having a Pt loading of 0.2 g / L.

TiO2スラリは、その濃度を適切に変えることで、壁面の細孔分布を対象ばいじんの粒径にあったサイズに変えることが可能であり、その濃度はその条件によって変化させることが可能であるが、例えば5〜20%の間がより望ましい。触媒成分は、排ガス中の一酸化窒素を、ディーゼルエンジン排ガス中のPMを低温燃焼させる効果の高い二酸化窒素に酸化させる効果のあるいわゆる酸化触媒全般を用いることができる。もちろん一酸化窒素の酸化活性がある触媒であれば、市販のどの触媒を用いてもかまわない。 By appropriately changing the concentration of TiO 2 slurry, it is possible to change the pore distribution on the wall surface to a size that matches the particle size of the target dust, and the concentration can be changed according to the conditions. However, it is more desirable to be between 5% and 20%, for example. As the catalyst component, so-called oxidation catalyst in general can be used which has an effect of oxidizing nitrogen monoxide in exhaust gas into nitrogen dioxide having high effect of burning PM in diesel engine exhaust gas at low temperature. Of course, any commercially available catalyst may be used as long as it has a nitric oxide oxidizing activity.

こうして調製したDPFを用い、図4に示すように、起動時から30秒のみろ過モードとし、それ以後は図4に示すろ過モードと図5に示す逆洗モードを繰り返して運転し、エンジン停止後にろ過モードに戻すプログラムを設定して実ガスを処理し、差圧、及びNO濃度の経時変化を観察した。 Using the DPF thus prepared, as shown in FIG. 4, the filtration mode is set to 30 seconds from the start, and thereafter, the filtration mode shown in FIG. 4 and the backwash mode shown in FIG. 5 are repeatedly operated. A real gas was processed by setting a program for returning to the filtration mode, and the change with time in the differential pressure and the NO 2 concentration was observed.

ジニトロジアンミン白金の溶液(Pt含有量1.7g/L)にTiO2 粉末( ミレニアム社製G5、表面積320m2 /g)300gを懸濁させたスラリを80℃で2時間保持し、TiO2表面にPt成分を吸着させた。本溶液1kgにコロイダルシリカ(日産化学社製シリカゾル−OS)1kgを加え、硝酸でpHを調整して流路aに担持する触媒スラリを得た。 A slurry obtained by suspending 300 g of TiO 2 powder (G5 manufactured by Millennium, surface area 320 m 2 / g) in a dinitrodiammine platinum solution (Pt content 1.7 g / L) is maintained at 80 ° C. for 2 hours, and the TiO 2 surface The Pt component was adsorbed on. To 1 kg of this solution, 1 kg of colloidal silica (silica sol-OS manufactured by Nissan Chemical Industries, Ltd.) was added, and the pH was adjusted with nitric acid to obtain a catalyst slurry supported on the flow path a.

これとは別に、水700gにTiO2 粉末(石原産業社製CR50、、表面積3m2 /g)300gを懸濁させたスラリ1kgにコロイダルシリカ(日産化学社製シリカゾル−OS、SiO2濃度20%)1kgを加え、硝酸でpHを調整して流路bに担持する不活性酸化物スラリを得た。 Separately, colloidal silica (silica sol-OS manufactured by Nissan Chemical Co., Ltd., SiO 2 concentration 20%) in 1 kg of slurry in which 300 g of TiO 2 powder (CR50, manufactured by Ishihara Sangyo Co., Ltd., surface area 3 m 2 / g) is suspended in 700 g of water. ) 1 kg was added, and the pH was adjusted with nitric acid to obtain an inert oxide slurry supported on the channel b.

シリカアルミナ繊維の不織布からなる板厚0.2mmの交差コルゲートハニカム(波板ピッチ3.3mm、平板間隔1.9mm、ニチアス社製、外寸300mm×300mm×300mm)を用意し、図3のA方向から前記流路a用スラリを流し込み反対面から排出する方法で流路a内面にのみ触媒成分を担持、エアーブローによる液切り後、150℃乾燥した。その後、図3のB方向から前記流路b用スラリを流し込み反対面から排出する方法で流路b内面に不活性酸化物を担持、エアーブローによる液切り後、150℃乾燥、600℃で焼成して酸化触媒付DPF用基材を作製した。   A cross corrugated honeycomb having a thickness of 0.2 mm made of a nonwoven fabric of silica-alumina fibers (corrugated sheet pitch of 3.3 mm, flat plate spacing of 1.9 mm, manufactured by NICHIAS, outer dimensions of 300 mm × 300 mm × 300 mm) is prepared. The catalyst component was supported only on the inner surface of the flow channel a by pouring the slurry for the flow channel a from the direction and discharging it from the opposite surface, drained by air blow, and dried at 150 ° C. Thereafter, the slurry for the flow path b is poured from the direction B in FIG. 3 and discharged from the opposite surface to carry an inert oxide on the inner surface of the flow path b, drained by air blow, dried at 150 ° C., and fired at 600 ° C. Thus, a DPF base material with an oxidation catalyst was produced.

調製したDPFを用い、図4に示すように、起動時から30秒のみろ過モードとし、それ以後は、図4に示すろ過モードと図5に示す逆洗モードを繰り返して運転し、エンジン停止後にろ過モードに戻すプログラムを設定して実ガスを処理し、差圧、及びNO濃度の経時変化を観察した。 Using the prepared DPF, as shown in FIG. 4, the filtration mode is set to 30 seconds from the start-up, and thereafter, the filtration mode shown in FIG. 4 and the backwash mode shown in FIG. A real gas was processed by setting a program for returning to the filtration mode, and the change with time in the differential pressure and the NO 2 concentration was observed.

実施例1において調製したDPFを用い、図4に示すように起動時から30秒間ろ過モード、それ以後、図4のろ過モードと、図5に示すような逆洗モード、さらに図10に示す灰パージモードで運転し、差圧、及びNO濃度の経時変化を観察した。 Using the DPF prepared in Example 1, the filtration mode is 30 seconds from the start as shown in FIG. 4, and thereafter the filtration mode of FIG. 4, the backwash mode as shown in FIG. 5, and the ash shown in FIG. The operation was performed in the purge mode, and changes with time in the differential pressure and NO 2 concentration were observed.

実施例1において調製したDPFを用い、図4に示すように起動時から30秒間ろ過モード、それ以後、ろ過モードと、図11に示すように、圧縮空気13を用いて逆洗し、差圧、及びNO濃度の経時変化を観察した。 Using the DPF prepared in Example 1, the filtration mode was 30 seconds from the start as shown in FIG. 4, and then the filtration mode and backwashing with compressed air 13 as shown in FIG. , And changes in NO 2 concentration over time were observed.

実施例1において調製したDPFを用い、図12に示すように起動時から30秒間ろ過モード、それ以後、図13に示す逆洗モードと図12に示すろ過モードを繰り返す方法で運転する様プログラムを設定して実ガスを処理し、差圧、及びNO濃度の経時変化を観察した。 Using the DPF prepared in Example 1, as shown in FIG. 12, the program is operated in such a manner that the filtration mode is repeated for 30 seconds from the start-up, and then the backwash mode shown in FIG. 13 and the filtration mode shown in FIG. 12 are repeated. The actual gas was set and processed, and the change over time in the differential pressure and NO 2 concentration was observed.

実施例1において調製したDPFを用い、図12に示すように起動時から30秒間ろ過モード、それ以後、図13に示す逆洗モードと図12に示すろ過モード、さらには図15に示す灰パージモードを繰り返す方法で運転する様プログラムを設定して実ガスを処理し、差圧、及びNO濃度の経時変化を観察した。 Using the DPF prepared in Example 1, the filtration mode is 30 seconds from the start as shown in FIG. 12, and then the backwash mode shown in FIG. 13, the filtration mode shown in FIG. 12, and the ash purge shown in FIG. The actual gas was processed by setting a program to operate by repeating the mode, and the change with time in the differential pressure and NO 2 concentration was observed.

実施例6と同じ運転制御とするが、図13に示す逆洗モードの代わりに、図17、18に示すような閉止板16または、図19に示すような閉止板17を用い、入口面の開口面積を狭め、弁11を通して入口面と交差する面から流入する逆洗ガスの流量を調整する。
かつ、閉止板16、17を移動していくことで、逆洗ガスの到達範囲を調整し、効果的な逆洗を行うよう運転するようにプログラムを設定した。この逆洗モードとろ過モード、灰パージモードを繰り返して実ガスを処理し、差圧、及びNO濃度の経時変化を観察した。
The operation control is the same as that of the sixth embodiment. However, instead of the backwash mode shown in FIG. 13, a closing plate 16 as shown in FIGS. 17 and 18 or a closing plate 17 as shown in FIG. The opening area is narrowed, and the flow rate of the backwash gas flowing from the surface intersecting the inlet surface through the valve 11 is adjusted.
And the program was set so that it might operate | move to adjust the reach | attainment range of backwashing gas by moving the closing plates 16 and 17 and to perform effective backwashing. The backwash mode, filtration mode, and ash purge mode were repeated to treat the actual gas, and the changes in differential pressure and NO 2 concentration over time were observed.

実施例6と同じ運転制御とするが、図13に示す逆洗モードの代わりに、図20、21に示すような閉止板16または、図22に示すような閉止板17を用い、入口面と交差する面の開口面積を狭め、弁11を通して入口面と交差する面から流入する逆洗ガスの流量を調整する。
かつ、閉止板16、17を移動していくことで、逆洗ガスの到達範囲を調整し、効果的な逆洗を行うよう運転する様プログラムを設定した。この逆洗モードとろ過モード、灰パージモードを繰り返して実ガスを処理し、差圧、及びNO濃度の経時変化を観察した。
The operation control is the same as in Example 6, but instead of the backwash mode shown in FIG. 13, a closing plate 16 as shown in FIGS. 20 and 21 or a closing plate 17 as shown in FIG. The opening area of the intersecting surface is narrowed, and the flow rate of the backwash gas flowing from the surface intersecting the inlet surface through the valve 11 is adjusted.
And the program which set it to operate so that the backwashing gas reach | attainment range was adjusted by moving the closing plates 16 and 17 and an effective backwashing was performed was set. The backwash mode, filtration mode, and ash purge mode were repeated to treat the actual gas, and the changes in differential pressure and NO 2 concentration over time were observed.

〔比較例1〕
ハニカム成形体の流路の開口部に交互に栓をして作製されたコージエライトセラミック製市販DPF(日立金属社製、セル数100cpsi、5.66インチφ×6インチ長)に、チタニアゾル(石原産業社製、TiO2 含有量30%)を含浸後、遠心分離機で液切りしてTiO2 を60g/L担持させ、150℃で乾燥後、さらにジニトロジアンミン白金酸溶液をDPFに対するPt担持量として1.6g/Lになるように含浸させ、乾燥後、600℃で2時間焼成して触媒付DPFを作製した。
[Comparative Example 1]
A cordierite ceramic commercially available DPF (manufactured by Hitachi Metals, number of cells: 100 cpsi, 5.66 inches φ × 6 inches long) prepared by alternately plugging the openings of the flow path of the honeycomb formed body, titania sol ( Impregnated with Ishihara Sangyo Co., Ltd. (TiO 2 content 30%), drained with a centrifuge and supported 60 g / L of TiO 2 , dried at 150 ° C., and further supported Pt on DPF with dinitrodiammineplatinic acid solution The catalyst was impregnated so as to have an amount of 1.6 g / L, dried, and calcined at 600 ° C. for 2 hours to prepare a DPF with catalyst.

このDPFを用い、実ガスを処理し、差圧、及びNO濃度の経時変化を観察した。
このDPFでは灰パージができないため、新たにバイパスラインを設置し、起動時から20秒間はDPFに通ガスし、それ以後、定格発電量以上では通ガス、定格発電量未満ではバイパスして運転する制御を行った。
Using this DPF, the actual gas was treated, and the change over time in the differential pressure and the NO 2 concentration was observed.
Since ash purge is not possible with this DPF, a new bypass line is installed, and gas is passed through the DPF for 20 seconds from the start-up. After that, operation is performed with gas passing above the rated power generation and bypassing below the rated power generation. Control was performed.

〔比較例2〕
実施例1において調製したDPFを用い、起動時を含め、全てろ過モードで運転する様プログラムを設定して実ガスを処理し、差圧、及びNO酸化率の経時変化を観察した。
〔比較例3〕
実施例1において調製したDPFを用い、起動時にろ過モード、後はろ過モードと灰パージモードを交互に運転する様プログラムを設定して実ガスを処理し、差圧、及びNO酸化率の経時変化を観察した。
これらの実施例、比較例について、以下の項目を調べ、結果を表1に示した。
(1)エンジン起動時の黒煙の有無
(2)低負荷運転時の黒煙の有無
(3)100%定格発電時の差圧と上昇の有無
(4)100%定格発電時のDPF出入口におけるPM濃度
(5)100%定格発電時のDPF出口におけるNO濃度(NO酸化率)
[Comparative Example 2]
Using the DPF prepared in Example 1, the actual gas was processed by setting a program to operate in the filtration mode, including at the time of start-up, and the change with time in the differential pressure and NO oxidation rate was observed.
[Comparative Example 3]
Using the DPF prepared in Example 1, set up a program to alternately operate the filtration mode at startup, and then the filtration mode and the ash purge mode, and process the actual gas, and change with time of differential pressure and NO oxidation rate Was observed.
For these examples and comparative examples, the following items were examined and the results are shown in Table 1.
(1) Black smoke at engine start
(2) Presence or absence of black smoke during low-load operation
(3) Differential pressure at 100% rated power generation and whether there is an increase
(4) PM concentration at the DPF entrance and exit at 100% rated power generation
(5) NO 2 concentration (NO oxidation rate) at DPF outlet at 100% rated power generation

得られた結果を表1に示したが、本発明の酸化触媒付DPFは、比較例1と比べて極めて少ないPt担持量で効率よく煤を燃焼することが可能であり、差圧を低く抑えることができる。   The obtained results are shown in Table 1. The DPF with an oxidation catalyst of the present invention can efficiently burn soot with a very small amount of Pt supported compared to Comparative Example 1, and keep the differential pressure low. be able to.

表1から、本発明の実施例1、2の逆洗とろ過を繰り返す方法では、NO酸化率(NO2濃度と相関)の経時低下を少なくすることができ、酸化触媒付DPFの寿命を向上できることが分かった。また実施例2のDPFでは、酸化触媒が流路b(排ガスの排出経路)に担持されていないため、NO酸化率が低く抑えられており、環境面でも優れていることがわかる。一方、実施例1、3、4、5、6、7、8の酸化触媒付DPFでは、酸化触媒が排ガス流路全体に担持されているため、NO2 濃度が増大したが、この場合には、DPFの後流に脱硝触媒を設置することによりNO2の系外への排出を防止することができる。 From Table 1, according to the method of repeating backwashing and filtration of Examples 1 and 2 of the present invention, it is possible to reduce the deterioration of NO oxidation rate (correlation with NO 2 concentration) with time and improve the life of DPF with oxidation catalyst. I understood that I could do it. Further, in the DPF of Example 2, since the oxidation catalyst is not supported on the flow path b (exhaust gas discharge path), it can be seen that the NO oxidation rate is kept low and the environment is excellent. On the other hand, in the DPF with an oxidation catalyst of Examples 1, 3, 4, 5, 6, 7, and 8, the NO 2 concentration was increased because the oxidation catalyst was supported on the entire exhaust gas flow path. By installing a denitration catalyst downstream of the DPF, NO 2 can be prevented from being discharged out of the system.

実施例3の、ろ過モード、逆洗モードに加え、灰パージモードを併用する方法では、PMの効率燃焼と、灰のパージが確実に行われ、DPFの寿命をさらに向上させていることが分かる。
実施例4では、逆洗に圧縮空気を用いる場合であるが、若干NO酸化率の低下が見られるが、差圧の上昇は見られず、十分な長寿命が得られている。
実施例5では、実施例1と比べ、逆洗モードでのガス量が高く、逆洗効果が高まっており、NO酸化率、差圧とも安定していた。実施例6のように、さらに灰パージモードを加えることで、効果が増えると期待される。
In the method using the ash purge mode in addition to the filtration mode and the backwash mode in Example 3, it can be seen that the PM efficient combustion and the ash purge are reliably performed, and the life of the DPF is further improved. .
In Example 4, although compressed air is used for backwashing, the NO oxidation rate slightly decreases, but the differential pressure does not increase and a sufficiently long life is obtained.
In Example 5, compared with Example 1, the gas amount in the backwash mode was high, the backwashing effect was enhanced, and both the NO oxidation rate and the differential pressure were stable. As in Example 6, the effect is expected to increase by adding the ash purge mode.

これに対し、比較例1で得られた従来のセラミックス製DPFでは、差圧が高くなり、DPF出口のNO2 濃度も増大した。その上、経時的に差圧が上昇、NO2濃度が低下する傾向が見られ、燃焼灰、未燃PMの除去が行えないことが影響していると考えられる。
比較例2では、本発明のDPFを使用しているが、灰のパージを行わなかったため、触媒機能が徐々に低下し、起動時、低負荷時のPMが経時的に堆積し、NO酸化率の低下が起こっている。
比較例3では、ろ過モードと灰パージモードの併用例であるが、8000hまで運転すると、灰パージモードで取れ切れない灰が徐々に堆積していき、差圧は増加、NO酸化率は低下する傾向にあった。しかし比較例2と比べればその寿命は優に2倍以上と推定された。
In contrast, in the conventional ceramic DPF obtained in Comparative Example 1, the differential pressure increased and the NO 2 concentration at the DPF outlet also increased. In addition, there is a tendency for the differential pressure to increase and the NO 2 concentration to decrease over time, and this is considered to be due to the fact that combustion ash and unburned PM cannot be removed.
In Comparative Example 2, the DPF of the present invention was used, but the ash purge was not performed, so the catalyst function gradually decreased, PM at start-up and low load accumulated over time, and the NO oxidation rate The decline is happening.
Comparative Example 3 is a combination example of the filtration mode and the ash purge mode, but when operated up to 8000 h, ash that cannot be removed in the ash purge mode gradually accumulates, the differential pressure increases, and the NO oxidation rate decreases. There was a trend. However, compared with Comparative Example 2, the lifetime was estimated to be well over twice.

本発明によれば、特にディーゼルエンジンから排出されるガス中に含まれる粒状物質(PM)を低通風損失かつ高効率で除去でき、かつ灰や煤を大掛かりな装置を用いることなく除去できるため、灰や煤が堆積しにくい運転制御を行い易く、さらに長寿命で、環境汚染防止に有用な安価なDPFを提供でき、社会的、経済的効果が大きい。   According to the present invention, particulate matter (PM) contained in gas discharged from a diesel engine can be removed with low ventilation loss and high efficiency, and ash and soot can be removed without using a large-scale device. It is easy to perform operation control where ash and soot are not easily deposited, and can provide an inexpensive DPF that has a long life and is useful for preventing environmental pollution, and has great social and economic effects.

本発明の実施例1の浄化装置本体でのろ過モードでのばいじん捕集原理を示した図。The figure which showed the dust collection principle in the filtration mode in the purification apparatus main body of Example 1 of this invention. 実施例1の浄化装置の灰パージモードでのばいじんの除去原理を示した図。The figure which showed the removal principle of the dust in the ash purge mode of the purification apparatus of Example 1. FIG. 本発明の浄化装置に用いるフィルタ(交差ハニカム成形体)の流路構成を示す斜視図。The perspective view which shows the flow-path structure of the filter (crossing honeycomb molded object) used for the purification apparatus of this invention. 本発明の実施例3の浄化装置(ろ過モード)の説明図。Explanatory drawing of the purification apparatus (filtration mode) of Example 3 of this invention. 本発明のろ過モードでのばいじん捕集原理を示した図。The figure which showed the dust collection principle in the filtration mode of this invention. 本発明の実施例3の浄化装置(逆洗モード)の説明図。Explanatory drawing of the purification apparatus (backwash mode) of Example 3 of this invention. 図5の逆洗モードでのばいじんの除去原理を示した図。The figure which showed the removal principle of the dust in the backwash mode of FIG. 本発明の実施例3の浄化装置(逆洗モードでのガス流れ及びばいじんの堆積状況)の説明図。Explanatory drawing of the purification apparatus (the gas flow in the backwash mode, and the accumulation condition of a dust) of Example 3 of this invention. 本発明の実施例3の浄化装置(ろ過モードでのガス流れ及びばいじんの除去原理)の説明図。Explanatory drawing of the purification apparatus (The gas flow in a filtration mode and the removal principle of a dust) of Example 3 of this invention. 本発明の浄化装置を用いたディーゼルエンジン排ガス処理系統を示す説明図。Explanatory drawing which shows the diesel engine exhaust gas treatment system | strain using the purification apparatus of this invention. 運転負荷とPM濃度の関係を示す図。The figure which shows the relationship between a driving | running load and PM density | concentration. 本発明の実施例3の浄化装置の灰パージモードでのガス流れ及びばいじんの除去原理を示す説明図。Explanatory drawing which shows the gas flow and dust removal principle in the ash purge mode of the purification apparatus of Example 3 of this invention. 本発明の実施例4の浄化装置のエアパージを用いる場合の構成、及びばいじんの除去原理を示す説明図。Explanatory drawing which shows the structure in the case of using the air purge of the purification apparatus of Example 4 of this invention, and a dust removal principle. 本発明の実施例5の浄化装置のろ過モードについて説明した図。The figure explaining the filtration mode of the purification apparatus of Example 5 of this invention. 本発明の実施例5の浄化装置の逆洗モードについて説明した図。The figure explaining the backwash mode of the purification apparatus of Example 5 of this invention. 本発明の実施例5の浄化装置の逆洗モードにおけるばいじんの堆積状況について説明した図。The figure explaining the accumulation condition of the dust in the backwashing mode of the purification apparatus of Example 5 of this invention. 本発明の実施例5の浄化装置の灰パージモードについて説明した図。The figure explaining the ash purge mode of the purification apparatus of Example 5 of this invention. 本発明の実施例5の浄化装置の図14で堆積したばいじんをろ過モードで除去する原理について説明した図。The figure explaining the principle which removes the dust accumulated in FIG. 14 of the purification apparatus of Example 5 of this invention by filtration mode. 実施例7の浄化装置の構成について説明した図。The figure explaining the structure of the purification apparatus of Example 7. FIG. 実施例7の浄化装置のDPFブロックの詳細側面図。The detailed side view of the DPF block of the purification apparatus of Example 7. 実施例7の浄化装置のDPFブロックの詳細側面図。The detailed side view of the DPF block of the purification apparatus of Example 7. 実施例8の浄化装置構成について説明した図。The figure explaining the purification apparatus structure of Example 8. FIG. 実施例8の浄化装置のDPFブロックの詳細側面図。The detailed side view of the DPF block of the purification apparatus of Example 8. 実施例8の浄化装置のDPFブロックの詳細側面図。The detailed side view of the DPF block of the purification apparatus of Example 8. 運転時の排ガスの各成分及び温度の運転負荷の一例を示す図。The figure which shows an example of the driving load of each component and temperature of exhaust gas at the time of a driving | operation.

符号の説明Explanation of symbols

1:波板、2:波板、3:平板、 4:バイパス弁、5:ばいじん、6:DPFブロック、5a:燃焼灰、7:煙道、8:排ガス出口煙道、9:灰パージ煙道、10:弁、11:パージガス弁、12:灰パージ煙道、13:圧縮空気、14:コンプレッサ、15:弁、16:閉止板、17:閉止板、18:制御装置、19:ディーゼルエンジン、26:発電機、27:差圧計。

1: corrugated plate, 2: corrugated plate, 3: flat plate, 4: bypass valve, 5: soot, 6: DPF block, 5a: combustion ash, 7: flue, 8: flue gas outlet flue, 9: ash purge smoke Road: 10: Valve, 11: Purge gas valve, 12: Ash purge flue, 13: Compressed air, 14: Compressor, 15: Valve, 16: Closing plate, 17: Closing plate, 18: Controller, 19: Diesel engine , 26: generator, 27: differential pressure gauge.

Claims (7)

多孔質波板と多孔質平板の対を基本単位とし、該多孔質波板の波板稜線が少なくとも1対ごとに交互に交差するように積層された成形体の前記波板稜線と交差する側面がシールされ、前記波板の稜線の方向からディーゼル排ガスが流入し、前記多孔質平板を介して前記多孔質波板との間にそれぞれ排ガスの流入経路と流出経路が形成される排ガス浄化装置であって、該排ガスが流入する面Aおよびその反対側の面B、および排ガスが流入する方向と交差する側面Cにそれぞれ連通する排ガス煙道およびその遮断弁と、前記排ガスの流入面Aの煙道および前記交差する側面Cの煙道をバイパスする煙道およびその遮断弁と、前記交差する側面Cに連通する煙道および前記反対側の面Bに連通する煙道を各遮断弁の後流でバイパスする煙道とを備えたことを特徴とするディーゼル排ガス浄化装置。 A side surface that intersects with the corrugated ridge line of a molded body having a porous corrugated sheet and a porous flat plate as a basic unit, the corrugated ridge lines of the porous corrugated sheet alternately intersecting at least one pair. Is exhaust gas purification apparatus in which diesel exhaust gas flows in from the direction of the ridgeline of the corrugated plate and an exhaust gas inflow path and an outflow path are formed between the porous flat plate and the porous corrugated sheet, respectively. The exhaust gas flue and its shut-off valve communicated with the surface A into which the exhaust gas flows and the surface B on the opposite side, and the side surface C intersecting with the direction in which the exhaust gas flows, and the smoke on the inflow surface A of the exhaust gas A flue that bypasses the flue of the road and the intersecting side C and the shutoff valve thereof, and a wake that communicates with the flue that communicates with the intersecting side C and the flue that communicates with the opposite side B flow downstream of each shutoff valve With a flue to bypass Diesel exhaust gas purification apparatus characterized by a. 前記排ガスの流入面Aの煙道に設けられる遮断弁を省略したことを特徴とする請求項1記載の装置。 The apparatus according to claim 1, wherein a shutoff valve provided in a flue of the inflow surface A of the exhaust gas is omitted. 前記多孔質波板および平板に排ガス中の一酸化窒素を二酸化窒素に酸化する機能を有する触媒が担持されている請求項1または2に記載の装置。 The apparatus according to claim 1 or 2, wherein a catalyst having a function of oxidizing nitric oxide in exhaust gas to nitrogen dioxide is supported on the porous corrugated plate and the flat plate. 前記遮断弁の操作により、前記排ガスの流入面Aと反対側の面Bへの排ガスの通過を遮り、前記交差する側面Cへ排ガスを通過させることを特徴とする請求項1ないし3のいずれかに記載の装置の運転制御方法。 The operation of the shut-off valve blocks the passage of the exhaust gas to the surface B opposite to the inflow surface A of the exhaust gas, and allows the exhaust gas to pass to the intersecting side surface C. A method for controlling the operation of the apparatus described in 1. 前記遮断弁の操作により、前記反対側の面Bへの排ガスの通過を遮り、前記交差する側面Cへ排ガスを通過させる操作(I)と、排ガスの流入面Aおよびその交差する側面Bより排ガスを流入させ、前記反対側の面Bへ排ガスを通過させ、前記交差する側面Cへの排ガスの流通を遮る操作(II)を、一定期間ごとに交互に行なうことを特徴とする請求項1ないし3のいずれかに記載の装置の運転制御方法。 The operation of the shut-off valve blocks the passage of exhaust gas to the opposite surface B and allows the exhaust gas to pass to the intersecting side surface C, and the exhaust gas from the inflow surface A of the exhaust gas and the intersecting side surface B. The operation (II) of passing the exhaust gas to the opposite surface B and blocking the flow of the exhaust gas to the intersecting side surface C is alternately performed at regular intervals. The operation control method for the apparatus according to any one of claims 3 to 4. 前記排ガスの流入面と反対側の面Bへの排ガスの通過を遮り、前記交差する側面Cへ排ガスを通過させる操作(I)と、排ガスの流入面Aおよびその交差する側面Cより排ガスを流入させ、前記反対側の面Bへ排ガスを通過させ、かつ排ガス流入面Aからその交差する側面Cへの排ガスの流通を遮る操作(II)と、排ガスの流入面Aから排ガスを流入させ、反対側の面Bへ排ガスを通過させるか、または、および前記交差する側面Cへの排ガスの流通を遮る操作(III)を、一定期間ごとに交互に行なうことを特徴とする請求項1ないし3のいずれかに記載の装置の運転制御方法。 The operation (I) of blocking the passage of the exhaust gas to the surface B opposite to the exhaust gas inflow surface and passing the exhaust gas to the intersecting side surface C, and the exhaust gas flowing in from the exhaust gas inflow surface A and the intersecting side surface C The operation (II) of passing the exhaust gas to the opposite surface B and blocking the flow of the exhaust gas from the exhaust gas inflow surface A to the intersecting side surface C; The operation (III) for passing the exhaust gas to the side surface B or blocking the flow of the exhaust gas to the intersecting side surface C is alternately performed at regular intervals. The operation control method of the apparatus in any one. 前記装置の差圧または排ガス入口圧力を検知し、該差圧または入口圧力が一定値を超えた場合、または該差圧もしくは入口圧力が上昇し始めた場合、少なくとも排ガスの流入面と反対側の面Bへ排ガスを通過させ、または/および前記交差する側面Cへの排ガスの流通を遮ることを特徴とする請求項1ないし3のいずれかに記載の装置の運転制御方法。 When the differential pressure or the exhaust gas inlet pressure of the device is detected and the differential pressure or the inlet pressure exceeds a certain value, or when the differential pressure or the inlet pressure starts to increase, at least the side opposite to the exhaust gas inflow surface The operation control method for an apparatus according to any one of claims 1 to 3, wherein the exhaust gas is allowed to pass through the surface B and / or the flow of the exhaust gas to the intersecting side surface C is blocked.
JP2005152865A 2005-05-25 2005-05-25 Diesel exhaust emission control device and operation control method Pending JP2006329042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005152865A JP2006329042A (en) 2005-05-25 2005-05-25 Diesel exhaust emission control device and operation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005152865A JP2006329042A (en) 2005-05-25 2005-05-25 Diesel exhaust emission control device and operation control method

Publications (1)

Publication Number Publication Date
JP2006329042A true JP2006329042A (en) 2006-12-07

Family

ID=37550986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005152865A Pending JP2006329042A (en) 2005-05-25 2005-05-25 Diesel exhaust emission control device and operation control method

Country Status (1)

Country Link
JP (1) JP2006329042A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190043476A (en) * 2017-10-18 2019-04-26 만 에너지 솔루션즈 에스이 Exhaust gas after-treatment system and method for the exhaust gas after-treatment
US11565745B2 (en) 2017-12-27 2023-01-31 Robert Bosch Gmbh Steering device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190043476A (en) * 2017-10-18 2019-04-26 만 에너지 솔루션즈 에스이 Exhaust gas after-treatment system and method for the exhaust gas after-treatment
JP2019074089A (en) * 2017-10-18 2019-05-16 マン・エナジー・ソリューションズ・エスイー Exhaust gas after-treatment system and method for exhaust gas after-treatment
JP7187250B2 (en) 2017-10-18 2022-12-12 マン・エナジー・ソリューションズ・エスイー Exhaust gas aftertreatment system and method for exhaust gas aftertreatment
KR102515878B1 (en) * 2017-10-18 2023-03-29 만 에너지 솔루션즈 에스이 Exhaust gas after-treatment system and method for the exhaust gas after-treatment
US11565745B2 (en) 2017-12-27 2023-01-31 Robert Bosch Gmbh Steering device

Similar Documents

Publication Publication Date Title
RU2392456C2 (en) Method and device for cleaning of exhaust gas
EP0789135B1 (en) Exhaust gas purifier
JP2008309160A (en) Exhaust emission purifier using particulate matter-containing exhaust emission controlling filter
JP2004084666A (en) Removal of soot fine particles from exhaust gas of diesel engine
US7655064B2 (en) Particulate matter-containing exhaust emission controlling filter, exhaust emission controlling method and device
JP4762560B2 (en) Filter for removing particulate matter in exhaust gas and exhaust gas purification method
JP2006307802A (en) Exhaust emission control device
JP2018145869A (en) Exhaust emission control system and sulfur poisoning restriction method for exhaust emission control system
JP4607769B2 (en) Diesel engine exhaust gas particulate matter removal filter, exhaust gas treatment method and apparatus
JP2006329042A (en) Diesel exhaust emission control device and operation control method
JP2006233939A (en) Exhaust emission control filter and device
JP2006241983A (en) Diesel exhaust emission control device and operation control method
JP4648269B2 (en) Exhaust gas particulate matter removal filter, exhaust gas purification apparatus and exhaust gas purification method using the filter
JP2006226185A (en) Device and method for purifying exhaust gas containing particular matter
WO2019059032A1 (en) Exhaust gas purification filter
JP2006257920A (en) Exhaust emission control device
JP2007046516A (en) Exhaust gas treatment device
JP4522268B2 (en) Exhaust gas treatment facility and purge method thereof
JP2006077707A (en) Filter for purifying exhaust gas and exhaust emission control device
JP2006198533A (en) Diesel exhaust emission treatment apparatus and its manufacturing method
KR20230127996A (en) particulate filter
JP2006233845A (en) Exhaust gas purification device and method
KR20080001515U (en) An aftertreatment apparatus with an absorbing module for sulfuric acid to inhibit exhaust thereof
JP2005201154A (en) Exhaust emission control device
JP2006102636A (en) Diesel exhaust emission treatment apparatus