JP2006328387A - 高分子化合物およびそれを用いた高分子発光素子 - Google Patents

高分子化合物およびそれを用いた高分子発光素子 Download PDF

Info

Publication number
JP2006328387A
JP2006328387A JP2006125009A JP2006125009A JP2006328387A JP 2006328387 A JP2006328387 A JP 2006328387A JP 2006125009 A JP2006125009 A JP 2006125009A JP 2006125009 A JP2006125009 A JP 2006125009A JP 2006328387 A JP2006328387 A JP 2006328387A
Authority
JP
Japan
Prior art keywords
group
ring
formula
aryl
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006125009A
Other languages
English (en)
Inventor
Jun Oguma
潤 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2006125009A priority Critical patent/JP2006328387A/ja
Publication of JP2006328387A publication Critical patent/JP2006328387A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

【課題】電子素子の材料として用いた場合素子性能に優れた電子素子を与えることのできる高分子化合物を提供する。
【解決手段】下記式で示される化合物の残基の少なくとも一つを含むことを特徴とする高分子化合物。
Figure 2006328387

〔A環、B環およびC環は芳香族環または非芳香族環を、Z1、Z2、Z3、Z4、およびZ5はC−(Q)zまたは窒素原子を表し、Qは、置換基または水素原子を、zは0または1を表す。〕
【選択図】なし

Description

本発明は、高分子化合物およびそれを用いた高分子発光素子に関するものである。
高分子量の発光材料や電荷輸送材料は溶媒に可溶で塗布法により発光素子における有機層を形成できることから種々検討されている。発光材料や電荷輸送材料として高分子発光素子(高分子LED)等の電子素子に用いることのできる高分子化合物としてポリフルオレン類が知られている(特許文献1)。
国際公開第99/54385パンフレット
しかしながら、上記高分子化合物を発光材料や電荷輸送材料等として用いた素子の素子性能は、実用的には未だ必ずしも満足できる水準のものではなかった。
例えば、上記高分子化合物を用いた高分子LEDは、その発光効率、発光色の色調等の素子性能において、実用的には、未だ満足できる水準のものではなかった。
本発明の目的は、電子素子の材料として用いた場合素子性能に優れた電子素子を与えることのできる高分子化合物を提供することにある。
即ち本発明は、下記式(1)で示される化合物の残基の少なくとも一つを含む高分子化合物を提供するものである。
(式1)
Figure 2006328387

〔式中、A環、B環およびC環はそれぞれ独立に置換基を有していてもよい芳香族環または非芳香族環を表し、Z1、Z2、Z3、Z4、およびZ5はそれぞれ独立に、C−(Q)zまたは窒素原子を表し、Qは、置換基または水素原子を表し、zは0または1を表し、A環とB環は互いに、それぞれの環を構成するZ5以外の原子を共有していてもよく、A環、B環およびC環の一つ以上二つ以下は非芳香族環である。〕
本発明の高分子化合物は、電子素子の材料として用いた場合、素子性能に優れた電子素子を与える。
式(1)において、A環、B環およびC環はそれぞれ独立に置換基を有していてもよい芳香族環または非芳香族環を表す。
芳香族環としては、環構造中にπ電子が4n+2個含まれるものをがあげられる。具体的には、ベンゼン環、シクロデカンペンタエン環等の芳香族炭化水素環;フラン環、チオフェン環、ピロール環、ピリジン環、ピリミジン環、ピリダジン環、などの芳香族複素環が挙げられる。
非芳香族環としては、シクロペンタン環、シクロペンテン環、シクロペンタジエン環、シクロヘキサン環、シクロヘキセン環、シクロヘキサジエン環、シクロヘプタン環、シクロヘプテン環、シクロヘプタジエン環、シクロヘプタトリエン環、シクロオクタン環、シクロオクテン環、シクロオクタジエン環、シクロオクタトリエン環、シクロオクタテトラエン環、シクロノナン環、シクロノネン環、シクロノナンジエン環、シクロノナントリエン環、シクロデカン環、シクロデセン環、シクロデカンジエン環、シクロデカントリエン環、シクロデカンテトラエン環、シクロドデカン環、シクロドデセン環、シクロドデカンジエン環、シクロドデカントリエン環、シクロドデカンテトラエン環、シクロドデカンペンタエン環、シクロウンデカン環、シクロウンデセン環、シクロウンデカンジエン環、シクロウンデカントリエン環、シクロウンデカンテトラエン環、シクロウンデカンペンタエン環、シクロウンデカンヘキサエン環などの脂環式環;ピラン環、チオピラン環、などの非芳香族性の複素環が挙げられる。
芳香族環または非芳香族環が置換基を有する場合、置換基としてはアルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、置換アミノ基、置換シリル基、フッ素原子、アシル基、アシルオキシ基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、シアノ基およびニトロ基があげられ、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基がさらに好ましい。
ここに、アルキル基は、直鎖、分岐または環状のいずれでもよく、炭素数が通常1〜20程度であり、好ましくは炭素数3〜20であり、その具体例としては、メチル基、エチル基、プロピル基、i−プロピル基、ブチル基、 i−ブチル基、t−ブチル基、ペンチル基、イソアミル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基、2−エチルヘキシル基、ノニル基、デシル基、3,7−ジメチルオクチル基、ラウリル基、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロブチル基、パーフルオロヘキシル基、パーフルオロオクチル基などが挙げられ、ペンチル基、イソアミル基、ヘキシル基、オクチル基、2−エチルヘキシル基、デシル基、3,7−ジメチルオクチル基が好ましい。
アルコキシ基は、直鎖、分岐または環状のいずれでもよく、炭素数が通常1〜20程度であり、好ましくは炭素数3〜20であり、その具体例としては、メトキシ基、エトキシ基、プロピルオキシ基、i−プロピルオキシ基、ブトキシ基、 i−ブトキシ基、t−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、ノニルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基、ラウリルオキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、パーフルオロブトキシ基、パーフルオロヘキシル基、パーフルオロオクチル基、メトキシメチルオキシ基、2−メトキシエチルオキシ基などが挙げられ、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、2−エチルヘキシルオキシ基、デシルオキシ基、3,7−ジメチルオクチルオキシ基が好ましい。
アルキルチオ基は、直鎖、分岐または環状のいずれでもよく、炭素数が通常1〜20程度であり、好ましくは炭素数3〜20であり、その具体例としては、メチルチオ基、エチルチオ基、プロピルチオ基、 i−プロピルチオ基、ブチルチオ基、 i−ブチルチオ基、t−ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、シクロヘキシルチオ基、ヘプチルチオ基、オクチルチオ基、2−エチルヘキシルチオ基、ノニルチオ基、デシルチオ基、3,7−ジメチルオクチルチオ基、ラウリルチオ基、トリフルオロメチルチオ基などが挙げられ、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、2−エチルヘキシルチオ基、デシルチオ基、3,7−ジメチルオクチルチオ基が好ましい。
アリール基は、芳香族炭化水素から、水素原子1個を除いた原子団であり、縮合環をもつもの、独立したベンゼン環または縮合環2個以上が直接またはビニレン等の基を介して結合したものも含まれる。アリール基は、炭素数が通常6〜60程度であり、好ましくは7〜48であり、その具体例としては、フェニル基、C1〜C12アルコキシフェニル基(C1〜C12は、炭素数1〜12であることを示す。以下も同様である。)、C1〜C12アルキルフェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、9−アントラセニル基、ペンタフルオロフェニル基などが例示され、C1〜C12アルコキシフェニル基、C1〜C12アルキルフェニル基が好ましい。C1〜C12アルコキシとして具体的には、メトキシ、エトキシ、プロピルオキシ、i−プロピルオキシ、ブトキシ、i−ブトキシ、t−ブトキシ、ペンチルオキシ、ヘキシルオキシ、シクロヘキシルオキシ、ヘプチルオキシ、オクチルオキシ、2−エチルヘキシルオキシ、ノニルオキシ、デシルオキシ、3,7−ジメチルオクチルオキシ、ラウリルオキシなどが例示される。
1〜C12アルキルフェニル基として具体的にはメチルフェニル基、エチルフェニル基、ジメチルフェニル基、プロピルフェニル基、メシチル基、メチルエチルフェニル基、i−プロピルフェニル基、ブチルフェニル基、i−ブチルフェニル基、t−ブチルフェニル基、ペンチルフェニル基、イソアミルフェニル基、ヘキシルフェニル基、ヘプチルフェニル基、オクチルフェニル基、ノニルフェニル基、デシルフェニル基、ドデシルフェニル基などが例示される。
アリールオキシ基は、炭素数が通常6〜60程度であり、好ましくは7〜48であり、その具体例としては、フェノキシ基、C1〜C12アルコキシフェノキシ基、C1〜C12アルキルフェノキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、ペンタフルオロフェニルオキシ基などが例示され、C1〜C12アルコキシフェノキシ基、C1〜C12アルキルフェノキシ基が好ましい。
1〜C12アルコキシとして具体的には、メトキシ、エトキシ、プロピルオキシ、i−プロピルオキシ、ブトキシ、i−ブトキシ、t−ブトキシ、ペンチルオキシ、ヘキシルオキシ、シクロヘキシルオキシ、ヘプチルオキシ、オクチルオキシ、2−エチルヘキシルオキシ、ノニルオキシ、デシルオキシ、3,7−ジメチルオクチルオキシ、ラウリルオキシなどが例示される。
1〜C12アルキルフェノキシ基として具体的にはメチルフェノキシ基、エチルフェノキシ基、ジメチルフェノキシ基、プロピルフェノキシ基、1,3,5−トリメチルフェノキシ基、メチルエチルフェノキシ基、i−プロピルフェノキシ基、ブチルフェノキシ基、i−ブチルフェノキシ基、t−ブチルフェノキシ基、ペンチルフェノキシ基、イソアミルフェノキシ基、ヘキシルフェノキシ基、ヘプチルフェノキシ基、オクチルフェノキシ基、ノニルフェノキシ基、デシルフェノキシ基、ドデシルフェノキシ基などが例示される。
アリールチオ基は、炭素数が通常3〜60程度であり、その具体例としては、フェニルチオ基、C1〜C12アルコキシフェニルチオ基、C1〜C12アルキルフェニルチオ基、1−ナフチルチオ基、2−ナフチルチオ基、ペンタフルオロフェニルチオ基などが例示され、C1〜C12アルコキシフェニルチオ基、C1〜C12アルキルフェニルチオ基が好ましい。
アリールアルキル基は、炭素数が通常7〜60程度であり、好ましくは7〜48であり、その具体例としては、フェニル−C1〜C12アルキル基、C1〜C12アルコキシフェニル−C1〜C12アルキル基、C1〜C12アルキルフェニル−C1〜C12アルキル基、1−ナフチル−C1〜C12アルキル基、2−ナフチル−C1〜C12アルキル基などが例示され、C1〜C12アルコキシフェニル−C1〜C12アルキル基、C1〜C12アルキルフェニル−C1〜C12アルキル基が好ましい。
アリールアルコキシ基は、炭素数が通常7〜60程度であり、好ましくは炭素数7〜48であり、その具体例としては、フェニルメトキシ基、フェニルエトキシ基、フェニルブトキシ基、フェニルペンチロキシ基、フェニルヘキシロキシ基、フェニルヘプチロキシ基、フェニルオクチロキシ基などのフェニル−C1〜C12アルコキシ基、C1〜C12アルコキシフェニル−C1〜C12アルコキシ基、C1〜C12アルキルフェニル−C1〜C12アルコキシ基、1−ナフチル−C1〜C12アルコキシ基、2−ナフチル−C1〜C12アルコキシ基などが例示され、C1〜C12アルコキシフェニル−C1〜C12アルコキシ基、C1〜C12アルキルフェニル−C1〜C12アルコキシ基が好ましい。
アリールアルキルチオ基は、炭素数が通常7〜60程度であり、好ましくは炭素数7〜48であり、その具体的としては、フェニル−C1〜C12アルキルチオ基、C1〜C12アルコキシフェニル−C1〜C12アルキルチオ基、C1〜C12アルキルフェニル−C1〜C12アルキルチオ基、1−ナフチル−C1〜C12アルキルチオ基、2−ナフチル−C1〜C12アルキルチオ基などが例示され、C1〜C12アルコキシフェニル−C1〜C12アルキルチオ基、C1〜C12アルキルフェニル−C1〜C12アルキルチオ基が好ましい。
アリールアルケニル基は、炭素数が通常8〜60程度であり、その具体的としては、フェニル−C2〜C12アルケニル基、C1〜C12アルコキシフェニル−C2〜C12アルケニル基、C1〜C12アルキルフェニル−C2〜C12アルケニル基、1−ナフチル−C2〜C12アルケニル基、2−ナフチル−C2〜C12アルケニル基などが例示され、C1〜C12アルコキシフェニル−C2〜C12アルケニル基、C2〜C12アルキルフェニル−C1〜C12アルケニル基が好ましい。
アリールアルキニル基は、炭素数が通常8〜60程度であり、その具体的としては、フェニル−C2〜C12アルキニル基、C1〜C12アルコキシフェニル−C2〜C12アルキニル基、C1〜C12アルキルフェニル−C2〜C12アルキニル基、1−ナフチル−C2〜C12アルキニル基、2−ナフチル−C2〜C12アルキニル基などが例示され、C1〜C12アルコキシフェニル−C2〜C12アルキニル基、C1〜C12アルキルフェニル−C2〜C12アルキニル基が好ましい。
置換アミノ基としては、アルキル基、アリール基、アリールアルキル基または1価の複素環基から選ばれる1または2個の基で置換されたアミノ基があげられ、該アルキル基、アリール基、アリールアルキル基または1価の複素環基は置換基を有していてもよい。置換アミノ基の炭素数は該置換基の炭素数を含めないで通常1〜60程度であり、好ましくは炭素数2〜48である。
具体的には、メチルアミノ基、ジメチルアミノ基、エチルアミノ基、ジエチルアミノ基、プロピルアミノ基、ジプロピルアミノ基、i−プロピルアミノ基、ジイソプロピルアミノ基、ブチルアミノ基、i−ブチルアミノ基、t−ブチルアミノ基、ペンチルアミノ基、ヘキシルアミノ基、シクロヘキシルアミノ基、ヘプチルアミノ基、オクチルアミノ基、2−エチルヘキシルアミノ基、ノニルアミノ基、デシルアミノ基、3,7−ジメチルオクチルアミノ基、ラウリルアミノ基、シクロペンチルアミノ基、ジシクロペンチルアミノ基、シクロヘキシルアミノ基、ジシクロヘキシルアミノ基、ピロリジル基、ピペリジル基、ジトリフルオロメチルアミノ基フェニルアミノ基、ジフェニルアミノ基、C1〜C12アルコキシフェニルアミノ基、ジ(C1〜C12アルコキシフェニル)アミノ基、ジ(C1〜C12アルキルフェニル)アミノ基、1−ナフチルアミノ基、2−ナフチルアミノ基、ペンタフルオロフェニルアミノ基、ピリジルアミノ基、ピリダジニルアミノ基、ピリミジルアミノ基、ピラジルアミノ基、トリアジルアミノ基フェニル−C1〜C12アルキルアミノ基、C1〜C12アルコキシフェニル−C1〜C12アルキルアミノ基、C1〜C12アルキルフェニル−C1〜C12アルキルアミノ基、ジ(C1〜C12アルコキシフェニル−C1〜C12アルキル)アミノ基、ジ(C1〜C12アルキルフェニル−C1〜C12アルキル)アミノ基、1−ナフチル−C1〜C12アルキルアミノ基、2−ナフチル−C1〜C12アルキルアミノ基などが例示される。
置換シリル基としては、アルキル基、アリール基、アリールアルキル基または1価の複素環基から選ばれる1、2または3個の基で置換されたシリル基があげられる。置換シリル基の炭素数は通常1〜60程度であり、好ましくは炭素数3〜48である。なお該アルキル基、アリール基、アリールアルキル基または1価の複素環基は置換基を有していてもよい。
具体的には、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリ−i−プロピルシリル基、ジメチル−i−プロピリシリル基、ジエチル−i−プロピルシリル基、t−ブチルシリルジメチルシリル基、ペンチルジメチルシリル基、ヘキシルジメチルシリル基、ヘプチルジメチルシリル基、オクチルジメチルシリル基、2−エチルヘキシル−ジメチルシリル基、ノニルジメチルシリル基、デシルジメチルシリル基、3,7−ジメチルオクチル−ジメチルシリル基、ラウリルジメチルシリル基、フェニル−C1〜C12アルキルシリル基、C1〜C12アルコキシフェニル−C1〜C12アルキルシリル基、C1〜C12アルキルフェニル−C1〜C12アルキルシリル基、1−ナフチル−C1〜C12アルキルシリル基、2−ナフチル−C1〜C12アルキルシリル基、フェニル−C1〜C12アルキルジメチルシリル基、トリフェニルシリル基、トリ−p−キシリルシリル基、トリベンジルシリル基、ジフェニルメチルシリル基、t−ブチルジフェニルシリル基、ジメチルフェニルシリル基などが例示される。
アシル基は、炭素数が通常2〜20程度であり、好ましくは炭素数2〜18であり、その具体例としては、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ピバロイル基、ベンゾイル基、トリフルオロアセチル基、ペンタフルオロベンゾイル基などが例示される。
アシルオキシ基は、炭素数が通常2〜20程度であり、好ましくは炭素数2〜18であり、その具体例としては、アセトキシ基、プロピオニルオキシ基、ブチリルオキシ基、イソブチリルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基、トリフルオロアセチルオキシ基、ペンタフルオロベンゾイルオキシ基などが例示される。
アミド基は、炭素数が通常2〜20程度であり、好ましくは炭素数2〜18であり、その具体例としては、ホルムアミド基、アセトアミド基、プロピオアミド基、ブチロアミド基、ベンズアミド基、トリフルオロアセトアミド基、ペンタフルオロベンズアミド基、ジホルムアミド基、ジアセトアミド基、ジプロピオアミド基、ジブチロアミド基、ジベンズアミド基、ジトリフルオロアセトアミド基、ジペンタフルオロベンズアミド基、などが例示される。
酸イミド基は、酸イミドからその窒素原子に結合した水素原子を除いて得られる残基が挙げられ、炭素数が4〜20程度であり、具体的には以下に示す基などが例示される。
Figure 2006328387
1価の複素環基とは、複素環化合物から水素原子1個を除いた残りの原子団をいい、炭素数は通常4〜60程度であり、好ましくは4〜20である。なお、複素環基の炭素数には、置換基の炭素数は含まれない。ここに複素環化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素が炭素原子だけでなく、酸素、硫黄、窒素、燐、硼素などのヘテロ原子を環内に含むものをいう。具体的には、下記構造が示される。

Figure 2006328387

Figure 2006328387


Figure 2006328387

Figure 2006328387

Figure 2006328387

Figure 2006328387

Figure 2006328387

上記式において、Rはそれぞれ独立に水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基またはシアノ基を示す。
中でも、チエニル基、C1〜C12アルキルチエニル基、ピロリル基、フリル基、ピリジル基、C1〜C12アルキルピリジル基、ピペリジル基、キノリル基、イソキノリル基などが好ましく、チエニル基、C1〜C12アルキルチエニル基、ピリジル基、C1〜C12アルキルピリジル基がさらに好ましい。
置換カルボキシル基は、アルキル基、アリール基、アリールアルキル基または1価の複素環基で置換されたカルボキシル基をいい、炭素数が通常2〜60程度であり、好ましくは炭素数2〜48であり、その具体例としては、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、i−プロポキシカルボニル基、ブトキシカルボニル基、i−ブトキシカルボニル基、t−ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシロキシカルボニル基、シクロヘキシロキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基、2−エチルヘキシロキシカルボニル基、ノニルオキシカルボニル基、デシロキシカルボニル基、3,7−ジメチルオクチルオキシカルボニル基、ドデシルオキシカルボニル基、トリフルオロメトキシカルボニル基、ペンタフルオロエトキシカルボニル基、パーフルオロブトキシカルボニル基、パーフルオロヘキシルオキシカルボニル基、パーフルオロオクチルオキシカルボニル基、フェノキシカルボニル基、ナフトキシカルボニル基、ピリジルオキシカルボニル基、などが挙げられる。なお該アルキル基、アリール基、アリールアルキル基または1価の複素環基は置換基を有していてもよい。置換カルボキシル基の炭素数には該置換基の炭素数は含まれない。
上記式(1)中 Z1、Z2、Z3、Z4、およびZ5はそれぞれ独立に、C−(Q)zまたは窒素原子を表し、Qは、置換基または水素原子を表し、zは0または1を表す。
Qにおける置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、置換アミノ基、置換シリル基、フッ素原子、アシル基、アシルオキシ基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、シアノ基およびニトロ基等があげられ、その定義具体例等は、前記のそれらと同様である。
A環とB環はそれぞれの環を構成するZ5以外の環の原子を共有していてもよく、A環、B環およびC環の一つ以上二つ以下は非芳香族環である。
好ましくは、A環とB環がZ5以外に1つの環の原子を共有している場合である。また、非芳香族環が一つの場合が好ましい。
また、本発明の高分子化合物は繰り返し単位として下記式(1−1)〜(1−3)で示さ
れる繰り返し単位を含むことが好ましい。
Figure 2006328387
式(1−1) 式(1−2) 式(1−3)

〔式中、A環、B環およびC環はそれぞれ独立に置換基を有していてもよい芳香族環または非芳香族環を表し、Z1、Z2、Z3、Z4およびZ5はそれぞれ独立にC−(Q)zまたは窒素原子を表し、Qは、置換基または水素原子を表し、zは0または1を表し、A環とB環はZ5以外の環の原子を共有していてもよくまた、各環の置換基同士が結合して、さらに環を形成していてもよく、A環、B環、C環のうち、結合手を持たない環の1つ以上が非芳香族環である。〕
式(1−1)で示される繰り返し単位の具体例としては、
Figure 2006328387

Figure 2006328387

Figure 2006328387

Figure 2006328387
等およびこれらが置換基を有するものが挙げられる。
式(1−2)で示される繰り返し単位の具体例としては、
Figure 2006328387

Figure 2006328387

Figure 2006328387


等およびこれらが置換基を有するものが挙げられる。
式(1−3)で示される繰り返し単位の具体例としては、
Figure 2006328387

Figure 2006328387


Figure 2006328387

Figure 2006328387

等およびこれらが置換基を有するものが挙げられる。
上記式(1‐1)〜(1−3)で示される繰り返し単位の中で、A環、B環およびC環を構成する原子(「環を構成する原子」とは環の骨格を形成する原子を指す)は、炭素原子以外に、窒素、酸素、硫黄、けい素、セレン等の原子を含んでいてもよいが、電荷輸送性を調整する観点から、A環、B環およびC環を構成する原子が全て炭素原子であることが好ましい。
高分子化合物の溶解性を高める観点、発光波長を調整する観点、電荷輸送性を調整する観点から、A環、B環、C環のいずれかが置換基を有していることが好ましい。
さらに、電荷輸送性の観点からは、上記式(1−1)、(1−2)で示される構造の繰り返し単位が好ましく、合成のしやすさの観点から、上記式(1−1)で示される構造がさらに好ましい。
さらに、上記式(1−1)が下記式(2−1)であることがより好ましい。

Figure 2006328387
式(2−1)

〔式中、R1およびR2はそれぞれ独立に置換基を表し、D環は置換基を有していてもよい非芳香族環を表し、aは0〜2の整数を表し、bは0〜3の整数を表し、R1およびR2がそれぞれ複数存在する場合、それらは同一でも異なっていてもよく、R1とR2は互いに結合して環を形成していてもよい。また、R1および/またはR2はD環と結合して環を形成していてもよく、Qおよびzは前記と同じ意味を表す。〕
上記式(2−1)を含む繰り返し単位が、下記式(3−1)で示される繰り返し単位であることが好ましい。
Figure 2006328387
式(3−1)

〔式中、R1、R2、D環、Q、z、aおよびbは前記と同じ意味を表す。〕
式(3−1)で示される繰り返し単位の中で、電荷輸送性を調整する観点から、下記式(4−1)、(4−2)、(4−3)および(4−4)で示されるものがさらに好ましい。

Figure 2006328387
式(4−1) 式(4-2)

Figure 2006328387
式(4−3) 式(4‐4)

〔式中、R1a、R1b、R2a〜R2cおよびR3a〜R3gは置換基を表す。式(4−1)〜(4−3)において、R2cとR3gは互いに結合して環を形成しても良い。式(4−4)において、R2cとR3eは互いに結合して環を形成していても良い。〕
互いに結合して形成される環としては、芳香族環、非芳香族環等があげられその具体例等は、前記に記載と同様である。

なお、式(4−1)〜(4-3)の単位は、式(3-1)でz=1の場合に含まれ、
式(4-4)の単位は、式(3-1)でz=0の場合に含まれる。
上記式(4−1)で示される繰り返し単位の具体例としては、
Figure 2006328387


Figure 2006328387

Figure 2006328387
が挙げられる。
式(4−2)で示される繰り返し単位の具体例としては、
Figure 2006328387

Figure 2006328387

Figure 2006328387
Figure 2006328387

が挙げられる。
式(4−3)で示される繰り返し単位の具体例としては、
Figure 2006328387

Figure 2006328387

Figure 2006328387
が挙げられる。
上記式(4−4)で示される繰り返し単位の具体例としては、
Figure 2006328387

Figure 2006328387

Figure 2006328387
が挙げられる。
式中、Meはメチル基、Etはエチル基をそれぞれ表す。
上記式(1−1)、(1−2)、(1−3)、(2−1)、(3−1)、(4‐1)、(4‐2)、(4‐3)および(4‐4)で示される構造である繰り返し単位の合計は、本発明の高分子化合物が有する全繰り返し単位の合計の通常1モル%以上100モル%以下であり、5モル%以上100モル%以下であることが好ましい。
本発明の高分子化合物は、発光波長を変化させる観点、発光効率を高める観点、耐熱性を向上させる観点等から、上記式(1−1)、(1−2)、(1−3)、(2−1)、(3−1)、(4‐1)、(4‐2)、(4‐3)および(4‐4)で示される繰り返し単位に加え、それ以外の繰り返し単位を1種類以上含む共重合体が好ましい。
上記式(1−1)、(1−2)、(1−3)、(2−1)、(3−1)、(4‐1)、(4‐2)、(4‐3)および(4‐4)で示される繰り返し単位以外の繰り返し単位としては、下記式(5)、式(6)、式(7)または式(8)で示される繰り返し単位が好ましい。

−Ar1− (5)
Figure 2006328387
−Ar4−X2− (7)
−X3− (8)
式中、Ar1、Ar2、Ar3およびAr4はそれぞれ独立にアリーレン基、2価の複素環基または金属錯体構造を有する2価の基を示す。X1、X2およびX3はそれぞれ独立に−CR9=CR10−、−C≡C−、−N(R11)−、または−(SiR1213m−を示す。R9およびR10は、それぞれ独立に水素原子、アルキル基、アリール基、1価の複素環基、カルボキシル基、置換カルボキシル基またはシアノ基を示す。R11、R12およびR13は、それぞれ独立に水素原子、アルキル基、アリール基、1価の複素環基、アリールアルキル基または置換アミノ基を示す。ffは1または2の整数を示す。mは1〜12の整数を示す。R9、R10、R11、R12およびR12がそれぞれ複数存在する場合、それらは同一でも異なっていてもよい。
ここでアリーレン基とは、芳香族炭化水素から、水素原子2個を除いた原子団であり、、縮合環をもつもの、独立したベンゼン環または縮合環2個以上が直接またはビニレン等の基を介して結合したものが含まれる。アリーレン基は置換基を有していてもよい。
置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、シアノ基が挙げられる。
アリーレン基における置換基を除いた部分の炭素数は通常6〜60程度であり、好ましくは6〜20である。また、アリーレン基の置換基を含めた全炭素数は、通常6〜100程度である。
アリーレン基としては、フェニレン基(例えば、下図の式1〜3)、ナフタレンジイル基(下図の式4〜13)、アントラセン−ジイル基(下図の式14〜19)、ビフェニル−ジイル基(下図の式20〜25)、フルオレン−ジイル基(下図の式36〜38)、ターフェニル−ジイル基(下図の式26〜28)、縮合環化合物基(下図の式29〜35)、スチルベン−ジイル(下図の式A〜D), ジスチルベン−ジイル (下図の式E,F)などが例示される。中でもフェニレン基、ビフェニレン基、フルオレン−ジイル基、スチルベン−ジイル基が好ましい。
Figure 2006328387
Figure 2006328387
Figure 2006328387
Figure 2006328387
Figure 2006328387
Figure 2006328387
また、Ar1、Ar2、Ar3およびAr4における2価の複素環基とは、複素環化合物から水素原子2個を除いた残りの原子団をいい、該基は置換基を有していてもよい。
ここに複素環化合物とは、環式構造をもつ有機化合物のうち、環を構成する元素が炭素原子だけでなく、酸素、硫黄、窒素、リン、ホウ素、ヒ素などのヘテロ原子を環内に含むものをいう。2価の複素環基の中では、芳香族複素環基が好ましい。
置換基としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、シアノ基が挙げられる。
2価の複素環基における置換基を除いた部分の炭素数は通常3〜60程度である。また、2価の複素環基の置換基を含めた全炭素数は、通常3〜100程度である。
2価の複素環基としては、例えば以下のものが挙げられる。
ヘテロ原子として、窒素を含む2価の複素環基;ピリジンージイル基(下図の式39〜44)、ジアザフェニレン基(下図の式45〜48)、キノリンジイル基(下図の式49〜63)、キノキサリンジイル基(下図の式64〜68)、アクリジンジイル基(下図の式69〜72)、ビピリジルジイル基(下図の式73〜75)、フェナントロリンジイル基(下図の式76〜78)、など。
ヘテロ原子としてけい素、窒素、セレンなどを含みフルオレン構造を有する基(下図の式79〜93)。
ヘテロ原子としてけい素、窒素、硫黄、セレンなどを含む5員環複素環基:(下図の式94〜98)が挙げられる。
ヘテロ原子としてけい素、窒素、セレンなどを含む5員環縮合複素基:(下図の式99〜100、102〜110)が挙げられる。
ヘテロ原子としてけい素、窒素、硫黄、セレンなどを含む5員環複素環基でそのヘテロ原子のα位で結合し2量体やオリゴマーになっている基:(下図の式111〜112)が挙げられる。
ヘテロ原子としてけい素、窒素、硫黄、セレンなどを含む5員環複素環基でそのヘテロ原子のα位でフェニル基に結合している基:(下図の式113〜119)が挙げられる。
ヘテロ原子として酸素、窒素、硫黄、などを含む5員環縮合複素環基にフェニル基やフリル基、チエニル基が置換した基:(下図の式120〜125)が挙げられる。
Figure 2006328387
Figure 2006328387
Figure 2006328387
Figure 2006328387
Figure 2006328387
Figure 2006328387
Figure 2006328387
Figure 2006328387
Figure 2006328387
Figure 2006328387
また、Ar1、Ar2、Ar3およびAr4における金属錯体構造を有する2価の基とは、有機配位子を有する金属錯体の有機配位子から水素原子を2個除いた残りの2価の基である。
該有機配位子の炭素数は、通常4〜60程度であり、例えば、8−キノリノールおよびその誘導体、ベンゾキノリノールおよびその誘導体、2−フェニル−ピリジンおよびその誘導体、2−フェニル−ベンゾチアゾールおよびその誘導体、2−フェニル−ベンゾキサゾールおよびその誘導体、ポルフィリンおよびその誘導体などが挙げられる。
また、該錯体の中心金属としては、例えば、アルミニウム、亜鉛、ベリリウム、イリジウム、白金、金、ユーロピウム、テルビウムなどが挙げられる。
有機配位子を有する金属錯体としては、低分子の蛍光材料、燐光材料として公知の金属錯体、三重項発光錯体などが挙げられる。
金属錯体構造を有する2価の基としては、具体的には、以下の(126〜132)が例示される。

Figure 2006328387

Figure 2006328387

Figure 2006328387

Figure 2006328387

Figure 2006328387

Figure 2006328387

Figure 2006328387
上記の式1〜132において、Rはそれぞれ独立に水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基またはシアノ基を示す。また、式1〜132の基が有する炭素原子は、窒素原子、酸素原子または硫黄原子と置き換えられていてもよく、水素原子はフッ素原子に置換されていてもよい。
さらに、上記式(5)、(6)、(7)、(8)で示される繰り返し単位の中では、下記式(9)、式(10)、式(11)、式(12)、式(13)、または式(14)で示される繰り返し単位が好ましい。

Figure 2006328387

〔式中、R14は、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基またはシアノ基を示す。nは0〜4の整数を示す。R14が複数存在する場合、それらは同一でも異なっていてもよい。〕
Figure 2006328387
〔式中、R15およびR16は、それぞれ独立にアルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基またはシアノ基を示す。oおよびpはそれぞれ独立に0〜3の整数を示す。R15およびR16がそれぞれ複数存在する場合、それらは同一でも異なっていてもよい。〕

Figure 2006328387
〔式中、R17およびR20は、それぞれ独立にアルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基またはシアノ基を示す。qおよびrはそれぞれ独立に0〜4の整数を示す。R18およびR19は、それぞれ独立に水素原子、アルキル基、アリール基、1価の複素環基、カルボキシル基、置換カルボキシル基またはシアノ基を示す。R17およびR20が複数存在する場合、それらは同一でも異なっていてもよい。〕

Figure 2006328387
〔式中、R21は、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基またはシアノ基を示す。sは0〜2の整数を示す。Ar13およびAr14はそれぞれ独立にアリーレン基、2価の複素環基または金属錯体構造を有する2価の基を示す。ssおよびttはそれぞれ独立に0または1を示す。
4は、O、S、SO、SO2、Se,またはTeを示す。R21が複数存在する場合、それらは同一でも異なっていてもよい。〕

Figure 2006328387

〔式中、R22およびR25は、それぞれ独立にアルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基またはシアノ基を示す。tおよびuはそれぞれ独立に0〜4の整数を示す。X5は、O、S、SO2、Se,Te、N−R24、またはSiR2526を示す。X6およびX7は、それぞれ独立にNまたはC−R27を示す。R24、R25、26およびR27はそれぞれ独立に水素原子、アルキル基、アリール基、アリールアルキル基または1価の複素環基を示す。R22、R23およびR27が複数存在する場合、それらは同一でも異なっていてもよい。〕
式(11)で示される繰り返し単位の中央の5員環の例としては、チアジアゾール、オキサジアゾール、トリアゾール、チオフェン、フラン、シロールなどが挙げられる。

Figure 2006328387

〔式中、R28およびR33は、それぞれ独立にアルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基またはシアノ基を示す。vおよびwはそれぞれ独立に0〜4の整数を示す。R29、R30、R31およびR36は、それぞれ独立に水素原子、アルキル基、アリール基、1価の複素環基、カルボキシル基、置換カルボキシル基またはシアノ基を示す。Ar5はアリーレン基、2価の複素環基または金属錯体構造を有する2価の基を示す。R28およびR33が複数存在する場合、それらは同一でも異なっていてもよい。〕

また上記式(6)で示される繰り返し単位の中で、下記式(15)で示される繰り返し単位が、発光波長を変化させる観点、発光効率を高める観点、耐熱性を向上させる観点からも好ましい。

Figure 2006328387


〔式中、Ar6、Ar7、Ar8およびAr9はそれぞれ独立にアリーレン基または2価の複素環基を示す。Ar10、Ar11およびAr12はそれぞれ独立にアリール基、または1価の複素環基を示す。Ar6、Ar7、Ar8、Ar9、およびAr10は置換基を有していてもよい。xおよびyはそれぞれ独立に0または1を示し、0≦x+y≦1である。〕
上記式(15)で示される繰り返し単位の具体例としては、以下の(式133〜140)で示されるものが挙げられる。


Figure 2006328387

Figure 2006328387


Figure 2006328387
上記式においてRは、前記式1〜132のそれと同じである。
溶媒への溶解性を高めるためには、水素原子以外を1つ以上有していることが好ましく、また置換基を含めた繰り返し単位の形状の対称性が少ないことが好ましい。
上記式においてRがアルキルを含む置換基においては、高分子化合物の溶媒への溶解性を高めるために、1つ以上に環状または分岐のあるアルキルが含まれることが好ましい。
さらに、上記式においてRがアリール基や複素環基をその一部に含む場合は、それらがさらに1つ以上の置換基を有していてもよい。
上記式(15)で示される繰り返し単位において、発光波長を調節する観点、素子特性等の観点から、Ar6、Ar7、Ar8およびAr9がそれぞれ独立にアリーレン基であり、Ar10、Ar11およびAr12がそれぞれ独立にアリール基を示すものが好ましい。
Ar6、Ar7、Ar8としては、それぞれ独立に、無置換のフェニレン基、無置換のビフェニル基、無置換のナフチレン基、無置換のアントラセンジイル基である場合が好ましい。
Ar10、Ar11およびAr12としては溶解性、発光効率、安定性の観点から、それぞれ独立に、3つ以上の置換基を有するアリール基であるものが好ましく、Ar10、Ar11およびAr12が置換基を3つ以上有するフェニル基、3つ以上の置換基を有するナフチル基または3つ以上の置換基を有するアントラニル基であるものがより好ましく、Ar10、Ar11およびAr12が置換基を3つ以上有するフェニル基であるものがさらに好ましい。
中でも、Ar10、Ar11およびAr12が、それぞれ独立に下記式(15−1)であるものが好ましい。

Figure 2006328387

〔式中、Re、RfおよびRgは、それぞれ独立にアルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、シリルオキシ基、置換シリルオキシ基、1価の複素環基またはハロゲン原子を表す。〕
前記式(15)で示される繰り返し単位において、Ar7が下記式(15−2)または(15−3)であることが好ましい。

Figure 2006328387
[ここで、(15−2)、(15−3)で示される構造に含まれるベンゼン環は、それぞれ独立に1個以上4個以下の置換基を有していてもよい。それら置換基は、互いに同一であっても、異なっていても良い。また、複数の置換基が連結して環を形成していても良い。さらに、該ベンゼン環に隣接して他の芳香族炭化水素環または複素環が結合していても良い。]
上記式(15)で示される繰り返し単位として、特に好ましい具体例としては、以下の(式141〜142)で示されるものが挙げられる。

Figure 2006328387
〔式中、Re〜Rgは前述の通り。〕
上記式においてRe〜Rgは、前記式1〜132のそれと同じである。溶媒への溶解性を高めるためには、水素原子以外を1つ以上有していることが好ましく、また置換基を含めた繰り返し単位の形状の対称性が少ないことが好ましい。
上記式においてRがアルキル鎖を含む置換基においては、高分子化合物の溶媒への溶解性を高めるために、1つ以上に環状または分岐のあるアルキル鎖が含まれることが好ましい。
さらに、上記式においてRがアリール基や複素環基をその一部に含む場合は、それらがさらに1つ以上の置換基を有していてもよい。
なお、本発明の高分子化合物は、発光特性や電荷輸送特性を損なわない範囲で、上記式(1−1)、(1−2)、(1−3)および式(5)〜式(15)で示される繰り返し単位以外の繰り返し単位を含んでいてもよい。また、これらの繰り返し単位や他の繰り返し単位が、非共役の単位で連結されていてもよいし、繰り返し単位にそれらの非共役部分が含まれていてもよい。結合構造としては、以下に示すもの、および以下に示すもののうち2つ以上を組み合わせたものなどが例示される。ここで、Rは前記のものと同じ置換基から選ばれる基であり、Arは炭素数6〜60個の炭化水素基を示す。

Figure 2006328387
本発明の高分子化合物の中では、上記式(1−1)で示される繰り返し単位のみからなるもの、および/または(1−2)で示される繰り返し単位のみからなるもの、および/または(1−3)で示される繰り返し単位のみからなるもの、実質的に上記式(1−1)および/または(1−2)および/または(1−3)と上記式(5)〜(15)で示される繰り返し単位の1以上とからなるものが好ましい。
また、本発明の高分子化合物は、ランダム、ブロックまたはグラフト共重合体であってもよいし、それらの中間的な構造を有する高分子、例えばブロック性を帯びたランダム共重合体であってもよい。蛍光またはりん光の量子収率の高い高分子発光体を得る観点からは完全なランダム共重合体よりブロック性を帯びたランダム共重合体やブロックまたはグラフト共重合体が好ましい。主鎖に枝分かれがあり、末端部が3つ以上ある場合やデンドリマーも含まれる。
また、本発明の高分子化合物の末端基は、重合活性基がそのまま残っていると、素子にしたときの発光特性や寿命が低下する可能性があるので、安定な基で保護されていてよい。主鎖の共役構造と連続した共役結合を有しているものが好ましく、例えば、炭素―炭素結合を介してアリール基または複素環基と結合している構造が例示される。具体的には、特開平9−45478号公報の化10に記載の置換基等が例示される。
本発明の高分子化合物においてはその分子鎖末端の少なくとも一方が、1価の複素環基、1価の芳香族アミン基、複素環配位金属錯体から誘導される1価の基およびアリール基から選ばれる芳香族末端基であることが好ましい。この芳香族末端基は1種類でも2種類以上であってもよい。芳香族末端基以外の末端基は、蛍光特性や素子特性の観点から、実質的に存在しないことが好ましい。ここで、分子鎖末端とは、本発明の製造方法により高分子化合物の末端に存在する芳香族末端基、重合に用いた単量体の脱離基であって重合時に脱離しないで高分子化合物の末端に存在する脱離基、高分子化合物の末端に存在する単量体に由来する脱離基が外れたものの芳香族末端基が結合しないでかわりに結合した水素原子を言う。これらの分子鎖末端のうち、重合に用いた単量体の脱離基であって重合時に脱離しないで高分子化合物の末端に存在する脱離基、例えば、原料としてハロゲン原子を有する単量体を用いて本発明の高分子化合物を製造する場合等には、ハロゲンが高分子化合物末端に残っていると蛍光特性等が低下する傾向があるため、末端には単量体の脱離基が実質的に残っていないことが好ましい。
高分子化合物においてはその分子鎖末端の少なくとも一方を、1価の複素環基、1価の芳香族アミン基、複素環配位金属錯体から誘導される1価の基または式量90以上のアリール基から選ばれる芳香族末端基で封止することにより、高分子化合物にさまざまな特性を付加することが期待される。具体的には、素子の輝度低下に要する時間を長くする効果、電荷注入性、電荷輸送性、発光特性等を高める効果、共重合体間の相溶性や相互作用を高める効果、アンカー的な効果等などがあげられる。
1価の芳香族アミン基としては、前記式(15)の構造において2個有する結合手のうちの1つをRで封止した構造が例示される。
複素環配位金属錯体から誘導される1価の基としては、前述の金属錯体構造を有する2価の基において2個有する結合手のうちの1つをRで封止した構造が例示される。
本発明の高分子化合物が有する芳香族末端基のなかで、式量90以上のアリール基としては、炭素数は通常6〜60程度である。ここにアリール基の式量とは、アリール基を化学式で表したときに、該化学式中の各元素について、それぞれの元素の原子数に原子量を乗じたものの和をいう。
アリール基としては、フェニル基、ナフチル基、アントラセニル基、フルオレン構造を有する基、縮合環化合物基などあげられる。
末端を封止するフェニル基としては、例えば

Figure 2006328387

があげられる。
末端を封止するナフチル基としては、例えば、
Figure 2006328387

があげられる。
アントラセニル基としては、例えば、
Figure 2006328387

があげられる。
フルオレン構造を含む基としては、例えば、
Figure 2006328387
があげられる。
縮合環化合物基としては、例えば、
Figure 2006328387

があげられる。
電荷注入性、電荷輸送性を高める末端基としては、1価の複素環基、1価の芳香族アミン基、縮合環化合物基が好ましく、1価の複素環基、縮合環化合物基がより好ましい。
発光特性を高める末端基としては、ナフチル基、アントラセニル基、縮合環化合物基、複素環配位金属錯体から誘導される1価の基が好ましい。
素子の輝度低下に要する時間を長くする効果がある末端基としては、置換基を有するアリール基が好ましく、アルキル基を1〜3個有するフェニル基が好ましい。
高分子化合物間の相溶性や相互作用を高める効果がある末端基としては、置換基を有するアリール基が好ましい。また、炭素数6以上のアルキル基が置換したフェニル基を用いることによりアンカー的な効果を奏することができる。アンカー効果とは末端基がポリマーの凝集体に対してアンカー的な役割をし、相互作用を高める効果をいう。
素子特性を高める基としては、下記構造が好ましい。

Figure 2006328387

Figure 2006328387

式中のRは前述のRが例示される。
本発明の高分子化合物のポリスチレン換算の数平均分子量は通常103〜108程度であり、好ましくは104〜106である。また、ポリスチレン換算の重量平均分子量は103〜108であり、好ましくは104〜5×106である。
本発明の高分子化合物に対する良溶媒としては、クロロホルム、塩化メチレン、ジクロロエタン、テトラヒドロフラン、トルエン、キシレン、メシチレン、テトラリン、デカリン、n−ブチルベンゼンなどが例示される。高分子化合物の構造や分子量にもよるが、通常はこれらの溶媒に0.1重量%以上溶解させることができる。

本発明の高分子化合物は、対応する、ポリフルオレン誘導体に比較して、短波長で発光し得る。
次に本発明の高分子化合物の製造方法について説明する。
本発明の高分子化合物のなかで、例えば、式(1−1)、(1−2)、(1−3)で示される繰り返し単位を有するものは、それぞれ原料として、少なくとも下記式(16−1)、(16−2)および(16−3)
Figure 2006328387
式(16‐1) 式(16‐2) 式(16‐3)

〔式中、A環、B環、C環、Z1〜Z5は前述の通り。Y1、Y2、Y3、Y4、Y5およびY6はそれぞれ独立に重合に関与する置換基を表す。〕
で示される化合物を用いて重合させることで製造することができる。
式(16‐1)で示される化合物の中で、式(17‐1)で示される化合物が好ましい。
Figure 2006328387
式(17‐1)

〔式中、R1、R2、a、b、D環、Q、z、Y1およびY2は前記と同じ意味を表す。〕
式(17−1)で示される化合物の中では、式(18−1)、(18−2)、(18−3)および(18−4)で示される構造がさらに好ましい。
Figure 2006328387
式(18−1) 式(18−2)

Figure 2006328387
式(18−3) 式(18−4)
また、式(16−2)で示される化合物の中で、式(17‐2)で示される化合物が好ましい。
Figure 2006328387

式(17−2)
〔式中、B環、C環、Z2、Z3、Z4、Y3およびY4は前記と同じ意味を表す。Z6、Z7およびZ8はそれぞれ独立にC−(Q)zまたは窒素原子を示す。Z1a、Z5aおよびZ9はそれぞれ独立に炭素原子を示す。Q、およびzは前記と同じ意味を表す。R4は置換基を示す。eは0〜2の整数を示す。R4が複数ある場合、それらは同一でも異なっていてもよく、R4同士が結合して環を形成していてもよい。〕
また、式(16−3)で示される化合物の中で、式(17‐3)で示される化合物が好ましい。
Figure 2006328387

式(17−3)
〔式中、A環、B環、Z1、Z4、Z5、Y5およびY6は前記と同じ意味を表す。Z10、Z11、Z12およびZ13はそれぞれ独立に、C−(Q)zまたは窒素原子を示す。Z2aおよびZ3aはそれぞれ独立に炭素原子を示す。Q、およびzは前記と同じ意味を表す。R5は置換基を示す。fは0〜2の整数を示す。R5が複数ある場合、それらは同一でも異なっていてもよく、R5同士が結合して環を形成していてもよい。〕
本発明の製造方法において、重合に関与する置換基としては、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、ホウ酸エステル基、スルホニウムメチル基、ホスホニウムメチル基、ホスホネートメチル基、モノハロゲン化メチル基、−B(OH)2、ホルミル基、シアノ基、ビニル基等があげられる。
ここに、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子があげられる。重合度を向上させる観点からは、臭素原子、ヨウ素原子が好ましい。
アルキルスルホネート基としては、メタンスルホネート基、エタンスルホネート基、トリフルオロメタンスルホネート基などが例示され、アリールスルホネート基としては、ベンゼンスルホネート基、p−トルエンスルホネート基などが例示され、アリールスルホネート基としては、ベンジルスルホネート基などが例示される。
ホウ酸エステル基としては、下記式で示される基が例示される。

Figure 2006328387
式中、Meはメチル基を、Etはエチル基を示す。
スルホニウムメチル基としては、下記式で示される基が例示される。
−CH2+Me2-、−CH2+Ph2-
(Xはハロゲン原子を示し、Phはフェニル基を示す。)
ホスホニウムメチル基としては、下記式で示される基が例示される。
−CH2+Ph3- (Xはハロゲン原子を示す。)
ホスホネートメチル基としては、下記式で示される基が例示される。
−CH2PO(OR’)2 (Xはハロゲン原子を示し、R’はアルキル基、アリール基、アリールアルキル基を示す。)
モノハロゲン化メチル基としては、フッ化メチル基、塩化メチル基、臭化メチル基、ヨウ化メチル基が例示される。
重合に関与する置換基として好ましい置換基は重合反応の種類によって異なるが、例えばYamamotoカップリング反応など0価ニッケル錯体を用いる場合には、ハロゲン原子、アルキルスルホネート基、アリールスルホネート基またはアリールアルキルスルホネート基が挙げられる。またSuzukiカップリング反応などニッケル触媒あるいはパラジウム触媒を用いる場合には、アルキルスルホネート基、ハロゲン原子、ホウ酸エステル基、-B(OH)2などが挙げられる。
特に、式(4−1)の繰り返し単位を有する高分子化合物は、式(4−2)〜(4−4)の繰り返し単位を有する高分子化合物を、パラジウム、白金、ロジウム、ルテニウム、あるいはこれらを混合した貴金属を活性炭上に担持させた触媒によって水素化しても得ることができる。
逆に、式(4−2)〜(4−4)の繰り返し単位を有する高分子化合物は、式(4−1)の繰り返し単位を有する高分子化合物を2、3−ジクロロ−5,6−ジシアノ−1、4−ベンゾキノン(DDQ)や、塩基条件下で臭素化テトラブチルアンモニウムを用いて酸化することによっても得ることができる。
また、本発明の高分子化合物が、式(1−1)または式(1−2)または式(1−3)以外の繰り返し単位を有する場合には、式(1−1)または式(1−2)または式(1−3)以外の繰り返し単位となる、2個の重合に関与する置換基を有する化合物を共存させて重合させればよい。
上記式(16−1)、(16−2)または(16−3)で示される化合物に加えて、下記式(19)〜(22)のいずれかで示される化合物を原料として用いることができる。
式(19)
7−Ar1−Y8

式(20)
Figure 2006328387

式(21)
11−Ar4−X2−Y12

式(22)
13−X3−Y14
〔式中、Ar1、Ar2、Ar3、Ar4、ff、X1、X2およびX3は前記と同じである。Y7、Y8、Y9、Y10、Y11、Y12、Y13、Y14はそれぞれ独立に重合可能な置換基を示す。〕
上記式(1−1)、(1−2)または(1−3)で示される単位に加えて、順に(5)、(6)、(7)または(8)の単位を1つ以上有する高分子化合物を製造することができる。
また、上記式(1−1)、(1−2)または(1−3)で示される繰り返し単位以外の繰り返し単位となる、上記式(15)に対応する2個の重合に関与する置換基を有する化合物としては、下記式(15−7)で示される化合物があげられる。
Figure 2006328387
〔式中、Ar6、Ar7、Ar8、Ar9、Ar10、Ar11、Ar12、xおよびyは前記と同じ。Y15およびY16はそれぞれ独立に重合に関与する置換基を示す。〕
さらに好ましくは、式(15−8)または式(15−9)で示される化合物である。
Figure 2006328387

式(15−8) 式(15−9)

〔式中、Re〜Rgは前述の通り。Y17、Y18、Y19、Y20はそれぞれ独立に重合に関与する置換基を示す。〕
本発明の製造方法は、具体的には、モノマーとなる、縮合重合に関与する置換基を複数有する化合物を、必要に応じ、有機溶媒に溶解し、例えばアルカリや適当な触媒を用い、有機溶媒の融点以上沸点以下で行うことができる。例えば、“オルガニック リアクションズ(Organic Reactions)”,第14巻,270−490頁,ジョンワイリー アンド サンズ(John Wiley&Sons,Inc.),1965年、 “オルガニック シンセシス(Organic Syntheses)”,コレクティブ第6巻(Collective Volume VI),407−411頁,ジョンワイリー アンド サンズ(John Wiley&Sons,Inc.),1988年、ケミカル レビュー(Chem.Rev.),第95巻,2457頁(1995年)、ジャーナル オブ オルガノメタリック ケミストリー(J.Organomet.Chem.),第576巻,147頁(1999年)、マクロモレキュラー ケミストリー マクロモレキュラー シンポジウム(Makromol.Chem.,Macromol.Symp.),第12巻,229頁(1987年)などに記載の公知の方法を用いることができる。
本発明の高分子化合物の製造方法において、重合させる方法としては、上記式(16−1)〜(16−3)および(22)〜(25)で表される化合物の重合に関与する置換基に応じて、既知の重合反応を用いることにより製造できる。
本発明の高分子化合物が重合において、二重結合を生成する場合は、例えば特開平5−202355号公報に記載の方法が挙げられる。すなわち、ホルミル基を有する化合物とホスホニウムメチル基を有する化合物との、もしくはホルミル基とホスホニウムメチル基とを有する化合物のWittig反応による重合、ビニル基を有する化合物とハロゲン原子を有する化合物とのHeck反応による重合、モノハロゲン化メチル基を2つあるいは2つ以上有する化合物の脱ハロゲン化水素法による重合、スルホニウムメチル基を2つあるいは2つ以上有する化合物のスルホニウム塩分解法による重合、ホルミル基を有する化合物とシアノ基を有する化合物とのKnoevenagel反応による重合などの方法、ホルミル基を2つあるいは2つ以上有する化合物のMcMurry反応による重合などの方法が例示される。
本発明の高分子化合物が重合によって主鎖に三重結合を生成する場合には、例えば、Heck反応、Sonogashira反応が利用できる。
また、二重結合や三重結合を生成しない場合には、例えば該当するモノマーからSuzukiカップリング反応により重合する方法、Grignard反応により重合する方法、Ni(0)錯体により重合する方法、FeCl3等の酸化剤により重合する方法、電気化学的に酸化重合する方法、あるいは適当な脱離基を有する中間体高分子の分解による方法などが例示される。
これらのうち、Wittig反応による重合、Heck反応による重合、Knoevenagel反応による重合、およびSuzukiカップリング反応により重合する方法、Grignard反応により重合する方法、ニッケルゼロ価錯体により重合する方法が、構造制御がしやすいので好ましい。
本発明の製造方法の中で、式(16−1)、(16−2)または(16−3)で示される化合物を単独で、あるいは式(19)〜(22)で示される化合物から選ばれる少なくとも1種類と重合する際に、Y1、Y2、Y3、Y4、Y5、Y6、Y7、Y8、Y9、Y10、Y11、Y12、Y13、Y14、Y15、Y16、Y17、Y18、Y19、Y20がそれぞれ独立にハロゲン原子、アルキルスルホネート基、アリールスルホネート基またはアリールアルキルスルホネート基であり、ニッケルゼロ価錯体存在下で縮合重合する製造方法が好ましい。

原料化合物としては、ジハロゲン化化合物、ビス(アルキルスルホネート)化合物、ビス(アリールスルホネート)化合物、ビス(アリールアルキルスルホネート)化合物あるいはハロゲン−アルキルスルホネート化合物、ハロゲン−アリールスルホネート化合物、ハロゲン−アリールアルキルスルホネート化合物、アルキルスルホネート−アリールスルホネート化合物、アルキルスルホネート−アリールアルキルスルホネート化合物、アリールスルホネート−アリールアルキルスルホネート化合物が挙げられる。
また、本発明の製造方法の中で、
式(16−1)、(16−2)または(16−3)で示される化合物を単独で、あるいは式(19)〜(22)で示される化合物から選ばれる少なくとも1種類と重合する際に、Y1、Y2、Y3、Y4、Y5、Y6、Y7、Y8、Y9、Y10、Y11、Y12、Y13、Y14、Y15、Y16、Y17、Y18、Y19、Y20がそれぞれ独立にハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、−B(OH)2、またはホウ酸エステル基であり、ハロゲン原子、アルキルスルホネート基アリールスルホネート基およびアリールアルキルスルホネート基のモル数の合計と、−B(OH)2およびホウ酸エステル基のモル数の合計の比が実質的に1(通常 K/J は0.7〜1.2の範囲)であり、ニッケルまたはパラジウム触媒を用いて縮合重合する製造方法が好ましい。

具体的な原料化合物の組み合わせとしては、ジハロゲン化化合物、ビス(アルキルスルホネート)化合物、ビス(アリールスルホネート)化合物またはビス(アリールアルキルスルホネート)化合物とジホウ酸化合物またはジホウ酸エステル化合物との組み合わせが挙げられる。
また、ハロゲン−ホウ酸化合物、ハロゲン−ホウ酸エステル化合物、アルキルスルホネート−ホウ酸化合物、アルキルスルホネート−ホウ酸エステル化合物、アリールスルホネート−ホウ酸化合物、アリールスルホネート−ホウ酸エステル化合物、アリールアルキルスルホネート−ホウ酸化合物、アリールアルキルスルホネート−ホウ酸化合物、アリールアルキルスルホネート−ホウ酸エステル化合物挙げられる。
有機溶媒としては、用いる化合物や反応によっても異なるが、一般に副反応を抑制するために、用いる溶媒は十分に脱酸素処理を施し、不活性雰囲気化で反応を進行させることが好ましい。また、同様に脱水処理を行うことが好ましい。但し、Suzukiカップリング反応のような水との2相系での反応の場合にはその限りではない。
溶媒としては、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサンなどの飽和炭化水素、ベンゼン、トルエン、エチルベンゼン、キシレンなどの不飽和炭化水素、四塩化炭素、クロロホルム、ジクロロメタン、クロロブタン、ブロモブタン、クロロペンタン、ブロモペンタン、クロロヘキサン、ブロモヘキサン、クロロシクロヘキサン、ブロモシクロヘキサンなどのハロゲン化飽和炭化水素、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼンなどのハロゲン化不飽和炭化水素、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t−ブチルアルコールなどのアルコール類、蟻酸、酢酸、プロピオン酸などのカルボン酸類、ジメチルエーテル、ジエチルエーテル、メチル−t−ブチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジオキサンなどのエーテル類、トリメチルアミン、トリエチルアミン、N,N, N‘,N’−テトラメチルエチレンジアミン、ピリジンなどのアミン類、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N,N−ジエチルアセトアミド、N−メチルモルホリンオキシドなどのアミド類などが例示され、単一溶媒、またはこれらの混合溶媒を用いてもよい。これらの中で、エーテル類が好ましく、テトラヒドロフラン、ジエチルエーテルがさらに好ましい。
反応させるために適宜アルカリや適当な触媒を添加する。これらは用いる反応に応じて選択すればよい。該アルカリまたは触媒は、反応に用いる溶媒に十分に溶解するものが好ましい。アルカリまたは触媒を混合する方法としては、反応液をアルゴンや窒素などの不活性雰囲気下で攪拌しながらゆっくりとアルカリまたは触媒の溶液を添加するか、逆にアルカリまたは触媒の溶液に反応液をゆっくりと添加する方法が例示される。
本発明の高分子化合物を高分子LED等に用いる場合、その純度が発光特性等の素子の性能に影響を与えるため、重合前のモノマーを蒸留、昇華精製、再結晶等の方法で精製したのちに重合することが好ましい。また重合後、再沈精製、クロマトグラフィーによる分別等の純化処理をすることが好ましい。
本発明の高分子化合物の原料として有用な(16−1)〜(16−3)、(17−1)〜(17−3)および(18−1)〜(18−4)は、上記式のY1〜Y6を水素原子に置き換えた構造の化合物を臭素化することによって得られる。
特に、式(18−1)の構造の化合物は、式(18−2)〜(18−4)の構造を有する化合物を、パラジウム、白金、ロジウム、ルテニウム、あるいはこれらを混合した貴金属を活性炭上に担持させた触媒によって水素化しても得ることができる。
逆に、式(18−2)〜(18−4)の構造を有する化合物は、式(18−1)の構造を有する化合物を2、3−ジクロロ−5,6−ジシアノ−1、4−ベンゾキノン(DDQ)や、塩基条件下で臭素化テトラブチルアンモニウムを用いて酸化することによっても得ることができる。
次に本発明の高分子化合物の用途について説明する。
本発明の高分子化合物は、通常は、固体状態で蛍光または燐光を発し、高分子発光体(高分子量の発光材料)として用いることができる。
また、該高分子化合物は優れた電荷輸送能を有しており、高分子LED用材料や電荷輸送材料として好適に用いることができる。該高分子発光体を用いた高分子LEDは低電圧、高効率で駆動できる高性能の高分子LEDである。従って、該高分子LEDは液晶ディスプレイのバックライト、または照明用としての曲面状や平面状の光源、セグメントタイプの表示素子、ドットマトリックスのフラットパネルディスプレイ等の装置に好ましく使用できる。
また、本発明の高分子化合物はレーザー用色素、有機太陽電池用材料、有機トランジスタ用の有機半導体、導電性薄膜、有機半導体薄膜などの伝導性薄膜用材料としても用いることができる。
さらに、蛍光や燐光を発する発光性薄膜材料としても用いることができる。
次に、本発明の高分子LEDについて説明する。
本発明の高分子LEDは、陽極および陰極からなる電極間に、有機層を有し、該有機層が本発明の高分子化合物を含むことを特徴とする。
有機層は、発光層、正孔輸送層、電子輸送層等のいずれであってもよいが、有機層が発光層であることが好ましい。
ここに、発光層とは、発光する機能を有する層をいい、正孔輸送層とは、正孔を輸送する機能を有する層をいい、電子輸送層とは、電子を輸送する機能を有する層をいう。なお、電子輸送層と正孔輸送層を総称して電荷輸送層と呼ぶ。発光層、正孔輸送層、電子輸送層は、それぞれ独立に2層以上用いてもよい。
有機層が発光層である場合、有機層である発光層がさらに正孔輸送材料、電子輸送材料または発光材料を含んでいてもよい。ここで、発光性材料とは、蛍光および/または燐光を示す材料のことをさす。
本発明の高分子化合物と正孔輸送材料と混合する場合には、その混合物全体
に対して、正孔輸送材料の混合割合は1wt%〜80wt%であり、好ましくは5wt%〜60wt%である。本発明の高分子化合物と電子輸送材料を混合する場合には、その混合物全体に対して電子輸送材料の混合割合は1wt%〜80wt%であり、好ましくは5wt%〜60wt%である。さらに、本発明の高分子化合物と発光材料を混合する場合にはその混合物全体に対して発光材料の混合割合は1wt%〜80wt%であり、好ましくは5wt%〜60wt%である。本発明の高分子化合物と発光材料、正孔輸送材料および/または電子輸送材料を混合する場合にはその混合物全体に対して発光材料の混合割合は1wt%〜50wt%であり、好ましくは5wt%〜40wt%であり、正孔輸送材料と電子輸送材料はそれらの合計で1wt%〜50wt%であり、好ましくは5wt%〜40wt%であり、本発明の高分子化合物の含有量は99wt%〜20wt%である。
混合する正孔輸送材料、電子輸送材料、発光材料は公知の低分子化合物、三重項発光錯体、または高分子化合物が使用できるが、高分子化合物を用いることが好ましい。 高分子化合物の正孔輸送材料、電子輸送材料および発光材料としては、WO99/13692、WO99/48160、GB2340304A、WO00/53656、WO01/19834、WO00/55927、GB2348316、WO00/46321、WO00/06665、WO99/54943、WO99/54385、US5777070、WO98/06773、WO97/05184、WO00/35987、WO00/53655、WO01/34722、WO99/24526、WO00/22027、WO00/22026、WO98/27136、US573636、WO98/21262、US5741921、WO97/09394、WO96/29356、WO96/10617、EP0707020、WO95/07955、特開平2001−181618、特開平2001−123156、特開平2001−3045、特開平2000−351967、特開平2000−303066、特開平2000−299189、特開平2000−252065、特開平2000−136379、特開平2000−104057、特開平2000−80167、特開平10−324870、特開平10−114891、特開平9−111233、特開平9−45478等に開示されているポリフルオレン、その誘導体および共重合体、ポリアリーレン、その誘導体および共重合体、ポリアリーレンビニレン、その誘導体および共重合体、芳香族アミンおよびその誘導体の(共)重合体が例示される。
低分子化合物の蛍光性材料としでは、例えば、ナフタレン誘導体、アントラセンもしくはその誘導体、ペリレンもしくはその誘導体、ポリメチン系、キサンテン系、クマリン系、シアニン系などの色素類、8−ヒドロキシキノリンもしくはその誘導体の金属錯体、芳香族アミン、テトラフェニルシクロペンタジエンもしくはその誘導体、またはテトラフェニルブタジエンもしくはその誘導体などを用いることができる。
具体的には、例えば特開昭57−51781号、同59−194393号公報に記載されているもの等、公知のものが使用可能である。
三重項発光錯体としては、例えば、イリジウムを中心金属とするIr(ppy)3、Btp2Ir(acac)、白金を中心金属とするPtOEP、ユーロピウムを中心金属とするEu(TTA)3phen等が挙げられる。
Figure 2006328387

Figure 2006328387
Figure 2006328387
Figure 2006328387

三重項発光錯体として具体的には、例えばNature, (1998), 395, 151、Appl. Phys. Lett. (1999), 75(1), 4、Proc. SPIE-Int. Soc. Opt. Eng. (2001), 4105(Organic Light-Emitting Materials and DevicesIV), 119、J. Am. Chem. Soc., (2001), 123, 4304、Appl. Phys. Lett., (1997), 71(18), 2596、Syn. Met., (1998), 94(1), 103、Syn. Met., (1999), 99(2), 1361、Adv. Mater., (1999), 11(10), 852 、Jpn.J.Appl.Phys.,34, 1883 (1995)などに記載されている。
本発明の組成物は、正孔輸送材料、電子輸送材料、発光材料から選ばれる少なくとも1種類の材料と本発明の高分子化合物を含有し、発光材料や電荷輸送材料として用いることができる。
その正孔輸送材料、電子輸送材料、発光材料から選ばれる少なくとも1種類の材料と本発明の高分子化合物の含有比率は、用途に応じて決めればよい。
本発明の別の実施態様としては、本発明の高分子化合物を2種類以上含む高分子組成物が例示される。
本発明の高分子LEDが有する発光層の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよい。例えば1nmから1μmであり、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
発光層の形成方法としては、例えば、溶液からの成膜による方法が例示される。高分子LED作製の際に、本発明の高分子化合物を用いることにより、溶液から成膜する場合、この溶液を塗布後乾燥により溶媒を除去するだけでよく、また電荷輸送材料や発光材料を混合した場合においても同様な手法が適用でき、製造上非常に有利である。
溶液からの成膜方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の塗布法を用いることができる。パターン形成や多色の塗分けが容易であるという点で、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の印刷法が好ましい。
印刷法等で用いる溶液としては本発明のインク組成物を用いることができる。
本発明のインク組成物は、少なくとも1種類の本発明の高分子化合物と溶媒とが含有されていればよく、また本発明の高分子化合物以外に正孔輸送材料、電子輸送材料、発光材料、安定剤などの添加剤を含んでいてもよい。
本発明のインク組成物は、素子作製時において液状であり、典型的には、常圧(即ち、1気圧)、25℃において液状のものを意味する。
また、本発明のインク組成物は必ずしも有色であることを要しない。

該インク組成物中における本発明の高分子化合物の割合は、溶媒を除いた該インク組成物の全重量に対して通常は20wt%〜100wt%であり、好ましくは40wt%〜100wt%である。
またインク組成物中の溶媒の割合は、該インク組成物の全重量に対して1wt%〜99.9wt%であり、好ましくは60wt%〜99.9wt%であり、さらに好ましく90wt%〜99.8wt%である。
該インク組成物(溶液)の粘度は印刷法によって異なるが、インクジェットプリント法など溶液が吐出装置中を経由するもの場合には、吐出時の目づまりや飛行曲がりを防止するために粘度が25℃において1〜20mPa・sの範囲であることが好ましい。
本発明のインク組成物に用いる溶媒としては、クロロホルム、塩化メチレン、1,2−ジクロロエタン、1,1,2−トリクロロエタン、クロロベンゼン、o−ジクロロベンゼン等の塩素系溶媒、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、シクロヘキサン、メチルシクロヘキサン、n−ペンタン、n−ヘキサン、n−へプタン、n−オクタン、n−ノナン、n−デカン等の脂肪族炭化水素系溶媒、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等のエステル系溶媒、エチレングリコール、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテル、ジメトキシエタン、プロピレングリコール、ジエトキシメタン、トリエチレングリコールモノエチルエーテル、グリセリン、1,2−ヘキサンジオール等の多価アルコールおよびその誘導体、メタノール、エタノール、プロパノール、イソプロパノール、シクロヘキサノール等のアルコール系溶媒、ジメチルスルホキシド等のスルホキシド系溶媒、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド等のアミド系溶媒が例示される。また、これらの有機溶媒は、単独で、または複数組み合わせて用いることができる。上記溶媒のうち、ベンゼン環を少なくとも1個以上含む構造を有し、かつ融点が0℃以下、沸点が100℃以上である有機溶媒を1種類以上含むことが好ましい。
溶媒の種類としては、本発明の高分子化合物の有機溶媒への溶解性、成膜時の均一性、粘度特性等の観点から、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、エステル系溶媒、ケトン系溶媒が好ましく、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、トリメチルベンゼン、メシチレン、n−プロピルベンゼン、i−プロピルベンゼン、n−ブチルベンゼン、i−ブチルベンゼン、s−ブチルベンゼン、アニソール、エトキシベンゼン、1−メチルナフタレン、シクロヘキサン、シクロヘキサノン、シクロヘキシルベンゼン、ビシクロヘキシル、シクロヘキセニルシクロヘキサノン、n−ヘプチルシクロヘキサン、n−ヘキシルシクロヘキサン、メチルベンゾエート、2−プロピルシクロヘキサノン、2−ヘプタノン、3−ヘプタノン、4−ヘプタノン、2−オクタノン、2−ノナノン、2−デカノン、ジシクロヘキシルケトンが好ましく、キシレン、アニソール、メシチレン、シクロヘキシルベンゼン、ビシクロヘキシルメチルベンゾエートのうち少なくとも1種類を含むことがより好ましい。
インク組成物の溶媒の種類は、成膜性の観点や素子特性等の観点から、2種類以上であることが好ましく、2〜3種類であることがより好ましく、2種類であることがさらに好ましい。
インク組成物に2種類の溶媒が含まれる場合、そのうちの1種類の溶媒は25℃において固体状態でもよい。成膜性の観点から、1種類の溶媒は沸点が180℃以上の溶媒であり、他の1種類の溶媒は沸点が180℃以下の溶媒であることが好ましく、1種類の溶媒は沸点が200℃以上の溶媒であり、他の1種類の溶媒は沸点が180℃以下の溶媒であることがより好ましい。また、粘度の観点から、2種類の溶媒ともに、60℃において0.2wt%以上の本発明の高分子化合物が溶解することが好ましく、2種類の溶媒のうちの1種類の溶媒には、25℃において0.2wt%以上の本発明の高分子化合物が溶解することが好ましい。
インク組成物に3種類の溶媒が含まれる場合、そのうちの1〜2種類の溶媒は25℃において固体状態でもよい。成膜性の観点から、3種類の溶媒のうちの少なくとも1種類の溶媒は沸点が180℃以上の溶媒であり、少なくとも1種類の溶媒は沸点が180℃以下の溶媒であることが好ましく、3種類の溶媒のうちの少なくとも1種類の溶媒は沸点が200℃以上300℃以下の溶媒であり、少なくとも1種類の溶媒は沸点が180℃以下の溶媒であることがより好ましい。また、粘度の観点から、3種類の溶媒のうちの2種類の溶媒には、60℃において0.2wt%以上の本発明の高分子化合物が溶解することが好ましく、3種類の溶媒のうちの1種類の溶媒には、25℃において0.2wt%以上の本発明の高分子化合物が溶解することが好ましい。
インク組成物に2種類以上の溶媒が含まれる場合、粘度および成膜性の観点から、最も沸点が高い溶媒が、インク組成物の全溶媒の重量の40〜90wt%であることが好ましく、50〜90wt%であることがより好ましく、65〜85wt%であることがさらに好ましい。
本発明のインク組成物としては、粘度および成膜性の観点から、アニソールおよびビシクロヘキシルからなる組成物、アニソールおよびシクロヘキシルベンゼンからなる組成物、キシレンおよびビシクロヘキシルからなる組成物、キシレンおよびシクロヘキシルベンゼンからなる組成物、メシチレンおよびメチルベンゾエートからなる組成物が好ましい。
本発明のインク組成物が含むことができる添加剤のなかで、
正孔輸送材料としては、ポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体、ポリピロールもしくはその誘導体、ポリ(p−フェニレンビニレン)もしくはその誘導体、またはポリ(2,5−チエニレンビニレン)もしくはその誘導体があげられる。
電子輸送材料としては、オキサジアゾール誘導体、アントラキノジメタンもしくはその誘導体、ベンゾキノンもしくはその誘導体、ナフトキノンもしくはその誘導体、アントラキノンもしくはその誘導体、テトラシアノアンスラキノジメタンもしくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレンもしくはその誘導体、ジフェノキノン誘導体、または8−ヒドロキシキノリンもしくはその誘導体の金属錯体、ポリキノリンもしくはその誘導体、ポリキノキサリンもしくはその誘導体、ポリフルオレンもしくはその誘導体があげられる。
発光材料としては、ナフタレン誘導体、アントラセンもしくはその誘導体、ペリレンもしくはその誘導体、ポリメチン系、キサンテン系、クマリン系、シアニン系などの色素類、8−ヒドロキシキノリンもしくはその誘導体の金属錯体、芳香族アミン、テトラフェニルシクロペンタジエンもしくはその誘導体、またはテトラフェニルブタジエンもしくはその誘導体などがあげられる。
本発明のインク組成物(溶液)は、本発明の高分子化合物の他に、粘度および/または表面張力を調節するための添加剤を含有していても良い。該添加剤としては、粘度を高めるための高分子量の高分子化合物(増粘剤)や貧溶媒、粘度を下げるための低分子量の化合物、表面張力を下げるための界面活性剤などを適宜組み合わせて使用すれば良い。
前記の高分子量の高分子化合物としては、本発明の高分子化合物と同じ溶媒に可溶性で、発光や電荷輸送を阻害しないものであれば良い。例えば、高分子量のポリスチレン、ポリメチルメタクリレート、あるいは本発明の高分子化合物のうち分子量が大きいものなどを用いることができる。重量平均分子量が50万以上が好ましく、100万以上がより好ましい。
貧溶媒を増粘剤として用いることもできる。すなわち、溶液中の固形分に対する貧溶媒を少量添加することで、粘度を高めることができる。この目的で貧溶媒を添加する場合、溶液中の固形分が析出しない範囲で、溶媒の種類と添加量を選択すれば良い。
また、本発明のインク組成物(溶液)は、保存安定性を改善するために、本発明の高分子化合物の他に、酸化防止剤を含有していても良い。酸化防止剤としては、本発明の高分子化合物と同じ溶媒に可溶性で、発光や電荷輸送を阻害しないものであれば良く、フェノール系酸化防止剤、リン系酸化防止剤などが例示される。
本発明の高分子化合物の溶媒への溶解性の観点から、溶媒の溶解度パラメータと、高分子化合物の溶解度パラメータとの差が10以下であることが好ましく、7以下であることがより好ましい。
溶媒の溶解度パラメーターと本発明の高分子化合物の溶解度パラメーターは、「溶剤ハンドブック(講談社刊、1976年)」に記載の方法で求めることができる。
本発明の高分子LEDとしては、陰極と発光層との間に、電子輸送層を設けた高分子LED、陽極と発光層との間に、正孔輸送層を設けた高分子LED、陰極と発光層との間に、電子輸送層を設け、かつ陽極と発光層との間に、正孔輸送層を設けた高分子LED等が挙げられる。
例えば、具体的には、以下のa)〜d)の構造が例示される。
a)陽極/発光層/陰極
b)陽極/正孔輸送層/発光層/陰極
c)陽極/発光層/電子輸送層/陰極
d)陽極/正孔輸送層/発光層/電子輸送層/陰極
(ここで、/は各層が隣接して積層されていることを示す。以下同じ。)
本発明の高分子LEDとしては、本発明の高分子化合物が正孔輸送層および/または電子輸送層に含まれているものも含む。
本発明の高分子化合物が正孔輸送層に用いられる場合には、本発明の高分子化合物が正孔輸送性基を含む高分子化合物であることが好ましく、その具体例としては、芳香族アミンとの共重合体、スチルベンとの共重合体などが例示される。
また、本発明の高分子化合物が電子輸送層に用いられる場合には、本発明の高分子化合物が電子輸送性基を含む高分子化合物であることが好ましく、その具体例としては、オキサジアゾールとの共重合体、トリアゾールとの共重合体、キノリンとの共重合体、キノキサリンとの共重合体、ベンゾチアジアゾールとの共重合体などが例示される。
本発明の高分子LEDが正孔輸送層を有する場合、使用される正孔輸送材料としては、ポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体、ポリピロールもしくはその誘導体、ポリ(p−フェニレンビニレン)もしくはその誘導体、またはポリ(2,5−チエニレンビニレン)もしくはその誘導体などが例示される。
具体的には、該正孔輸送材料として、特開昭63−70257号公報、同63−175860号公報、特開平2−135359号公報、同2−135361号公報、同2−209988号公報、同3−37992号公報、同3−152184号公報に記載されているもの等が例示される。
これらの中で、正孔輸送層に用いる正孔輸送材料として、ポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミン化合物基を有するポリシロキサン誘導体、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体、ポリ(p−フェニレンビニレン)もしくはその誘導体、またはポリ(2,5−チエニレンビニレン)もしくはその誘導体等の高分子正孔輸送材料が好ましく、さらに好ましくはポリビニルカルバゾールもしくはその誘導体、ポリシランもしくはその誘導体、側鎖もしくは主鎖に芳香族アミンを有するポリシロキサン誘導体である。
また、低分子化合物の正孔輸送材料としてはピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体が例示される。低分子の正孔輸送材料の場合には、高分子バインダーに分散させて用いることが好ましい。
混合する高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく、また可視光に対する吸収が強くないものが好適に用いられる。該高分子バインダーとして、ポリ(N−ビニルカルバゾール)、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体、ポリ(p−フェニレンビニレン)もしくはその誘導体、ポリ(2,5−チエニレンビニレン)もしくはその誘導体、ポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサン等が例示される。
ポリビニルカルバゾールもしくはその誘導体は、例えばビニルモノマーからカチオン重合またはラジカル重合によって得られる。
ポリシランもしくはその誘導体としては、ケミカル・レビュー(Chem.Rev.)第89巻、1359頁(1989年)、英国特許GB2300196号公開明細書に記載の化合物等が例示される。合成方法もこれらに記載の方法を用いることができるが、特にキッピング法が好適に用いられる。
ポリシロキサンもしくはその誘導体は、シロキサン骨格構造には正孔輸送性がほとんどないので、側鎖または主鎖に上記低分子正孔輸送材料の構造を有するものが好適に用いられる。特に正孔輸送性の芳香族アミンを側鎖または主鎖に有するものが例示される。
正孔輸送層の成膜の方法に制限はないが、低分子正孔輸送材料では、高分子バインダーとの混合溶液からの成膜による方法が例示される。また、高分子正孔輸送材料では、溶液からの成膜による方法が例示される。
溶液からの成膜に用いる溶媒としては、正孔輸送材料を溶解させるものであれば特に制限はない。該溶媒として、クロロホルム、塩化メチレン、ジクロロエタン等の塩素系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等のエステル系溶媒が例示される。
溶液からの成膜方法としては、溶液からのスピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の塗布法を用いることができる。
正孔輸送層の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、少なくともピンホールが発生しないような厚さが必要であり、あまり厚いと、素子の駆動電圧が高くなり好ましくない。従って、該正孔輸送層の膜厚としては、例えば1nmから1μmであり、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
本発明の高分子LEDが電子輸送層を有する場合、使用される電子輸送材料としては公知のものが使用でき、オキサジアゾール誘導体、アントラキノジメタンもしくはその誘導体、ベンゾキノンもしくはその誘導体、ナフトキノンもしくはその誘導体、アントラキノンもしくはその誘導体、テトラシアノアンスラキノジメタンもしくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレンもしくはその誘導体、ジフェノキノン誘導体、または8−ヒドロキシキノリンもしくはその誘導体の金属錯体、ポリキノリンもしくはその誘導体、ポリキノキサリンもしくはその誘導体、ポリフルオレンもしくはその誘導体等が例示される。
具体的には、特開昭63−70257号公報、同63−175860号公報、特開平2−135359号公報、同2−135361号公報、同2−209988号公報、同3−37992号公報、同3−152184号公報に記載されているもの等が例示される。
これらのうち、オキサジアゾール誘導体、ベンゾキノンもしくはその誘導体、アントラキノンもしくはその誘導体、または8−ヒドロキシキノリンもしくはその誘導体の金属錯体、ポリキノリンもしくはその誘導体、ポリキノキサリンもしくはその誘導体、ポリフルオレンもしくはその誘導体が好ましく、2−(4−ビフェニリル)−5−(4−t−ブチルフェニル)−1,3,4−オキサジアゾール、ベンゾキノン、アントラキノン、トリス(8−キノリノール)アルミニウム、ポリキノリンがさらに好ましい。
電子輸送層の成膜法としては特に制限はないが、低分子電子輸送材料では、粉末からの真空蒸着法、または溶液もしくは溶融状態からの成膜による方法が、高分子電子輸送材料では溶液または溶融状態からの成膜による方法がそれぞれ例示される。溶液または溶融状態からの成膜時には、上記の高分子バインダーを併用してもよい。
溶液からの成膜に用いる溶媒としては、電子輸送材料および/または高分子バインダーを溶解させるものであれば特に制限はない。該溶媒として、クロロホルム、塩化メチレン、ジクロロエタン等の塩素系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等のエステル系溶媒が例示される。
溶液または溶融状態からの成膜方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェットプリント法等の塗布法を用いることができる。
電子輸送層の膜厚としては、用いる材料によって最適値が異なり、駆動電圧と発光効率が適度な値となるように選択すればよいが、少なくともピンホールが発生しないような厚さが必要であり、あまり厚いと、素子の駆動電圧が高くなり好ましくない。従って、該電子輸送層の膜厚としては、例えば1nmから1μmであり、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
また、電極に隣接して設けた電荷輸送層のうち、電極からの電荷注入効率を改善する機能を有し、素子の駆動電圧を下げる効果を有するものは、特に電荷注入層(正孔注入層、電子注入層)と一般に呼ばれることがある。
さらに電極との密着性向上や電極からの電荷注入の改善のために、電極に隣接して前記の電荷注入層又は膜厚2nm以下の絶縁層を設けてもよく、また、界面の密着性向上や混合の防止等のために電荷輸送層や発光層の界面に薄いバッファー層を挿入してもよい。
積層する層の順番や数、および各層の厚さについては、発光効率や素子寿命を勘案して適宜用いることができる。
本発明の高分子化合物は、有機半導体薄膜として高分子電界効果トランジスタとしても用いることができる。高分子電界効果トランジスタの構造としては、通常は、ソース電極およびドレイン電極が高分子からなる活性層に接して設けられており、さらに活性層に接した絶縁層を挟んでゲート電極が設けられていればよい。
高分子電界効果トランジスタは、通常は支持基板上に形成される。支持基板の材質としては電界効果トランジスタとしての特性を阻害しなければ特に制限されないが、ガラス基板やフレキシブルなフィルム基板やプラスチック基板も用いることができる。
電界効果トランジスタは、公知の方法、例えば特開平5−110069号公報記載の方法により製造することができる。
活性層を形成する際に、有機溶媒可溶性の高分子を用いることが製造上非常に有利であり好ましい。高分子を有機溶剤に溶解した溶液からの成膜方法としては、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スプレーコート法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、インクジェット印刷法等の塗布法を用いることができる。
高分子電界効果トランジスタを作成後、封止してなる封止高分子電界効果トランジスタが好ましい。これにより、高分子電界効果トランジスタが、大気から遮断され、高分子電界トランジスタの特性の低下を抑えることができる。
封止する方法としては、UV硬化樹脂、熱硬化樹脂や無機のSiONx膜などでカバーする方法、ガラス板やフィルムをUV硬化樹脂、熱硬化樹脂などで張り合わせる方法などがあげられる。大気との遮断を効果的に行うため高分子電界効果トランジスタを作成後封止するまでの工程を大気に曝すことなく(例えば、乾燥した窒素雰囲気中、真空中など)行うことが好ましい。
本発明において、電荷注入層(電子注入層、正孔注入層)を設けた高分子LEDとしては、陰極に隣接して電荷注入層を設けた高分子LED、陽極に隣接して電荷注入層を設けた高分子LEDが挙げられる。
例えば、具体的には、以下のe)〜p)の構造が挙げられる。
e)陽極/電荷注入層/発光層/陰極
f)陽極/発光層/電荷注入層/陰極
g)陽極/電荷注入層/発光層/電荷注入層/陰極
h)陽極/電荷注入層/正孔輸送層/発光層/陰極
i)陽極/正孔輸送層/発光層/電荷注入層/陰極
j)陽極/電荷注入層/正孔輸送層/発光層/電荷注入層/陰極
k)陽極/電荷注入層/発光層/電子輸送層/陰極
l)陽極/発光層/電子輸送層/電荷注入層/陰極
m)陽極/電荷注入層/発光層/電子輸送層/電荷注入層/陰極
n)陽極/電荷注入層/正孔輸送層/発光層/電子輸送層/陰極
o)陽極/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
p)陽極/電荷注入層/正孔輸送層/発光層/電子輸送層/電荷注入層/陰極
電荷注入層の具体的な例としては、導電性高分子を含む層、陽極と正孔輸送層との間に設けられ、陽極材料と正孔輸送層に含まれる正孔輸送材料との中間の値のイオン化ポテンシャルを有する材料を含む層、陰極と電子輸送層との間に設けられ、陰極材料と電子輸送層に含まれる電子輸送材料との中間の値の電子親和力を有する材料を含む層などが例示される。
上記電荷注入層が導電性高分子を含む層の場合、該導電性高分子の電気伝導度は、10-5S/cm以上103以下であることが好ましく、発光画素間のリーク電流を小さくするためには、10-5S/cm以上102以下がより好ましく、10-5S/cm以上101以下がさらに好ましい。
上記電荷注入層が導電性高分子を含む層の場合、該導電性高分子の電気伝導度は、10-5S/cm以上103S/cm以下であることが好ましく、発光画素間のリーク電流を小さくするためには、10-5S/cm以上102S/cm以下がより好ましく、10-5S/cm以上101S/cm以下がさらに好ましい。
通常は該導電性高分子の電気伝導度を10-5S/cm以上103以下とするために、該導電性高分子に適量のイオンをドープする。
ドープするイオンの種類は、正孔注入層であればアニオン、電子注入層であればカチオンである。アニオンの例としては、ポリスチレンスルホン酸イオン、アルキルベンゼンスルホン酸イオン、樟脳スルホン酸イオンなどが例示され、カチオンの例としては、リチウムイオン、ナトリウムイオン、カリウムイオン、テトラブチルアンモニウムイオンなどが例示される。
電荷注入層の膜厚としては、例えば1nm〜100nmであり、2nm〜50nmが好ましい。
電荷注入層に用いる材料は、電極や隣接する層の材料との関係で適宜選択すればよく、ポリアニリンおよびその誘導体、ポリチオフェンおよびその誘導体、ポリピロールおよびその誘導体、ポリフェニレンビニレンおよびその誘導体、ポリチエニレンビニレンおよびその誘導体、ポリキノリンおよびその誘導体、ポリキノキサリンおよびその誘導体、芳香族アミン構造を主鎖または側鎖に含む重合体などの導電性高分子、金属フタロシアニン(銅フタロシアニンなど)、カーボンなどが例示される。
膜厚2nm以下の絶縁層は電荷注入を容易にする機能を有するものである。上記絶縁層の材料としては、金属フッ化物、金属酸化物、有機絶縁材料等が挙げられる。膜厚2nm以下の絶縁層を設けた高分子LEDとしては、陰極に隣接して膜厚2nm以下の絶縁層を設けた高分子LED、陽極に隣接して膜厚2nm以下の絶縁層を設けた高分子LEDが挙げられる。
具体的には、例えば、以下のq)〜ab)の構造が挙げられる。
q)陽極/膜厚2nm以下の絶縁層/発光層/陰極
r)陽極/発光層/膜厚2nm以下の絶縁層/陰極
s)陽極/膜厚2nm以下の絶縁層/発光層/膜厚2nm以下の絶縁層/陰極
t)陽極/膜厚2nm以下の絶縁層/正孔輸送層/発光層/陰極
u)陽極/正孔輸送層/発光層/膜厚2nm以下の絶縁層/陰極
v)陽極/膜厚2nm以下の絶縁層/正孔輸送層/発光層/膜厚2nm以下の絶縁層/陰極
w)陽極/膜厚2nm以下の絶縁層/発光層/電子輸送層/陰極
x)陽極/発光層/電子輸送層/膜厚2nm以下の絶縁層/陰極
y)陽極/膜厚2nm以下の絶縁層/発光層/電子輸送層/膜厚2nm以下の絶縁層/陰極
z)陽極/膜厚2nm以下の絶縁層/正孔輸送層/発光層/電子輸送層/陰極
aa)陽極/正孔輸送層/発光層/電子輸送層/膜厚2nm以下の絶縁層/陰極
ab)陽極/膜厚2nm以下の絶縁層/正孔輸送層/発光層/電子輸送層/膜厚2nm以下の絶縁層/陰極
本発明の高分子LEDを形成する基板は、電極を形成し、有機物の層を形成する際に変化しないものであればよく、例えばガラス、プラスチック、高分子フィルム、シリコン基板などが例示される。不透明な基板の場合には、反対の電極が透明または半透明であることが好ましい。
通常本発明の高分子LEDが有する陽極および陰極の少なくとも一方が透明または半透明である。陽極側が透明または半透明であることが好ましい。
該陽極の材料としては、導電性の金属酸化物膜、半透明の金属薄膜等が用いられる。具体的には、酸化インジウム、酸化亜鉛、酸化スズ、およびそれらの複合体であるインジウム・スズ・オキサイド(ITO)、インジウム・亜鉛・オキサイド等からなる導電性ガラスを用いて作成された膜(NESAなど)や、金、白金、銀、銅等が用いられ、ITO、インジウム・亜鉛・オキサイド、酸化スズが好ましい。作製方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法、メッキ法等が挙げられる。また、該陽極として、ポリアニリンもしくはその誘導体、ポリチオフェンもしくはその誘導体などの有機の透明導電膜を用いてもよい。
陽極の膜厚は、光の透過性と電気伝導度とを考慮して、適宜選択することができるが、例えば10nmから10μmであり、好ましくは20nm〜1μmであり、さらに好ましくは50nm〜500nmである。
また、陽極上に、電荷注入を容易にするために、フタロシアニン誘導体、導電性高分子、カーボンなどからなる層、あるいは金属酸化物や金属フッ化物、有機絶縁材料等からなる平均膜厚2nm以下の層を設けてもよい。
本発明の高分子LEDで用いる陰極の材料としては、仕事関数の小さい材料が好ましい。例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウムなどの金属、およびそれらのうち2つ以上の合金、あるいはそれらのうち1つ以上と、金、銀、白金、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうち1つ以上との合金、グラファイトまたはグラファイト層間化合物等が用いられる。合金の例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、カルシウム−アルミニウム合金などが挙げられる。陰極を2層以上の積層構造としてもよい。
陰極の膜厚は、電気伝導度や耐久性を考慮して、適宜選択することができるが、例えば10nmから10μmであり、好ましくは20nm〜1μmであり、さらに好ましくは50nm〜500nmである。
陰極の作製方法としては、真空蒸着法、スパッタリング法、また金属薄膜を熱圧着するラミネート法等が用いられる。また、陰極と有機物層との間に、導電性高分子からなる層、あるいは金属酸化物や金属フッ化物、有機絶縁材料等からなる平均膜厚2nm以下の層を設けてもよく、陰極作製後、該高分子LEDを保護する保護層を装着していてもよい。該高分子LEDを長期安定的に用いるためには、素子を外部から保護するために、保護層および/または保護カバーを装着することが好ましい。
該保護層としては、高分子化合物、金属酸化物、金属フッ化物、金属ホウ化物などを用いることができる。また、保護カバーとしては、ガラス板、表面に低透水率処理を施したプラスチック板などを用いることができ、該カバーを熱効果樹脂や光硬化樹脂で素子基板と貼り合わせて密閉する方法が好適に用いられる。スペーサーを用いて空間を維持すれば、素子がキズつくのを防ぐことが容易である。該空間に窒素やアルゴンのような不活性なガスを封入すれば、陰極の酸化を防止することができ、さらに酸化バリウム等の乾燥剤を該空間内に設置することにより製造工程で吸着した水分が素子にタメージを与えるのを抑制することが容易となる。これらのうち、いずれか1つ以上の方策をとることが好ましい。
本発明の高分子LEDは面状光源、セグメント表示装置、ドットマトリックス表示装置、液晶表示装置(例えば液晶表示装置のバックライト)に用いることができる。
本発明の高分子LEDを用いて面状の発光を得るためには、面状の陽極と陰極が重なり合うように配置すればよい。また、パターン状の発光を得るためには、前記面状の発光素子の表面にパターン状の窓を設けたマスクを設置する方法、非発光部の有機物層を極端に厚く形成し実質的に非発光とする方法、陽極または陰極のいずれか一方、または両方の電極をパターン状に形成する方法がある。これらのいずれかの方法でパターンを形成し、いくつかの電極を独立にOn/OFFできるように配置することにより、数字や文字、簡単な記号などを表示できるセグメントタイプの表示素子が得られる。更に、ドットマトリックス素子とするためには、陽極と陰極をともにストライプ状に形成して直交するように配置すればよい。複数の種類の発光色の異なる高分子蛍光体を塗り分ける方法や、カラーフィルターまたは蛍光変換フィルターを用いる方法により、部分カラー表示、マルチカラー表示が可能となる。ドットマトリックス素子は、パッシブ駆動も可能であるし、TFTなどと組み合わせてアクティブ駆動してもよい。これらの表示素子は、コンピュータ、テレビ、携帯端末、携帯電話、カーナビゲーション、ビデオカメラのビューファインダーなどの表示装置として用いることができる。
さらに、前記面状の発光素子は、自発光薄型であり、液晶表示装置のバックライト用の面状光源、あるいは面状の照明用光源として好適に用いることができる。また、フレキシブルな基板を用いれば、曲面状の光源や表示装置としても使用できる。
以下、本発明をさらに詳細に説明するために実施例を示すが、本発明はこれらに限定されるものではない。
(数平均分子量および重量平均分子量)
ここで、数平均分子量および重量平均分子量については、GPC(島津製作所製:LC−10Avp)によりポリスチレン換算の数平均分子量および重量平均分子量を求めた。測定する重合体は、約0.5wt%の濃度になるようテトラヒドロフランに溶解させ、GPCに50μL注入した。GPCの移動相はテトラヒドロフランを用い、0.6mL/minの流速で流した。カラムは、TSKgel SuperHM−H(東ソー製)2本とTSKgel SuperH2000(東ソー製)1本を直列に繋げた。検出器には示差屈折率検出器(島津製作所製:RID−10A)を用いた。
(蛍光スペクトル)
蛍光スペクトルの測定は以下の方法で行った。重合体の0.8wt%溶液を石英上にスピンコートして重合体の薄膜を作製した。この薄膜を350nmの波長で励起し、蛍光分光光度計(堀場製作所製Fluorolog)を用いて蛍光スペクトルを測定した。薄膜での相対的な蛍光強度を得るために、水のラマン線の強度を標準に、波数プロットした蛍光スペクトルをスペクトル測定範囲で積分して、分光光度計(Varian社製 Cary5E)を用いて測定した、励起波長での吸光度で割り付けた値を求めた。
(HPLC測定)
測定機器:Agilent 1100LC
測定条件:L−Column ODS、5μm、2.1mm×150mm;
A液:アセトニトリル、B液:THF
グラジエント
B液:
0%(60min.)→10%up/min→100%(10min)、
サンプル濃度:5.0mg/mL(THF溶液)、
注入量:1μL
検出波長:350nm
合成例1
(1−ブロモ−4−t−ブチル−2,6−ジメチルベンゼンの合成)

Figure 2006328387

不活性雰囲気下で、500mlの3つ口フラスコに酢酸225gを入れ、5−t−ブチル−m−キシレン24.3gを加えた。続いて臭素31.2gを加えた後、15〜20℃で3時間反応させた。
反応液を水500mlに加え析出した沈殿をろ過した。水250mlで2回洗浄し、白色の固体34.2gを得た。
<N,N’−ジフェニル−N,N’−ビス(4−t−ブチル−2,6−ジメチルフェニル)−1,4−フェニレンジアミンの合成>

Figure 2006328387

不活性雰囲気下で、100mlの3つ口フラスコに脱気した脱水トルエン36mlを入れ、トリ(t−ブチル)ホスフィン0.63gを加えた。続いてトリス(ジベンジリデンアセトン)ジパラジウム 0.41g、1−ブロモ−4−t−ブチル−2,6−ジメチルベンゼン9.6g、t−ブトキシナトリウム5.2g、N,N’−ジフェニル−1,4−フェニレンジアミン4.7gを加えた後、100℃で3時間反応させた。
反応液を飽和食塩水300mlに加え、約50℃に温めたクロロホルム300mlで抽出した。溶媒を留去した後、トルエン100mlを加えて、固体が溶解するまで加熱、放冷した後、沈殿をろ過し、白色の固体9.9gを得た。
<N,N’− ビス(4−ブロモフェニル)−N,N’−ビス(4−t−ブチル−2,6−ジメチルフェニル)−1,4−フェニレンジアミンの合成>

Figure 2006328387


不活性雰囲気下で、1000mlの3つ口フラスコに脱水N,N−ジメチルホルムアミド350mlを入れ、,N’−ジフェニル−N,N’−ビス(4−t−ブチル−2,6−ジメチルフェニル)−1,4−フェニレンジアミン5.2gを溶解した後、氷浴下でN−ブロモスクシンイミド3.5g/N,N−ジメチルホルムアミド溶液を滴下し、一昼夜反応させた。
反応液に水150mlを加え、析出した沈殿をろ過し、メタノール50mlで2回洗浄し白色の固体4.4gを得た。
1H−NMR(300MHz/THF−d8):
δ(ppm) = 1.3〔s,18H〕、2.0〔s,12H〕、6.6〜6.7〔d,4H〕、6.8〜6.9〔br,4H〕、7.1〔s,4H〕、7.2〜7.3〔d,4H〕
MS(FD+)M+ 738
合成例2
<N,N’−ジフェニル−N,N’−ビス(4−t‐ブチル−2,6−ジメチルフェニル)−ベンジジンの合成>
Figure 2006328387

不活性雰囲気下で、300mlの3つ口フラスコに脱気した脱水トルエン1660mlを入れ、N,N’−ジフェニルベンジジン275.0g、4−t−ブチル−2,6−ジメチルブロモベンゼン449.0gを加えた。続いてトリス(ジベンジリデンアセトン)ジパラジウム 7.48g、t−ブトキシナトリウム196.4g、を加えた後、トリ(t−ブチル)ホスフィン5.0gを加えた。その後、105℃で7時間反応させた。

反応液にトルエン2000mlを加え、セライト濾過し、濾液を水1000mlで3回洗浄した後、700mlまで濃縮した。これにトルエン/メタノール(1:1)溶液1600mlを加え、析出した結晶を濾過し、メタノールで洗浄した。白色の固体479.4gを得た。


<N,N’−ビス(4−ブロモフェニル)−N,N’−ビス(4−t‐ブチル−2,6−ジメチルフェニル)−ベンジジンの合成>

Figure 2006328387
不活性雰囲気下で、クロロホルム4730gに、上記N,N’−ジフェニル−N,N’−ビス(4−t−ブチル−2,6−ジメチルフェニル)−ベンジジン472.8gを溶解した後、遮光および氷浴下でN−ブロモスクシンイミド281.8gを12分割で1時間かけて仕込み、3時間反応させた。
クロロホルム1439mlを反応液に加え、濾過し、濾液のクロロホルム溶液を5%チオ硫酸ナトリウム2159mlで洗浄し、トルエンを溶媒留去して白色結晶を得た。得られた白色結晶をトルエン/エタノールで再結晶し、白色結晶678.7gを得た。
MS(APCI(+)):(M+H)+ 815.2
実施例1<化合物Bの合成>
(化合物Aの合成)
Figure 2006328387
(化合物A)

反応容器にイオン交換水31mlを入れ、撹拌しながら水酸化ナトリウム29gを(727mmol)を少しずつ加え、完全に溶かす。系内をアルゴン置換し、トルエン30mlと1、2、3、10b−テトラヒドロフルオランテン5.0g(24mmol)を入れ、撹拌して溶かす。続いて臭化テトラブチルアンモニウム2.3g(7.3mmol)と臭化オクチル9.4g(48mmol)を加えて40℃で3時間反応させた。トルエンと水で分液、有機層を抽出後、硫酸ナトリウムで乾燥させた。溶媒を留去後、ヘキサンを展開溶媒とするシリカゲルカラムで精製することにより、淡黄色の結晶を6.45g得た。
MS(APCI(+)) 318([M+H]+
1H−NMR(300MHz/CDCl3)δ7.69(1H,d)、7.50(1H,d)、7.40(1H,d)、7.34〜7.22(3H,m)、7.03(1H,d)、3.07〜2.96(1H,m)、2.77〜2.70(1H,m)、2.37〜2.18(2H,m)、1.95〜1.74(3H,m)、1.27〜1.04(11H,m)、0.84〜0.69(5H,m)
(化合物Bの合成)
Figure 2006328387
(化合物B)

アルゴン置換した反応容器に化合物A5.8g(18mmol)と酢酸:ジクロロメタン=1:1の混合溶媒115mlを入れ、室温で撹拌し溶かした。続いて三臭化ベンジルトリメチルアンモニウム14g(36mmol)を入れ、撹拌しながら塩化亜鉛を三臭化ベンジルトリメチルアンモニウムが完全に解けるまで加えた。反応をHPLCで追跡しつつ、適宜三臭化ベンジルトリメチルアンモニウムと塩化亜鉛を加えた。反応終了後、クロロホルムと水で分液、有機層を抽出し、2回水洗後、炭酸カリウム水溶液で中和した。硫酸ナトリウムで乾燥後、溶媒を留去し、ヘキサンを展開溶媒とするシリカゲルカラムで精製後、エタノール:ヘキサン=10:1混合溶媒から再結晶し、化合物Bを白色の粉末として5.08g得た。
MS(APPI(+)) 476(M+
1H−NMR(300MHz/CDCl3)δ7.53〜7.43(4H,m)、7.33(1H,d)、2.90〜2.84(2H,m)、2.33〜2.22(2H,m)、2.05〜1.96(1H,m)、1.83〜1.64(2H,m)、1.32〜1.05(13H,m)、0.85〜0.81(3H,m)
実施例2
(高分子化合物1の合成)
化合物B(0.1g)、2,2’−ビピリジル(0.089g)を脱水したテトラヒドロフラン19mLに溶解した後、窒素雰囲気下において、この溶液に、ビス(1、5−シクロオクタジエン)ニッケル(0){Ni(COD)2}(0.156g)を加え、60℃まで昇温し、3時間反応させた。この反応液を室温まで冷却し、25%アンモニア水1mL/メタノール19mL/イオン交換水19mL混合溶液中に滴下して1時間攪拌した後、析出した沈殿をろ過して減圧乾燥した。得られた重合体(以後、高分子化合物1と呼ぶ)の収量は0.08gであった。またポリスチレン換算の数平均分子量は2.9×104、重量平均分子量は6.1×104であった。
実施例3
<高分子化合物2の合成>
化合物B(0.557g)、N,N’− ビス(4−ブロモフェニル)−N,N’−ビス(4−t−ブチル−2,6−ジメチルフェニル)−1,4−フェニレンジアミン(0.096g)、2,2’−ビピリジル(0.548g)を脱水したテトラヒドロフラン140mLに溶解した後、アルゴンでバブリングして系内を窒素置換した。60℃まで昇温後、窒素雰囲気下において、この溶液に、ビス(1、5−シクロオクタジエン)ニッケル(0){Ni(COD)2}(0.965g)を加え、攪拌し、3時間反応させた。この反応液を室温まで冷却し、25%アンモニア水5mL/メタノール140mL/イオン交換水140mL混合溶液中に滴下して1時間攪拌した後、析出した沈殿をろ過して減圧乾燥し、トルエン40mlに溶解させた。溶解後、ラヂオライト1.6gを加えて30分攪拌し、不溶解物を濾過した。得られた濾液をアルミナカラムを通して精製を行った。次に5.2%塩酸水80mLを加え3時間攪拌した後に水層を除去した。つづいて4%アンモニア水80mLを加え、2時間攪拌した後に水層を除去した。さらに有機層にイオン交換水約80mLを加え1時間攪拌した後、水層を除去した。その後、有機層をメタノール160mlに注加して1時間攪拌し、析出した沈殿をろ過して減圧乾燥した。得られた重合体(以後、高分子化合物2と呼ぶ)の収量は0.33gであった。また、ポリスチレン換算の数平均分子量および重量平均分子量は、それぞれMn=1.6x104、Mw=8.7x104であった。
実施例4
<高分子化合物3の合成>
化合物B(0.433g)、N,N’−ビス(4−ブロモフェニル)−N,N’−ビス(4−t‐ブチル−2,6−ジメチルフェニル)−ベンジジン(0.318g)、2,2’−ビピリジル(0.548g)を脱水したテトラヒドロフラン140mLに溶解した後、アルゴンでバブリングして系内を窒素置換した。60℃まで昇温後、窒素雰囲気下において、この溶液に、ビス(1、5−シクロオクタジエン)ニッケル(0){Ni(COD)2}(0.965g)を加え、攪拌し、3時間反応させた。この反応液を室温まで冷却し、25%アンモニア水5mL/メタノール140mL/イオン交換水140mL混合溶液中に滴下して1時間攪拌した後、析出した沈殿をろ過して減圧乾燥し、トルエン40mlに溶解させた。溶解後、ラヂオライト1.6gを加えて30分攪拌し、不溶解物を濾過した。得られた濾液をアルミナカラムを通して精製を行った。次に5.2%塩酸水80mLを加え3時間攪拌した後に水層を除去した。つづいて4%アンモニア水80mLを加え、2時間攪拌した後に水層を除去した。さらに有機層にイオン交換水約80mLを加え1時間攪拌した後、水層を除去した。その後、有機層をメタノール160mlに注加して1時間攪拌し、析出した沈殿をろ過して減圧乾燥した。得られた重合体(以後、高分子化合物3と呼ぶ)の収量は0.46gであった。また、ポリスチレン換算の数平均分子量および重量平均分子量は、それぞれMn=1.0x104、Mw=6.1x104であった。
実施例5
<高分子化合物4の合成>
化合物B(0.588g)、N,N’−ビス(4−ブロモフェニル)−N,N’−ビス(4−t‐ブチル−2,6−ジメチルフェニル)−ベンジジン(0.053g)、2,2’−ビピリジル(0.548g)を脱水したテトラヒドロフラン140mLに溶解した後、アルゴンでバブリングして系内を窒素置換した。60℃まで昇温後、窒素雰囲気下において、この溶液に、ビス(1、5−シクロオクタジエン)ニッケル(0){Ni(COD)2}(0.965g)を加え、攪拌し、3時間反応させた。この反応液を室温まで冷却し、25%アンモニア水5mL/メタノール140mL/イオン交換水140mL混合溶液中に滴下して1時間攪拌した後、析出した沈殿をろ過して減圧乾燥し、トルエン40mlに溶解させた。溶解後、ラヂオライト1.6gを加えて30分攪拌し、不溶解物を濾過した。得られた濾液をアルミナカラムを通して精製を行った。次に5.2%塩酸水80mLを加え3時間攪拌した後に水層を除去した。つづいて4%アンモニア水80mLを加え、2時間攪拌した後に水層を除去した。さらに有機層にイオン交換水約80mLを加え1時間攪拌した後、水層を除去した。その後、有機層をメタノール160mlに注加して1時間攪拌し、析出した沈殿をろ過して減圧乾燥した。得られた重合体(以後、高分子化合物4と呼ぶ)の収量は0.31gであった。また、ポリスチレン換算の数平均分子量および重量平均分子量は、それぞれMn=2.5x104、Mw=1.2x105であった。
実施例6<EL素子の作成と性能>
(溶液の調整)
上記で得た高分子化合物2をトルエンに溶解し、ポリマー濃度1.8重量%のトルエン溶液を作製した。
(EL素子の作製)
スパッタ法により150nmの厚みでITO膜を付けたガラス基板上に、ポリ(3,4)エチレンジオキシチオフェン/ポリスチレンスルホン酸(Bayer製、BaytronP AI4083)の懸濁液を0.2μmメンブランフィルターで濾過した液を用いて、スピンコートにより70nmの厚みで薄膜を形成し、ホットプレート上で200℃、10分間乾燥した。次に、上記で得たトルエン溶液を用いて、スピンコートにより3400rpmの回転速度で成膜した。成膜後の膜厚は約95nmであった。さらに、これを減圧下80℃で1時間乾燥した後、フッ化リチウムを約4nm蒸着し、陰極としてカルシウムを約5nm、次いでアルミニウムを約80nm蒸着してEL素子を作製した。なお真空度が1×10-4Pa以下に到達した後に金属の蒸着を開始した。
(EL素子の性能)
得られた素子に電圧を印加することにより、この素子から455nmにピークを有するEL発光が得られた。EL発光色をC.I.E.色座標値で示すとx=0.150、y=0.128であり、非常に良好な青色を示した。EL発光の強度は電流密度にほぼ比例していた。また該素子は5.2Vから発光開始が見られた。発光効率は測定した印加電圧の範囲(0V〜12V)では単調に増加するものであったが、12Vでの値は1.02cd/m2と比較的高い効率を示した。
実施例7<EL素子の作成と性能>
(溶液の調整)
上記で得た高分子化合物4を90重量%、高分子化合物3を10重量%の比率でトルエンに溶解し、ポリマー濃度1.8重量%のトルエン溶液を作製した。
(EL素子の作製)
上記で得たトルエン溶液を用いる以外は実施例6に記載の方法と全く同様にEL素子を作成した。なお、ポリマー溶液のスピンコートにおける回転数は3300rpmであり、ポリマー膜の成膜後の膜厚は95nmであった。
(EL素子の性能)
得られた素子に電圧を印加することにより、この素子から425nmにピークを有するEL発光が得られた。EL発光色をC.I.E.色座標値で示すとx=0.155、y=0.072であり、非常に良好な青色を示した。EL発光の強度は電流密度にほぼ比例していた。また該素子は5.5Vから発光開始が見られた。発光効率は測定した印加電圧の範囲(0V〜12V)では単調に増加するものであったが、12Vでの値は0.22cd/m2と比較的高い効率を示した。
実施例8<EL素子の作成と性能>
(溶液の調整)
上記で得た高分子化合物4をトルエンに溶解し、ポリマー濃度1.8重量%のトルエン溶液を作製した。
(EL素子の作成)
上記で得たトルエン溶液を用いる以外は実施例6に記載の方法と全く同様にEL素子を作成した。なお、ポリマー溶液のスピンコートにおける回転数は2500rpmであり、ポリマー膜の成膜後の膜厚は90nmであった。
(EL素子の性能)
得られた素子に電圧を印加することにより、この素子から425nmにピークを有するEL発光が得られた。EL発光色をC.I.E.色座標値で示すとx=0.155、y=0.074であり、非常に良好な青色を示した。EL発光の強度は電流密度にほぼ比例していた。また該素子は5.8Vから発光開始が見られた。発光効率は測定した印加電圧の範囲(0V〜12V)では単調に増加するものであったが、12Vでの値は0.57cd/m2と比較的高い効率を示した。
実施例9<化合物Dの合成>
(化合物Cの合成)
(化合物C)

Figure 2006328387



反応容器にイオン交換水31mlを入れ、撹拌しながら水酸化ナトリウム29gを(727mmol)を少しずつ加え、完全に溶かす。系内をアルゴン置換し、トルエン30mlと1、2、3、10b−テトラヒドロフルオランテン5.0g(24mmol)を入れ、撹拌して溶かす。続いて臭化テトラブチルアンモニウム2.3g(7.3mmol)と2-エチルヘキシルブロミド9.4g(48mmol)を加えて40℃で3時間反応させた。トルエンと水で分液、有機層を抽出後、硫酸ナトリウムで乾燥させた。溶媒を留去後、ヘキサンを展開溶媒とするシリカゲルカラムで精製することにより、黄色のオイルを6.88g得た。
MS(APPI(+)) 318([M+H]+
1H−NMR(300MHz/CDCl3)δ7.69(1H,d)、7.50(1H,d)、7.40(1H,d)、7.33〜7.22(3H,m)、7.02(1H,d)、3.07〜2.96(1H,m)、2.79〜2.71(1H,m)、2.36〜2.22(2H,m)、2.10〜1.99(1H,m)、1.93〜1.76(2H,m)、1.24〜1.15(1H,m)、0.88〜0.37(9H,m)
(化合物Dの合成)
(化合物D)

Figure 2006328387


アルゴン置換した反応容器に化合物C6.8g(21mmol)、塩化亜鉛6.7g(49mmol)および酢酸:ジクロロメタン=1:1の混合溶媒134mlを入れ、室温で撹拌した。続いて三臭化ベンジルトリメチルアンモニウム18g(47mmol)をジクロロメタン150mlに溶かして滴下した。滴下終了後、室温で2時間、続けて40℃および50℃で各30分ずつ反応させた後、クロロホルムと5%亜硫酸水素ナトリウム水溶液を加えて反応を停止した。クロロホルムと水で分液、有機層を抽出し、2回水洗後、炭酸カリウム水溶液で中和した。硫酸ナトリウムで乾燥後、溶媒を留去し、ヘキサンを展開溶媒とするシリカゲルカラムで3回精製することにより、化合物Dを黄色のオイル(室温で放置するとゆっくり白色結晶化)として1.73g得た。
MS(APPI(+)) 476(M+
1H−NMR(300MHz/CDCl3)δ7.52〜7.42(4H,m)、7.33(1H,d)、3.00〜2.80(2H,m)、2.40〜2.20(2H,m)、2.02〜1.89(2H,m)、1.75〜1.70(1H,m)、1.31〜1.15(2H,m)、0.96〜0.39(8H,m)
実施例10<高分子化合物5の合成>
窒素雰囲気下、化合物D(0.476g)、2,2’−ビピリジル(0.422g)を脱水したテトラヒドロフラン72mLに溶解した後、撹拌して溶解させた。この溶液に、ビス(1、5−シクロオクタジエン)ニッケル(0){Ni(COD)2}(0.743g)を加え、攪拌し、60℃で3時間反応させた。この反応液を室温まで冷却し、25%アンモニア水4mL/メタノール72mL/イオン交換水72mL混合溶液中に滴下して1時間攪拌した後、析出した沈殿をろ過して減圧乾燥し、トルエン20mlに溶解させた。溶解後、ラヂオライト1.6gを加えて30分攪拌し、不溶解物を濾過した。得られた濾液をアルミナカラムを通して精製を行った。次に5.2%塩酸水40mLを加え3時間攪拌した後に水層を除去した。つづいて4%アンモニア水40mLを加え、2時間攪拌した後に水層を除去した。さらに有機層にイオン交換水約40mLを加え1時間攪拌した後、水層を除去した。その後、有機層をメタノール80mlに注加して1時間攪拌し、析出した沈殿をろ過して減圧乾燥した。得られた重合体(以後、高分子化合物5と呼ぶ)の収量は0.17gであった。また、ポリスチレン換算の数平均分子量および重量平均分子量は、それぞれMn=1.1x105、Mw=3.2x105であった。
比較例1
<高分子化合物6の合成>
2,7−ジブロモ−9,9−ジオクチルフルオレン0.22g(0.40mmol)とN,N’− ビス(4−ブロモフェニル)−N,N’−ビス(4−t−ブチル−2,6−ジメチルフェニル)−1,4−フェニレンジアミン0.20g(0.27mmol)と2、2’−ビピリジル0.24g(1.5mmol)を反応容器に仕込んだ後、反応系内を窒素ガスで置換した。これに、あらかじめアルゴンガスでバブリングして、脱気したテトラヒドロフラン(脱水溶媒)20mlを加えた。次に、この混合溶液に、ビス(1,5−シクロオクタジエン)ニッケル(0)を0.42g(1.5mmol)加え、60℃で3時間反応した。なお、反応は、窒素ガス雰囲気中で行った。反応後、この溶液を冷却した後、25%アンモニア水10ml/メタノール120ml/イオン交換水50ml混合溶液中にそそぎ込み、約1時間攪拌した。次に、生成した沈殿を、ろ過することにより回収した。この沈殿をエタノールで洗浄した後、2時間減圧乾燥した。次に、この沈殿をトルエン50mLに溶解し、1N塩酸50mLを加えて1時間攪拌し、水層の除去して有機層に4%アンモニア水50mLを加え、1時間攪拌した後に水層を除去した。有機層はメタノール120mLに滴下して1時間攪拌し、析出した沈殿をろ過して2時間減圧乾燥し、トルエン40mLに溶解させた。その後、アルミナカラム(アルミナ量20g)を通して精製を行い、回収したトルエン溶液をメタノール120mLに滴下して1時間攪拌し、析出した沈殿をろ過して2時間減圧乾燥させた。得られた高分子化合物6の収量は0.094gであった。
高分子化合物6のポリスチレン換算数平均分子量は、2.0x104であり、ポリスチレン換算重量平均分子量は1.1x105であった。
比較例2<EL素子の作成と性能>
(溶液の調整)
上記で得た高分子化合物6をクロロホルムに溶解し、ポリマー濃度1.8重量%のクロロホルム溶液を作製した。
(EL素子の作成)
スパッタ法により150nmの厚みでITO膜を付けたガラス基板に、ポリ(エチレンジオキシチオフェン)/ポリスチレンスルホン酸の溶液(バイエル社、BaytronP)を用いてスピンコートにより50nmの厚みで成膜し、ホットプレート上で200℃で10分間乾燥した。次に、上記調製したクロロホルム溶液を用いてスピンコートにより2500rpmの回転速度で成膜した。膜厚は約100nmであった。さらに、これを減圧下80℃で1時間乾燥した後、陰極バッファー層として、LiFを約4nm、陰極として、カルシウムを約5nm、次いでアルミニウムを約80nm蒸着して、EL素子を作製した。なお真空度が、1×10-4Pa以下に到達したのち、金属の蒸着を開始した。
(EL素子の性能)
得られた素子に電圧を引加することにより、448nmにピークを有するEL発光が得られた。EL発光色をC.I.E.色座標値で示すとx=0.155、y=0.133であった。該素子は約10Vで最大発光効率を示し、その値は0.14cd/Aであった。



Claims (34)

  1. 下記式(1)で示される化合物の残基の少なくとも一つを含むことを特徴とする高分子化合物。
    Figure 2006328387
    (式1)

    〔式中、A環、B環およびC環はそれぞれ独立に置換基を有していてもよい芳香族環または非芳香族環を表し、Z1、Z2、Z3、Z4、およびZ5はそれぞれ独立に、C−(Q)zまたは窒素原子を表し、Qは、置換基または水素原子を表し、zは0または1を表し、A環とB環は互いに、それぞれの環を構成するZ5以外の原子を共有していてもよく、A環、B環およびC環の一つ以上二つ以下は非芳香族環である。〕
  2. 下記式(1−1)、(1−2)または(1−3)で示される繰り返し単位を含むことを特徴とする高分子化合物。
    Figure 2006328387
    式(1−1) 式(1−2) 式(1−3)

    〔式中、A環、B環およびC環はそれぞれ独立に置換基を有していてもよい芳香族環または非芳香族環を表し、Z1、Z2、Z3、Z4およびZ5はそれぞれ独立にC−(Q)zまたは窒素原子を表し、Qは、置換基または水素原子を表し、zは0または1を表し、A環とB環はZ5以外の環の原子を共有していてもよくまた、各環の置換基同士が結合して、さらに環を形成していてもよく、A環、B環、C環のうち、結合手を持たない環の1つ以上が非芳香族環である。〕
  3. A環、B環およびC環の環を構成する原子が全て炭素原子であることを特徴とする請求項1または2記載の高分子化合物。
  4. 上記式(1−1)で示される繰り返し単位が、下記式(2−1)で示される繰り返し単位であることを特徴とする請求項2または3に記載の高分子化合物。

    Figure 2006328387
    式(2−1)
    〔式中、R1およびR2はそれぞれ独立に置換基を表し、D環は置換基を有していてもよい非芳香族環を表し、aは0〜2の整数を表し、bは0〜3の整数を表し、R1およびR2がそれぞれ複数存在する場合、それらは同一でも異なっていてもよく、R1とR2は互いに結合して環を形成していてもよい。また、R1および/またはR2はD環と結合して環を形成していてもよく、Qおよびzは前記と同じ意味を表す。〕
  5. 上記式(2−1)で示される繰り返し単位が、下記式(3−1)で示される繰り返し単位であることを特徴とする請求項2または3に記載の高分子化合物。
    Figure 2006328387
    式(3−1)

    〔式中、R1、R2、D環、Q、z、aおよびbは前記と同じ意味を表す。〕
  6. 式(3−1)で示される繰り返し単位が、下記式(4−1)、(4−2)、(4−3)または(4−4)で示される繰り返し単位であることを特徴とする請求項5記載の高分子化合物。
    Figure 2006328387
    式(4−1) 式(4−2)

    Figure 2006328387
    式(4−3) 式(4−4)

    〔式中、R1a、R1b、R2a〜R2cおよびR3a〜R3gはそれぞれ独立に水素原子または置換基を表す。式(4−1)〜(4−3)において、R2cとR3gは互いに結合して環を形成してもよい。式(4−4)において、R2cとR3eは互いに結合して環を形成していてもよい。〕
  7. さらに下記式(5)、式(6)、式(7)または式(8)で示される繰り返し単位を含むことを特徴とする請求項1〜6のいずれかに記載の高分子化合物。
    −Ar1− (5)
    Figure 2006328387
    −Ar4−X2− (7)
    −X3− (8)

    〔式中、Ar1、Ar2、Ar3およびAr4はそれぞれ独立にアリーレン基、2価の複素環基または金属錯体構造を有する2価の基を表す。X1、X2およびX3はそれぞれ独立に−CR9=CR10−、−C≡C−、−N(R11)−、または−(SiR1213m−を表す。R9およびR10は、それぞれ独立に水素原子、アルキル基、アリール基、1価の複素環基、カルボキシル基、置換カルボキシル基またはシアノ基を表す。R11、R12およびR13は、それぞれ独立に水素原子、アルキル基、アリール基、1価の複素環基、アリールアルキル基または置換アミノ基を示す。ffは1または2を表す。mは1〜12の整数を表す。R9、R10、R11、R12およびR13がそれぞれ複数存在する場合、それらは同一でも異なっていてもよい。〕
  8. さらに、下記式(9)、(10)、(11)、(12)、(13)または(14)で示される繰り返し単位を含むことを特徴とする請求項1〜6のいずれかに記載の高分子化合物。
    Figure 2006328387
    〔式中、R14は、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、シアノ基またはニトロ基を表す。nは0〜4の整数を表す。R14が複数存在する場合、それらは同一でも異なっていてもよい。〕

    Figure 2006328387

    〔式中、R15およびR16は、それぞれ独立にアルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、シアノ基またはニトロ基を表す。oおよびpはそれぞれ独立に0〜3の整数を表す。R15およびR16がそれぞれ複数存在する場合、それらは同一でも異なっていてもよい。〕

    Figure 2006328387
    〔式中、R17およびR20は、それぞれ独立にアルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、シアノ基またはニトロ基を表す。qおよびrはそれぞれ独立に0〜4の整数を表す。R18およびR19は、それぞれ独立に水素原子、アルキル基、アリール基、1価の複素環基、カルボキシル基、置換カルボキシル基またはシアノ基を表す。R17およびR20が複数存在する場合、それらは同一でも異なっていてもよい。〕

    Figure 2006328387
    〔式中、R21は、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、シアノ基またはニトロ基を表す。sは0〜2の整数を表す。Ar13およびAr14はそれぞれ独立にアリーレン基、2価の複素環基または金属錯体構造を有する2価の基を表す。ssおよびttはそれぞれ独立に0または1を表す。X4は、O、S、SO、SO2、Se,またはTeを表す。R21が複数存在する場合、それらは同一でも異なっていてもよい。〕

    Figure 2006328387

    〔式中、R22およびR23は、それぞれ独立にアルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、シアノ基またはニトロ基を表す。tおよびuはそれぞれ独立に0〜4の整数を表す。X5は、O、S、SO2、Se,Te、N−R24、またはSiR2526を表す。X6およびX7は、それぞれ独立にNまたはC−R27を表す。R24、R25、26およびR27はそれぞれ独立に水素原子、アルキル基、アリール基、アリールアルキル基または1価の複素環基を表す。R25、R26およびR27が複数存在する場合、それらは同一でも異なっていてもよい。〕

    Figure 2006328387
    〔式中、R28およびR33は、それぞれ独立にアルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、アリールアルキル基、アリールアルコキシ基、アリールアルキルチオ基、アリールアルケニル基、アリールアルキニル基、アミノ基、置換アミノ基、シリル基、置換シリル基、ハロゲン原子、アシル基、アシルオキシ基、イミン残基、アミド基、酸イミド基、1価の複素環基、カルボキシル基、置換カルボキシル基、シアノ基またはニトロ基を表す。vおよびwはそれぞれ独立に0〜4の整数を表す。R29、R30、R31およびR32は、それぞれ独立に水素原子、アルキル基、アリール基、1価の複素環基、カルボキシル基、置換カルボキシル基またはシアノ基を表す。Ar5はアリーレン基、2価の複素環基または金属錯体構造を有する2価の基を表す。R28およびR33が複数存在する場合、それらは同一でも異なっていてもよい。〕
  9. さらに下記式(15)で示される繰り返し単位を有することを特徴とする請求項1〜6のいずれかに記載の高分子化合物。

    Figure 2006328387

    〔式中、Ar6、Ar7、Ar8およびAr9はそれぞれ独立にアリーレン基または2価の複素環基を表す。Ar10、Ar11およびAr12はそれぞれ独立にアリール基、または1価の複素環基を表す。Ar6、Ar7、Ar8、Ar9、およびAr10は置換基を有していてもよい。xおよびyはそれぞれ独立に0または1を表し、0≦x+y≦1である。〕
  10. 原料として、少なくとも下記式(16−1)、(16−2)または(16−3)
    Figure 2006328387
    式(16−1) 式(16−2) 式(16‐3)

    〔式中、A環、B環、C環、Z1〜Z5は前記と同じ意味を表す。Y1、Y2、Y3、Y4、Y5およびY6はそれぞれ独立に重合に関与する置換基を表す。〕
    で示される化合物を用いて重合させることを特徴とする請求項1〜9のいずれかに記載の高分子化合物の製造方法。
  11. 下記式(16−1)で示される化合物が下記式(17−1)で示される化合物であることを特徴とする請求項10記載の製造方法。

    Figure 2006328387
    〔式中、R1、R2、a、b、D環、Q、z、Y1およびY2は前記と同じ意味を表す。〕
  12. 下記式(17−1)で示される化合物が下記式(18−1)、(18−2)、(18−3)または(18−4)で示される化合物であることを特徴とする請求項11記載の製造方法。
    Figure 2006328387
    式(18−1) 式(18−2)

    Figure 2006328387
    式(18−3) 式(18−4)

    〔式中、R1a、R1b、R2a〜R2c、R3a〜R3g、Y1およびY2は前記と同じ意味を表す。〕
  13. 上記式(16−2)で示される化合物が、下記式(17−2)で示される化合物であることを特徴とする請求項10記載の製造方法。
    Figure 2006328387
    式(17−2)
    〔式中、B環、C環、Z2、Z3、Z4、Y3およびY4は前記と同じ意味を表す。Z6、Z7およびZ8はそれぞれ独立にC−(Q)zまたは窒素原子を示す。Z1a、Z5aおよびZ9はそれぞれ独立に炭素原子を示す。Q、およびzは前記と同じ意味を表す。R4は置換基を示す。eは0〜2の整数を示す。R4が複数ある場合、それらは同一でも異なっていてもよく、R4同士が結合して環を形成していてもよい。〕
  14. 上記式(16−3)で示される化合物が、下記式(17−3)で示される化合物であることを特徴とする請求項10記載の製造方法。
    Figure 2006328387
    式(17−3)

    〔式中、A環、B環、Z1、Z4、Z5、Y5およびY6は前記と同じ意味を表す。Z10、Z11、Z12およびZ13はそれぞれ独立に、C−(Q)zまたは窒素原子を示す。Z2aおよびZ3aはそれぞれ独立に炭素原子を示す。Q、およびzは前記と同じ意味を表す。R5は置換基を示す。fは0〜2の整数を示す。R5が複数ある場合、それらは同一でも異なっていてもよく、R5同士が結合して環を形成していてもよい。〕
  15. 上記式(16−1)、(16−2)または(16−3)で示される化合物に加えて、下記式(19)〜(22)のいずれかで示される化合物を原料として用いて重合させることを特徴とする請求項10〜14のいずれかに記載の製造方法。

    7−Ar1−Y8 (19)

    Figure 2006328387
    11−Ar4−X2−Y12 (21)
    13−X3−Y14 (22)

    〔式中、Ar1、Ar2、Ar3、Ar4、ff、X1、X2およびX3は前記と同じ意味を表す。Y7、Y8、Y9、Y10、Y11、Y12、Y13およびY14はそれぞれ独立に重合に関与する置換基を表す。〕
  16. 式(16−1)、(16−2)または(16−3)で示される化合物を単独で、あるいは式(19)〜(22)で示される化合物から選ばれる少なくとも1種類と重合する際に、Y1、Y2、Y3、Y4、Y5、Y6、Y7、Y8、Y9、Y10、Y11、Y12、Y13およびY14がそれぞれ独立にハロゲン原子、アルキルスルホネート基、アリールスルホネート基またはアリールアルキルスルホネート基であり、ニッケルゼロ価錯体存在下で縮合重合することを特徴とする請求項10〜15のいずれかに記載の製造方法。
  17. 式(16−1)、(16−2)または(16−3)から選ばれる1種類を単独で、あるいは式(19)〜(22)から選ばれる少なくとも1種類と重合する際に、Y1、Y2、Y3、Y4、Y5、Y6、Y7、Y8、Y9、Y10、Y11、Y12、Y13およびY14がそれぞれ独立にハロゲン原子、アルキルスルホネート基、アリールスルホネート基、アリールアルキルスルホネート基、−B(OH)2、またはホウ酸エステル基であり、ハロゲン原子、アルキルスルホネート基アリールスルホネート基およびアリールアルキルスルホネート基のモル数の合計と、−B(OH)2およびホウ酸エステル基のモル数の合計の比が実質的に1であり、ニッケルまたはパラジウム触媒を用いて縮合重合することを特徴とする請求項10〜15のいずれかに記載の製造方法。
  18. 上記式(17−1)で示される化合物。
  19. 上記式(18−1)、(18‐2)、(18‐3)または(18−4)で示される化合物。
  20. 上記式(16−2)または(16−3)で示される化合物。
  21. 上記式(17−2)または(17−3)で示される化合物。
  22. 正孔輸送材料、電子輸送材料および発光材料から選ばれる少なくとも1種類の材料と請求項1〜9のいずれかに記載の高分子化合物とを含有することを特徴とする組成物。
  23. 請求項1〜9のいずれかに記載の高分子化合物と溶媒とを含有することを特徴とするインク組成物。
  24. 粘度が25℃において1〜20mPa・sであることを特徴とする請求項23記載のインク組成物。
  25. 請求項1〜9のいずれかに記載の高分子化合物を含有する発光性薄膜。
  26. 請求項1〜9のいずれかに記載の高分子化合物を含有する導電性薄膜。
  27. 請求項1〜9のいずれかに記載の高分子化合物を含有する有機半導体薄膜。
  28. 陽極および陰極からなる電極間に、有機層を有し、該有機層が請求項1〜9のいずれかに記載の高分子化合物を含むことを特徴とする高分子発光素子。
  29. 有機層が発光層であることを特徴とする請求項28記載の高分子発光素子。
  30. 発光層がさらに正孔輸送材料、電子輸送材料または発光材料を含むことを特徴とする請求項29記載の高分子発光素子。
  31. 請求項28〜30のいずれかに記載の高分子発光素子を含むことを特徴とする面状光源。
  32. 請求項28〜30のいずれかに記載の高分子発光素子を含むことを特徴とするセグメント表示装置。
  33. 請求項28〜30のいずれかに記載の高分子発光素子を含むことを特徴とするドットマトリックス表示装置。
  34. 請求項28〜30のいずれかに記載の高分子発光素子を含むことを特徴とする液晶表示装置。



JP2006125009A 2005-04-28 2006-04-28 高分子化合物およびそれを用いた高分子発光素子 Pending JP2006328387A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006125009A JP2006328387A (ja) 2005-04-28 2006-04-28 高分子化合物およびそれを用いた高分子発光素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005131383 2005-04-28
JP2006125009A JP2006328387A (ja) 2005-04-28 2006-04-28 高分子化合物およびそれを用いた高分子発光素子

Publications (1)

Publication Number Publication Date
JP2006328387A true JP2006328387A (ja) 2006-12-07

Family

ID=37550407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006125009A Pending JP2006328387A (ja) 2005-04-28 2006-04-28 高分子化合物およびそれを用いた高分子発光素子

Country Status (1)

Country Link
JP (1) JP2006328387A (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073480A (ja) * 2001-09-04 2003-03-12 Canon Inc 高分子化合物及び有機発光素子
WO2006118345A1 (ja) * 2005-04-28 2006-11-09 Sumitomo Chemical Company, Limited 高分子化合物およびそれを用いた高分子発光素子
JP2008519140A (ja) * 2004-11-03 2008-06-05 サメイション株式会社 新しい種類の架橋ビフェニリンポリマー

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073480A (ja) * 2001-09-04 2003-03-12 Canon Inc 高分子化合物及び有機発光素子
JP2008519140A (ja) * 2004-11-03 2008-06-05 サメイション株式会社 新しい種類の架橋ビフェニリンポリマー
WO2006118345A1 (ja) * 2005-04-28 2006-11-09 Sumitomo Chemical Company, Limited 高分子化合物およびそれを用いた高分子発光素子

Similar Documents

Publication Publication Date Title
JP5076433B2 (ja) 共重合体およびそれを用いた高分子発光素子
JP4736471B2 (ja) 高分子化合物およびそれを用いた高分子発光素子
JP5162888B2 (ja) 高分子化合物およびそれを用いた高分子発光素子
WO2006118345A1 (ja) 高分子化合物およびそれを用いた高分子発光素子
JP5274754B2 (ja) 高分子材料及び高分子発光素子
JP5162868B2 (ja) 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP2008189759A (ja) 高分子発光素子、高分子化合物、組成物、液状組成物及び導電性薄膜
JP5407122B2 (ja) 高分子化合物および高分子発光素子
JP5256568B2 (ja) 高分子化合物およびそれを用いた高分子発光素子
US20090174326A1 (en) Polymer material and polymer light-emitting device using same
JP5250961B2 (ja) 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP2007284580A (ja) 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP5617150B2 (ja) 共役高分子化合物およびそれを用いた高分子発光素子
JP5162856B2 (ja) 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP4956918B2 (ja) 高分子化合物およびそれを用いた高分子発光素子
JP4896411B2 (ja) 高分子化合物及びそれを用いた高分子発光素子
JP5274755B2 (ja) 高分子材料及び高分子発光素子
JP4904752B2 (ja) 高分子化合物およびそれを用いた高分子発光素子
JP4957669B2 (ja) 高分子化合物およびそれを用いた高分子発光素子
JP2007211237A (ja) ブロック共重合体
JP4952037B2 (ja) 高分子発光素子及び有機トランジスタ並びにそれらに有用な組成物
JP5217361B2 (ja) 高分子化合物及びそれを用いた高分子発光素子
JP4724440B2 (ja) 高分子化合物及びそれを用いた高分子発光素子
US8153276B2 (en) Polymer compound and polymer light emitting device using the same
JP5095189B2 (ja) 高分子系材料及びそれを用いた高分子発光素子

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080201

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120508