JP2006328309A - Magnetic polymer particle and its manufacturing method - Google Patents

Magnetic polymer particle and its manufacturing method Download PDF

Info

Publication number
JP2006328309A
JP2006328309A JP2005157454A JP2005157454A JP2006328309A JP 2006328309 A JP2006328309 A JP 2006328309A JP 2005157454 A JP2005157454 A JP 2005157454A JP 2005157454 A JP2005157454 A JP 2005157454A JP 2006328309 A JP2006328309 A JP 2006328309A
Authority
JP
Japan
Prior art keywords
polymer
magnetic
particles
polymerization
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005157454A
Other languages
Japanese (ja)
Inventor
Kenji Yamada
憲司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005157454A priority Critical patent/JP2006328309A/en
Publication of JP2006328309A publication Critical patent/JP2006328309A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide magnetic polymer particles having uniformity of the length of the grafted polymer chain or the thickness of the polymer layer and a narrow and uniform distribution of particle diameter, functional magnetic polymer particles in which the polymer chain covering the surface of the magnetic particles is formed with a molecular design according to the purpose of use and a method of manufacturing the magnetic particles. <P>SOLUTION: The magnetic polymer particles comprise magnetic particles and polymer chains covering the magnetic particles of a molecular weight distribution index, Mw/Mn, of the polymer chain of ≤1.6. A method of manufacturing the magnetic polymer particles has a process of preparing the magnetic particles and a process of covering the magnetic particles with a polymer, wherein the covering process comprises forming a polymer chain by the living polymerization. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、核酸やタンパク質等の生体物質の分離担体、磁性インクや磁性トナー、MRI造影剤、抗原抗体反応の担体、ドラッグデリバリー用薬物担体等として有用な磁性ポリマー粒子及びその製造方法に関するものである。   The present invention relates to magnetic polymer particles useful as separation carriers for biological materials such as nucleic acids and proteins, magnetic inks and magnetic toners, MRI contrast agents, antigen-antibody reaction carriers, drug carriers for drug delivery, and the like, and methods for producing the same. is there.

磁性粒子の周囲をポリマーで被覆した磁性ポリマー粒子は、従来、生物学・医学的な分野において、粒子が磁力により容易に分離・回収されるという特徴を利用して、核酸・タンパク・糖等の分離精製担体や、薬物をポリマー鎖に固定化したドラッグデリバリー用薬物担体、あるいは酵素をポリマー鎖に固定化することによる触媒担体、抗体・抗原反応による病原菌の検出担体等としての利用が検討されている。また、近年情報通信の著しい進歩と共に、情報記録媒体が広く利用されてきているが、これら媒体中には情報を記憶する部分を有している。情報記録の手法としては、光学的な記録と並んで、磁気記録は有用な記録方法であり、磁性ポリマー粒子は、印刷・転写・インクジェット等の手法により磁気記録層をパターン形成するのに広く利用されてきた。このように磁性ポリマー粒子は、生化学・医療用素材の分野や情報・通信・電子材料の分野において、その利用が広く検討されている。   Conventionally, magnetic polymer particles coated with polymer around magnetic particles have been used in the fields of biology and medicine to take advantage of the fact that particles are easily separated and collected by magnetic force. Use as separation / purification carrier, drug carrier for drug delivery with drug immobilized on polymer chain, catalyst carrier by immobilizing enzyme on polymer chain, carrier for detection of pathogen by antibody / antigen reaction, etc. Yes. In recent years, information recording media have been widely used with remarkable progress in information communication, and these media have a part for storing information. As an information recording method, magnetic recording is a useful recording method along with optical recording, and magnetic polymer particles are widely used for patterning a magnetic recording layer by printing, transfer, ink jet, etc. It has been. Thus, the use of magnetic polymer particles has been widely studied in the fields of biochemical / medical materials and information / communication / electronic materials.

このような磁性ポリマー粒子の代表的な合成法としては、以下のような例が挙げられる。特許文献1では磁性体を水中に分散し、油溶性開始剤を用いて懸濁重合により1μm以上の粒径のカルボキシル基含有磁性粒子を得ている。また特許文献2では、核が樹脂で作製されたフェライト微粒子を、界面活性剤と重合開始剤との複塩、及びグリシジル基を有する重合性モノマーと混合、ラジカル重合を行って、ポリマーで保護被覆されたフェライト磁性粒子を得ている。また特許文献3では、ビオチン又はアビジンが刺激応答性のポリマーを介して磁性粒子に固定化された磁性ポリマー粒子の製造方法及び生体物質の分離法を開示している。
特開平10−87711号公報 特開平7−82302号公報 国際公開第02/016571号パンフレット
Examples of typical synthesis methods for such magnetic polymer particles include the following. In Patent Document 1, a magnetic substance is dispersed in water, and carboxyl group-containing magnetic particles having a particle diameter of 1 μm or more are obtained by suspension polymerization using an oil-soluble initiator. Further, in Patent Document 2, ferrite fine particles whose core is made of resin are mixed with a double salt of a surfactant and a polymerization initiator and a polymerizable monomer having a glycidyl group, radical polymerization is performed, and protective coating is performed with the polymer. Ferrite magnetic particles are obtained. Patent Document 3 discloses a method for producing magnetic polymer particles in which biotin or avidin is immobilized on magnetic particles via a stimulus-responsive polymer and a method for separating biological substances.
Japanese Patent Laid-Open No. 10-87711 JP 7-82302 A International Publication No. 02/016571 Pamphlet

しかしながら、これらの手法を用いた場合、ポリマー合成に簡便な汎用のラジカル重合法を用いているため、得られる磁性ポリマー粒子のポリマー鎖の構造は一般に不均一であった。また生体材料の固定化を目的とする場合、磁性粒子にグラフトされているポリマー鎖中にランダムに分布する官能基を利用した固定化方法や、生体材料を含んだラジカル重合性単量体の重合により磁性ポリマー粒子を製造していたため、ポリマー鎖構造の不均一性に起因して、生体材料のポリマー鎖中における配置制御は困難であった。更に、界面活性剤を用いた場合にはポリマー鎖が磁性粒子へ物理的に吸着しているため、剥がれ落ちて分散性が低下したりする等の課題があった。以上のように、従来の製造法で得られる磁性ポリマー粒子は、その粒径分布が均一でなく、またポリマー鎖の構造(分子量や組成、配置等)も不均一であったため、粒子表面のポリマー鎖の機能特性・機械特性を能動的にコントロールすることは困難であった。   However, when these methods are used, since a general-purpose radical polymerization method that is simple for polymer synthesis is used, the structure of the polymer chain of the obtained magnetic polymer particles is generally non-uniform. For the purpose of immobilizing biomaterials, immobilization methods using functional groups randomly distributed in polymer chains grafted on magnetic particles, and polymerization of radically polymerizable monomers containing biomaterials Since the magnetic polymer particles were produced by the above, it was difficult to control the arrangement of the biomaterial in the polymer chain due to the non-uniformity of the polymer chain structure. Further, when a surfactant is used, the polymer chain is physically adsorbed to the magnetic particles, and thus there are problems such as peeling off and dispersibility. As described above, the magnetic polymer particles obtained by the conventional production method have a non-uniform particle size distribution and a non-uniform polymer chain structure (molecular weight, composition, arrangement, etc.). It was difficult to actively control the functional and mechanical properties of the chain.

本発明の目的は、上記課題を解決することであり、具体的にはグラフトされるポリマーの鎖長もしくはポリマー層の厚みが均一であり、ひいては粒径分布が狭く均一な磁性ポリマー粒子を提供することである。   An object of the present invention is to solve the above-mentioned problems, and specifically, to provide magnetic polymer particles in which the chain length of the polymer to be grafted or the thickness of the polymer layer is uniform, and thus the particle size distribution is narrow. That is.

また、本発明の目的は、磁性粒子表面を覆うポリマー鎖が、使用目的に応じた分子設計を施したブロックポリマーからなる機能性磁性ポリマー粒子及び該磁性ポリマー粒子の製造方法を提供することである。   Another object of the present invention is to provide a functional magnetic polymer particle in which the polymer chain covering the surface of the magnetic particle is a block polymer having a molecular design according to the purpose of use, and a method for producing the magnetic polymer particle. .

本発明に従って、磁性粒子と該磁性粒子とを被覆したポリマー鎖とを備え、該ポリマー鎖の分子量分布指数(Mw/Mn)が1.6以下であることを特徴とする磁性ポリマー粒子が提供される。   According to the present invention, there is provided a magnetic polymer particle comprising a magnetic particle and a polymer chain coated with the magnetic particle, wherein the molecular weight distribution index (Mw / Mn) of the polymer chain is 1.6 or less. The

また、本発明に従って、磁性粒子と該磁性粒子とを被覆したポリマー鎖とを備え、該ポリマー鎖が二種類以上のブロックから構成されるブロックポリマーであることを特徴とする磁性ポリマー粒子が提供される。   According to the present invention, there is provided a magnetic polymer particle comprising a magnetic particle and a polymer chain coated with the magnetic particle, wherein the polymer chain is a block polymer composed of two or more types of blocks. The

また、本発明に従って、磁性粒子を調製する工程と該磁性粒子をポリマーで被覆する工程とを含む磁性ポリマー粒子の製造方法であって、
該ポリマーで被覆する工程がリビング重合によりポリマー鎖を形成することを特徴とする磁性ポリマー粒子の製造方法が提供される。
According to the present invention, there is also provided a method for producing magnetic polymer particles comprising the steps of preparing magnetic particles and coating the magnetic particles with a polymer,
There is provided a method for producing magnetic polymer particles, wherein the step of coating with a polymer forms a polymer chain by living polymerization.

更に、本発明に従って、磁性粒子を調製する工程と該磁性粒子をポリマーで被覆する工程とを含む磁性ポリマー粒子の製造方法であって、
該ポリマーで被覆する工程が、
磁性粒子表面に重合開始基を導入する工程と、
該重合開始基を重合開始源として一種類以上の単量体を単独重合又は共重合し磁性粒子表面にポリマーをグラフト化する工程と、
を含むことを特徴とする磁性ポリマー粒子の製造方法が提供される。
Furthermore, according to the present invention, there is provided a method for producing magnetic polymer particles comprising the steps of preparing magnetic particles and coating the magnetic particles with a polymer,
Coating with the polymer comprises
Introducing a polymerization initiating group on the surface of the magnetic particles;
A step of grafting the polymer onto the surface of the magnetic particles by homopolymerizing or copolymerizing one or more monomers using the polymerization initiation group as a polymerization initiation source;
A method for producing magnetic polymer particles is provided.

本発明のリビングラジカル重合法によって得られる磁性ポリマー粒子は、従来にない均一なポリマー鎖長からなるグラフト層からなり、ひいては粒子の粒径分布も狭い均一な磁性ポリマー粒子を提供することができる。また、本発明の重合方法を使用すれば、ブロックポリマーをグラフト鎖とする磁性ポリマー粒子をも容易に製造することができる。得られるブロックポリマーにおいては、官能基の配置をコントロールできるので磁性粒子中の生体材料や薬剤の固定化においても最適な配置をコントロールできると共に、刺激応答性ブロックの導入により、刺激に応答したポリマー鎖の収縮・凝集によるこれら生体材料の安定化や薬剤の放出を自律的に制御することができる。また、磁性インクとして用いる場合には、上記刺激により最適なインク粘度や定着性を持ったインク特性を付与することができ、高機能化された機能性磁性ポリマー粒子として好適に使用できるので、その利用価値は極めて高いものである。   The magnetic polymer particles obtained by the living radical polymerization method of the present invention can be provided with a uniform magnetic polymer particle comprising a graft layer having an unprecedented uniform polymer chain length, and thus a narrow particle size distribution. Moreover, if the polymerization method of this invention is used, the magnetic polymer particle which makes a block polymer a graft chain can also be manufactured easily. In the resulting block polymer, the arrangement of the functional groups can be controlled, so that the optimum arrangement can be controlled even in the immobilization of biomaterials and drugs in the magnetic particles, and the introduction of a stimulus-responsive block allows the polymer chain to respond to stimulation. It is possible to autonomously control the stabilization of these biomaterials and the release of the drug due to the contraction and aggregation of the. In addition, when used as a magnetic ink, ink properties having optimal ink viscosity and fixability can be imparted by the above stimulation, and it can be suitably used as highly functional functional magnetic polymer particles. The utility value is extremely high.

以下、本発明を詳細に説明する。図1は、本発明の磁性ポリマー粒子を示した図である。本発明における磁性ポリマー粒子は、磁性粒子1とその周りを被覆するポリマー鎖2とから構成される。より具体的には、ポリマー鎖2は重合開始基を介して磁性粒子1の表面にグラフトされている。   Hereinafter, the present invention will be described in detail. FIG. 1 is a view showing magnetic polymer particles of the present invention. The magnetic polymer particles in the present invention are composed of magnetic particles 1 and polymer chains 2 covering the periphery thereof. More specifically, the polymer chain 2 is grafted onto the surface of the magnetic particle 1 via a polymerization initiating group.

本発明の磁性粒子表面にグラフトされるポリマーの製造方法は、リビングラジカル重合法に基づいており、重合開始基を磁性粒子表面に導入する工程、及びその重合開始基を重合開始源としてラジカル重合性の単量体を重合し磁性粒子表面にポリマーをグラフト化する工程とからなる。リビングラジカル重合法は近年様々な手法が開発されており、以下の様な例が挙げられる。例えば、Macromol.Chem.RapidCommun.1982年,3巻,133頁に示されるイニファーター重合、ジャーナル・オブ・ザ・アメリカン・ケミカルソサエティー(J.Am.Chem.Soc.)、1994年、116巻、7943頁に示されるようなコバルトポルフィリン錯体を用いるもの、マクロモレキュールズ(Macromolecules)、1994年、27巻、7228頁に示されるようなニトロキシド化合物等のラジカル捕捉剤を用いるもの、ジャーナル・オブ・ザ・アメリカン・ケミカルソサエティー(J.Am.Chem.Soc.)、1995年、117巻、5614頁に示されるような有機ハロゲン化物等を開始剤とし遷移金属錯体を触媒とする「原子移動ラジカル重合」(Atom Transfer Radical Polymerization:ATRP)、及びマクロモレキュールズ(Macromolecules)、1998年、31巻、5559頁に示される「RAFT:Reversible Addition−Fragmentation chain Transfer重合」等が挙げられる。これらのうち、本発明を特に限定するものではないが、ニトロキシド化合物等のラジカル捕捉剤を用いた合成法又は原子移動ラジカル重合法による合成法が特に好ましく用いられる。   The method for producing a polymer grafted on the surface of the magnetic particle of the present invention is based on a living radical polymerization method, a step of introducing a polymerization initiating group to the surface of the magnetic particle, and radical polymerization using the polymerization initiating group as a polymerization initiating source. And a step of grafting the polymer onto the surface of the magnetic particles. Various techniques have been developed in recent years for the living radical polymerization method, and examples include the following. For example, Macromol. Chem. RapidCommun. 1982, Volume 3, page 133, Iniferter Polymerization, Journal of the American Chemical Society (J. Am. Chem. Soc.), 1994, Volume 116, page 7943 One using a cobalt porphyrin complex, one using a radical scavenger such as a nitroxide compound as shown in Macromolecules, 1994, 27, 7228, Journal of the American Chemical Society (J. Am. Chem. Soc.), 1995, 117, 5614, “Atom Transfer Radical Polymerization” using an organic halide as an initiator and a transition metal complex as a catalyst (Atom Transfer Radical Polymerization). ATRP), and Macromolecules (Macromolecules), 1998 years, Vol. 31, shown on pages 5559 "RAFT: Reversible Addition-Fragmentation chain Transfer polymerization", and the like. Among these, although the present invention is not particularly limited, a synthesis method using a radical scavenger such as a nitroxide compound or a synthesis method by an atom transfer radical polymerization method is particularly preferably used.

まず、磁性粒子表面に導入する重合開始基について説明する。上記ニトロキシド化合物を用いた合成法において、磁性粒子表面に導入する重合開始基としては、次の一般式(1)〜(2)で表される化合物が好ましい。   First, the polymerization initiating group introduced into the magnetic particle surface will be described. In the synthesis method using the nitroxide compound, compounds represented by the following general formulas (1) to (2) are preferable as the polymerization initiation group to be introduced onto the surface of the magnetic particles.

Figure 2006328309
Figure 2006328309

上記式中、R〜R10及びR12は、同一又は異なる、水素原子、メチル基、エチル基、プロピル基及びトリフルオロメチル基等の炭素数1〜10の(ハロゲン化)アルキル基、フェニル基、p−フルオロフェニル基、ナフチル基、トリル基、ビフェニル基及びベンジル基等の芳香族置換アルキル基、ヒドロキシルアルキル基、アルコキシアルキル基、シアノ基、カルボキシル基、アルキルカルボニルオキシ基、アルキルオキシカルボニル基、水酸基、アミノ基、カルボニル基、メルカプト基、アルデヒド基、アミド基又はスルホニル基から選ばれる置換基である。R11は、アルキレン基、脂環式アルキレン基、アルキレンアリーレンアルキレン基、アリーレン基、アルキルシリレン基又は単結合であり、上記アルキレン基は−O−、−CO−、−COO−又はOCOO−結合を含んでいてもよい。Yはカルボキシル基、フォスフィン基、アルコキシシリル基又はハロゲン化シリル基から選ばれる置換基である。 In the above formulas, R 1 to R 10 and R 12 are the same or different and each is a (halogenated) alkyl group having 1 to 10 carbon atoms such as a hydrogen atom, a methyl group, an ethyl group, a propyl group and a trifluoromethyl group, Group, p-fluorophenyl group, naphthyl group, tolyl group, biphenyl group, benzyl group and other aromatic substituted alkyl groups, hydroxylalkyl group, alkoxyalkyl group, cyano group, carboxyl group, alkylcarbonyloxy group, alkyloxycarbonyl group , A hydroxyl group, an amino group, a carbonyl group, a mercapto group, an aldehyde group, an amide group or a sulfonyl group. R 11 represents an alkylene group, an alicyclic alkylene group, an alkylene arylene alkylene group, an arylene group, an alkylsilylene group, or a single bond, and the alkylene group has a —O—, —CO—, —COO—, or OCOO— bond. May be included. Y is a substituent selected from a carboxyl group, a phosphine group, an alkoxysilyl group or a halogenated silyl group.

上記ニトロキシド化合物の具体例としては、2,2,6,6−テトラメチルピペリジン−1−オキシル(以下「TEMPO」ともいう)、4−ヒドロキシ−TEMPO、4−アミノ−TEMPO、4−アセトアミド−TEMPO、4−アミノメチル−TEMPO、4−メトキシ−TEMPO、4−t−ブチル−TEMPO、3−ヒドロキシ−2,2,5,5−テトラメチルピロリジン−1−オキシル、3−アミノ−2,2,5,5−テトラメチルピロリジン−1−オキシル、3−アセトアミド−2,2,5,5−テトラメチルピロリジン−1−オキシル、3−メトキシ−2,2,5,5−テトラメチルピロリジン−1−オキシル、3−(アミノメチル)−2,2,5,5−テトラメチルピロリジン−1−オキシル、及び3−t−ブチル−2,2,5,5−テトラメチルピロリジン−1−オキシル等が挙げられる。   Specific examples of the nitroxide compound include 2,2,6,6-tetramethylpiperidine-1-oxyl (hereinafter also referred to as “TEMPO”), 4-hydroxy-TEMPO, 4-amino-TEMPO, 4-acetamido-TEMPO. 4-aminomethyl-TEMPO, 4-methoxy-TEMPO, 4-t-butyl-TEMPO, 3-hydroxy-2,2,5,5-tetramethylpyrrolidine-1-oxyl, 3-amino-2,2, 5,5-tetramethylpyrrolidine-1-oxyl, 3-acetamido-2,2,5,5-tetramethylpyrrolidine-1-oxyl, 3-methoxy-2,2,5,5-tetramethylpyrrolidine-1- Oxyl, 3- (aminomethyl) -2,2,5,5-tetramethylpyrrolidine-1-oxyl, and 3-t-butyl-2, , 5,5-tetramethyl-1-oxyl, and the like.

また、原子移動ラジカル重合法における重合開始基としては、重合の開始点となるハロゲンを少なくとも1つ有する有機ハロゲン化物又はハロゲン化スルホニル化合物であって、磁性粒子表面と結合又は相互作用する官能基を含むものであれば特に制限はないが、通常開始点となるハロゲンを1つ又は2つ有する化合物であり、次の一般式(3)〜(5)で表される化合物が特に好ましい。   In addition, as a polymerization initiating group in the atom transfer radical polymerization method, an organic halide or a sulfonyl halide compound having at least one halogen as a polymerization starting point, which is a functional group that binds to or interacts with the magnetic particle surface. Although it will not specifically limit if it contains, It is a compound which has one or two halogen which becomes a starting point normally, and the compound represented by following General formula (3)-(5) is especially preferable.

Figure 2006328309
Figure 2006328309

上記式中、R13は、アルコキシ基又はハロゲン原子から選ばれる置換基であり、R14は、アルキレン基、脂環式アルキレン基、アルキレンアリーレンアルキレン基、アリーレン基、アルキルシリレン基又は単結合であり、上記の全ての基には−O−、−CO−、−COO−又はOCOO−結合を含んでいてもよい。Xはハロゲン原子を示す。 In the above formula, R 13 is a substituent selected from an alkoxy group or a halogen atom, and R 14 is an alkylene group, an alicyclic alkylene group, an alkylene arylene alkylene group, an arylene group, an alkylsilylene group, or a single bond. All of the above groups may contain a —O—, —CO—, —COO— or OCOO— bond. X represents a halogen atom.

このような開始基の一例としては、下記に示される方法によって合成される(4a)が挙げられるが、本発明の開始基はこれに限定されるものではない。   An example of such an initiating group is (4a) synthesized by the method shown below, but the initiating group of the present invention is not limited thereto.

Figure 2006328309
Figure 2006328309

一方、本発明において重合開始基を導入する磁性粒子としては、基本的には、鉄鉱、磁性酸化鉄やマグネタイト、フェライト、酸化ニッケル又は酸化コバルト等の何れも使用できるが、ドラッグデリバリー、分離担体、診断等の用途では磁力が強い粒子が要求される傾向にあるため、これらのうち強磁性体に分類されるものの方が好ましく、より好ましくはフェライト類であり、特にFeが好ましい。 On the other hand, as the magnetic particles for introducing a polymerization initiating group in the present invention, basically, iron ore, magnetic iron oxide, magnetite, ferrite, nickel oxide, cobalt oxide or the like can be used, but drug delivery, separation carrier, In applications such as diagnosis, particles having a strong magnetic force tend to be required, so among them, those classified as ferromagnetic materials are preferred, ferrites are more preferred, and Fe 3 O 4 is particularly preferred.

原料となる磁性粒子の平均粒径は、用途に応じて使い分けることができる。例えば、生体内で用いる場合には、血管内で異物として認識され血管の閉塞等の危険性が生じる400nmよりも小さく、例えば2〜200nmが好ましい。一方、磁気情報記録媒体として用いる場合には、磁気ムラを利用する際には磁性粒子の粒径は、磁気ムラを作るための比較的大粒径の1μm以上、一方高密度・高精細化を考慮した場合は5nm〜1μm程度が好ましい。磁性ポリマー粒子が40μmを超えると、塗膜にしたときに突起となり、積層性や走行性、滑り性といった媒体としての基体特性が悪くなる恐れがある。   The average particle diameter of the magnetic particles used as a raw material can be properly used depending on the application. For example, when it is used in a living body, it is smaller than 400 nm, which is recognized as a foreign substance in a blood vessel and causes a risk of occlusion of the blood vessel, for example, preferably 2 to 200 nm. On the other hand, when used as a magnetic information recording medium, when using magnetic unevenness, the particle size of the magnetic particles is 1 μm or more, which is a relatively large particle size for creating magnetic unevenness, while high density and high definition are required. In consideration, about 5 nm to 1 μm is preferable. When the magnetic polymer particle exceeds 40 μm, it becomes a protrusion when it is formed into a coating film, and the substrate characteristics as a medium such as lamination property, running property, and slipping property may be deteriorated.

磁性粒子表面に重合開始基を導入する工程においては、これら原料となる磁性粒子と、前記重合開始基となる化合物を混合する。この際、重合開始基に含まれるカルボキシル基、フォスフィン基、アルコキシシリル基、ハロゲン化シリル基等が磁性粒子表面に反応・吸着し、重合開始基が磁性粒子表面に導入される。また、この工程において、必要に応じて超音波処理、熱処理又はマイクロウェーブ処理等により磁性粒子の分散性を高めたり、重合開始基の導入を促進したりすることができる。   In the step of introducing a polymerization initiating group onto the surface of the magnetic particles, the magnetic particles as the raw material and the compound to be the polymerization initiating group are mixed. At this time, the carboxyl group, phosphine group, alkoxysilyl group, halogenated silyl group and the like contained in the polymerization initiating group react and adsorb on the surface of the magnetic particle, and the polymerization initiating group is introduced on the surface of the magnetic particle. In this step, the dispersibility of the magnetic particles can be increased or the introduction of a polymerization initiating group can be promoted by ultrasonic treatment, heat treatment, microwave treatment, or the like, if necessary.

次に、上記開始基を重合開始源として重合を行い、磁性粒子表面にポリマー鎖をグラフト化する工程について説明する。本発明におけるニトロキシド化合物によるラジカル重合及び原子移動ラジカル重合は、種々の形態で実施することが可能であり、例えば、溶液重合、懸濁重合、乳化重合及びバルク重合を挙げることができる。バルク重合以外の場合、使用する溶媒は、ラジカル重合に対する阻害作用がなければ、いかなる種類の溶媒も使用しうる。上記ラジカル重合で使用されるラジカル重合性単量体及び重合溶媒については、後述の化合物を用いることができる。   Next, a process of performing polymerization using the initiating group as a polymerization initiation source and grafting a polymer chain onto the magnetic particle surface will be described. The radical polymerization and atom transfer radical polymerization by the nitroxide compound in the present invention can be carried out in various forms, and examples thereof include solution polymerization, suspension polymerization, emulsion polymerization and bulk polymerization. In the case of other than bulk polymerization, any type of solvent can be used as long as it does not inhibit radical polymerization. As the radical polymerizable monomer and the polymerization solvent used in the radical polymerization, the compounds described below can be used.

本発明を実施するに際し、ニトロキシド化合物によるラジカル重合及び原子移動ラジカル重合においては、重合試薬の添加手順等は特に制限は無いが、試薬添加後、必要に応じて脱気、不活性ガスによる置換を行ったのち、所定の温度に設定し、反応を行わせる。   In carrying out the present invention, in radical polymerization and atom transfer radical polymerization with a nitroxide compound, there are no particular restrictions on the addition procedure of the polymerization reagent, but after the addition of the reagent, deaeration and substitution with an inert gas are performed as necessary. After performing, it sets to predetermined | prescribed temperature and is made to react.

ニトロキシド化合物を用いた合成法の場合、上記重合開始基を導入した磁性粒子とラジカル重合性単量体を混合し、必要に応じて適当な溶媒を添加し、所定の温度により重合を行えばよい。重合温度は、通常、20〜140℃、好ましくは40〜120℃の間で選択される。重合温度が、20℃未満では、重合反応が著しく遅くなり工業的に好ましくなく、一方、重合温度が140℃を超えると、分子量分布が広くなる傾向が強くなり好ましくない。   In the case of a synthesis method using a nitroxide compound, the above-mentioned polymerization initiator group-introduced magnetic particles are mixed with a radical polymerizable monomer, an appropriate solvent is added as necessary, and polymerization is performed at a predetermined temperature. . The polymerization temperature is usually selected between 20 and 140 ° C, preferably between 40 and 120 ° C. When the polymerization temperature is less than 20 ° C., the polymerization reaction is extremely slow, which is not industrially preferable. On the other hand, when the polymerization temperature exceeds 140 ° C., the molecular weight distribution tends to be widened, which is not preferable.

原子移動ラジカル重合法を使用する場合は、上記重合開始基と共に、触媒としてハロゲン含有金属錯体を使用してラジカル重合性単量体をリビングラジカル重合させる。上記金属触媒としては、周期表7族〜11族から選ばれる少なくとも1種の遷移金属(M)が中心金属である金属錯体から成る触媒を使用するが、具体的に使用される金属(M)としては、Cu、Ni、Pd、Pt、Rh、Co、Ir、Fe、Ru、Re及びMnの群から選ばれる金属であり、中でも、Cu、Ru、Fe及びNiが好ましく、更に銅が特に好ましい。上記ハロゲン含有金属錯体の中心金属として銅を用いた場合、ハロゲン含有銅錯体としては、塩化第一銅や臭化第一銅が特に好適に用いられるが、特にこれらに限定されない。   When the atom transfer radical polymerization method is used, the radical polymerizable monomer is subjected to living radical polymerization using a halogen-containing metal complex as a catalyst together with the polymerization initiating group. As the metal catalyst, a catalyst composed of a metal complex in which at least one transition metal (M) selected from Groups 7 to 11 of the periodic table is a central metal is used. Is a metal selected from the group consisting of Cu, Ni, Pd, Pt, Rh, Co, Ir, Fe, Ru, Re and Mn. Among them, Cu, Ru, Fe and Ni are preferable, and copper is particularly preferable. . When copper is used as the central metal of the halogen-containing metal complex, cuprous chloride and cuprous bromide are particularly preferably used as the halogen-containing copper complex, but are not particularly limited thereto.

上記の金属錯体には有機配位子が使用される。有機配位子は、重合溶媒への可溶化及び金属錯体の可逆的なレドックス反応を可能にするため使用される。金属への配位原子としては、窒素原子、酸素原子、リン原子及び硫黄原子等が挙げられるが、好ましくは窒素原子である。有機配位子の具体例としては、2,2’−ビピリジル及びその誘導体、テトラメチルエチレンジアミン、ペンタメチルジエチレントリアミン、ヘキサメチルトリエチレンテトラアミン、トリス(ジメチルアミノエチル)アミン及びトリフェニルホスフィン等が挙げられるが、特にこれらに限定されない。   An organic ligand is used for the above metal complex. Organic ligands are used to enable solubilization in polymerization solvents and reversible redox reactions of metal complexes. Examples of the coordination atom to the metal include a nitrogen atom, an oxygen atom, a phosphorus atom, and a sulfur atom, and a nitrogen atom is preferable. Specific examples of the organic ligand include 2,2′-bipyridyl and derivatives thereof, tetramethylethylenediamine, pentamethyldiethylenetriamine, hexamethyltriethylenetetraamine, tris (dimethylaminoethyl) amine, and triphenylphosphine. However, it is not limited to these.

原子移動ラジカル重合法の場合、上記重合開始基を導入した磁性粒子、ラジカル重合性単量体、上記金属触媒及び必要に応じてその配位子を混合し、更に必要に応じて適当な溶媒を添加し、所定の温度により重合を行えばよい。重合温度は、通常、5〜140℃、好ましくは20〜120℃の間で選択される。重合温度が5℃未満では重合反応が著しく遅くなり工業的に好ましくなく、一方、重合温度が140℃を超えると、分子量分布が広くなる傾向が強くなり好ましくない。   In the case of the atom transfer radical polymerization method, the magnetic particles into which the polymerization initiating group has been introduced, the radical polymerizable monomer, the metal catalyst and, if necessary, the ligand thereof are mixed, and if necessary, an appropriate solvent is added. The polymerization may be performed at a predetermined temperature. The polymerization temperature is usually selected between 5 and 140 ° C, preferably between 20 and 120 ° C. When the polymerization temperature is less than 5 ° C., the polymerization reaction is extremely slow, which is not industrially preferable. On the other hand, when the polymerization temperature exceeds 140 ° C., the tendency of the molecular weight distribution to become wide is increased, which is not preferable.

本発明の磁性粒子表面にグラフト化する工程において、使用し得るモノマーについては、上記ニトロキシド化合物を用いた場合又は原子移動ラジカル重合法を用いた場合、共に公知のラジカル重合性単量体を用いることができる。本発明のラジカル重合方法で使用し得る上記不飽和モノマーを例示すれば、以下を挙げることができるが、特にこれらに限定されるものではない。   In the step of grafting on the surface of the magnetic particles of the present invention, as for the monomer that can be used, when using the above nitroxide compound or when using the atom transfer radical polymerization method, a known radical polymerizable monomer is used. Can do. Examples of the unsaturated monomer that can be used in the radical polymerization method of the present invention include the following, but are not particularly limited thereto.

スチレン、スチレンのα−、o−、m−、p−アルキル、アルコキシル、ハロゲン、ハロアルキル、ニトロ、シアノ、アミド、エステル置換体;スチレンスルフォン酸、2,4−ジメチルスチレン、パラジメチルアミノスチレン、ビニルベンジルクロライド、ビニルベンズアルデヒド、インデン、1−メチルインデン、アセナフタレン、ビニルナフタレン、ビニルアントラセン、ビニルカルバゾール、2−ビニルピリジン、4−ビニルピリジン、2−ビニルフルオレン等の重合性不飽和芳香族化合物;   Styrene, α-, o-, m-, p-alkyl of styrene, alkoxyl, halogen, haloalkyl, nitro, cyano, amide, ester substituted product; styrene sulfonic acid, 2,4-dimethylstyrene, paradimethylaminostyrene, vinyl Polymerizable unsaturated aromatic compounds such as benzyl chloride, vinylbenzaldehyde, indene, 1-methylindene, acenaphthalene, vinylnaphthalene, vinylanthracene, vinylcarbazole, 2-vinylpyridine, 4-vinylpyridine, 2-vinylfluorene;

メチル(メタ)アクリレート、エチル(メタ)アクリレート、n−プロピルアクリレート、n−ブチルアクリレート、2−エチルヘキシル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル(メタ)アクリレート類;クロトン酸メチル、クロトン酸エチル、ケイ皮酸メチル、ケイ皮酸エチル等の不飽和モノカルボン酸エステル類;トリフルオロエチル(メタ)アクリレート、ペンタフルオロプロピル(メタ)アクリレート、ヘプタフルオロブチル(メタ)アクリレート等のフルオロアルキル(メタ)アクリレート類;トリメチルシロキサニルジメチルシリルプロピル(メタ)アクリレート、トリス(トリメチルシロキサニル)シリルプロピル(メタ)アクリレート、ジ(メタ)アクリロイルプロピルジメチルシリルエーテル等のシロキサニル化合物類;2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−ヒドロキシプロピル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート類;ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、t−ブチルアミノエチル(メタ)アクリレート等のアミン含有(メタ)アクリレート類;クロトン酸2−ヒドロキシエチル、クロトン酸2−ヒドロキシプロピル、ケイ皮酸2−ヒドロキシプロピル等の不飽和カルボン酸のヒドロキシアルキルエステル類;(メタ)アリルアルコール等の不飽和アルコール類;(メタ)アクリル酸、クロトン酸、ケイ皮酸等の不飽和(モノ)カルボン酸類;(メタ)アクリル酸グリシジル、α−エチルアクリル酸グリシジル、α−n−プロピルアクリル酸グリシジル、α−n−ブチルアクリル酸グリシジル、(メタ)アクリル酸−3,4−エポキシブチル、(メタ)アクリル酸−6,7−エポキシヘプチル、α−エチルアクリル酸−6,7−エポキシヘプチル、o−ビニルベンジルグリシジルエーテル、m−ビニルベンジルグリシジルエーテル、p−ビニルベンジルグリシジルエーテル、(メタ)アクリル酸−β−メチルグリシジル、(メタ)アクリル酸−β−エチルグリシジル、(メタ)アクリル酸−β−プロピルグリシジル、α−エチルアクリル酸−β−メチルグリシジル、(メタ)アクリル酸−3−メチル−3,4−エポキシブチル、(メタ)アクリル酸−3−エチル−3,4−エポキシブチル、(メタ)アクリル酸−4−メチル−4,5−エポキシペンチル、(メタ)アクリル酸−5−メチル−5,6−エポキシヘキシル、(メタ)アクリル酸−β−メチルグリシジル、(メタ)アクリル酸−3−メチル−3,4−エポキシブチル等のエポキシ基含有(メタ)アクリル酸エステル類;及びこれらのモノ、ジエステル類; Alkyl (meth) acrylates such as methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl acrylate, n-butyl acrylate, 2-ethylhexyl (meth) acrylate, stearyl (meth) acrylate; methyl crotonic acid, crotonic acid Unsaturated monocarboxylic acid esters such as ethyl, methyl cinnamate and ethyl cinnamate; fluoroalkyl (meta) such as trifluoroethyl (meth) acrylate, pentafluoropropyl (meth) acrylate and heptafluorobutyl (meth) acrylate ) Acrylates; trimethylsiloxanyldimethylsilylpropyl (meth) acrylate, tris (trimethylsiloxanyl) silylpropyl (meth) acrylate, di (meth) acryloylpropyldimethylsilylate Siloxanyl compounds such as 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, hydroxyalkyl (meth) acrylates such as 3-hydroxypropyl (meth) acrylate; dimethylaminoethyl (meth) acrylate, Amine-containing (meth) acrylates such as diethylaminoethyl (meth) acrylate and t-butylaminoethyl (meth) acrylate; 2-hydroxyethyl crotonic acid, 2-hydroxypropyl crotonic acid, 2-hydroxypropyl cinnamate, etc. Hydroxyalkyl esters of saturated carboxylic acids; unsaturated alcohols such as (meth) allyl alcohol; unsaturated (mono) carboxylic acids such as (meth) acrylic acid, crotonic acid and cinnamic acid; glycidyl (meth) acrylate, α- Glycidyl ethyl acrylate, glycidyl α-n-propyl acrylate, glycidyl α-n-butyl acrylate, (meth) acrylic acid-3,4-epoxybutyl, (meth) acrylic acid-6,7-epoxyheptyl, α -Ethylacrylic acid-6,7-epoxyheptyl, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinylbenzyl glycidyl ether, (meth) acrylic acid-β-methylglycidyl, (meth) acrylic acid- β-ethylglycidyl, (meth) acrylic acid-β-propylglycidyl, α-ethylacrylic acid-β-methylglycidyl, (meth) acrylic acid-3-methyl-3,4-epoxybutyl, (meth) acrylic acid- 3-ethyl-3,4-epoxybutyl, 4-methyl-4 (meth) acrylate , 5-epoxypentyl, (meth) acrylic acid-5-methyl-5,6-epoxyhexyl, (meth) acrylic acid-β-methylglycidyl, (meth) acrylic acid-3-methyl-3,4-epoxybutyl Epoxy group-containing (meth) acrylic esters such as mono- and diesters thereof;

その他、N,N−ジメチルアクリルアミド、N−イソプロピルアクリルアミド等のN−アルキル置換(メタ)アクリルアミド類;N−メチロールアクリルアミド、N−メチロールメタクリルアミド、N−ビニルピロリドン、(無水)マレイン酸、フマル酸、(無水)イタコン酸、シトラコン酸等の不飽和ポリカルボン酸(無水物)類、塩化ビニル、酢酸ビニル等が挙げられる。 In addition, N-alkyl-substituted (meth) acrylamides such as N, N-dimethylacrylamide and N-isopropylacrylamide; N-methylolacrylamide, N-methylolmethacrylamide, N-vinylpyrrolidone, (anhydrous) maleic acid, fumaric acid, (Anhydrous) Unsaturated polycarboxylic acids (anhydrides) such as itaconic acid and citraconic acid, vinyl chloride, vinyl acetate and the like.

また、得られる磁性ポリマー粒子の分散性を向上させる目的で、ポリビニルピロリドン、ポリオキシエチレン又はポリアクリルアミド等の高分子量セグメントにビニル基やメタクリロイル基等の重合可能な官能基を持つマクロモノマー類を好適に用いることもできる。   For the purpose of improving the dispersibility of the magnetic polymer particles obtained, macromonomers having a polymerizable functional group such as a vinyl group or a methacryloyl group in a high molecular weight segment such as polyvinylpyrrolidone, polyoxyethylene, or polyacrylamide are suitable. It can also be used.

更に、上記モノマーの他、架橋剤となりうる多官能性化合物を共存させてもよい。該多官能性化合物としては、例えば、N−メチロールアクリルアミド、N−エタノールアクリルアミド、N−プロパノールアクリルアミド、N−メチロールマレイミド、N−エチロールマレイミド、N−メチロールマレインアミド酸、N−メチロールマレインアミド酸エステル、ビニル芳香族酸のN−アルキロールアミド(例えばN−メチロール−p−ビニルベンズアミド等)、N−(イソブトキシメチル)アクリルアミド等が挙げられる。更に、上述のモノマーのうち、ジビニルベンゼン、ジビニルナフタレン、ジビニルシクロヘキサン、1,3−ジプロペニルベンゼン、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ブチレングリコール、トリメチロールエタントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等の多官能性モノマー類は、架橋剤としても使用することが出来る。上記に例示したモノマー及びマクロモノマーは、1種単独で、あるいは2種以上を併用することができる。   Furthermore, in addition to the above monomer, a polyfunctional compound that can serve as a crosslinking agent may coexist. Examples of the polyfunctional compound include N-methylol acrylamide, N-ethanol acrylamide, N-propanol acrylamide, N-methylol maleimide, N-ethylol maleimide, N-methylol maleamic acid, N-methylol maleamic acid ester. N-alkylolamide of vinyl aromatic acid (for example, N-methylol-p-vinylbenzamide), N- (isobutoxymethyl) acrylamide and the like. Furthermore, among the above monomers, divinylbenzene, divinylnaphthalene, divinylcyclohexane, 1,3-dipropenylbenzene, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, butylene glycol, Polyfunctional monomers such as trimethylolethane tri (meth) acrylate and pentaerythritol tetra (meth) acrylate can also be used as a crosslinking agent. The monomers and macromonomers exemplified above can be used alone or in combination of two or more.

本発明において用いられる重合溶媒は、ラジカル重合に対する阻害作用がなければ、いかなる種類の溶媒も使用し得るが、その中でも、重合に供するモノマーと相溶し、かつ、後述の磁性粒子を効率良く分散し得る溶媒を選択することが、重合制御の点で有利である。その具体的な重合溶媒として、代表的なものを例示すると、水;メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、イソブチルアルコール、tert−ブチルアルコール、1−ペンタノール、2−ペンタノール、3−ペンタノール、2−メチル−1−ブタノール、イソペンチルアルコール、tert−ペンチルアルコール、1−ヘキサノール、2−メチル−1−ペンタノール、4−メチル−2−ペンタノール、2−エチルブタノール、1−ヘプタノール、2−ヘプタノール、3−ヘプタノール、2−オクタノール、2−エチル−1−ヘキサノール、ベンジルアルコール、シクロヘキサノール等のアルコール類;メチルセロソルブ、エチルセロソルブ、イソプロピルセロソルブ、ブチルセロソルブ、ジエチレングリコールモノブチルエーテル等のエーテルアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、プロピオン酸エチル、セロソルブアセテート等のエステル類;ペンタン、2−メチルブタン、n−ヘキサン、シクロヘキサン、2−メチルペンタン、2,2−ジメチルブタン、2,3−ジメチルブタン、ヘプタン、n−オクタン、イソオクタン、2,2,3−トリメチルペンタン、デカン、ノナン、シクロペンタン、メチルシクロペンタン、メチルシクロヘキサン、エチルシクロヘキサン、p−メンタン、ジシクロヘキシル、ベンゼン、トルエン、キシレン、エチルベンゼン、アニソール(メトキシベンゼン)等の脂肪族又は芳香族炭化水素類;四塩化炭素、トリクロロエチレン、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、ジクロロベンゼン、クロロベンゼン、テトラブロムエタン等のハロゲン化炭化水素類;エチルエーテル、ジメチルエーテル、トリオキサン、テトラヒドロフラン等のエーテル類;メチラール、ジエチルアセタール等のアセタール類;ギ酸、酢酸、プロピオン酸等の脂肪酸類;ニトロプロペン、ニトロベンゼン、ジメチルアミン、モノエタノールアミン、ピリジン、ジメチルホルムアミド、ジメチルスルホキシド、アセトニトリル等の硫黄、窒素含有有機化合物類等が挙げられる。これらは、上記溶媒の条件以外に特に制限されることは無く、重合方法の用途に合った溶媒を、適宜選択すればよい。また、これらは単独で使用してもよいし、2種類以上を併用してもよい。   As the polymerization solvent used in the present invention, any type of solvent can be used as long as it does not inhibit radical polymerization. Among them, the solvent is compatible with the monomer used for polymerization and efficiently disperses the magnetic particles described below. It is advantageous in terms of polymerization control to select a solvent that can be used. Specific examples of the specific polymerization solvent include water; methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, and 1-pentanol. 2-pentanol, 3-pentanol, 2-methyl-1-butanol, isopentyl alcohol, tert-pentyl alcohol, 1-hexanol, 2-methyl-1-pentanol, 4-methyl-2-pentanol, Alcohols such as 2-ethylbutanol, 1-heptanol, 2-heptanol, 3-heptanol, 2-octanol, 2-ethyl-1-hexanol, benzyl alcohol, cyclohexanol; methyl cellosolve, ethyl cellosolve, isopropyl cellosolve, butyl celloso Ethers such as butyl and diethylene glycol monobutyl ether; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; esters such as ethyl acetate, butyl acetate, ethyl propionate and cellosolve acetate; pentane, 2-methylbutane, n- Hexane, cyclohexane, 2-methylpentane, 2,2-dimethylbutane, 2,3-dimethylbutane, heptane, n-octane, isooctane, 2,2,3-trimethylpentane, decane, nonane, cyclopentane, methylcyclopentane , Methylcyclohexane, ethylcyclohexane, p-menthane, dicyclohexyl, benzene, toluene, xylene, ethylbenzene, anisole (methoxybenzene) and other aliphatic or aromatic hydrocarbons Halogenated hydrocarbons such as carbon tetrachloride, trichloroethylene, chloroform, dichloromethane, 1,2-dichloroethane, dichlorobenzene, chlorobenzene and tetrabromoethane; ethers such as ethyl ether, dimethyl ether, trioxane and tetrahydrofuran; methylal, diethyl acetal, etc. Acetals; fatty acids such as formic acid, acetic acid and propionic acid; sulfur such as nitropropene, nitrobenzene, dimethylamine, monoethanolamine, pyridine, dimethylformamide, dimethyl sulfoxide, acetonitrile, and nitrogen-containing organic compounds. These are not particularly limited except for the above solvent conditions, and a solvent suitable for the use of the polymerization method may be selected as appropriate. These may be used alone or in combination of two or more.

本発明における磁性ポリマー粒子中のグラフトされるポリマー鎖長もしくはポリマー層の厚みが均一であることは、グラフトされたポリマーをコアの磁性粒子から切り出し、回収・ゲルパーミエーションクロマトグラフィー(GPC)測定することにより得られる分子量分布指数(Mw/Mn)により確認される。すなわち、分子量分布指数(Mw/Mn)の値が小さいほど、グラフトされたポリマーの鎖長が均一であることが示唆される。分子量分布指数(Mw/Mn)は1.6以下であることが必須であり、1.4以下であることが好ましい。分子量分布指数(Mw/Mn)が1.6以下であることにより均一なポリマー鎖長からなるグラフト層が得られ、粒子の粒径分布も狭い均一な磁性ポリマーが得られる。   In the present invention, the polymer chain length to be grafted or the thickness of the polymer layer in the magnetic polymer particle is uniform, and the grafted polymer is cut out from the core magnetic particle and measured by recovery / gel permeation chromatography (GPC). This is confirmed by the molecular weight distribution index (Mw / Mn) obtained. That is, it is suggested that the smaller the value of the molecular weight distribution index (Mw / Mn), the more uniform the chain length of the grafted polymer. The molecular weight distribution index (Mw / Mn) must be 1.6 or less, and preferably 1.4 or less. When the molecular weight distribution index (Mw / Mn) is 1.6 or less, a graft layer having a uniform polymer chain length can be obtained, and a uniform magnetic polymer having a narrow particle size distribution can be obtained.

本発明の第二の発明は、磁性粒子表面にグラフトされるポリマー鎖が二種類以上のブロックから構成されるブロックポリマー鎖であることを特徴とする磁性ポリマー粒子である。本発明は、リビングラジカル重合法に基づいた製造方法を用いているため、重合可能なラジカル末端にニトロキシド(ニトロキシド重合の場合)やハロゲンX(原子移動ラジカル重合の場合)を結合させて重合を一旦停止した後、再度ニトロキシド末端やハロゲン末端からラジカル末端を生成して重合を開始したり、重合を自由自在に開始し且つ終了させたりすることができる。更に、本発明の製造方法で得られた重合体は、更なる重合を開始することが可能なニトロキシド又はハロゲン末端Xを有しているため、第1のモノマーが重合で消費されて第1のブロック鎖を形成した後、第2のモノマーを添加して第1のブロック鎖の末端から成長する第2のブロック鎖を形成することが出来る。そして、更にはマルチブロックコポリマーを製造することが出来る。また、本発明の製造方法で得られる重合体は、変成工程に供し、ハロゲン末端と官能基を有する化合物と反応させることにより、目的とする他の官能基を有する重合体に変換することができる。   The second invention of the present invention is a magnetic polymer particle characterized in that the polymer chain grafted onto the surface of the magnetic particle is a block polymer chain composed of two or more types of blocks. Since the present invention uses a production method based on the living radical polymerization method, nitroxide (in the case of nitroxide polymerization) or halogen X (in the case of atom transfer radical polymerization) is bonded to the polymerizable radical terminal to temporarily polymerize. After stopping, the radical end can be generated again from the nitroxide end or the halogen end to start the polymerization, or the polymerization can be freely started and ended. Furthermore, since the polymer obtained by the production method of the present invention has a nitroxide or halogen-terminated X capable of initiating further polymerization, the first monomer is consumed in the polymerization and the first After forming the block chain, a second monomer can be added to form a second block chain that grows from the end of the first block chain. Further, a multi-block copolymer can be produced. In addition, the polymer obtained by the production method of the present invention can be converted into a polymer having another functional group of interest by subjecting it to a modification step and reacting with a compound having a halogen terminal and a functional group. .

すなわち、磁性粒子表面に重合開始基を導入し、それを開始源としたリビングラジカル重合により第一のブロック鎖を形成した後、他のモノマーを添加し、第一のブロック鎖とは異なった機能を持たせたブロック鎖を形成し機能性の磁性ポリマー粒子を提供することができる。具体的には、第一のブロック鎖と異なる機能を持つブロック鎖として、分散安定性の機能を付与したポリマー鎖や、種々の刺激に応答して体積変化・構造変化を起こすポリマー鎖等の機能性磁性ポリマー粒子が好ましく用いられるが、ブロックポリマー鎖の種類は上記に制限されるものではなく、またブロックの数も特に制限はなく2種類以上のブロックからなるマルチブロックポリマー鎖を合成することができる。   That is, after introducing a polymerization initiating group on the surface of the magnetic particle and forming the first block chain by living radical polymerization using it as a starting source, another monomer is added and the function is different from that of the first block chain. It is possible to provide functional magnetic polymer particles by forming a block chain having a structure. Specifically, as a block chain having a different function from the first block chain, functions such as a polymer chain imparted with a function of dispersion stability and a polymer chain that causes volume change and structural change in response to various stimuli The magnetic polymer particles are preferably used, but the type of block polymer chain is not limited to the above, and the number of blocks is not particularly limited, and a multi-block polymer chain composed of two or more types of blocks can be synthesized. it can.

例えば分散安定性の機能を付与するには、使用環境が水系の場合には親水性のモノマー若しくはマクロモノマーを使用することが好ましい。親水性のマクロモノマーとしては、末端に重合性ビニル基を有し親水性で分子量が300〜3000のマクロモノマーが好適であり、その具体例としてはポリエチレングリコール、ポリビニルピロリドン及びポリアクリルアミド等が挙げられるが、特にこれらに限定されない。   For example, in order to impart a function of dispersion stability, it is preferable to use a hydrophilic monomer or a macromonomer when the use environment is an aqueous system. As the hydrophilic macromonomer, a macromonomer having a polymerizable vinyl group at the terminal and having a hydrophilic property and a molecular weight of 300 to 3000 is preferable, and specific examples thereof include polyethylene glycol, polyvinyl pyrrolidone, and polyacrylamide. However, it is not limited to these.

また、例えば刺激応答性ポリマーに与える刺激としては、光、温度、pH、及び電場等が挙げられる。   Examples of the stimulus given to the stimulus-responsive polymer include light, temperature, pH, and electric field.

例えば、光応答性ポリマーとしては、光によって異性化反応を起こすアゾベンゼン誘導体、スピロピラン誘導体、又はトリアリールメタン誘導体等を含んだ高分子を用いることができる。   For example, as the photoresponsive polymer, a polymer containing an azobenzene derivative, a spiropyran derivative, or a triarylmethane derivative that undergoes an isomerization reaction by light can be used.

また温度応答性ポリマーとしては、LCST(下限臨界溶液温度)を有する高分子が好ましく、ポリN−イソプロピルアクリルアミド、ポリN−イソプロピルメタクリルアミド、ポリN−ビニルイソブチルアミド等のポリN−アルキル置換(メタ)アクリルアミド、又はポリビニルメチルエーテル等が特に好ましく使用される。   Further, as the temperature-responsive polymer, a polymer having LCST (lower critical solution temperature) is preferable, and poly N-alkyl substituted (meta-N-isopropylacrylamide, poly-N-isopropylmethacrylamide, poly-N-vinylisobutyramide, etc.). ) Acrylamide or polyvinyl methyl ether is particularly preferably used.

また、pH応答性ポリマーとしては、カルボキシル基やアミノ基を官能基として有するポリマー等が好ましく、具体的には、高分子電解質が好ましく、ポリ(メタ)アクリル酸やその塩、(メタ)アクリル酸と(メタ)アクリルアミド、ヒドロキシエチル(メタ)アクリレート、(メタ)アクリル酸アルキルエステル等との共重合体やその塩、マレイン酸と(メタ)アクリルアミド、(メタ)アクリル酸アルキルエステル等との共重合体やその塩、ポリビニルスルホン酸、ポリスチレンスルホン酸及びポリビニルベンゼンスルホン酸やその塩、ポリアクリルアミドアルキルスルホン酸やその塩、ポリジメチルアミノプロピル(メタ)アクリルアミドやその塩等が挙げられる。   The pH-responsive polymer is preferably a polymer having a carboxyl group or an amino group as a functional group, specifically, a polymer electrolyte is preferred, and poly (meth) acrylic acid or a salt thereof, (meth) acrylic acid And (meth) acrylamide, hydroxyethyl (meth) acrylate, (meth) acrylic acid alkyl ester and other copolymers and salts, maleic acid and (meth) acrylamide, (meth) acrylic acid alkyl ester, etc. Examples thereof include coalesced or a salt thereof, polyvinyl sulfonic acid, polystyrene sulfonic acid and polyvinyl benzene sulfonic acid or a salt thereof, polyacrylamide alkyl sulfonic acid or a salt thereof, polydimethylaminopropyl (meth) acrylamide or a salt thereof.

また電場による酸化・還元によって応答するポリマーとしては、カチオン性電解質高分子が好ましく、電子受容性化合物と組み合わせてCT錯体(電荷移動錯体)として好ましく使用される。カチオン性電解質高分子としては、ポリジメチルアミノプロピルアクリルアミド等ポリアミノ置換(メタ)アクリルアミド、ポリジメチルアミノエチル(メタ)アクリレート、ポリジエチルアミノエチル(メタ)アクリレートやポリジメチルアミノプロピル(メタ)アクリレート等のポリ(メタ)アクリル酸アミノ置換アルキルエステル、ポリビニルピリジン、ポリビニルカルバゾール、又はポリジメチルアミノスチレン等を用いることができる。電子受容性化合物としては、ベンゾキノン、ジフェノキノン、1,4−ナフトキノンやアントラキノン等のキノン類、7,7,8,8−テトラシアノキノジメタン(TCNQ)、メチレンブルー、過塩素酸テトラブチルアンモニウム、テトラシアノエチレン、クロラニル、トリニトロベンゼン、無水マレイン酸又はヨウ素等が好ましく用いられる。   The polymer that responds by oxidation / reduction by an electric field is preferably a cationic electrolyte polymer, and is preferably used as a CT complex (charge transfer complex) in combination with an electron-accepting compound. Examples of cationic electrolyte polymers include polyamino-substituted (meth) acrylamides such as polydimethylaminopropyl acrylamide, polydimethylaminoethyl (meth) acrylate, polydiethylaminoethyl (meth) acrylate, polydimethylaminopropyl (meth) acrylate, and other poly ( A meta-acrylic acid amino-substituted alkyl ester, polyvinyl pyridine, polyvinyl carbazole, polydimethylaminostyrene, or the like can be used. Examples of electron accepting compounds include quinones such as benzoquinone, diphenoquinone, 1,4-naphthoquinone and anthraquinone, 7,7,8,8-tetracyanoquinodimethane (TCNQ), methylene blue, tetrabutylammonium perchlorate, tetra Cyanoethylene, chloranil, trinitrobenzene, maleic anhydride, iodine or the like is preferably used.

これらを含んだポリマー鎖は各種刺激に対して凝集・収縮を繰り返すが、刺激応答性ポリマーとしては、特にこれらに限定されるものではない。   Although the polymer chain containing these repeats aggregation and contraction with respect to various stimuli, the stimulus-responsive polymer is not particularly limited thereto.

更に、タンパク質等の生体材料や薬剤をポリマー鎖に導入する場合、生体材料の固定化方法としてはポリマー側鎖の官能基と反応させる手法が公知の技術として知られているが、本発明のリビングラジカル重合法を用いる場合には、それら官能基を第一ブロックあるいは第二ブロック等、固定化する位置を制御することができる。これら官能基の一例としては、グリシジル基、カルボキシル基及びアミノ基等が挙げられ、これら官能基を持ったラジカル重合性の単量体としては、前記単量体から選ばれるものが好適に用いられる。   Furthermore, when a biomaterial such as protein or a drug is introduced into a polymer chain, a method of reacting with a functional group of a polymer side chain is known as a known technique for immobilizing a biomaterial. When the radical polymerization method is used, the position at which these functional groups are immobilized, such as the first block or the second block, can be controlled. Examples of these functional groups include a glycidyl group, a carboxyl group, and an amino group. As the radical polymerizable monomer having these functional groups, those selected from the above monomers are preferably used. .

上記のポリマー鎖に導入する酵素、タンパク質、核酸、糖等の生体材料としては、用途に応じて、従来公知の各種物質を用いることができ、特に制約されない。例えば酵素としては、目的とする酵素反応に応じた最適なものが適宜採用され、グルコースオキシダーゼ、リパーゼ、アミラーゼ、ウレアーゼ、プロテアーゼ、イソメラーゼ、ペプシン、パパイン、α−キモトリプシン、ヒドラーゼ、デスモラーゼ、チトクロームC、ヘモグロビン、リゾチーム、ノーゲンペルオキシダーゼ、チロシナーゼ、酸性ホスファターゼ及びアルカリ性ホスファターゼ等が挙げられる。   As biomaterials such as enzymes, proteins, nucleic acids, and sugars to be introduced into the polymer chain, various conventionally known substances can be used depending on the application, and are not particularly limited. For example, as the enzyme, an optimum enzyme according to the target enzyme reaction is appropriately adopted, and glucose oxidase, lipase, amylase, urease, protease, isomerase, pepsin, papain, α-chymotrypsin, hydrase, desmolase, cytochrome C, hemoglobin Lysozyme, nogen peroxidase, tyrosinase, acid phosphatase and alkaline phosphatase.

次に、本発明を実施例により更に詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に制約されるものではない。   EXAMPLES Next, although an Example demonstrates this invention still in detail, this invention is not restrict | limited to a following example, unless the summary is exceeded.

(実施例1)
本実施例は、ポリスチレンがリビングラジカル重合によりグラフトされた磁性ポリマー粒子の作製例である。磁性流体(商品名:フェリコロイドHC−50、タイホー工業製)を加熱濃縮し、溶媒のケロシンを除去した後、濃縮されたフェライト系の超常磁性磁性体を得た。この磁性体3.0gをトルエン/メタノール(4/1、v/v)に超音波分散させた後、2−(4−クロロスルフォニルフェニル)エチルトリメトキシシラン5.0gを添加し、還流温度で24時間反応を行い、磁性粒子表面に重合開始基を導入する工程を行った。反応後、トルエンで良く洗浄し、遠心分離により磁性粒子を回収後、真空乾燥することにより重合開始基が導入された磁性粒子を得た。この重合開始基が導入された磁性粒子0.7gを、スチレン6.1gとキシレン3.0gに良く分散させ、臭化銅(I)45mg、4,4’−ジノニル−2,2’−ビピリジル251mgを混合した後、窒素で溶存酸素を置換し、110℃で10時間重合を行い、磁性粒子表面にグラフト化する工程を行った。反応終了後、トルエン洗浄と遠心分離を繰り返し、ポリスチレンがグラフトされた磁性ポリマー粒子3.5gを得た。
Example 1
This example is an example of producing magnetic polymer particles in which polystyrene is grafted by living radical polymerization. A magnetic fluid (trade name: Ferricolloid HC-50, Taiho Kogyo Co., Ltd.) was heated and concentrated to remove the solvent kerosene, and then a concentrated ferrite-based superparamagnetic magnetic material was obtained. After 3.0 g of this magnetic material was ultrasonically dispersed in toluene / methanol (4/1, v / v), 5.0 g of 2- (4-chlorosulfonylphenyl) ethyltrimethoxysilane was added and the mixture was refluxed. The reaction was performed for 24 hours, and a step of introducing a polymerization initiating group onto the surface of the magnetic particles was performed. After the reaction, the particles were thoroughly washed with toluene, and the magnetic particles were collected by centrifugation, followed by vacuum drying to obtain magnetic particles having a polymerization initiation group introduced therein. 0.7 g of the magnetic particles introduced with this polymerization initiating group are well dispersed in 6.1 g of styrene and 3.0 g of xylene, and 45 mg of copper (I) bromide, 4,4′-dinonyl-2,2′-bipyridyl. After mixing 251 mg, the dissolved oxygen was replaced with nitrogen, polymerization was performed at 110 ° C. for 10 hours, and grafted onto the surface of the magnetic particles. After completion of the reaction, toluene washing and centrifugation were repeated to obtain 3.5 g of magnetic polymer particles grafted with polystyrene.

得られた磁性粒子の粒径をテトラヒドロフラン中で測定(マルバーン社製、HPPS)したところ、平均粒径80nm、粒径の範囲は60nm〜95nmであった。また、得られた磁性ポリマー粒子を濃塩酸(37%)に加え室温で3時間反応させ、コアの酸化鉄を溶解除去することによりグラフトされたポリスチレンを回収した。グラフトされたポリスチレンをGPCにより測定したところ、数平均分子量Mn:9700であり、Mw/Mnは1.30と狭い分子量分布を示した。   When the particle size of the magnetic particles obtained was measured in tetrahydrofuran (manufactured by Malvern, HPPS), the average particle size was 80 nm, and the particle size range was 60 nm to 95 nm. The obtained magnetic polymer particles were added to concentrated hydrochloric acid (37%), reacted at room temperature for 3 hours, and the grafted polystyrene was recovered by dissolving and removing the core iron oxide. When the grafted polystyrene was measured by GPC, the number average molecular weight Mn was 9700, and Mw / Mn was 1.30, indicating a narrow molecular weight distribution.

(実施例2)
本実施例は、ポリメタクリル酸メチルがリビングラジカル重合によりグラフトされた磁性ポリマー粒子の作製例である。前記合成方法で式(4a)に示される重合開始基が導入されたフォスフィン誘導体1.0gとフェライトFe微粒子(戸田工業製)1.0gをテトラヒドロフランに加え、室温で良く超音波分散した。反応液はエタノール洗浄と遠心分離を繰り返し、重合開始基が導入された磁性粒子を得た。この磁性粒子0.5gをメタクリル酸メチル5g、アニソール5gに良く分散させ、更に塩化銅(I)28mg、ペンタメチルジエチレントリアミン30mgを加えた。窒素で溶存酸素を置換し、90℃で10時間重合を行った後、トルエン洗浄と遠心分離を繰り返し、ポリメタクリル酸メチルがグラフトされた磁性ポリマー粒子3.0gを得た。
(Example 2)
This example is an example of producing magnetic polymer particles in which polymethyl methacrylate is grafted by living radical polymerization. 1.0 g of phosphine derivative introduced with the polymerization initiating group represented by formula (4a) and 1.0 g of ferrite Fe 3 O 4 fine particles (manufactured by Toda Kogyo Co., Ltd.) in tetrahydrofuran were added to tetrahydrofuran and well ultrasonically dispersed at room temperature. . The reaction solution was repeatedly washed with ethanol and centrifuged to obtain magnetic particles into which a polymerization initiating group had been introduced. 0.5 g of the magnetic particles were well dispersed in 5 g of methyl methacrylate and 5 g of anisole, and 28 mg of copper (I) chloride and 30 mg of pentamethyldiethylenetriamine were further added. Dissolved oxygen was replaced with nitrogen, and polymerization was performed at 90 ° C. for 10 hours. Then, washing with toluene and centrifugation were repeated to obtain 3.0 g of magnetic polymer particles grafted with polymethyl methacrylate.

実施例1と同様にテトラヒドロフラン中の粒度分布、GPCを測定したところ、平均粒径100nm、粒径の範囲は85nm〜120nmであり、グラフトされたポリメタクリル酸メチルのMnは15000、Mw/Mnは1.26と実施例1と同様に狭いものであった。   When the particle size distribution and GPC in tetrahydrofuran were measured in the same manner as in Example 1, the average particle size was 100 nm, the particle size range was 85 nm to 120 nm, Mn of the grafted polymethyl methacrylate was 15000, and Mw / Mn was It was narrow like 1.26 and Example 1.

(実施例3)
本実施例は、ポリベンジルメタクリレートがリビングラジカル重合によりグラフトされた磁性ポリマー粒子の作製例である。実施例2と同様に、前記合成方法で式(4a)に示されるフォスフィン誘導体及びフェライトFe微粒子(戸田工業製)を用いて、重合開始基が導入された磁性粒子を得た。この磁性粒子0.5gをベンジルメタクリレート8.1g、アニソール7.5gに良く分散させ、更に塩化銅(I)20mg、ペンタメチルジエチレントリアミン21mgとを加えた。窒素で溶存酸素を置換し、30℃で1時間重合を行った後、トルエン洗浄と遠心分離を繰り返し、ポリベンジルメタクリレートがグラフトされた磁性ポリマー粒子4.3gを得た。
(Example 3)
This example is an example of producing magnetic polymer particles in which polybenzyl methacrylate is grafted by living radical polymerization. Similarly to Example 2, magnetic particles having a polymerization initiating group introduced therein were obtained using the phosphine derivative represented by the formula (4a) and ferrite Fe 3 O 4 fine particles (manufactured by Toda Kogyo Co., Ltd.) by the synthesis method. 0.5 g of this magnetic particle was well dispersed in 8.1 g of benzyl methacrylate and 7.5 g of anisole, and further 20 mg of copper (I) chloride and 21 mg of pentamethyldiethylenetriamine were added. After replacing the dissolved oxygen with nitrogen and performing polymerization at 30 ° C. for 1 hour, toluene washing and centrifugation were repeated to obtain 4.3 g of magnetic polymer particles grafted with polybenzyl methacrylate.

実施例1と同様にテトラヒドロフラン中の粒度分布、GPCを測定したところ、平均粒径105nm、粒径の範囲は80nm〜127nmであり、グラフトされたポリベンジルメタクリレートのMnは17500、Mw/Mnは1.35と実施例1と同様に狭いものであった。   When the particle size distribution and GPC in tetrahydrofuran were measured in the same manner as in Example 1, the average particle size was 105 nm, the particle size range was 80 nm to 127 nm, the Mn of the grafted polybenzyl methacrylate was 17500, and the Mw / Mn was 1 .35 and the same narrowness as in Example 1.

(比較例1)
実施例1と同じ磁性粒子を原料として汎用ラジカル共重合を行い、磁性ポリマー粒子を作製した。実施例1と同様に磁性流体(フェリコロイドHC−50、タイホー工業製)よりフェライト系の超常磁性磁性体を得た。この磁性体3gにスチレン7g、メタクリル酸1gを加え均一に分散した後、ベンゾイルパーオキシド0.5gを溶解させた。これをポリビニルアルコール(商品名:PVA217EE、クラレ社製)0.4gを溶解した水800mlに添加し、超音波分散を行い懸濁液を得た。その後、この懸濁液を窒素雰囲気下、80℃で5時間重合を行い、磁性ポリマー粒子を得た。
(Comparative Example 1)
General-purpose radical copolymerization was carried out using the same magnetic particles as in Example 1 as raw materials to produce magnetic polymer particles. In the same manner as in Example 1, a ferrite-based superparamagnetic material was obtained from a magnetic fluid (Ferricolloid HC-50, manufactured by Taiho Industries). After 7 g of styrene and 1 g of methacrylic acid were added to 3 g of this magnetic material and dispersed uniformly, 0.5 g of benzoyl peroxide was dissolved. This was added to 800 ml of water in which 0.4 g of polyvinyl alcohol (trade name: PVA217EE, manufactured by Kuraray Co., Ltd.) was dissolved, and subjected to ultrasonic dispersion to obtain a suspension. Thereafter, this suspension was polymerized at 80 ° C. for 5 hours under a nitrogen atmosphere to obtain magnetic polymer particles.

得られた磁性ポリマー粒子の粒子径は平均径1.7μm、粒子径の範囲は約0.3〜5μmであり、グラフトされたポリマーのMnは6700、Mw/Mnは3.55と実施例1〜3に比して分子量分布は広いものであった。またこの磁性ポリマー粒子の水分散液においては、1日間の静置後、一部の粒径の大きな磁性ポリマー粒子が沈澱した。これらの結果から明らかなように、本発明の製造方法で合成した磁性ポリマー粒子のポリマーは、比較例1と比べてポリマーの鎖長及び粒径が均一であり、その磁性ポリマー粒子は良好な分散性を示すことが確認された。   The average particle diameter of the obtained magnetic polymer particles was 1.7 μm, the particle diameter range was about 0.3 to 5 μm, and the grafted polymer had Mn of 6700 and Mw / Mn of 3.55. Compared to ˜3, the molecular weight distribution was wide. In this aqueous dispersion of magnetic polymer particles, some large magnetic polymer particles precipitated after standing for 1 day. As is clear from these results, the polymer of the magnetic polymer particles synthesized by the production method of the present invention has a uniform polymer chain length and particle size as compared with Comparative Example 1, and the magnetic polymer particles are well dispersed. It was confirmed to show sex.

(実施例4)
本実施例は、刺激(pH)に対してポリマー鎖の構造が変化するブロックポリマーがグラフトされた磁性ポリマー粒子の作製例である。実施例2で得られた磁性ポリマー粒子2.5gを1,2−ジクロロベンゼン4g、ジメチルアミノエチルメタクリレート4.6gに超音波分散し、更に塩化銅(I)12mg及びヘキサメチルトリエチレンテトラアミン26.7mgを混合した。この混合溶液を窒素で溶存酸素を置換し、90℃で10時間重合を行い、グラフトポリマー鎖がブロックポリマーである磁性ポリマー粒子を得た。反応液はトルエン洗浄と遠心分離を繰り返し、ブロックポリマー(ポリメタクリル酸メチル−b−ポリジメチルアミノエチルメタクリレート)がグラフトされた磁性ポリマー粒子4.2gを得た。
Example 4
In this example, magnetic polymer particles grafted with a block polymer whose polymer chain structure changes with stimulation (pH) are prepared. 2.5 g of the magnetic polymer particles obtained in Example 2 were ultrasonically dispersed in 4 g of 1,2-dichlorobenzene and 4.6 g of dimethylaminoethyl methacrylate, and further 12 mg of copper (I) chloride and hexamethyltriethylenetetraamine 26 .7 mg was mixed. This mixed solution was substituted with nitrogen for dissolved oxygen, and polymerized at 90 ° C. for 10 hours to obtain magnetic polymer particles in which the graft polymer chain was a block polymer. The reaction solution was repeatedly washed with toluene and centrifuged to obtain 4.2 g of magnetic polymer particles grafted with a block polymer (polymethyl methacrylate-b-polydimethylaminoethyl methacrylate).

実施例1と同様にテトラヒドロフラン中の粒度分布、GPCを測定したところ、平均粒径150nm、粒径の範囲は130nm〜175nmであり、グラフトされたブロックポリマー(ポリメタクリル酸メチル−b−ポリジメチルアミノエチルメタクリレート)のMnは24000、Mw/Mnは1.32と実施例2の前駆体ポリメタクリル酸メチルと同様に狭いものであった。この磁性ポリマー粒子をpH2の水溶液には分散するのに対して、pH11では一部沈澱した。このように、pHに応じて、ポリジメチルアミノエチルメタクリレートの荷電状態が変化するため、pHによりポリマー鎖の構造を制御することが可能であった。   The particle size distribution in tetrahydrofuran and GPC were measured in the same manner as in Example 1. As a result, the average particle size was 150 nm, the particle size range was 130 nm to 175 nm, and the grafted block polymer (polymethyl methacrylate-b-polydimethylamino Ethyl methacrylate) had a Mn of 24,000 and Mw / Mn of 1.32 as narrow as the precursor polymethyl methacrylate of Example 2. While the magnetic polymer particles were dispersed in an aqueous solution having a pH of 2, they partially precipitated at a pH of 11. Thus, since the charged state of polydimethylaminoethyl methacrylate changes depending on the pH, the structure of the polymer chain can be controlled by the pH.

(実施例5)
本実施例は、水への分散安定性を向上させる目的でポリマー鎖中に親水性マクロモノマーが組み込まれ、かつ酵素が固定化されたブロックを含んだブロックポリマーがグラフトされた磁性ポリマー粒子の作製例である。実施例3で得られた磁性ポリマー粒子3.0gをアニソール4.0g、メタクリル酸メチル4.5gに超音波分散し、更にポリエチレングリコールメチルエーテルメタクリレート(マクロモノマー、Mn〜480)1g、塩化銅(I)25mg、ペンタメチルジエチレントリアミン36mgを混合した。この混合溶液を窒素で溶存酸素を置換し、50℃で3時間重合を行い、グラフトポリマー鎖がブロックポリマーである磁性ポリマー粒子を得た。反応液はトルエン洗浄と遠心分離を繰り返し、ブロックポリマー{ポリベンジルメタクリレート−b−(ポリメタクリル酸メチル−co−ポリエチレングリコールメチルエーテルメタクリレート)}がグラフトされた磁性ポリマー粒子4.8gを得た。
(Example 5)
In this example, magnetic polymer particles were prepared by grafting a block polymer including a block in which a hydrophilic macromonomer was incorporated in a polymer chain and an enzyme was immobilized in order to improve dispersion stability in water. It is an example. 3.0 g of the magnetic polymer particles obtained in Example 3 were ultrasonically dispersed in 4.0 g of anisole and 4.5 g of methyl methacrylate, and further 1 g of polyethylene glycol methyl ether methacrylate (macromonomer, Mn˜480), copper chloride ( I) 25 mg and pentamethyldiethylenetriamine 36 mg were mixed. This mixed solution was substituted with nitrogen for dissolved oxygen, and polymerized at 50 ° C. for 3 hours to obtain magnetic polymer particles in which the graft polymer chain was a block polymer. The reaction solution was repeatedly washed with toluene and centrifuged to obtain 4.8 g of magnetic polymer particles grafted with a block polymer {polybenzyl methacrylate-b- (polymethyl methacrylate-co-polyethylene glycol methyl ether methacrylate)}.

実施例1と同様にテトラヒドロフラン中の粒度分布、GPCを測定したところ、平均粒径170nm、粒径の範囲は145nm〜190nmであり、グラフトされたブロックポリマー{ポリベンジルメタクリレート−b−(ポリメタクリル酸メチルメチル−co−ポリエチレングリコールメチルエーテルメタクリレート)}のMnは34000、Mw/Mnは1.30と実施例2の前駆体ポリベンジルメタクリレートと同様に狭いものであった。   When the particle size distribution and GPC in tetrahydrofuran were measured in the same manner as in Example 1, the average particle size was 170 nm and the particle size range was 145 nm to 190 nm. The grafted block polymer {polybenzyl methacrylate-b- (polymethacrylic acid) Methyl of methylmethyl-co-polyethylene glycol methyl ether methacrylate)} was 34,000, and Mw / Mn was 1.30, which was as narrow as the precursor polybenzyl methacrylate of Example 2.

このブロックポリマー中のポリベンジルメタクリレートをパラジウム/カーボンを用いた接触水素還元によりカルボン酸を有するポリメタクリル酸に変換し、更に、得られたポリメタクリル酸中のカルボキシル基を利用して、西洋ワサビ由来ペルオキシダーゼの固定化を行った。すなわち、上記で得られた{ポリメタクリル酸−b−(ポリメタクリル酸メチルメチル−co−ポリエチレングリコールメチルエーテルメタクリレート)}がグラフトされた磁性ポリマー粒子を固形分濃度が3%となるように0.01Mホウ酸緩衝液pH8.2に分散させた。この磁性ポリマー粒子含有分散液2mlに、水溶性カルボジイミド(DOJIN社製、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩、10mg/ml、0.01Mホウ酸緩衝液pH8.2)0.4ml、西洋ワサビ由来ペルオキシダーゼ(以下、HRPという。54mg/ml、比活性250〜350U/mg、0.01Mホウ酸緩衝液pH8.2)1.2mlを加え、4℃で12時間反応させることによりアミド結合を形成させメタクリル酸ブロックにHRPの固定化を行った。この磁性ポリマー粒子においては、HRP固定化メタクリル酸ブロックは粒子の内側に位置し、外側のブロック鎖により保護されているため、HRPの活性が安定に保たれていた。更に、粒子外側に親水性ポリエチレングリコールマクロモノマーが存在し、水への分散剤の役割を果たすため、水系への分散性が良好であった。   Polybenzyl methacrylate in this block polymer is converted to polymethacrylic acid having carboxylic acid by catalytic hydrogen reduction using palladium / carbon, and further, using the carboxyl group in the obtained polymethacrylic acid, derived from horseradish Peroxidase was immobilized. That is, the magnetic polymer particles grafted with {polymethacrylic acid-b- (polymethylmethacrylate-co-polyethyleneglycolmethylethermethacrylate)} obtained above were adjusted to a solid content concentration of 3%. Dispersed in 01M borate buffer pH 8.2. To 2 ml of this magnetic polymer particle-containing dispersion, water-soluble carbodiimide (manufactured by DOJIN, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, 10 mg / ml, 0.01 M borate buffer pH 8.2) 0.4 ml of horseradish peroxidase (hereinafter referred to as HRP, 54 mg / ml, specific activity 250 to 350 U / mg, 0.01 M borate buffer pH 8.2) 1.2 ml was added and reacted at 4 ° C. for 12 hours. As a result, an amide bond was formed, and HRP was immobilized on the methacrylic acid block. In this magnetic polymer particle, since the HRP-immobilized methacrylic acid block is located inside the particle and protected by the outer block chain, the activity of HRP was kept stable. Furthermore, since a hydrophilic polyethylene glycol macromonomer is present outside the particle and plays a role of a dispersant in water, the dispersibility in an aqueous system was good.

Figure 2006328309
Figure 2006328309

本発明の磁性ポリマー粒子の概略断面図である。It is a schematic sectional drawing of the magnetic polymer particle of this invention.

符号の説明Explanation of symbols

1 磁性粒子
2 ポリマー層
1 Magnetic particle 2 Polymer layer

Claims (8)

磁性粒子と該磁性粒子とを被覆したポリマー鎖とを備え、該ポリマー鎖の分子量分布指数(Mw/Mn)が1.6以下であることを特徴とする磁性ポリマー粒子。   A magnetic polymer particle comprising a magnetic particle and a polymer chain coated with the magnetic particle, wherein the molecular weight distribution index (Mw / Mn) of the polymer chain is 1.6 or less. 磁性粒子と該磁性粒子とを被覆したポリマー鎖とを備え、該ポリマー鎖が二種類以上のブロックから構成されるブロックポリマーであることを特徴とする磁性ポリマー粒子。   A magnetic polymer particle comprising a magnetic particle and a polymer chain coated with the magnetic particle, wherein the polymer chain is a block polymer composed of two or more types of blocks. 一ブロックが分散安定性に寄与するポリマー鎖を含有してなるブロックから構成されるブロックポリマーである請求項2に記載の磁性ポリマー粒子。   The magnetic polymer particle according to claim 2, wherein one block is a block polymer composed of blocks containing polymer chains that contribute to dispersion stability. 一ブロックが光、温度、pH及び電場からなる群から選ばれる刺激に応答して構造又は体積が変化するポリマー鎖を含有してなるブロックから構成されるブロックポリマーである請求項2に記載の磁性ポリマー粒子。   3. The magnetic material according to claim 2, wherein one block is a block polymer composed of a block containing a polymer chain whose structure or volume changes in response to a stimulus selected from the group consisting of light, temperature, pH and electric field. Polymer particles. 一ブロックがタンパク質、酵素、核酸及び糖からなる群から選ばれる生体材料が固定化されたポリマー鎖を含有してなるブロックから構成されるブロックポリマーである請求項2に記載の磁性ポリマー粒子。   The magnetic polymer particle according to claim 2, wherein one block is a block polymer composed of a block containing a polymer chain to which a biomaterial selected from the group consisting of protein, enzyme, nucleic acid and sugar is immobilized. 磁性粒子を調製する工程と該磁性粒子をポリマーで被覆する工程とを含む磁性ポリマー粒子の製造方法であって、
該ポリマーで被覆する工程がリビング重合によりポリマー鎖を形成することを特徴とする磁性ポリマー粒子の製造方法。
A method for producing magnetic polymer particles comprising the steps of preparing magnetic particles and coating the magnetic particles with a polymer,
A process for producing magnetic polymer particles, wherein the polymer coating step forms a polymer chain by living polymerization.
磁性粒子を調製する工程と該磁性粒子をポリマーで被覆する工程とを含む磁性ポリマー粒子の製造方法であって、
該ポリマーで被覆する工程が、
磁性粒子表面に重合開始基を導入する工程と、
該重合開始基を重合開始源として一種類以上の単量体を単独重合又は共重合し磁性粒子表面にポリマーをグラフト化する工程と、
を含むことを特徴とする磁性ポリマー粒子の製造方法。
A method for producing magnetic polymer particles comprising the steps of preparing magnetic particles and coating the magnetic particles with a polymer,
Coating with the polymer comprises
Introducing a polymerization initiating group on the surface of the magnetic particles;
A step of grafting the polymer onto the surface of the magnetic particles by homopolymerizing or copolymerizing one or more monomers using the polymerization initiation group as a polymerization initiation source;
A method for producing magnetic polymer particles, comprising:
前記重合開始基がリビングラジカル重合開始能を有し、重合がリビングラジカル重合又はリビングラジカル共重合である請求項7に記載の磁性ポリマー粒子の製造方法。   The method for producing magnetic polymer particles according to claim 7, wherein the polymerization initiating group has a living radical polymerization initiating ability, and the polymerization is living radical polymerization or living radical copolymerization.
JP2005157454A 2005-05-30 2005-05-30 Magnetic polymer particle and its manufacturing method Pending JP2006328309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005157454A JP2006328309A (en) 2005-05-30 2005-05-30 Magnetic polymer particle and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005157454A JP2006328309A (en) 2005-05-30 2005-05-30 Magnetic polymer particle and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006328309A true JP2006328309A (en) 2006-12-07

Family

ID=37550334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005157454A Pending JP2006328309A (en) 2005-05-30 2005-05-30 Magnetic polymer particle and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006328309A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001789A1 (en) * 2007-06-28 2008-12-31 Canon Kabushiki Kaisha Composite particle and production method thereof
WO2009081700A1 (en) 2007-12-04 2009-07-02 Hiroshi Handa Polymer-coated fine inorganic particle and process for producing the same
WO2009099199A1 (en) * 2008-02-07 2009-08-13 National Institute Of Advanced Industrial Science And Technology Core-shell type cobalt oxide microparticle or dispersion containing the microparticle, and production process and use of the microparticle or the dispersion
WO2010016523A1 (en) * 2008-08-05 2010-02-11 大日精化工業株式会社 Pigment dispersions, block polymers and manufacturing method therefor
JP2010112983A (en) * 2008-11-04 2010-05-20 Konica Minolta Business Technologies Inc Method of producing toner, toner, developer and image forming method
KR20100098251A (en) * 2009-02-27 2010-09-06 연세대학교 산학협력단 Paint for measuring deformation of structure, tape comprising the same and deformation measuring method of structure using the same
KR20110025759A (en) * 2008-05-16 2011-03-11 유니버시티 오브 시드니 Administrable compositions
JP2011122152A (en) * 2009-12-01 2011-06-23 Silberline Manufacturing Co Inc Polymer encapsulated aluminum particulate
JP2011162718A (en) * 2010-02-12 2011-08-25 Tohoku Univ Polymer direct-grafted nanoparticle
JP2011523961A (en) * 2008-05-16 2011-08-25 ザ・ユニバーシティ・オブ・シドニー Polymer microgel beads and method for producing the same
WO2012073588A1 (en) * 2010-12-02 2012-06-07 株式会社カネカ Mri contrast agent containing composite particles
US8765183B2 (en) 2008-05-16 2014-07-01 The University Of Sydney Polymer microgel beads
JP2014208781A (en) * 2013-03-22 2014-11-06 国立大学法人東京工業大学 Method for producing magnetic material-containing particles
JP2015091981A (en) * 2011-03-14 2015-05-14 旭化成ケミカルズ株式会社 Organic inorganic composite and manufacturing method therefor, organic inorganic composite film and manufacturing method therefor, photonic crystal, coating material, thermoplastic composition, fine structure doby, optical material, antireflection member and optical lens
JP2015140397A (en) * 2014-01-29 2015-08-03 日立化成株式会社 Polymer coating inorganic fine particle, manufacturing method therefor and material therefor
WO2015133507A1 (en) * 2014-03-05 2015-09-11 Jsr株式会社 Solid support, ligand-bound solid support, detection or separation method for target substance, solid support production method, and ligand-bound solid support production method
JP2016056114A (en) * 2014-09-05 2016-04-21 株式会社カネカ Composite particle-containing imaging agent for renal function diagnosis
JP2016191681A (en) * 2015-03-31 2016-11-10 東ソー株式会社 Magnetic particle coated with polymer and method for manufacturing the same
WO2017057608A1 (en) * 2015-09-30 2017-04-06 富士フイルム株式会社 Iron oxide dispersion for ink jet recording, method for producing same, and ink jet recording method
JP2017101123A (en) * 2015-11-30 2017-06-08 国立大学法人京都大学 Composite particles
JP2018161596A (en) * 2017-03-24 2018-10-18 国立大学法人秋田大学 Waste water treatment method
JP2018536763A (en) * 2015-09-23 2018-12-13 ケミラ ユルキネン オサケイティエKemira Oyj Functionalized magnetic nanoparticles and methods for their preparation
WO2020241665A1 (en) * 2019-05-31 2020-12-03 国立大学法人京都大学 Macrophage imaging agent
CN114752024A (en) * 2022-03-29 2022-07-15 吉林大学 Preparation method of copolymerization modified intelligent magnetic nano material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09183862A (en) * 1995-10-30 1997-07-15 Japan Synthetic Rubber Co Ltd Magnetic material-containing polymer particle
JPH09208788A (en) * 1996-01-31 1997-08-12 Japan Synthetic Rubber Co Ltd Magnetic polymer particle and production thereof
JPH11263819A (en) * 1998-03-16 1999-09-28 Japan Science & Technology Corp Solid with grafted surface and its production
JP2003327638A (en) * 2002-05-08 2003-11-19 Nof Corp Solid with polymer chain-modified surface and production method therefor
JP2003327641A (en) * 2002-05-08 2003-11-19 Japan Science & Technology Corp Ordered structure of polymer-grafted fine particle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09183862A (en) * 1995-10-30 1997-07-15 Japan Synthetic Rubber Co Ltd Magnetic material-containing polymer particle
JPH09208788A (en) * 1996-01-31 1997-08-12 Japan Synthetic Rubber Co Ltd Magnetic polymer particle and production thereof
JPH11263819A (en) * 1998-03-16 1999-09-28 Japan Science & Technology Corp Solid with grafted surface and its production
JP2003327638A (en) * 2002-05-08 2003-11-19 Nof Corp Solid with polymer chain-modified surface and production method therefor
JP2003327641A (en) * 2002-05-08 2003-11-19 Japan Science & Technology Corp Ordered structure of polymer-grafted fine particle

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101687965B (en) * 2007-06-28 2012-07-04 佳能株式会社 Composite particle and production method thereof
WO2009001789A1 (en) * 2007-06-28 2008-12-31 Canon Kabushiki Kaisha Composite particle and production method thereof
WO2009081700A1 (en) 2007-12-04 2009-07-02 Hiroshi Handa Polymer-coated fine inorganic particle and process for producing the same
WO2009099199A1 (en) * 2008-02-07 2009-08-13 National Institute Of Advanced Industrial Science And Technology Core-shell type cobalt oxide microparticle or dispersion containing the microparticle, and production process and use of the microparticle or the dispersion
JP2009184884A (en) * 2008-02-07 2009-08-20 National Institute Of Advanced Industrial & Technology Core-shell type cobalt oxide fine particles or dispersion containing the same, method for producing them, and their application
US8852641B2 (en) 2008-05-16 2014-10-07 The University Of Sydney Polymer microgel beads and preparative method thereof
US8765183B2 (en) 2008-05-16 2014-07-01 The University Of Sydney Polymer microgel beads
US8709486B2 (en) 2008-05-16 2014-04-29 The University Of Sydney Administrable compositions
KR20110025759A (en) * 2008-05-16 2011-03-11 유니버시티 오브 시드니 Administrable compositions
KR101638201B1 (en) * 2008-05-16 2016-07-08 유니버시티 오브 시드니 Administrable compositions
JP2011520816A (en) * 2008-05-16 2011-07-21 ザ・ユニバーシティ・オブ・シドニー Administrable composition
JP2011523961A (en) * 2008-05-16 2011-08-25 ザ・ユニバーシティ・オブ・シドニー Polymer microgel beads and method for producing the same
JP5223082B2 (en) * 2008-08-05 2013-06-26 大日精化工業株式会社 Pigment dispersion, block polymer and method for producing the same
KR101252371B1 (en) * 2008-08-05 2013-04-08 고쿠리츠 다이가쿠 호진 교토 다이가쿠 Pigment dispersions, block polymers and manufacturing method therefor
US8822591B2 (en) 2008-08-05 2014-09-02 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Pigment dispersions
WO2010016523A1 (en) * 2008-08-05 2010-02-11 大日精化工業株式会社 Pigment dispersions, block polymers and manufacturing method therefor
JP2010112983A (en) * 2008-11-04 2010-05-20 Konica Minolta Business Technologies Inc Method of producing toner, toner, developer and image forming method
KR101647352B1 (en) 2009-02-27 2016-08-11 연세대학교 산학협력단 Paint for measuring deformation of structure, tape comprising the same and deformation measuring method of structure using the same
KR20100098251A (en) * 2009-02-27 2010-09-06 연세대학교 산학협력단 Paint for measuring deformation of structure, tape comprising the same and deformation measuring method of structure using the same
US9062209B2 (en) 2009-12-01 2015-06-23 Silberline Manufacturing Company, Inc. Polymer encapsulated aluminum particulates
JP2011122152A (en) * 2009-12-01 2011-06-23 Silberline Manufacturing Co Inc Polymer encapsulated aluminum particulate
JP2011162718A (en) * 2010-02-12 2011-08-25 Tohoku Univ Polymer direct-grafted nanoparticle
WO2012073588A1 (en) * 2010-12-02 2012-06-07 株式会社カネカ Mri contrast agent containing composite particles
CN103237562A (en) * 2010-12-02 2013-08-07 株式会社钟化 MRI contrast agent containing composite particles
JP5961556B2 (en) * 2010-12-02 2016-08-02 株式会社カネカ MRI contrast agent containing composite particles
JP2015091981A (en) * 2011-03-14 2015-05-14 旭化成ケミカルズ株式会社 Organic inorganic composite and manufacturing method therefor, organic inorganic composite film and manufacturing method therefor, photonic crystal, coating material, thermoplastic composition, fine structure doby, optical material, antireflection member and optical lens
KR101787215B1 (en) * 2011-03-14 2017-10-18 아사히 가세이 케미칼즈 가부시키가이샤 Organic/inorganic composite, manufacturing method therefor, organic/inorganic composite film, manufacturing method therefor, photonic crystal, coating material, thermoplastic composition, micro-structure, optical material, antireflection member, and optical lens
JP2014208781A (en) * 2013-03-22 2014-11-06 国立大学法人東京工業大学 Method for producing magnetic material-containing particles
JP2015140397A (en) * 2014-01-29 2015-08-03 日立化成株式会社 Polymer coating inorganic fine particle, manufacturing method therefor and material therefor
US10466235B2 (en) 2014-03-05 2019-11-05 Jsr Corporation Solid support, ligand-bound solid support, detection or separation method for target substance, solid support production method, and ligand-bound solid support production method
JPWO2015133507A1 (en) * 2014-03-05 2017-04-06 Jsr株式会社 Solid phase carrier, ligand-bound solid phase carrier, target substance detection or separation method, solid phase carrier production method, and ligand-bound solid phase carrier production method
WO2015133507A1 (en) * 2014-03-05 2015-09-11 Jsr株式会社 Solid support, ligand-bound solid support, detection or separation method for target substance, solid support production method, and ligand-bound solid support production method
JP2016056114A (en) * 2014-09-05 2016-04-21 株式会社カネカ Composite particle-containing imaging agent for renal function diagnosis
JP2016191681A (en) * 2015-03-31 2016-11-10 東ソー株式会社 Magnetic particle coated with polymer and method for manufacturing the same
JP2018536763A (en) * 2015-09-23 2018-12-13 ケミラ ユルキネン オサケイティエKemira Oyj Functionalized magnetic nanoparticles and methods for their preparation
WO2017057608A1 (en) * 2015-09-30 2017-04-06 富士フイルム株式会社 Iron oxide dispersion for ink jet recording, method for producing same, and ink jet recording method
US10619052B2 (en) 2015-09-30 2020-04-14 Fujifilm Corporation Iron oxide dispersion for ink jet recording, method of manufacturing the same, and ink jet recording method
JP2017101123A (en) * 2015-11-30 2017-06-08 国立大学法人京都大学 Composite particles
JP2018161596A (en) * 2017-03-24 2018-10-18 国立大学法人秋田大学 Waste water treatment method
WO2020241665A1 (en) * 2019-05-31 2020-12-03 国立大学法人京都大学 Macrophage imaging agent
CN114752024A (en) * 2022-03-29 2022-07-15 吉林大学 Preparation method of copolymerization modified intelligent magnetic nano material
CN114752024B (en) * 2022-03-29 2024-01-30 吉林大学 Preparation method of copolymerization-modified intelligent magnetic nano material

Similar Documents

Publication Publication Date Title
JP2006328309A (en) Magnetic polymer particle and its manufacturing method
JP4272513B2 (en) Composite particles, derivatized conjugates, methods for their production and uses
US9738745B2 (en) Particles containing multi-block polymers
Ho et al. Amphiphilic polymeric particles with core–shell nanostructures: emulsion-based syntheses and potential applications
Xu et al. Bioactive surfaces and biomaterials via atom transfer radical polymerization
US5814687A (en) Magnetic polymer particle and process for manufacturing the same
JP5531232B2 (en) Polymer-coated inorganic fine particles and method for producing the same
JP4840580B2 (en) Magnetic particle, method for producing the same, and probe-coupled particle
Tarasi et al. Laccase immobilization onto magnetic β-cyclodextrin-modified chitosan: improved enzyme stability and efficient performance for phenolic compounds elimination
WO2005113649A1 (en) Particle with rough surface and process for producing the same
JP2006288398A (en) Method for separating nucleic acid and solid substrate for separating nucleic acid
JP6532202B2 (en) Magnetic particle, ligand binding particle, method for detecting or separating target substance, and method for producing the magnetic particle
Li et al. Preparation of magnetic microspheres with thiol-containing polymer brushes and immobilization of gold nanoparticles in the brush layer
Tsuji et al. Effect of graft chain length and structure design on temperature-sensitive hairy particles
Meerod et al. Reusable magnetic nanocluster coated with poly (acrylic acid) and its adsorption with an antibody and an antigen
JPH10270233A (en) Magnetic polymer particles and manufacture therefor
JP2010260877A (en) Organic polymer particle and probe-bonded particle
Jin et al. Preparation and characterization of core–shell polymer particles with protonizable shells prepared by oxyanionic polymerization
US4259223A (en) Cross-linked polyvinyl pyridine coated glass particle catalyst support and aqueous composition or polyvinyl pyridine adducted microspheres
Bian et al. Synthesis of polymeric microspheres from a Merrifield resin by surface‐initiated nitroxide‐mediated radical polymerization
JPH0782302A (en) Magnetic particles coated with ferrite and protected with polymer coating, and preparation thereof
Durmaz et al. Modification of Polydivinylbenzene Microspheres by a Hydrobromination/Click‐Chemistry Protocol and their Protein‐Adsorption Properties
CN110964145B (en) Magnetic polymer microsphere based on acetylacetone group and preparation method thereof
Diacon et al. Supported Cu0 nanoparticles catalyst for controlled radical polymerization reaction and block-copolymer synthesis
JPH07316466A (en) Particle protected with polymer and its production

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080207

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090324

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100201

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301