JP2006326863A - Aluminium material for precoated fin - Google Patents

Aluminium material for precoated fin Download PDF

Info

Publication number
JP2006326863A
JP2006326863A JP2005149455A JP2005149455A JP2006326863A JP 2006326863 A JP2006326863 A JP 2006326863A JP 2005149455 A JP2005149455 A JP 2005149455A JP 2005149455 A JP2005149455 A JP 2005149455A JP 2006326863 A JP2006326863 A JP 2006326863A
Authority
JP
Japan
Prior art keywords
aluminum
film
coating
resin
chemical conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005149455A
Other languages
Japanese (ja)
Inventor
Michio Kobayashi
美智男 小林
Masahiro Kurata
正裕 倉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky KK
Original Assignee
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky KK filed Critical Furukawa Sky KK
Priority to JP2005149455A priority Critical patent/JP2006326863A/en
Publication of JP2006326863A publication Critical patent/JP2006326863A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum substrate treatment material of a fin material for a heat exchanger superior in the coating film adhesion with a hydrophilic coating film and corrosion resistance using a chemical forming treatment liquid not containing a harmful heavy metal such as Cr or the like, and an aluminum material for a precoated fin provided with a coating film excellent in hydrophilicity. <P>SOLUTION: In an aluminum or aluminum alloy base material (thin sheet) for a fin having a substrate film provided to its surface, the substrate film has the following constitution that "(a) the substrate film is based on Zr or Ti, Al and C, (b) the constitution amount of Zr or Ti is 0.1-100 mg/m<SP>2</SP>, (c) Al in the surface of the substrate film is 10 wt.% or below and increases in concentration toward the interface of substrate film/Al and (d) the content of C originating from a resin toward the interface of substrate film/Al from the surface of the substrate film lowers". The manufacturing method of the aluminum material for the fin and the precoated aluminum fin material using it are also disclosed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はルームエアコン等に用いる熱交換器用アルミニウム製フィン材に関し、特に、ノンクロム化成処理して親水性塗膜との密着性に優れた下地皮膜を有するプレコートフィン用アルミニウム材並びに該アルミニウム材に親水性塗膜を設けたプレコートフィン用アルミニウム材に関する。   TECHNICAL FIELD The present invention relates to an aluminum fin material for heat exchangers used for room air conditioners and the like, and in particular, an aluminum material for pre-coated fins having a base coating excellent in adhesion to a hydrophilic coating film by non-chromium chemical conversion treatment and hydrophilicity to the aluminum material. It is related with the aluminum material for precoat fins which provided the property coating film.

アルミニウム材は軽量で比較的熱伝導性も高い上、適度な機械的特性を有し、かつ美感、成形加工性、耐食性等に優れた特徴を有しているため、熱交換器用フィン材として広く使われている。熱交換器用フィン材には冷房運転時の結露防止能が求められており,水滴形成防止のため親水性塗膜をアルミニウム材上に設けた,親水性フィン材が一般的に使われている。しかし多くの親水性塗膜はアルミニウム材表面との密着性に劣るため,アルミニウム材と親水性塗膜の間に中間層を設け,アルミニウム材と親水性塗膜の密着性を上げる処理が行われている。熱交換機用フィン材には親水性に加えて耐食性も求められるが,親水性塗膜は通常防食能が弱いかまたは無いため,耐食性向上のための処理も付加されるのが通例となっている。上記の2つの目的を満足するために,従来スプレーによるリン酸クロメート処理やロールコーター塗布・焼付による塗布型クロメート処理といったクロメート処理が施されてきた。すなわちアルミニウム材上にクロメート皮膜を設け,さらにその上に親水性塗膜を設けることにより,優れた耐食性,塗膜密着性,親水性を発揮するフィン材が作られてきた。   Aluminum material is lightweight and relatively high in thermal conductivity, has appropriate mechanical properties, and has excellent features such as aesthetics, moldability, and corrosion resistance, so it is widely used as a fin material for heat exchangers. It is used. The heat exchanger fin material is required to have the ability to prevent dew condensation during cooling operation, and a hydrophilic fin material with a hydrophilic coating on the aluminum material is generally used to prevent water droplet formation. However, since many hydrophilic coating films are inferior in adhesion to the aluminum material surface, an intermediate layer is provided between the aluminum material and the hydrophilic coating film to increase the adhesion between the aluminum material and the hydrophilic coating film. ing. Fins for heat exchangers are required to have corrosion resistance in addition to hydrophilicity. However, hydrophilic coatings usually have weak or no anticorrosive properties, so it is common to add treatment to improve corrosion resistance. . In order to satisfy the above two purposes, chromate treatments such as phosphoric acid chromate treatment by spraying and coating type chromate treatment by roll coater coating / baking have been performed. In other words, fin materials that exhibit excellent corrosion resistance, coating adhesion, and hydrophilicity have been made by providing a chromate film on an aluminum material and further providing a hydrophilic coating film thereon.

しかし近年環境汚染に対する関心の高まり,リサイクル性の追求といったこれまでに無い要求が盛り上がり,クロムの使用を極力減らすか,廃止する必要性が生じてきた。その結果このような要求を満足するために,クロム等の有害な重金属類を含まない多くの下地処理剤および下地処理皮膜の提案がされている。   In recent years, however, there has been a growing demand for environmental pollution and unprecedented demands for the pursuit of recyclability, and it has become necessary to reduce or eliminate the use of chromium as much as possible. As a result, in order to satisfy such demands, many surface treatment agents and surface treatment coatings that do not contain harmful heavy metals such as chromium have been proposed.

例えば、
(1)ジルコニウム,チタン,ハフニウム,アルミニウム,ケイ素,ゲルマニウム,スズおよびホウ素の一種を含有するフルオロ金属酸またはフルオロ金属酸塩及び,不飽和結合を有する芳香族スルホン酸モノマーまたは不飽和結合を有する脂肪族スルホン酸モノマーのホモポリマーからなる少なくとも一種の高分子化合物とを含有するアルミニウム表面処理剤および,この薬剤で処理して得られる皮膜を設けたアルミニウム材(特許文献1参照)、
For example,
(1) Fluorometallic acid or fluorometalate containing one of zirconium, titanium, hafnium, aluminum, silicon, germanium, tin and boron, and an aromatic sulfonic acid monomer having an unsaturated bond or a fat having an unsaturated bond An aluminum surface treatment agent containing at least one polymer compound comprising a homopolymer of an aromatic sulfonic acid monomer, and an aluminum material provided with a film obtained by treatment with this agent (see Patent Document 1),

(2)(A)HTiF,HZrF,HHfF,HAlF,HSiF,HGeF,HSnFまたはHBF,(B)2個以上のOH基(ただし,COOH基内のOH基を除く)含有水溶性有機カルボン酸または塩を含み,必要によりさらに(C)Ti,Zr,Hf,Al,Si,Ge,Sn,Bの元素,酸化物,水酸化物,または炭酸塩,あるいは(D)x−(N−R−N−R−アミノメチル)−4−ヒドロキシスチレン(x=2,4,5または6,R=Cアルキル基,R=H(CHOH)nCH−に相応する置換基,n=1〜7)などを含む処理液および該処理液により金属表面を処理し,耐食性皮膜を形成する方法(特許文献2参照)、 (2) (A) H 2 TiF 6 , H 2 ZrF 6 , H 2 HfF 6 , H 3 AlF 6 , H 2 SiF 6 , H 2 GeF 6 , H 2 SnF 6 or HBF 4 , (B) 2 or more A water-soluble organic carboxylic acid or salt containing OH groups (excluding the OH group in the COOH group), and if necessary, (C) Ti, Zr, Hf, Al, Si, Ge, Sn, B elements, oxides, hydroxides or carbonates, or (D) x- (N-R 1 -N-R 2 - aminomethyl) -4-hydroxystyrene (x = 2, 4, 5 or 6, R 1 = C 1 - 4 alkyl group, R 2 = H (CHOH) nCH 2 - processes the corresponding substituents, n = 1 to 7) the metal surface with a treating solution and the treating solution, including, forming a corrosion resistant coating Method (see Patent Document 2),

(3)(A)HZrF,(B)水溶性または水分散性3−(N−メチル−N−2−ヒドロキシエチルアミノメチル)−4−ヒドロキシ−スチレンポリマー及び選択的に(C)分散性シリカ,好ましくは(D)1−プロポキシ−2−プロパノールを包含する酸性水溶液で処理し,リンス無しとすることにより有機皮膜を設ける方法(特許文献3参照)、 (3) (A) H 2 ZrF 6, (B) water-soluble or water-dispersible 3- (N- methyl--N-2-hydroxyethyl-aminomethyl) -4-hydroxy - styrene polymers and optionally (C) Dispersible silica, preferably (D) A method of providing an organic film by treating with an acidic aqueous solution containing 1-propoxy-2-propanol to eliminate rinsing (see Patent Document 3),

(4)アルカリ金属水酸化物でpHを11〜13に調整したリン酸イオン,アルミニウムキレート化剤および界面活性剤を含む水溶液で脱脂処理し,次いでpHを1.5〜4.0に調整したジルコニウムイオン,リン酸イオン,有効フッ素イオンを含有する処理剤または前記イオンに加えバナジウムイオンを加えた溶液で処理する方法(特許文献4参照) (4) Degreasing treatment with an aqueous solution containing phosphate ions, aluminum chelating agent and surfactant whose pH was adjusted to 11 to 13 with alkali metal hydroxide, and then pH was adjusted to 1.5 to 4.0 A processing agent containing zirconium ions, phosphate ions, effective fluorine ions, or a method of treating with a solution containing vanadium ions in addition to the above ions (see Patent Document 4)

(5)SiO/MO比(ただしM=Li,Na,K等)が1以上のアルカリケイ酸塩で処理した後,200〜300℃の温度にて5秒〜1分焼付し,次いで硝酸水溶液により脱アルカリ処理を施す処理方法(特許文献5参照)等の提案がある。
しかしこれらの化成液処理方法では、処理に長時間を要し,生産性が悪かったり、耐食性が不十分であったり,加工中に皮膜が破壊される結果十分な塗膜密着性が確保されなかったり,下地処理後に塗布される親水性塗料との相性が悪く,塗装工程中にハジキを生じたりする不具合を有している。
(5) After being treated with an alkali silicate having a SiO 2 / M 2 O ratio (where M = Li, Na, K, etc.) of 1 or more, baking is performed at a temperature of 200 to 300 ° C. for 5 seconds to 1 minute, Next, there is a proposal of a treatment method for performing dealkalization treatment with an aqueous nitric acid solution (see Patent Document 5).
However, these chemical conversion liquid treatment methods require a long time for the treatment, resulting in poor productivity, insufficient corrosion resistance, and sufficient film adhesion as a result of the film being destroyed during processing. Or has a problem that repelling occurs during the painting process due to poor compatibility with the hydrophilic paint applied after the surface treatment.

化成処理方法とは別に、
(6)冷間圧延後,中性または塩基性溶液で処理し,ベーマイト系皮膜を形成し,その後ケイ酸塩含有溶液で処理,あるいはさらにその後調質焼鈍する下地処理法(特許文献6参照)、の提案もあるが、この方法ではベーマイト皮膜を形成させるのに90℃で10数秒〜20秒程度を要することや下地処理としては工程が長く生産性が劣る。
また下地処理後に加熱焼鈍する方法では,表面が汚れやすく,親水性樹脂等を塗布する際にハジキ等の不具合が発生しやすい。
Apart from the chemical treatment method,
(6) After cold rolling, it is treated with a neutral or basic solution to form a boehmite-based film, then treated with a silicate-containing solution, or further tempered and annealed (see Patent Document 6) However, in this method, it takes about 10 to 20 seconds at 90 ° C. to form a boehmite film, and the process is long and inferior in productivity.
Also, in the method of heat annealing after the base treatment, the surface tends to become dirty, and problems such as repellency are likely to occur when a hydrophilic resin or the like is applied.

また、
(7)ベーマイト処理とジルコニウム系化成処理とを複合する方法の提案(特許文献7参照)がなされているが、これらも一長一短があって不十分なものである。
Also,
(7) Proposal of a method of combining boehmite treatment and zirconium-based chemical conversion treatment (see Patent Document 7) has been made, but these are also inadequate because of their advantages and disadvantages.

特開平10−001783号公報JP-A-10-001783 特開平07−197273号公報JP 07-197273 A 特開平04−263083号公報Japanese Patent Laid-Open No. 04-263083 特開平01−246370号公報Japanese Patent Laid-Open No. 01-246370 特開平01−240674号公報Japanese Patent Laid-Open No. 01-240674 特公平07−081194号公報Japanese Patent Publication No. 07-081194 特開平05−279866号公報JP 05-279866 A

本発明は、Cr等の有害重金属を含まない化成液処理液を用い、親水性塗膜との塗膜密着性、耐食性に優れた熱交換器用フィン材のアルミニウム下地処理材、および親水性に優れた塗膜を設けたプレコートフィン用アルミニム材の提供を目的とする。   The present invention uses a chemical conversion liquid that does not contain harmful heavy metals such as Cr, and is excellent in adhesion to a hydrophilic coating film, an aluminum substrate treatment material for fins for heat exchangers excellent in corrosion resistance, and hydrophilicity. An object of the present invention is to provide an aluminum material for precoated fins provided with a coated film.

本発明は、
[1] 表面に下地皮膜を設けたフィン用アルミニウム又はアルミニウム合金基材(薄板)において、下地皮膜が下記の構成
(a)ZrまたはTi,AlおよびCを主材とする。
(b)ZrまたはTiの構成量は0.1〜100mg/m
(c)下地皮膜表面においてAlは10wt%以下であり、下地皮膜/Al界面に向かって濃度が増加する。
(d)皮膜表面から下地皮膜/Al界面に向かって樹脂に由来するC含有量は低下する。
を有することを特徴とするフィン用アルミニウム材、
[2] ZrまたはTi含有量が最大濃度を示す深さでのAl量が、50wt%以下であり、ZrまたはTi含有量がC含有量より大となる層が下地皮膜中に存在する上記[1]に記載のフィン用アルミニウム材、
The present invention
[1] In the aluminum for fins or aluminum alloy base material (thin plate) provided with a base film on the surface, the base film has the following constitution (a) Zr or Ti, Al and C as main materials.
(B) The constituent amount of Zr or Ti is 0.1 to 100 mg / m 2 .
(C) Al on the surface of the undercoat is 10 wt% or less, and the concentration increases toward the undercoat / Al interface.
(D) The C content derived from the resin decreases from the coating surface toward the base coating / Al interface.
An aluminum material for fins, comprising:
[2] The Al content at a depth at which the Zr or Ti content shows the maximum concentration is 50 wt% or less, and a layer in which the Zr or Ti content is larger than the C content is present in the undercoat [ 1], an aluminum material for fins,

[3] 脱脂、水洗、乾燥したフィン用アルミニウム又はアルミニウム合金基材(薄板)を、ノンクロム系樹脂含有ZrまたはTi塗布型化成処理剤を用いて、板材および処理材の温度40℃以下、乾燥開始までの時間が2秒以下で化成処理し、次いで風速5〜50m/sec、温度80〜300℃で3秒〜1分の条件で乾燥、焼き付け行うことを特徴とするフィン用アルミニウム材の製造方法、
[4] 熱硬化性樹脂を含むノンクロム系樹脂含有ZrまたはTi塗布型化成処理剤を用いて、化成処理し、温度150〜300℃で乾燥、焼き付け行う上記[3]に記載のフィン用アルミニウム材の製造方法、
[5] 熱可塑性樹脂を含むノンクロム系樹脂含有ZrまたはTi塗布型化成処理剤を用いて、化成処理し、温度80〜140℃で乾燥、焼き付け行う上記[3]に記載のフィン用アルミニウム材の製造方法および
[6] 上記[1]〜[2]に記載のプレコートフィン用アルミニウム材の下地皮膜上に親水性塗膜を設けたことを特徴とするプレコートアルミニウムフィン材、を開発することにより上記の課題を解決した
[3] Drying of degreased, washed and dried aluminum for fins or aluminum alloy substrate (thin plate) using non-chromium resin-containing Zr or Ti coating type chemical conversion treatment agent at a temperature of 40 ° C. or less, and starting drying The method for producing an aluminum material for fins is characterized in that a chemical conversion treatment is carried out in a time of 2 seconds or less, followed by drying and baking at a wind speed of 5 to 50 m / sec and a temperature of 80 to 300 ° C. for 3 seconds to 1 minute. ,
[4] The fin aluminum material according to the above [3], which is subjected to chemical conversion treatment using a non-chromium resin-containing Zr or Ti coating type chemical conversion treatment agent including a thermosetting resin, and is dried and baked at a temperature of 150 to 300 ° C. Manufacturing method,
[5] The aluminum material for fins according to the above [3], which is subjected to chemical conversion treatment using a non-chromium resin-containing Zr or Ti coating type chemical conversion treatment agent containing a thermoplastic resin, dried and baked at a temperature of 80 to 140 ° C. [6] By developing a pre-coated aluminum fin material characterized in that a hydrophilic coating film is provided on the base film of the aluminum material for pre-coated fins described in [1] to [2] above. Solved the problem

本発明によれば、アルミニウム板材をクロメート処理やリン酸クロメート処理等の前処理を行うことなく、アルミニウム板材を脱脂した後ノンクロム系樹脂含有ZrまたはTi系塗布型化成処理剤を用いて得たフィン用アルミニウム材、このアルミニウム材に親水性塗膜を設けることにより得られる優れたプレコートアルミニウムフィン材を得ることが出来た。
以上のように、本発明によれば、Cr等の有害金属を含まず、塗膜密着性、耐食性、成形性に優れた熱交換器用アルミニウム製フィン材を提供することが出来る。
According to the present invention, fins obtained by using a non-chromium resin-containing Zr or Ti-based chemical conversion treatment agent after degreasing an aluminum plate without performing pretreatment such as chromate treatment or phosphoric acid chromate treatment on the aluminum plate An excellent pre-coated aluminum fin material obtained by providing a hydrophilic coating film on the aluminum material and the aluminum material could be obtained.
As described above, according to the present invention, it is possible to provide an aluminum fin material for a heat exchanger that does not contain harmful metals such as Cr and has excellent coating film adhesion, corrosion resistance, and moldability.

本発明者等は、優れた耐食性、塗膜密着性、親水性を発揮させるための塗膜の構成を検討した。検討に際しGDS,オージェといった解析機器を用い,下地皮膜の深さ方向の元素分布、いわゆるデプスプロファイルを詳細に調べた結果,下地皮膜の主要成分が深さ方向において均一な構造または幾つかの物質からなる層状構造をとらず、深さ方向で濃度が変わり,特定の深さで濃化しており,かつ必ずしも明確な層を形成しているわけでは無く,いわば傾斜構造を有して分布している場合において優れた効果を有することを見出した。   The present inventors examined the structure of the coating film for exhibiting excellent corrosion resistance, coating film adhesion, and hydrophilicity. When examining the element distribution in the depth direction of the undercoat, the so-called depth profile, using an analytical instrument such as GDS or Auger, the main components of the undercoat were found to have a uniform structure or several substances in the depth direction. It does not have a layered structure, but the concentration changes in the depth direction, is concentrated at a specific depth, and does not necessarily form a clear layer, so to speak, it has a gradient structure and is distributed It has been found that in some cases it has an excellent effect.

この時,詳細なメカニズムは不明であるが,皮膜中に含まれるAlが塗膜密着性および耐食性に大きく影響していることを見出した,さらに単純なAl濃度の多少では無く,深さ方向における分布の仕方が重要であることを突き止めた。すなわち最表面のAl量が10wt%以下,そして深さ方向に次第にAl量が増加し,ZrまたはTiが最大濃度となる深さでのAl量が50wt%以下である時に塗膜密着性および耐食性が優れた性能を有する。   At this time, although the detailed mechanism is unknown, it was found that Al contained in the film has a great influence on the adhesion and corrosion resistance of the coating film. I found out how the distribution is important. That is, when the Al amount on the outermost surface is 10 wt% or less, the Al amount gradually increases in the depth direction, and the Al amount at the depth at which Zr or Ti reaches the maximum concentration is 50 wt% or less, the coating film adhesion and corrosion resistance Has excellent performance.

下地皮膜を全て無機物で構成してもその機能としては十分であるが、より厳しい成形加工を行った場合、例えばドローレス成形その他の成形でも金型の状態が悪い場合には、無機物特有の脆さのために成形加工により下地皮膜にクラック等を生じやすくなる。結果的には親水塗膜が剥離しやすくなったり,耐食性の低下を招くことが稀にある。下地皮膜中に樹脂成分を包含するようにするとこのような欠点を無くすることができ,従来から無機物に加え樹脂分を皮膜に取り込ませると,皮膜に柔軟性が与えられ,加工時の塗膜密着性や耐食性が向上する等の利点がある   Even if the underlying film is entirely composed of inorganic material, its function is sufficient, but if stricter molding is performed, for example, if the mold is in poor condition even in drawless molding or other molding, the inherent brittleness For this reason, cracks or the like are likely to occur in the base film by molding. As a result, it is rare that the hydrophilic coating film is easily peeled off or the corrosion resistance is lowered. By including the resin component in the undercoat, such disadvantages can be eliminated. Conventionally, by incorporating a resin component in addition to an inorganic substance into the coating, the coating is given flexibility and the coating film is processed. Benefits include improved adhesion and corrosion resistance

本発明をを開発するに当たり,樹脂分の深さ方向での皮膜中の分布を測定したところ,これまたAl同様に,樹脂分は深さ方向に明確な層をなすものでは無く,深さ方向に濃度が徐々に変化する一種の傾斜構造を構成させることが必要である。さらに,表面付近に主要金属成分より樹脂成分に由来するC量が多く,皮膜/アルミニウム界面に向かって厚さ方向に次第にC量が減少し,主要金属成分量がC量より多くなる厚みが少なくとも皮膜/アルミニウム界面より表面側にある時,塗膜密着性および耐食性が向上することを見出した。   In developing the present invention, the distribution in the film in the depth direction of the resin component was measured. As in this case, the resin component does not form a clear layer in the depth direction. It is necessary to form a kind of inclined structure in which the concentration gradually changes. Further, the amount of C derived from the resin component is greater near the surface than the main metal component, the C amount gradually decreases in the thickness direction toward the film / aluminum interface, and the thickness at which the main metal component amount exceeds the C amount is at least It has been found that when it is on the surface side from the film / aluminum interface, coating film adhesion and corrosion resistance are improved.

言い換えると有機−無機複合皮膜でも,表面に樹脂分リッチな部分を設け,かつ皮膜/アル ミニウム界面に向かって徐々に樹脂分が減少し,かつ皮膜/アルミニウム界面直上に無機リッチな化成皮膜を設けることにより塗膜密着性および耐食性が向上する。   In other words, even in the organic-inorganic composite coating, a resin-rich portion is provided on the surface, the resin content gradually decreases toward the coating / aluminium interface, and an inorganic-rich chemical conversion coating is provided immediately above the coating / aluminum interface. As a result, coating film adhesion and corrosion resistance are improved.

FはZrまたはTi供給源であるHZrFやHTiFとして皮膜中に入ってくるもの,および化成処理する際のアルミニウム材表面に対するエッチング力アップのためにフッ化水素酸等の形で添加されても良い。Fは主に皮膜中でもZrまたはTiに配位しているようで,添加する場合は皮膜中のF/ZrまたはF/Tiの重量比が2.5以下であることが望ましい。2.5を越えるような場合はFが過剰で,ZrまたはTi以外の皮膜成分と結合したり,場合によっては親水性塗膜成分と反応するようになる。このような場合,水分等の作用により親水性塗膜表面に湧き出し、F成分溶出の元となるので好ましくない。 F enters into the film as H 2 ZrF 6 or H 2 TiF 6 which is a Zr or Ti supply source, and forms such as hydrofluoric acid for increasing the etching power on the aluminum material surface during chemical conversion treatment. May be added. F appears to be coordinated to Zr or Ti mainly in the film, and when added, the F / Zr or F / Ti weight ratio in the film is preferably 2.5 or less. When it exceeds 2.5, F is excessive, and it binds to a film component other than Zr or Ti, or in some cases, reacts with a hydrophilic film component. In such a case, it is not preferable since it springs up to the surface of the hydrophilic coating film due to the action of moisture or the like and becomes a source of F component elution.

Pはリン酸,縮合リン酸等の形態で処理液中に添加されても良く,リン酸Zrまたはリン酸Ti等として皮膜中に取り込まれ,耐食性アップ等に寄与する。Pも深さ方向の分布は一様では無く,表面付近に多く,次第に減少した傾斜分布を持っている。この時リン酸過剰であると表面付近のリン量が増加する。
試験的に親水性塗膜を設けずに下地処理皮膜を水中に浸漬したところ,PがZrまたはTi量を上回っているような皮膜部分が優先的に溶解した。このことは,P過剰な皮膜は耐水性が劣る可能性があることを示唆している。従ってPについても過剰な添加による皮膜中への大量混入は避けた方が良く,皮膜全体として,P/ZrまたはP/Tiの重量比が0.1〜1である皮膜を設けると良い。
P may be added to the treatment liquid in the form of phosphoric acid, condensed phosphoric acid, etc., and is taken into the film as phosphoric acid Zr, phosphoric acid Ti, etc., and contributes to an increase in corrosion resistance. The distribution of P in the depth direction is not uniform, but there are many near the surface and a gradually decreasing gradient distribution. At this time, if phosphoric acid is excessive, the amount of phosphorus near the surface increases.
As a result of immersing the base treatment film in water without providing a hydrophilic coating film, a film portion in which P exceeded the amount of Zr or Ti preferentially dissolved. This suggests that the P-excess film may have poor water resistance. Therefore, it is better to avoid mixing a large amount of P into the film due to excessive addition, and it is preferable to provide a film having a P / Zr or P / Ti weight ratio of 0.1 to 1 as the entire film.

この発明の製造方法で基材となるアルミニウム合金薄板は、要は従来から熱交換器用フィン材として使用されているものであれば良く、特に限定されるものではない。すなわち、JIS規格の1100合金、1050合金、1N30合金等の純アルミニウム系合金、あるいは2017合金、2024合金等のAl−Cu系合金、また3003合金、3004合金等のAl−Mn系合金、5052合金、5083合金等のAl−Mg系合金、さらには、6061合金等のAl−Mg−Si系合金などを用いることができる。またアルミニウム合金基材の形状は、要は薄板であれば良く、シートあるいはコイルのいずれでも良い。   The aluminum alloy thin plate used as the base material in the production method of the present invention is not particularly limited as long as it is conventionally used as a heat exchanger fin material. That is, pure aluminum alloys such as JIS standard 1100 alloy, 1050 alloy and 1N30 alloy, Al-Cu alloys such as 2017 alloy and 2024 alloy, Al-Mn alloys such as 3003 alloy and 3004 alloy, and 5052 alloy Al-Mg based alloys such as 5083 alloy, and Al-Mg-Si based alloys such as 6061 alloy can be used. The shape of the aluminum alloy substrate may be a thin plate, and may be either a sheet or a coil.

この発明の方法を実施するにあたっては、上述のようなアルミニウム合金基材(薄板)に対して、脱脂(エッチングを含む)、水洗、乾燥を行った後、ZrまたはTi及び樹脂として供給されたCを主成分とし、皮膜中にZrまたはTiを0.1〜100mg/m含有するとともにCを含有し、表面はZrまたはTiより樹脂に由来するC量が多く、皮膜/アルミニウム界面に向かって厚さ方向に次第にC量が減少し、主要金属成分量がC量より多くなる厚みが少なくとも皮膜/アルミニウム界面より表面側にあり、さらに最表面のAl量が10Wt%以下、ZrまたはTiが最大濃度を示す深さでのAl量が50Wt%以下、残部をO,H,場合によってはP,Fの一種以上、及びその他不可避不純物等からなる下地皮膜を設ける。また必要に応じ、脱脂、水洗工程の後に、酸洗浄、水洗(酸成分除去)工程を追加しても良い。 In carrying out the method of the present invention, the above-described aluminum alloy substrate (thin plate) is degreased (including etching), washed with water, and dried, and then supplied as Zr or Ti and resin. As a main component, the film contains 0.1 to 100 mg / m 2 of Zr or Ti and also contains C, and the surface has a larger amount of C derived from the resin than Zr or Ti, toward the film / aluminum interface. The amount of C gradually decreases in the thickness direction, the thickness at which the main metal component amount exceeds the C amount is at least on the surface side from the film / aluminum interface, the Al amount on the outermost surface is 10 Wt% or less, and Zr or Ti is the maximum An undercoat is formed of an Al amount at a depth indicating the concentration of 50 Wt% or less, the balance being O, H, optionally one or more of P, F, and other inevitable impurities. Moreover, you may add an acid washing | cleaning and a water washing (acid component removal) process after a degreasing | defatting and a water washing process as needed.

ZrまたはTiを主要金属成分とし、樹脂を含む下地皮膜を得るためには、処理液に接触させて化学反応により皮膜を形成する「反応型」と、処理液を塗布して乾燥させることによる「塗布型」の両者が知られているが、本発明はそのどちらに対しても高い効果を発揮するものである。   In order to obtain a base film containing resin by using Zr or Ti as a main metal component, a “reaction type” in which a film is formed by a chemical reaction by bringing it into contact with a treatment liquid, and a “reaction type” by applying and drying a treatment liquid. Both “coating types” are known, but the present invention exhibits a high effect for both.

樹脂として供給されるCとしては、特に限定されるものではなく、目的に応じ熱可塑性樹脂および熱硬化性樹脂が使用できる。   C supplied as the resin is not particularly limited, and a thermoplastic resin and a thermosetting resin can be used depending on the purpose.

下地皮膜中のZrまたはTi量は、0.1〜100mg/mが良い。0.1mg/m未満では耐食性が劣り、100mg/mを超えると成形時の塗膜密着性が劣る。
塗膜の乾燥及び焼付け条件等は、塗料の特性および焼付け炉の特性、さらに製品の使用目的に合わせて適宜設定すれば良い。
Zr or Ti content in the primer film is good 0.1-100 mg / m 2. If it is less than 0.1 mg / m 2 , the corrosion resistance is inferior, and if it exceeds 100 mg / m 2 , the coating film adhesion at the time of molding is inferior.
What is necessary is just to set suitably the drying of a coating film, baking conditions, etc. according to the characteristic of a coating material, the characteristic of a baking furnace, and the use purpose of a product.

前記下地皮膜の上に親水性塗膜を設ける場合、この親水性塗膜は、親水性を有するものであれば特に限定されるものではなく、例えば水ガラスまたはコロイダルシリカ等を主体とする無機系塗料でも良く、あるいは無機系塗料とアクリル、ポリビニルアルコール、ポリエチレングリコール等の樹脂との混合塗料であっても良く、さらにはこれらにジルコニウム酸等の金属架橋剤が添加されていても良い。そのほか親水性を有する有機系塗料でも良く、ポリビニルアルコール、カルボキシメチルセルロース等のセルロース樹脂や、アクリルアミド、アクリル酸あるいはアクリルエステル等のアクリル樹脂、ポリエチレングリコール等 さらにはこれらの2種以上の混合物、共重合体であっても良い。またこれらの基材樹脂は、自己架橋型のものであっても良く、必要に応じてヘキサブチロールメラミン、ヘキサブトキシメラミン等のメラミン化合物や、エポキシ基を有する化合物、ブチロール基を付加させた尿素あるいはイソシアネート基を有する化合物などの硬化剤が添加されていても良い。   When a hydrophilic coating film is provided on the undercoat, the hydrophilic coating film is not particularly limited as long as it has hydrophilicity. For example, an inorganic system mainly composed of water glass or colloidal silica or the like. It may be a paint, or may be a mixed paint of an inorganic paint and a resin such as acrylic, polyvinyl alcohol, or polyethylene glycol, and a metal cross-linking agent such as zirconium acid may be added thereto. In addition, organic paints having hydrophilicity may be used, cellulose resins such as polyvinyl alcohol and carboxymethyl cellulose, acrylic resins such as acrylamide, acrylic acid or acrylic ester, polyethylene glycol, and the like. Further, a mixture or copolymer of two or more thereof. It may be. These base resins may be of a self-crosslinking type, and if necessary, melamine compounds such as hexabutyrol melamine and hexabutoxy melamine, compounds having an epoxy group, and urea to which a butyrol group is added. Alternatively, a curing agent such as a compound having an isocyanate group may be added.

該親水性塗膜としては、その用途に適合したものであれば特に制限されるものでは無いが、特開平11−223487号、特開平10−217394号、特許登録番号2975550号あるいは特許登録番号2025282号に記載されているような塗膜を用いると好適である。   The hydrophilic coating film is not particularly limited as long as it is suitable for its use, but JP-A-11-223487, JP-A-10-217394, Patent Registration No. 2975550 or Patent Registration No. 2025282. It is preferable to use a coating film as described in No. 1.

なおこれらの親水性塗膜の塗膜量および塗膜の焼付け条件等は、塗料の特性および焼付け炉の特性、さらに製品の使用目的に合わせて適宜設定すれば良い。
アルミニウム表面に先述した下地皮膜を設けた場合、その構造はアルミニウム素地と皮膜の界面にフッ化物、オキシ水酸化アルミニウム層が存在し、その上にZrまたはTiといった重金属のリン酸塩、水酸化物、酸化物を主体とする化成皮膜層が形成されているといったモデルで説明されていた。また、樹脂成分が加えられた皮膜の場合、樹脂成分はその最表面からアルミニウム素地まで一様に分布しているとされており、その分布状態に関する考察はほとんどなされてこなかった。発明者らは、GDS(グロー放電発光スペクトル)、オージェといった解析機器を用い、皮膜の深さ方向の元素分布、いわゆるデプスプロファイルを詳細に調べた。
In addition, what is necessary is just to set the coating amount of these hydrophilic coating films, the baking conditions of a coating film, etc. suitably according to the characteristic of a coating material, the characteristic of a baking furnace, and also the intended use of a product.
When the above-described undercoat is provided on the aluminum surface, the structure is that a fluoride or aluminum oxyhydroxide layer exists at the interface between the aluminum substrate and the film, and a heavy metal phosphate or hydroxide such as Zr or Ti is formed thereon. It was explained by a model that a chemical conversion film layer mainly composed of oxide was formed. Moreover, in the case of the film | membrane which added the resin component, it is supposed that the resin component is uniformly distributed from the outermost surface to the aluminum base body, and the consideration regarding the distribution state has not been made almost. The inventors examined in detail the element distribution in the depth direction of the film, so-called depth profile, using analytical equipment such as GDS (glow discharge emission spectrum) and Auger.

その結果、主要金属成分(ZrまたはTi)は皮膜全体に均一に存在するわけではなく、それぞれ最表面よりやや深い位置に濃度のピークを示すこと、またそれらは必ずしも明確な層を形成せず、いわば濃度勾配を有して分布していることを確認した。さらに、樹脂成分に由来するCは、皮膜最表面で最大値を示し、深くなるに従って減少することも確認した。   As a result, the main metal component (Zr or Ti) does not exist uniformly throughout the coating, and each shows a concentration peak slightly deeper than the outermost surface, and they do not necessarily form a clear layer, In other words, it was confirmed that it was distributed with a concentration gradient. Further, it was also confirmed that C derived from the resin component showed a maximum value on the outermost surface of the film and decreased with increasing depth.

脱脂、水洗、乾燥を行った後、下地皮膜を設けるが、必要に応じ脱脂、水洗工程の後に、酸洗浄、水洗(酸成分除去)工程を追加しても良い。
脱脂処理は圧延油除去及び圧延時に形成される酸化皮膜あるいは水酸化皮膜を除去するために行うものであり、このような皮膜除去が不完全であるとその後設けた化成皮膜中のアルミ濃度が高くなり目的の皮膜が得られない。
After degreasing, rinsing and drying, a base film is provided. If necessary, an acid washing and rinsing (acid component removal) step may be added after the degreasing and rinsing steps.
The degreasing treatment is performed to remove the rolling oil and to remove the oxide film or hydroxide film formed at the time of rolling. If such film removal is incomplete, the concentration of aluminum in the chemical conversion film provided thereafter is high. The target film cannot be obtained.

このような目的にはエッチング性を有するpH=9〜13程度のアルカリ性脱脂剤が好適である。脱脂剤のエッチング力によりアルミ表面の酸化皮膜、水酸化皮膜を溶解除去できる。   For such purposes, an alkaline degreasing agent having an etching property and having a pH of about 9 to 13 is suitable. The oxide film and hydroxide film on the aluminum surface can be dissolved and removed by the etching power of the degreasing agent.

酸系脱脂剤によっても同様の効果が得られるが、エッチング速度が遅いため生産性が低下するので好ましくない。   The same effect can be obtained with an acid-based degreasing agent, but it is not preferable because the etching rate is slow and the productivity is lowered.

アルカリ脱脂剤としては、炭酸ナトリウム、炭酸カリウム等の炭酸アルカリ金属や、水酸化ナトリウム等のアルカリ金属水酸化物、リン酸ナトリウムリン酸水素ナトリウム等のアルカリ金属リン酸塩、ケイ酸ナトリウム等のアルカリ金属ケイ酸塩等、あるいは これらの混合物をアルカリビルダーとして含み、さらにHLB=8〜11程度のポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル等のポリオキシエチレン系界面活性剤や高級アルコール系界面活性剤等の界面活性剤およびEDTA・2Na塩やナフチルアミン等のキレート化剤を含む脱脂剤が適している。最近の排水規制や内分泌物攪乱物質、環境ホルモン物質の規制をはじめとする環境規制の高まりから、リンおよびノニルフェノール等を含有しない脱脂剤が特に好適である。   Alkaline degreasing agents include alkali metal carbonates such as sodium carbonate and potassium carbonate, alkali metal hydroxides such as sodium hydroxide, alkali metal phosphates such as sodium hydrogen phosphate sodium phosphate, alkalis such as sodium silicate Metal silicates, etc., or a mixture thereof as an alkali builder, and polyoxyethylene surfactants such as polyoxyethylene alkyl ethers and polyoxyethylene alkyl phenyl ethers having a HLB of about 8 to 11 and higher alcohol interfaces A degreasing agent containing a surfactant such as an activator and a chelating agent such as EDTA · 2Na salt or naphthylamine is suitable. Degreasing agents that do not contain phosphorus, nonylphenol, and the like are particularly suitable due to the recent increase in environmental regulations including regulations on wastewater, endocrine disruptors, and environmental hormone substances.

脱脂処理法としては浸漬、スプレー、あるいは両者の併用等で処理すればよい。スプレー処理は浸漬処理に比べ効率がよく、短時間ですむのでライン長を短く出来るので好ましい。   The degreasing treatment may be performed by dipping, spraying, or a combination of both. Spray treatment is more efficient than immersion treatment and is preferable because it requires less time and the line length can be shortened.

アルミ板状の酸化皮膜の厚みは、通常数10〜数100mg/mの範囲なので、エッチング量としては60〜300mg/m程度が好ましい。60mg/m未満では酸化皮膜除去が不十分で、また300mg/mを超えるようなエッチング量では酸化皮膜除去効果が向上しないばかりか、スラッジ生成が加速するので好ましくない。エッチング量の設定は試験板を用いライン上で実際に測定して決定するのが良いが、不可能な場合には別の試験設備を用いたラボ試験等から設定しても良い。脱脂剤の濃度、温度、脱脂時間等はラインの管理条件に合わせて適宜設定すればよいが、スプレー処理の場合、アルカリ性脱脂剤濃度は0.5〜5%、温度は30〜90℃、脱脂時間は1〜20秒程度でよい。濃度が0.5%未満ではpHが低くエッチングが不十分で好ましくない。また濃度が5%を超えるとエッチング量が過大になってスラッジ生成量が増加する等の不具合や、脱脂剤に含まれる界面活性剤が水中に溶けきらずに脱脂槽の浴面に浮き、それが再度アルミ板に付着する等の不良を生じるので好ましくない。温度も各脱脂剤の特性に合わせて設定すればよいが、 The thickness of the aluminum plate-like oxide film, so the range of usually several tens to several hundreds of 100 mg / m 2, preferably about 60~300mg / m 2 as the etching amount. If the amount is less than 60 mg / m 2 , the removal of the oxide film is insufficient, and if the etching amount exceeds 300 mg / m 2 , the effect of removing the oxide film is not improved, and sludge generation is accelerated, which is not preferable. The etching amount may be determined by actually measuring on the line using a test plate, but if impossible, it may be set from a laboratory test using another test facility. Degreasing agent concentration, temperature, degreasing time, etc. may be appropriately set according to the management conditions of the line, but in the case of spray treatment, the alkaline degreasing agent concentration is 0.5-5%, the temperature is 30-90 ° C., degreasing The time may be about 1 to 20 seconds. If the concentration is less than 0.5%, the pH is low and etching is insufficient, which is not preferable. Also, if the concentration exceeds 5%, the etching amount becomes excessive and the sludge generation amount increases, and the surfactant contained in the degreasing agent does not dissolve in the water and floats on the bath surface of the degreasing tank, This is undesirable because it causes defects such as adhesion to the aluminum plate again. The temperature may be set according to the characteristics of each degreasing agent,

30℃未満ではエッチング速度が遅く効率が悪いので好ましくない。90℃を超えると、浴が沸騰する危険を生じ、装置上不具合を生じやすいので好ましくない。脱脂時間は所定のエッチング量が得られるようにラインにあわせて設定すればよいが、1秒未満では酸化皮膜を除去しきれない場合が多く、20秒を超えると、コイル処理の場合、ライン長が長くなりすぎ十分な管理が行えなくなるので不適である。スプレー処理の場合はミストまたはシャワー状に脱脂剤を噴出させ、アルミ板に接触させればよいが、0.05MPa以上のスプレー圧で、複数のスプレーノズルを設け、さらに各スプレーノズルから噴出す脱脂剤が重なり合うように配置するとよい。   Less than 30 ° C. is not preferable because the etching rate is slow and the efficiency is poor. If the temperature exceeds 90 ° C., there is a risk that the bath will boil, which is liable to cause problems on the apparatus, which is not preferable. The degreasing time may be set according to the line so that a predetermined etching amount can be obtained. However, in many cases, the oxide film cannot be completely removed in less than 1 second. Is unsuitable because it becomes too long and sufficient management cannot be performed. In the case of spray treatment, the degreasing agent may be ejected in the form of a mist or shower and brought into contact with the aluminum plate. However, a plurality of spray nozzles are provided at a spray pressure of 0.05 MPa or more, and degreasing is further ejected from each spray nozzle. It is good to arrange the agents so that they overlap.

このような脱脂処理に続き、直ちにリンス処理することが好ましい。脱脂からリンスまでの時間が長いとリンス水がかかるまでの間にアルミ板が乾燥し、アルミ板状のスラッジ成分が固着したり、脱脂剤成分が乾燥して付着するために、皮膜形成処理を施す上で障害となる。リンスまでの時間はライン適正に合わせて設定すればよいが、2秒未満であることが好ましい。2秒以上では乾燥による前記不具合が発生しやすい。またリンスの際は水量確保、特に脱脂槽から出た直後のリンス水を大量にかけることが重要である。脱脂剤のpHは9以上あるためアルミ酸化物あるいはアルミ水酸化物は水中に溶解しているため障害とはならないが、リンス水がかかるとpH7〜9の弱アルカリ領域になる。このようなpHでのアルミの溶解度は極めて低く、水中に溶け込んでいたアルミがアルミ水酸化物とて析出し、アルミ板上に新たな水酸化物層を形成する。このような水酸化物層も化成皮膜中のアルミ濃度を高めるので皮膜を劣化させる。従って、リンスの際は極力pH7〜9の領域を通過する時間が短くなるようにすることが好ましい。   Following such degreasing treatment, it is preferable to carry out a rinsing treatment immediately. If the time from degreasing to rinsing is long, the aluminum plate dries before the rinsing water is applied, and the aluminum plate-like sludge component adheres and the degreasing agent component dries and adheres. It becomes an obstacle in applying. The time until rinsing may be set according to the appropriate line, but it is preferably less than 2 seconds. In the case of 2 seconds or more, the above problem due to drying tends to occur. In rinsing, it is important to secure a sufficient amount of water, particularly to apply a large amount of rinsing water immediately after leaving the degreasing tank. Since the pH of the degreasing agent is 9 or more, the aluminum oxide or aluminum hydroxide is dissolved in the water and does not become a hindrance. However, when rinse water is applied, it becomes a weak alkaline region of pH 7-9. The solubility of aluminum at such a pH is extremely low, and aluminum that has been dissolved in water precipitates as aluminum hydroxide and forms a new hydroxide layer on the aluminum plate. Such a hydroxide layer also raises the aluminum concentration in the chemical conversion film, thereby deteriorating the film. Therefore, it is preferable to shorten the time for passing through the region of pH 7 to 9 as much as possible during rinsing.

このためには大量のリンス水をアルミ板上に与えるのが良い。具体的には、装置の形状、ラインの速度などにより若干の相違があるが、リンス水量として3〜20リットル/mの割合となるようにアルミ板上に供給すればよい。
3リットル/m未満ではアルミ板上のpH低下速度が遅く、新たな水酸化皮膜が形成されてしまうので好ましくない。一方、20リットル/mを越えても効果は変わらず、大量の水を消費することになるので生産性の上で好ましくない。
For this purpose, a large amount of rinsing water should be provided on the aluminum plate. Specifically, although there are some differences depending on the shape of the apparatus, the speed of the line, etc., it may be supplied onto the aluminum plate so that the amount of rinsing water is 3 to 20 liters / m 2 .
If it is less than 3 liters / m 2 , the pH lowering rate on the aluminum plate is slow, and a new hydroxide film is formed, which is not preferable. On the other hand, even if it exceeds 20 liters / m 2 , the effect is not changed and a large amount of water is consumed, which is not preferable in terms of productivity.

リンス水の温度は10〜80℃程度、好ましくは30〜50℃の範囲で選択すればよい。
10℃未満では、脱脂剤の溶解速度が遅く効率が悪い。80℃を超えるとアルミ板上で擬ベーマイト等の新たな水酸化皮膜の形成が促進されるので好ましくない。リンス水としては蒸留水や純水(脱イオン水)が好ましいが、軟水や電気伝導度が20mS/m以下の工業用水であってもかまわない。ただし、MgやCaといった多価金属イオンを含む工業用水等はこれら成分がアルミ板上に蓄積するので好ましくない。
The temperature of the rinsing water may be selected in the range of about 10 to 80 ° C, preferably 30 to 50 ° C.
If it is less than 10 degreeC, the melt | dissolution rate of a degreasing agent is slow and efficiency is bad. If it exceeds 80 ° C., formation of a new hydroxide film such as pseudoboehmite on the aluminum plate is promoted, which is not preferable. The rinse water is preferably distilled water or pure water (deionized water), but it may be soft water or industrial water having an electric conductivity of 20 mS / m or less. However, industrial water containing polyvalent metal ions such as Mg and Ca is not preferable because these components accumulate on the aluminum plate.

下地皮膜を形成するための処理液としては、ZrまたはTiからなる無機物及び樹脂、あるいは有機物と反応させたZrまたはTi化合物を含む水溶液が好適に用いられる。   An aqueous solution containing a Zr or Ti compound reacted with an inorganic substance and resin made of Zr or Ti, or an organic substance is suitably used as the treatment liquid for forming the base film.

ZrまたはTiの無機化合物としては、リン酸Zr、リン酸Ti等のリン酸塩、水酸化Zr等の水酸化物、オキシ炭酸ジルコニウムのアンモニア塩等や 酸化Zrや酸化Tiをリン酸、硝酸等に溶解させたもの、フッ化Zrをフッ酸に溶解させたジルコンフッ酸等が挙げられる。   Examples of the inorganic compound of Zr or Ti include phosphates such as phosphoric acid Zr and phosphoric acid Ti, hydroxides such as Zr hydroxide, ammonia salts of zirconium oxycarbonate, etc. and oxidized Zr and oxidized Ti with phosphoric acid, nitric acid, etc. And zircon hydrofluoric acid in which Zr fluoride is dissolved in hydrofluoric acid.

樹脂としては、ポリアクリル酸やポリメタクリル酸等のアクリル酸やそのエステルあるいはNa等との塩や、アクリルアミド、水溶性フェノール樹脂、水溶性ウレタン樹脂等が挙げられる。   Examples of the resin include acrylic acid such as polyacrylic acid and polymethacrylic acid, its ester, a salt with Na, acrylamide, a water-soluble phenol resin, a water-soluble urethane resin, and the like.

ZrまたはTiと樹脂の配合比率は、用いるZr樹脂またはTi樹脂の酸価、分子量等で変化するが、ZrまたはTiの重量と樹脂の重量比[(ZrまたはTi)/樹脂]で0.5〜3とするのが良い。比率が0.5未満では樹脂量が少なすぎて添加効果が得られず、3を超えて添加しても表面に樹脂層が厚く形成されてしまうだけで特性が変わらない上にコスト的に不利なので不適である。   The blending ratio of Zr or Ti and the resin varies depending on the acid value, molecular weight, etc. of the Zr resin or Ti resin to be used, but the weight ratio of Zr or Ti to the weight of the resin [(Zr or Ti) / resin] is 0.5. It should be ~ 3. If the ratio is less than 0.5, the amount of resin is too small to obtain the effect of addition, and even if it is added in excess of 3, the resin layer is formed thick on the surface and the characteristics are not changed and the cost is disadvantageous. So it is inappropriate.

このようなZrまたはTiを含む処理液を、酸化アルミまたは水酸化アルミ量をコントロールしたアルミ板表面にスプレーで吹きつけるか、ロールコーター等で塗布すればよい。スプレー処理の場合は処理後に処理液を洗い落とすリンス工程が必要で設備投資額が大きくなることや無機物と有機物を含むリンス廃液を大量に処理しなければならない。そのためリンス工程を必要としないロールコーターによる塗布型処理の方が好適である。   Such a treatment liquid containing Zr or Ti may be sprayed on the surface of an aluminum plate in which the amount of aluminum oxide or aluminum hydroxide is controlled, or may be applied by a roll coater or the like. In the case of spray treatment, a rinsing process for washing away the treatment liquid after treatment is necessary, which increases the amount of capital investment, and a large amount of rinsing waste liquid containing inorganic and organic substances must be treated. Therefore, a coating type treatment with a roll coater that does not require a rinsing step is more suitable.

塗布型ノンクロム処理液を塗工して化成皮膜を設ける場合は、処理液を塗工する際の板温度および処理液温度を制御することが必要である。塗布型処理液はアルミ板表面を溶解させる作用があるので皮膜中へのアルミイオン混入の原因となり、制御が不十分であると目的とする皮膜が得られなくなる。
具体的には、板温度および処理液温度を40℃以下とし、さらに塗工から化成皮膜の乾燥,焼付工程に入るまでの時間あるいは塗布型化成処理液中の溶媒が揮発するまでの時間を2秒以下にするのが良い。40℃を超えた板温度あるいは処理液温度ではアルミ板との反応が激しいので皮膜中のアルミ濃度が高くなる。乾燥,焼付までの時間が2秒を超えると、液体としてアルミ板上に存在する時間が長いため、その間にアルミ板と反応し、皮膜中のアルミ濃度を高めるため不具合が生じる。また塗布型化成処理剤が溶液としてアルミ板上に存在する時間が短くなるように乾燥,焼付のヒートパターンを設定することが好ましい。
When a coating type non-chromium treatment liquid is applied to provide a chemical conversion film, it is necessary to control the plate temperature and the treatment liquid temperature when the treatment liquid is applied. The coating-type treatment liquid has the effect of dissolving the surface of the aluminum plate, which causes aluminum ions to be mixed into the film. If the control is insufficient, the target film cannot be obtained.
Specifically, the plate temperature and the treatment liquid temperature are set to 40 ° C. or less, and the time from coating to drying of the chemical conversion film and entering the baking process or the time to evaporate the solvent in the coating type chemical conversion treatment liquid is 2 It should be less than a second. If the plate temperature exceeds 40 ° C. or the treatment liquid temperature, the reaction with the aluminum plate is vigorous, so that the aluminum concentration in the film increases. If the time until drying and baking exceeds 2 seconds, the time that exists on the aluminum plate as a liquid is long, so that it reacts with the aluminum plate during that time and raises the aluminum concentration in the film, resulting in a problem. Moreover, it is preferable to set a drying and baking heat pattern so that the time during which the coating-type chemical conversion treatment agent exists as a solution on the aluminum plate is shortened.

溶媒が存在している間の処理液の温度はその溶媒の沸点を大きく超えることはないので、炉温度を高くとっても大して意味が無いので風量を制御することが必要となる。具体的には5〜50m/秒程度の風速で乾燥した気体をアルミ板に供給すればよい。5m/秒未満では処理液から揮発した溶媒が飽和した気体層がアルミ板上に形成されるため、溶媒の揮発が遅くなりそれだけアルミ板と処理液が反応する時間が長くなる。50m/秒を超えるような風速としても、それ以上乾燥効率が上がらないばかりか、処理液の粘度が低い場合は風紋やムラを生じるので好ましくない。   Since the temperature of the treatment liquid during the presence of the solvent does not greatly exceed the boiling point of the solvent, it is not meaningful to raise the furnace temperature, so it is necessary to control the air volume. Specifically, a gas dried at a wind speed of about 5 to 50 m / second may be supplied to the aluminum plate. If it is less than 5 m / sec, a gas layer saturated with the solvent volatilized from the processing liquid is formed on the aluminum plate, so that the volatilization of the solvent is delayed and the time for the reaction between the aluminum plate and the processing liquid is increased accordingly. Even if the wind speed exceeds 50 m / sec, not only the drying efficiency does not increase any more, but also when the viscosity of the treatment liquid is low, wind ripples and unevenness occur, which is not preferable.

処理液を塗布した後はアルミ板を加熱乾燥する。乾燥温度や時間は処理液の特性にあわせて適宜選択すればよいが、80〜300℃で数秒〜数十秒加熱乾燥すればよい。80℃未満では乾燥に時間がかかり生産性が悪い。300℃を超えると樹脂によっては揮発または燃えてしまうので好ましくない。一般的に熱硬化型樹脂を用いる場合は150℃〜300℃程度がよく、非架橋型の樹脂を用いる場合には80〜140℃程度が好ましい。また、乾燥時間が1秒以下では乾燥が不十分であり、数十秒を超えると炉が長くなり、設備費用がかかるので不適である。   After the treatment liquid is applied, the aluminum plate is heated and dried. The drying temperature and time may be appropriately selected according to the characteristics of the treatment liquid, but may be heated and dried at 80 to 300 ° C. for several seconds to several tens of seconds. If it is less than 80 degreeC, drying takes time and productivity is bad. If it exceeds 300 ° C., it is not preferable because some resins volatilize or burn. In general, when a thermosetting resin is used, the temperature is preferably about 150 to 300 ° C, and when a non-crosslinked resin is used, about 80 to 140 ° C is preferable. In addition, if the drying time is 1 second or less, the drying is insufficient, and if it exceeds several tens of seconds, the furnace becomes long and the equipment costs are high, which is not suitable.

以下、実験例に基づいて、本発明の好適な実施の形態を具体的に説明する。アルミニウム基材は全てJIS3003相当のアルミニウム合金薄板(板厚0.100mm)を用いた。   Hereinafter, preferred embodiments of the present invention will be specifically described based on experimental examples. As the aluminum base material, an aluminum alloy thin plate (thickness 0.100 mm) equivalent to JIS3003 was used.

[実施例1]
pH=12の水酸化ナトリウムを主成分とするアルカリ脱脂剤(濃度=1.5%、温度=65℃時間=6秒)にて脱脂した後、約1秒後に水洗し(水量=6リットル/m、温度=20℃)、乾燥を行った。その後、塗布型Zr処理(フッ素−Zr−アクリル樹脂タイプ、板温度=20℃,処理液温度=20℃,塗工から乾燥までの時間=1秒,乾燥は風速=15m/秒、温度=180℃、 時間=10秒)を行った。その後ポリビニルアルコールを主成分とする親水性塗料を塗布,焼付(塗膜量=0.5g/m,焼付=220℃にて10秒)を行い、ポリビニルアルコールを主成分とする親水性塗料を塗布、焼付(塗膜量0.5g/m、焼付温度220℃にて10秒)を行った。
[Example 1]
After degreasing with an alkaline degreasing agent (concentration = 1.5%, temperature = 65 ° C. time = 6 seconds) containing sodium hydroxide as a main component at pH = 12, it was washed with water after about 1 second (water volume = 6 liters / m 2 , temperature = 20 ° C.) and drying. Then, coating type Zr treatment (fluorine-Zr-acrylic resin type, plate temperature = 20 ° C., treatment liquid temperature = 20 ° C., time from coating to drying = 1 second, drying is wind speed = 15 m / second, temperature = 180 C., time = 10 seconds). Thereafter, a hydrophilic paint mainly composed of polyvinyl alcohol is applied and baked (coating amount = 0.5 g / m 2 , baked = 220 ° C. for 10 seconds) to obtain a hydrophilic paint mainly composed of polyvinyl alcohol. Application and baking (coating amount 0.5 g / m 2 , baking temperature 220 ° C. for 10 seconds) were performed.

[測定方法]
・密着性評価:バウデン試験機にて3/16φ鋼球を使用し、荷重=100gfにて、無潤滑状態にて摺動させた。1〜5往復でカジリを生じたものを×、6〜10往復でカジリを△15往復まで異常無しを○,とした。
・親水性評価:出光興産製プレス油AF2Cに浸漬後、160℃にて10分乾燥し、その後塗膜面の水接触角を測定した。
・耐食性評価:JISZ2371による塩水噴霧試験を実施、試験時間=500hr後 貫通孔のない物を○とした。
・成形性評価:フィンプレスにてDOF成形を実施、10万ショット/ポンチ成形後のカラー内面の塗膜状態を観察。異常無しを○、クラック発生を△、剥離を×とした。
[Measuring method]
Adhesion evaluation: A 3 / 16φ steel ball was used with a Bowden testing machine and slid in a non-lubricated state at a load = 100 gf. The case where galling occurred after 1 to 5 reciprocations was rated as x, and the presence of abnormality until ∆15 reciprocations after 6 to 10 reciprocations was marked as ◯.
-Hydrophilic evaluation: After being immersed in Idemitsu Kosan press oil AF2C, it dried at 160 degreeC for 10 minutes, and the water contact angle of the coating-film surface was measured after that.
-Corrosion resistance evaluation: A salt spray test according to JISZ2371 was carried out, and after test time = 500 hr, a product having no through-holes was marked as ◯.
・ Formability evaluation: DOF molding was performed with a fin press, and the coating state of the color inner surface after 100,000 shots / punch molding was observed. No abnormality was indicated by ○, crack occurrence was indicated by Δ, and peeling was indicated by ×.

Figure 2006326863
Figure 2006326863

[実施例2]
実施例1と同様なアルカリ脱脂、水洗した後、50℃の1%硫酸に5秒間浸漬し、水洗、乾燥を行った。その後、 塗布型Ti処理(フッ素−Ti−アクリル樹脂タイプ、板温度=20℃,処理液温度=20℃,塗工から乾燥までの時間=1秒,乾燥は風速=15m/秒、温度=180℃、 時間=10秒)を行った。その後、ポリビニルアルコールを主成分とする親水性塗料を塗布,焼付(塗膜量=0.5g/m,焼付=220℃にて10秒)を行った。
[Example 2]
After alkaline degreasing and washing with water as in Example 1, it was immersed in 1% sulfuric acid at 50 ° C. for 5 seconds, washed with water and dried. Then, coating type Ti treatment (fluorine-Ti-acrylic resin type, plate temperature = 20 ° C., treatment liquid temperature = 20 ° C., time from coating to drying = 1 second, drying is wind speed = 15 m / second, temperature = 180 C., time = 10 seconds). Thereafter, a hydrophilic paint mainly composed of polyvinyl alcohol was applied and baked (coating amount = 0.5 g / m 2 , baking = 220 ° C. for 10 seconds).

Figure 2006326863
Figure 2006326863

[実施例3]
実施例1と同じ方法にてアルカリ脱脂、水洗、乾燥を行った。その後、塗布型Zr処理(フッ素−Zr−アクリル樹脂タイプ、板温度=20℃,処理液温度=20℃,塗工から乾燥までの時間=1秒,乾燥は風速=15m/秒、温度=180℃、 時間=10秒)を行った。
処理液の塗布に際して、塗布後のZr量を一定とし、種々の皮膜を得るため、下表のような条件を変更した。その後ポリビニルアルコールを主成分とする親水性塗料を塗布,焼付(塗膜量=0.5g/m,焼付=220℃にて10秒)を行った。結果を表3及び4に示す。
[Example 3]
Alkaline degreasing, washing with water and drying were carried out in the same manner as in Example 1. Then, coating type Zr treatment (fluorine-Zr-acrylic resin type, plate temperature = 20 ° C., treatment liquid temperature = 20 ° C., time from coating to drying = 1 second, drying is wind speed = 15 m / second, temperature = 180 C., time = 10 seconds).
In applying the treatment liquid, the conditions as shown in the following table were changed in order to obtain a variety of films while keeping the Zr amount after application constant. Thereafter, a hydrophilic paint mainly composed of polyvinyl alcohol was applied and baked (coating amount = 0.5 g / m 2 , baking = 220 ° C. for 10 seconds). The results are shown in Tables 3 and 4.

Figure 2006326863
Figure 2006326863

Figure 2006326863
Figure 2006326863

[実施例4]
実施例1と同様のアルカリ脱脂、水洗した後、50℃の1%硫酸に5秒間浸漬し、水洗、乾燥を行った。その後、 塗布型Ti処理(フッ素−Ti−アクリル樹脂タイプ、板温度=20℃,処理液温度=20℃,塗工から乾燥までの時間=1秒,乾燥は風速=15m/秒、温度=180℃、 時間=10秒)を行った。
処理液の塗布に際して、塗布後のTi量を一定とし、種々の皮膜を得るため、実施例3と同様の処理を実施した。その後、ポリビニルアルコールを主成分とする親水性塗料を塗布,焼付(塗膜量=0.5g/m,焼付=220℃にて10秒)を行った。結果を表5に示す。
[Example 4]
After alkaline degreasing and washing with water as in Example 1, it was immersed in 1% sulfuric acid at 50 ° C. for 5 seconds, washed with water and dried. Then, coating type Ti treatment (fluorine-Ti-acrylic resin type, plate temperature = 20 ° C., treatment liquid temperature = 20 ° C., time from coating to drying = 1 second, drying is wind speed = 15 m / second, temperature = 180 C., time = 10 seconds).
When applying the treatment liquid, the same treatment as in Example 3 was performed in order to obtain a variety of films while keeping the Ti amount after application constant. Thereafter, a hydrophilic paint mainly composed of polyvinyl alcohol was applied and baked (coating amount = 0.5 g / m 2 , baking = 220 ° C. for 10 seconds). The results are shown in Table 5.

Figure 2006326863
Figure 2006326863

本発明により開発されたフィン用アルミニウム材、プレコートアルミニウムフィン材は、皮膜の密着性、耐食性、成形性、親水性に優れたものであり、また製造に際してCrなどの有害な重金属を含まない化成処理液を使用して製造できるため、環境の汚染がなく優れた材料を安価に提供出来るものであり、ルームエアコン、自動車等の熱交換器用フィン材として極めて有用なものである。   The aluminum material for fins and pre-coated aluminum fin material developed by the present invention are excellent in film adhesion, corrosion resistance, formability, and hydrophilicity, and do not contain harmful heavy metals such as Cr during production. Since it can be manufactured using a liquid, it can provide an excellent material at low cost without environmental pollution, and is extremely useful as a fin material for heat exchangers of room air conditioners, automobiles and the like.

アルミニウム下地処理剤表面における主要ZrまたはTi金属成分濃度および炭素濃度の変化状態を示す。The change state of the main Zr or Ti metal component density | concentration and carbon concentration in the aluminum surface treating agent surface is shown.

Claims (6)

表面に下地皮膜を設けたフィン用アルミニウム又はアルミニウム合金基材(薄板)において、下地皮膜が下記の構成
(a)ZrまたはTi,AlおよびCを主材とする。
(b)ZrまたはTiの構成量は0.1〜100mg/m
(c)下地皮膜表面においてAlは10wt%以下であり、下地皮膜/Al界面に向かって濃度が増加する。
(d)皮膜表面から下地皮膜/Al界面に向かって樹脂に由来するC含有量は低下する。
を有することを特徴とするフィン用アルミニウム材。
In the aluminum for fins or aluminum alloy base material (thin board) which provided the base film on the surface, the base film has the following constitution (a) Zr or Ti, Al, and C as main materials.
(B) The constituent amount of Zr or Ti is 0.1 to 100 mg / m 2 .
(C) Al on the surface of the undercoat is 10 wt% or less, and the concentration increases toward the undercoat / Al interface.
(D) The C content derived from the resin decreases from the coating surface toward the base coating / Al interface.
An aluminum material for fins, comprising:
ZrまたはTi含有量が最大濃度を示す深さでのAl量が、50wt%以下であり、ZrまたはTi含有量がC含有量より大となる層が下地皮膜中に存在する請求項1に記載のフィン用アルミニウム材。 The Al content at a depth at which the Zr or Ti content exhibits the maximum concentration is 50 wt% or less, and a layer in which the Zr or Ti content is greater than the C content is present in the undercoat. Aluminum for fins. 脱脂、水洗、乾燥したフィン用アルミニウム又はアルミニウム合金基材(薄板)を、ノンクロム系樹脂含有ZrまたはTi塗布型化成処理剤を用いて、板材および処理材の温度40℃以下、乾燥開始までの時間が2秒以下で化成処理し、次いで風速5〜50m/sec、温度80〜300℃で3秒〜1分の条件で乾燥、焼き付け行うことを特徴とするフィン用アルミニウム材の製造方法。 Degreased, washed and dried aluminum for fin or aluminum alloy substrate (thin plate) using non-chromium resin-containing Zr or Ti coating type chemical conversion treatment agent, temperature of plate material and treatment material at 40 ° C or less, time to start drying Is subjected to chemical conversion treatment in 2 seconds or less, and then dried and baked under conditions of a wind speed of 5 to 50 m / sec and a temperature of 80 to 300 ° C. for 3 seconds to 1 minute. 熱硬化性樹脂を含むノンクロム系樹脂含有ZrまたはTi塗布型化成処理剤を用いて、化成処理し、温度150〜300℃で乾燥、焼き付け行う請求項3に記載のフィン用アルミニウム材の製造方法。 The manufacturing method of the aluminum material for fins of Claim 3 which performs a chemical conversion treatment using the non-chromium-type resin containing Zr or Ti coating type chemical conversion treatment agent containing a thermosetting resin, and dries and bakes at the temperature of 150-300 degreeC. 熱可塑性樹脂を含むノンクロム系樹脂含有ZrまたはTi塗布型化成処理剤を用いて、化成処理し、温度80〜140℃で乾燥、焼き付け行う請求項3に記載のフィン用アルミニウム材の製造方法。 The manufacturing method of the aluminum material for fins of Claim 3 which performs a chemical conversion treatment using the non-chromium-type resin containing Zr or Ti coating type chemical conversion treatment agent containing a thermoplastic resin, and dries and bakes at the temperature of 80-140 degreeC. 請求項1〜2に記載のプレコートフィン用アルミニウム材の下地皮膜上に親水性塗膜を設けたことを特徴とするプレコートアルミニウムフィン材。
A pre-coated aluminum fin material, wherein a hydrophilic coating film is provided on the base film of the pre-coated fin aluminum material according to claim 1.
JP2005149455A 2005-05-23 2005-05-23 Aluminium material for precoated fin Pending JP2006326863A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005149455A JP2006326863A (en) 2005-05-23 2005-05-23 Aluminium material for precoated fin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005149455A JP2006326863A (en) 2005-05-23 2005-05-23 Aluminium material for precoated fin

Publications (1)

Publication Number Publication Date
JP2006326863A true JP2006326863A (en) 2006-12-07

Family

ID=37549084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005149455A Pending JP2006326863A (en) 2005-05-23 2005-05-23 Aluminium material for precoated fin

Country Status (1)

Country Link
JP (1) JP2006326863A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021105209A (en) * 2019-12-26 2021-07-26 株式会社Uacj Surface treated aluminum alloy and manufacturing method of the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197273A (en) * 1993-11-29 1995-08-01 Nippon Parkerizing Co Ltd Composition for treating metal and its treatment
JPH0847670A (en) * 1994-06-01 1996-02-20 Sumitomo Metal Ind Ltd Method for continuously coating metallic strip with aqueous organic resin coating
JPH0913176A (en) * 1995-06-28 1997-01-14 Sky Alum Co Ltd Metal plate such as of chemically converted aluminum and its production
JP2000328259A (en) * 1999-05-18 2000-11-28 Sky Alum Co Ltd Precoated fin material for heat exchanger
JP2002146549A (en) * 2000-11-14 2002-05-22 Kobe Steel Ltd Method for producing fin material made of aluminum and fin material made of aluminum produced by the method
JP2004035988A (en) * 2002-07-08 2004-02-05 Furukawa Sky Kk Non-chromium type aluminum substrate treatment material having excellent coating film adhesion
JP2006111901A (en) * 2004-10-13 2006-04-27 Furukawa Sky Kk Surface-prepared aluminum material for precoat fin

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197273A (en) * 1993-11-29 1995-08-01 Nippon Parkerizing Co Ltd Composition for treating metal and its treatment
JPH0847670A (en) * 1994-06-01 1996-02-20 Sumitomo Metal Ind Ltd Method for continuously coating metallic strip with aqueous organic resin coating
JPH0913176A (en) * 1995-06-28 1997-01-14 Sky Alum Co Ltd Metal plate such as of chemically converted aluminum and its production
JP2000328259A (en) * 1999-05-18 2000-11-28 Sky Alum Co Ltd Precoated fin material for heat exchanger
JP2002146549A (en) * 2000-11-14 2002-05-22 Kobe Steel Ltd Method for producing fin material made of aluminum and fin material made of aluminum produced by the method
JP2004035988A (en) * 2002-07-08 2004-02-05 Furukawa Sky Kk Non-chromium type aluminum substrate treatment material having excellent coating film adhesion
JP2006111901A (en) * 2004-10-13 2006-04-27 Furukawa Sky Kk Surface-prepared aluminum material for precoat fin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021105209A (en) * 2019-12-26 2021-07-26 株式会社Uacj Surface treated aluminum alloy and manufacturing method of the same
JP7084957B2 (en) 2019-12-26 2022-06-15 株式会社Uacj Surface-treated aluminum alloy plate and its manufacturing method

Similar Documents

Publication Publication Date Title
JP4099307B2 (en) Non-chromium anti-rust treatment agent for aluminum, anti-rust treatment method and anti-rust treated aluminum products
KR100706972B1 (en) Heat exchanger made of aluminum alloy
JPH11131254A (en) Surface treatment of aluminum-containing metallic material
JP5537233B2 (en) Corrosion-resistant treatment method for aluminum heat exchanger
JP3877264B2 (en) Method for manufacturing aluminum fin material and aluminum fin material manufactured by this method
JP4668063B2 (en) Resin-coated aluminum plate and method for producing the same
JP4769112B2 (en) Aluminum coating material and aluminum fin material for heat exchanger using the same
JP5616669B2 (en) Corrosion-resistant treatment agent for aluminum substrate, and corrosion-resistant treatment method for aluminum substrate using the same
JP5135167B2 (en) Aluminum painted plate
JPH09226052A (en) Thermoplastic resin-coated aluminum alloy sheet and method and apparatus for its production
JPH09316434A (en) Aqueous treating agent for converting metal material into hydrophilic metal material and treatment therefor
JP2009114472A (en) Method for producing surface-regulated aluminum casting
JP2006326863A (en) Aluminium material for precoated fin
JP2004339539A (en) Surface treatment method for substrate made of aluminum alloy for heat exchanger, and heat exchanger produced by using the method
JP3331156B2 (en) Aluminum coating material
JPH0768466B2 (en) Aluminum fin material for heat exchanger
JP3420721B2 (en) Pre-coated fin material for heat exchanger
KR20020011874A (en) Hydrophilicizing treatment for metal surface
JP4562897B2 (en) Fin material for heat exchanger having non-chromate reaction type underlayer and heat exchanger provided with the same
JP2018115836A (en) Air-conditioning fin material for indoor equipment featuring low odors and water contents, and method for producing the same
JP3050728B2 (en) Aluminum fin material for heat exchanger
JP4818003B2 (en) Pre-coated aluminum fin material for heat exchanger
JP5424555B2 (en) Method for forming corrosion-resistant film on zinc metal surface
WO2017061531A1 (en) Hydrophilization agent and hydrophilization method
JP5436482B2 (en) Heat exchanger and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080425

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100729

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100810

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110118

Free format text: JAPANESE INTERMEDIATE CODE: A02