JP2006324604A - Electric double layer capacitor electrode - Google Patents

Electric double layer capacitor electrode Download PDF

Info

Publication number
JP2006324604A
JP2006324604A JP2005148602A JP2005148602A JP2006324604A JP 2006324604 A JP2006324604 A JP 2006324604A JP 2005148602 A JP2005148602 A JP 2005148602A JP 2005148602 A JP2005148602 A JP 2005148602A JP 2006324604 A JP2006324604 A JP 2006324604A
Authority
JP
Japan
Prior art keywords
carbon material
double layer
range
electric double
layer capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005148602A
Other languages
Japanese (ja)
Other versions
JP4872061B2 (en
Inventor
Soji Shiraishi
壮志 白石
Asao Otani
朝男 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gunma University NUC
Frontier Carbon Corp
Original Assignee
Gunma University NUC
Frontier Carbon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gunma University NUC, Frontier Carbon Corp filed Critical Gunma University NUC
Priority to JP2005148602A priority Critical patent/JP4872061B2/en
Publication of JP2006324604A publication Critical patent/JP2006324604A/en
Application granted granted Critical
Publication of JP4872061B2 publication Critical patent/JP4872061B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electric double layer capacitor electrode capable of raising a double layer capacitance C. <P>SOLUTION: The electric double layer capacitor electrode consists of a carbon material in which a strongest peak within a range of a diffraction angle of 3° to 30° in X-ray diffraction measurement results using a CuKα-line (wavelength=1.54 Å) resides in a range of 10° to 18°, wherein an average primary particle diameter is 10 to 300 nm, a specific surface area is 200 to 1,000 m<SP>2</SP>/g, and a ratio of a pore volume of a diameter of 20 Å or less to a pore volume of a diameter of 300 Å or less is 30% or more. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は電気二重層キャパシタ用電極に関するものである。電気二重層キャパシタは、携帯機器などの二次電池の長寿命化、瞬時電圧低下対策、太陽光発電の蓄電などに使われており、更にハイブリッド自動車への採用が始まっている。   The present invention relates to an electrode for an electric double layer capacitor. Electric double layer capacitors are used for extending the life of secondary batteries such as portable devices, countermeasures against instantaneous voltage drop, and storage of solar power generation.

電気二重層キャパシタ用電極には炭素材料が従来より多く活用されてきた。炭素物質としては、ヤシ殻や石炭由来の活性炭、活性炭素繊維の他、合成高分子、フェノール樹脂などを賦活処理して生成される活性炭などについて検討されてきた。活性炭の比表面積を大きくすると、単位重量当たりの電気容量は大きくなるが、密度が低くなるため、結果として、単位重量当たりの電気容量が小さくなってしまう問題点がある。そこで、この問題を解決すべく様々な検討が続けられてきている。   Carbon materials have been used more frequently for electrodes for electric double layer capacitors. As the carbon material, activated carbon produced by activating a synthetic polymer, a phenol resin, etc. in addition to activated carbon and activated carbon fiber derived from coconut shell and coal have been studied. When the specific surface area of the activated carbon is increased, the electric capacity per unit weight is increased, but the density is lowered. As a result, there is a problem that the electric capacity per unit weight is decreased. Therefore, various studies have been continued to solve this problem.

ところで、電気二重層キャパシタのエネルギー密度Eは、以下の式に示す通り、印加電圧(V)の二乗と二重層容量(C)に比例する。   By the way, the energy density E of the electric double layer capacitor is proportional to the square of the applied voltage (V) and the double layer capacitance (C) as shown in the following equation.

Figure 2006324604
Figure 2006324604

従って、電気二重層キャパシタのエネルギー密度Eを上げるためには、印加電圧Vを上げることと二重層容量Cを上げることが必要である。印加電圧Vを上げる手段の一つとして高電圧でも分解し難い電解液の開発が挙げられる。一方、二重層容量Cを上げるには新規な多孔質炭素材料の開発が必要である。   Therefore, in order to increase the energy density E of the electric double layer capacitor, it is necessary to increase the applied voltage V and increase the double layer capacitance C. One means for increasing the applied voltage V is to develop an electrolytic solution that is difficult to decompose even at high voltages. On the other hand, in order to increase the double layer capacity C, it is necessary to develop a new porous carbon material.

ところで、二重層容量Cは、以下の式に示す通り、面積比容量Csと比表面積Sの積で表される。   Incidentally, the double layer capacity C is represented by the product of the area specific capacity Cs and the specific surface area S as shown in the following formula.

Figure 2006324604
Figure 2006324604

従って、二重層容量Cを上げる材料としては、面積比容量Csと比表面積Sの積が大きくなる様な材料であることが望ましい。   Therefore, it is desirable that the material for increasing the double layer capacity C is a material that increases the product of the area specific capacity Cs and the specific surface area S.

面積比容量Csの大きな材料の研究例として、下記の江頭らの例が挙げられる。ここでは、電気二重層キャパシタとして、黒鉛電極のアーク放電により製造したフラーレン含有スートからトルエンによりフラーレン類を抽出し、更に黒鉛電極の破片を比重分離により除去した炭素質スートを使用することにより、フェノール樹脂系活性炭素繊維より高い面積比容量を得ている。
第40回電池討論会要旨集 221頁(1999年)
As an example of research on a material having a large area specific capacity Cs, there is the following example of Egashira et al. Here, as an electric double layer capacitor, by using a carbonaceous soot obtained by extracting fullerenes with toluene from fullerene-containing soot produced by arc discharge of a graphite electrode and further removing fragments of the graphite electrode by specific gravity separation, The area specific capacity is higher than that of resin-based activated carbon fibers.
40th Battery Discussion Meeting, 221 pages (1999)

近年、電気二重層キャパシタは更なる小型化と共に更なる高容量化およびエネルギー密度の向上が求められており、そのために二重層容量Cが更に向上する材料が求められている。   In recent years, electric double layer capacitors have been required to be further miniaturized and further increased in capacity and energy density, and for this purpose, materials that further improve double layer capacitance C are required.

本発明は、上記実情に鑑みなされたものであり、その目的は、二重層容量Cを高めることが出来る電気二重層キャパシタ用電極を提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the electrode for electric double layer capacitors which can raise the double layer capacity | capacitance C. FIG.

本発明者らは鋭意検討を重ねた結果、電極材料に後述する特定の炭素材料を使用するならば、二重層容量Cが高い電気二重層キャパシタが得られることを見出し、本発明の完成に到った。   As a result of intensive studies, the present inventors have found that an electric double layer capacitor having a high double layer capacity C can be obtained if a specific carbon material described later is used as the electrode material, and the present invention has been completed. It was.

すなわち、本発明の第1の要旨は、平均一次粒子径が10〜300nmであり、比表面積が200〜1000m/gであり、直径300Å以下の細孔容積に対する直径20Å以下の細孔容積の比率が30%以上であり、且つ、CuKα線(波長=1.54Å)を使用したX線回折測定結果における回折角3〜30°の範囲内で最も強いピークが10〜18°の範囲に存在する炭素材料から成ることを特徴とする電気二重層キャパシタ用電極に存する。 That is, the first gist of the present invention is that the average primary particle diameter is 10 to 300 nm, the specific surface area is 200 to 1000 m 2 / g, and the pore volume is 20 mm or less with respect to the pore volume having a diameter of 300 mm or less. The ratio is 30% or more, and the strongest peak exists in the range of 10 to 18 ° within the diffraction angle range of 3 to 30 ° in the X-ray diffraction measurement result using CuKα ray (wavelength = 1.54Å). An electrode for an electric double layer capacitor, characterized by comprising a carbon material.

そして、本発明の第2の要旨は、有機溶媒に不溶であり、且つ、CuKα線(波長=1.54Å)を使用したX線回折測定結果における回折角3〜30°の範囲内で最も強いピークが10〜18°の範囲に存在する炭素材料原料を不活性な雰囲気下で加熱処理して得られる炭素材料から成ることを特徴とする電気二重層キャパシタ用電極に存する。   And the 2nd summary of this invention is insoluble in an organic solvent, and is the strongest in the range of the diffraction angle 3-30 degrees in the X-ray-diffraction measurement result using a CuK alpha ray (wavelength = 1.54 mm). An electrode for an electric double layer capacitor comprising a carbon material obtained by heat-treating a carbon material raw material having a peak in a range of 10 to 18 ° under an inert atmosphere.

本発明によれば、単位体積当たりの電気容量が大きく、そのために高エネルギー密度を有する電気二重層キャパシタ用電極が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the electrical capacity per unit volume is large, Therefore The electrode for electric double layer capacitors which has a high energy density is provided.

以下、本発明を詳細に説明するが、この発明は以下の実施の形態に限定されるものではなく、本発明の要旨の範囲内であれば種々に変更して実施することが出来る。   Hereinafter, the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the present invention.

本発明の電気二重層キャパシタ用電極は、後述の炭素材料から成るが、その好ましい態様においては、後述の炭素材料にバインダー(結合剤)および導電剤が配合された炭素材料組成物から成る。以下、各成分について説明する。   The electrode for an electric double layer capacitor of the present invention is composed of a carbon material described later. In a preferred embodiment, the electrode is composed of a carbon material composition in which a binder (binder) and a conductive agent are blended with the carbon material described later. Hereinafter, each component will be described.

(炭素材料)
先ず、説明の便宜上、第2の要旨に係る発明で使用する炭素材料について説明する。この炭素材料は、特定の炭素材料原料を不活性な雰囲気下で加熱処理して得られる。
(Carbon material)
First, for convenience of explanation, the carbon material used in the invention according to the second aspect will be described. This carbon material is obtained by heat-treating a specific carbon material raw material in an inert atmosphere.

特定の炭素材料原料としては、有機溶媒に不溶であり、且つ、CuKα線(波長=1.54Å)を使用したX線回折測定結果における回折角3〜30°の範囲内で最も強いピークが10〜18°の範囲に存在する炭素材料を使用する。ここで、不溶な性質としては、室温(例えば20℃)にて、炭素材料に100体積量倍の1,2,4−トリメチルベンゼンを加えて、攪拌、濾過した後、不溶分を150℃で真空乾燥した後の炭素材料の重量差が1%以下である特性を備えていることを意味する。   As a specific carbon material raw material, the strongest peak is 10 in the range of diffraction angles of 3 to 30 ° in the X-ray diffraction measurement result that is insoluble in an organic solvent and uses CuKα rays (wavelength = 1.54 mm). A carbon material existing in a range of ˜18 ° is used. Here, as an insoluble property, at room temperature (for example, 20 ° C.), 100 volume times 1,2,4-trimethylbenzene is added to the carbon material, stirred, filtered, and then insoluble at 150 ° C. It means that the carbon material has a characteristic that the weight difference of the carbon material after vacuum drying is 1% or less.

上記の炭素材料原料それ自体は特開2004−091312号公報に記載されて公知である。従って、炭素材料原料の製造は上記の公報の記載を参照することが出来る。因に、上記の炭素材料原料は、5〜10Åの周期構造を有することから、グラファイト構造とは異なるミクロな曲面構造を有していると考えられるが、ミクロ孔が非常に少ない。しかしながら、不活性な雰囲気下で加熱処理することにより、特徴的な周期構造を有し、且つ、比表面積、特にミクロ孔容積比率が高い炭素材料に変換される。   The above carbon material raw material itself is described in JP-A-2004-091312 and is known. Therefore, the description of the above publication can be referred to for the production of the carbon material raw material. Incidentally, since the above carbon material raw material has a periodic structure of 5 to 10 mm, it is considered to have a micro curved surface structure different from the graphite structure, but there are very few micropores. However, heat treatment under an inert atmosphere converts the carbon material into a carbon material having a characteristic periodic structure and a high specific surface area, particularly a micropore volume ratio.

不活性な雰囲気とは、窒素やアルゴン等の不活性気体などの様に、原料炭素材料と化学反応しない雰囲気のことをいう。加熱処理は、通常、常圧で行うが、加圧または減圧で行うことも可能である。雰囲気は、フロー系でも密閉系でもよいが、フロー系の方が好ましい。加熱温度は、圧力にも依存して異なるが、常圧で行う場合、下限は、通常400℃、好ましくは600℃、上限は、通常1500℃、好ましくは1200℃である。温度が高いほど、細孔が増える傾向にあるが、高すぎると細孔が収縮してしまう可能性がある。加熱時間は、必要な細孔分布が得られれば、特に制限されないが、好ましくは10分から8時間である。加熱は、継続的に所定温度まで上げていっても、段階的に上げていっても構わない。加熱初期は、時間と共に細孔が増えるが、徐々に細孔の増加は飽和する。加熱前の炭素材料原料に対する加熱後の炭素材料の収率は、通常80重量%以上、好ましくは90重量%以上である。   The inert atmosphere refers to an atmosphere that does not chemically react with the raw material carbon material, such as an inert gas such as nitrogen or argon. The heat treatment is usually performed at normal pressure, but can be performed under pressure or reduced pressure. The atmosphere may be a flow system or a closed system, but the flow system is preferred. The heating temperature varies depending on the pressure, but when carried out at normal pressure, the lower limit is usually 400 ° C., preferably 600 ° C., and the upper limit is usually 1500 ° C., preferably 1200 ° C. The higher the temperature, the more pores tend to increase. However, if the temperature is too high, the pores may shrink. The heating time is not particularly limited as long as the necessary pore distribution can be obtained, but is preferably 10 minutes to 8 hours. The heating may be continuously raised to a predetermined temperature or stepwise. In the initial stage of heating, pores increase with time, but the increase in pores gradually saturates. The yield of the carbon material after heating with respect to the carbon material raw material before heating is usually 80% by weight or more, preferably 90% by weight or more.

加熱方法としては、電気炉、ロータリーキルン、縦型炉、多段炉、流動炉などの加熱炉で原料炭素材料を加熱する方法が挙げられるが、均一に処理が可能であればこれに制限されるものではない。また、加熱は、原料炭素材料をそのまま加熱してもよいが、加熱前に成型を行って粒状にしてもよい。成型方法としては、造粒して球状にする、耐圧型枠を使用して1〜10t/cm程度の圧力で加圧成型後に粉砕する等の方法がある。 Examples of the heating method include a method of heating the raw carbon material in a heating furnace such as an electric furnace, a rotary kiln, a vertical furnace, a multi-stage furnace, a fluidized furnace, etc., but is limited to this if it can be uniformly processed. is not. Moreover, although heating may heat a raw material carbon material as it is, you may shape | mold and form it before a heating. As a molding method, there are a method of granulating into a spherical shape, using a pressure-resistant mold and pulverizing after pressure molding at a pressure of about 1 to 10 t / cm 2 .

次に、第1の要旨に係る発明で使用する炭素材料について説明する。この炭素材料は、特定の物性を有することにより特徴付けられ、例えば、前述の炭素材料原料を不活性な雰囲気下で加熱処理することにより得ることが出来る。   Next, the carbon material used in the invention according to the first aspect will be described. This carbon material is characterized by having specific physical properties, and can be obtained, for example, by heat-treating the above-described carbon material raw material in an inert atmosphere.

本発明で使用する炭素材料は、元素分析による炭素含有量が通常90重量%以上、好ましくは95重量%以上、更に好ましくは98重量%以上であり、カーボンブラックと同様に、例えば、水酸基、カルボキシル等の官能基を少量含むことがある。   The carbon material used in the present invention has a carbon content by elemental analysis of usually 90% by weight or more, preferably 95% by weight or more, and more preferably 98% by weight or more. It may contain a small amount of functional groups such as

本発明で使用する炭素材料の平均一次粒子径は、10〜300nm、好ましくは20〜200nmである。この値は、倍率50000倍の透過型電子顕微鏡により観察される一次粒子のうち任意の20点以上の直径の平均値を意味する。   The average primary particle diameter of the carbon material used in the present invention is 10 to 300 nm, preferably 20 to 200 nm. This value means an average value of 20 or more diameters of primary particles observed with a transmission electron microscope having a magnification of 50000 times.

本発明で使用する炭素材料の比表面積は、200〜1000m/g、好ましくは200〜500m/gである。この値は、窒素吸着法(BET法)により相対圧力0.05〜0.15の窒素吸着等温線によりBET法モデルで求めた値を意味する。 The specific surface area of the carbon material used in the present invention, 200~1000m 2 / g, preferably from 200 to 500 m 2 / g. This value means a value obtained by a BET method model using a nitrogen adsorption isotherm at a relative pressure of 0.05 to 0.15 by a nitrogen adsorption method (BET method).

本発明で使用する炭素材料の直径300Å以下の細孔容積に対する直径20Å以下の細孔容積の比率は、30%以上である。すなわち、本発明で使用する炭素材料は、直径20Å以下のミクロ孔が多いという特徴をもつ。なお、細孔容積の計算は、窒素吸着等温線の値を元に、Cranston−Inkley法(例えば、新版活性炭−基礎と応用 1992年 講談社 P132〜34に記載)により計算することが出来る。   The ratio of the pore volume having a diameter of 20 mm or less to the pore volume having a diameter of 300 mm or less of the carbon material used in the present invention is 30% or more. That is, the carbon material used in the present invention has a feature that there are many micropores having a diameter of 20 mm or less. The pore volume can be calculated by the Cranston-Inkley method (for example, described in New Edition Activated Carbon-Basic and Application 1992 Kodansha P132-34) based on the value of the nitrogen adsorption isotherm.

本発明で使用する炭素材料は、CuKα線(波長=1.54Å)を使用したX線回折測定結果における回折角3〜30°の範囲内で最も強い(ピーク強度が大きい)ピークが10〜18°、ましくは12〜15°の範囲に存在する。因に、次の式により計算される格子面間隔dでいえば、回折角10〜18°は4.9〜8.9Åに相当し、12〜15°は5.9〜7.4Åに相当する。   The carbon material used in the present invention has the strongest (high peak intensity) peak in the range of diffraction angle of 3 to 30 ° in the X-ray diffraction measurement result using CuKα ray (wavelength = 1.54 mm). It exists in the range of °, preferably 12-15 °. Incidentally, in terms of the lattice spacing d calculated by the following equation, a diffraction angle of 10 to 18 ° corresponds to 4.9 to 8.9 mm, and 12 to 15 ° corresponds to 5.9 to 7.4 mm. To do.

Figure 2006324604
Figure 2006324604

一般のカーボンブラック等に代表される無定形炭素材料の場合、ミクロなグラファイト構造の発達に伴い、回折角23〜27°に002反射(格子面間隔3.3〜3.9Å)による回折ピークが観察される。本発明で使用する炭素材料は、これに相当するピークは存在しないか、または、存在しても極わずかである。すなわち、本発明で使用する素材料は、グラファイト構造が存在しないか、または、存在してもごく僅かである。この点において、本発明で使用する素材料は、カーボンブラック等の従来公知の通常の炭素材料とは全く異なる構造である。   In the case of an amorphous carbon material typified by general carbon black, a diffraction peak due to 002 reflection (lattice plane spacing of 3.3 to 3.9 mm) is observed at a diffraction angle of 23 to 27 ° with the development of a micrographite structure. Observed. In the carbon material used in the present invention, there is no peak corresponding to this, or even a few peaks exist. That is, the raw material used in the present invention has little or no graphite structure. In this respect, the raw material used in the present invention has a completely different structure from a conventionally known ordinary carbon material such as carbon black.

(導電剤)
電極に使用される導電剤としては、カーボンブラック(アセチレンブラック、ケッチェンブラック等)、天然黒鉛、熱膨張黒鉛、炭素繊維、酸化ルテニウム、酸化チタン、金属ファイバー(アルミニウム、ニッケル等)から成る群より選ばれる少なくとも一種が挙げられる。少量で効果的に導電性が向上する点で、アセチレンブラック及びケッチェンブラックが好ましい。前述の炭素材料に対する配合比率は、炭素材料の嵩密度により異なるが、通常5〜50重量%、好ましくは10〜30重量%である。導電剤の配合量が多すぎると炭素材料の割合が減り電極の二重層容量Cが減少する。
(Conductive agent)
As the conductive agent used for the electrode, from the group consisting of carbon black (acetylene black, ketjen black, etc.), natural graphite, thermally expanded graphite, carbon fiber, ruthenium oxide, titanium oxide, metal fiber (aluminum, nickel, etc.) There is at least one selected. Acetylene black and ketjen black are preferable in that the conductivity is effectively improved in a small amount. Although the blending ratio with respect to the carbon material described above varies depending on the bulk density of the carbon material, it is usually 5 to 50% by weight, preferably 10 to 30% by weight. If the blending amount of the conductive agent is too large, the proportion of the carbon material decreases and the double layer capacity C of the electrode decreases.

(バインダー)
バインダーとしては、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、カルボキシメチルセルロース、フルオロオレフィン共重合体架橋ポリマー、ポリビニルアルコール、ポリアクリル酸、ポリイミド、石油ピッチ、石炭ピッチ、フェノール樹脂から成る群より選ばれる少なくとも一種が挙げられる。前述の炭素材料に対する配合比率は、前記と同様の趣旨により、通常5〜50重量%、好ましくは10〜30重量%である。
(binder)
The binder is at least one selected from the group consisting of polytetrafluoroethylene, polyvinylidene fluoride, carboxymethyl cellulose, fluoroolefin copolymer cross-linked polymer, polyvinyl alcohol, polyacrylic acid, polyimide, petroleum pitch, coal pitch, and phenol resin. Can be mentioned. The blending ratio with respect to the carbon material is usually 5 to 50% by weight, preferably 10 to 30% by weight, for the same purpose as described above.

本発明の電気二重層キャパシタ用電極は、通常知られている方法によって得られる。すなわち、前述の炭素材料と、必要に応じて使用する上記バインダー及び/又は導電剤を所定の割合でよく混合した後、金型に入れて加圧成形する方法を採用することが出来る。また、必要に応じて加圧成形時に熱を加えることも可能である。本発明の電極は、薄い塗布膜、シート状または板状の成形体、更には、複合物から成る板状成形体の何れの形態であってもよい。   The electrode for an electric double layer capacitor of the present invention can be obtained by a generally known method. That is, it is possible to employ a method in which the above-mentioned carbon material and the binder and / or conductive agent to be used as necessary are mixed well at a predetermined ratio and then put into a mold and subjected to pressure molding. Moreover, it is also possible to add heat at the time of pressure molding as needed. The electrode of the present invention may be in any form of a thin coating film, a sheet-shaped or plate-shaped molded body, or a plate-shaped molded body made of a composite.

以下、本発明を実施例により具体的に説明する。なお、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。また、得られた炭素材料の評価および物性の測定は以下の通り行った。   Hereinafter, the present invention will be specifically described by way of examples. In addition, this invention is not limited to a following example, unless the summary is exceeded. Moreover, evaluation of the obtained carbon material and measurement of physical properties were performed as follows.

(1)X線回折測定:
Philips社製「PW1700」を使用し、線源:CuKα、出力:40kV30mA、走査軸:θ/2θ、測定モード:Conttinuous、測定範囲:2θ=3〜90°、取り込み幅:0.05、走査速度:3.0°/minの条件で測定した。
(1) X-ray diffraction measurement:
Using “PW1700” manufactured by Philips, radiation source: CuKα, output: 40 kV, 30 mA, scanning axis: θ / 2θ, measurement mode: Continuous, measurement range: 2θ = 3-90 °, capture width: 0.05, scanning speed : Measured under conditions of 3.0 ° / min.

(2)窒素吸着等温線:
サーモフィニガン社製「ソープトマチック1990」を使用した。
(2) Nitrogen adsorption isotherm:
“Sorptomatic 1990” manufactured by Thermofinigan was used.

(3)透過型電子顕微鏡観察:
日立製作所「H−9000UHR」を使用した。
(3) Transmission electron microscope observation:
Hitachi, Ltd. “H-9000UHR” was used.

実施例1:
<炭素材料の製造>
予備混合型水冷バーナーが減圧チャンバーに設置された装置を使用した。系内を真空ポンプで排気しつつ、原料(トルエン)と酸素とを予備混合してバーナーへ供給し、安定な層流火炎を生成させた。そして、C/O比:1.01、燃焼室圧力:40torr、ガス流速:76cm/sec、アルゴン希釈なしの条件で燃焼を行った。生成煤が真空ポンプへ導かれる配管で400〜500℃に冷却した。生成煤の採取は、真空ポンプの前に設置されたバグフィルターによって行った。
Example 1:
<Manufacture of carbon materials>
A device in which a premixed water-cooled burner was installed in a vacuum chamber was used. While evacuating the system with a vacuum pump, the raw material (toluene) and oxygen were premixed and supplied to the burner to generate a stable laminar flame. Combustion was performed under the conditions of C / O ratio: 1.01, combustion chamber pressure: 40 torr, gas flow rate: 76 cm / sec, and no argon dilution. The generated soot was cooled to 400 to 500 ° C. by piping led to a vacuum pump. The generated soot was collected by a bag filter installed in front of the vacuum pump.

1Lメス型フラスコに上記の煤10.30gを秤量し、これにテトラリン286.2g添加し、常温で30分間超音波を掛けながら攪拌した後、孔径0.45μmのフィルターで減圧濾過を行い、可溶分を除去した。テトラリンによる可溶分除去を更に3回繰り返した後、150℃で1昼夜減圧乾燥を行い、冷却して100℃以下になった後、大気に曝し、黒色粉末9.27gを得た(炭素材料A)。   Weigh 10.30 g of the above candy in a 1 L volumetric flask, add 286.2 g of tetralin to this, stir while applying ultrasonic waves at room temperature for 30 minutes, and perform vacuum filtration with a filter with a pore size of 0.45 μm. Solute was removed. After removing the soluble component by tetralin three more times, drying under reduced pressure at 150 ° C. for one day was performed, and after cooling to 100 ° C. or lower, the product was exposed to the atmosphere to obtain 9.27 g of a black powder (carbon material) A).

炭素材料Aをシリコニット炉に入れ、窒素気流中、800℃に昇温後、1時間加熱処理した。加熱処理によって得られた炭素材料Bの収率は92重量%であった。また、透過型電子顕微鏡(50000倍)で観察したところ、一次粒子径は20〜70nm、粒子20個当りの平均一次粒子径は42nmであった。X線回折測定結果は、図1中の(a)に示す様に、回折角3〜30°の範囲内で最も強いピークが13〜14°付近に存在し、23〜27°の範囲にピークは存在しなかった。   Carbon material A was placed in a siliconit furnace, heated to 800 ° C. in a nitrogen stream, and then heat-treated for 1 hour. The yield of the carbon material B obtained by the heat treatment was 92% by weight. When observed with a transmission electron microscope (50,000 times), the primary particle size was 20 to 70 nm, and the average primary particle size per 20 particles was 42 nm. As shown in FIG. 1A, the X-ray diffraction measurement results show that the strongest peak exists in the vicinity of 13 to 14 ° within the diffraction angle range of 3 to 30 °, and the peak is in the range of 23 to 27 °. Did not exist.

<電極の作成>
前述の製造方法で得られた炭素材料B(8重量部)に、導電剤としてアセチレンブラック1重量部、バインダーとしてポリテトラフルオロエチレン1重量部を添加し、よく混練した後、錠剤成型器により、直径13mm、電極重量50mgのシート状円板電極を作成した。
<Creation of electrode>
After adding 1 part by weight of acetylene black as a conductive agent and 1 part by weight of polytetrafluoroethylene as a binder to the carbon material B (8 parts by weight) obtained by the above-described manufacturing method, A sheet-like disc electrode having a diameter of 13 mm and an electrode weight of 50 mg was prepared.

<二重層容量Cの測定>
上記の電極を使用し、アルゴン雰囲気下、三極式セルの組み立てた。この際、参照電極にはLiを使用し、集電体にはアルミニウムを使用し、電解液には0.5mol/lの濃度のテトラエチルアンモニウムテトラフルオロボレートを含むプロピレンカーボネート溶液を使用した。そして、電流密度40mA/gの定電流で2〜4Vの範囲について二重層容量Cの測定を行った。単位体積当たりの二重層容量Cが82F/cmという大きな値が得られた。
<Measurement of double layer capacity C>
Using the above electrodes, a triode cell was assembled under an argon atmosphere. At this time, Li was used for the reference electrode, aluminum was used for the current collector, and a propylene carbonate solution containing tetraethylammonium tetrafluoroborate having a concentration of 0.5 mol / l was used for the electrolytic solution. And the double layer capacity | capacitance C was measured about the range of 2-4V by the constant current of 40 mA / g of current density. A large value of the double layer capacity C per unit volume of 82 F / cm 3 was obtained.

比較例1:
<炭素材料の製造>
フラーレンスート(Aldrichより購入、アーク法にて作成されたスート)10gにトルエン500mlを加えて6時間の超音波分散を3回繰り返すことにより、トルエン相にフラーレンを抽出し、その残渣を空気中、60℃で12時間乾燥し、更に、真空下、200℃で2時間乾燥することによって炭素材料Cを得た。X線回折測定結果は、回折角3〜30°の範囲内で23〜27°の範囲に最も強いピークが存在した。
Comparative Example 1:
<Manufacture of carbon materials>
Fullerene is extracted into the toluene phase by adding 500 ml of toluene to 10 g of fullerence soot (purchased from Aldrich, made by the arc method) and repeating ultrasonic dispersion for 6 hours three times. The carbon material C was obtained by drying at 60 degreeC for 12 hours, and also drying at 200 degreeC under vacuum for 2 hours. As a result of X-ray diffraction measurement, the strongest peak was present in the range of 23 to 27 ° within the range of the diffraction angle of 3 to 30 °.

次に、上記炭素材料Cをシリコニット炉に入れ、窒素気流中、1000℃に昇温後、1時間加熱処理し、炭素材料Dを得た。X線回折測定結果は、図1に示す様に、回折角3〜30°の範囲内で23〜27°の範囲に最も強いピークが存在した。   Next, the carbon material C was placed in a siliconit furnace, heated to 1000 ° C. in a nitrogen stream, and then heat-treated for 1 hour to obtain a carbon material D. As shown in FIG. 1, the X-ray diffraction measurement result showed that the strongest peak was present in the range of 23 to 27 ° within the range of the diffraction angle of 3 to 30 °.

<電極の作成>
実施例1において、炭素材料Bを炭素材料Dに変更した以外は、実施例1と同様の手順によってシート状円板電極を作成した。
<Creation of electrode>
In Example 1, except that the carbon material B was changed to the carbon material D, a sheet-like disc electrode was created by the same procedure as in Example 1.

<二重層容量Cの測定>
実施例1と同様の手順により測定を行った。単位体積当たりの二重層容量Cが42F/cmという実施例と比べて小さな値であった。
<Measurement of double layer capacity C>
The measurement was performed in the same procedure as in Example 1. The double layer capacity C per unit volume was a small value compared to the example of 42 F / cm 3 .

比較例2:
<電極の作成>
実施例1において、炭素材料Bを炭素材料Cに変更した以外は、実施例1と同様の手順によってシート状円板電極を作成した。
Comparative Example 2:
<Creation of electrode>
In Example 1, except that the carbon material B was changed to the carbon material C, a sheet-like disk electrode was created by the same procedure as in Example 1.

<二重層容量Cの測定>
実施例1と同様の手順により測定を行った。単位体積当たりの二重層容量Cが34F/cmという実施例と比べて小さな値であった。
<Measurement of double layer capacity C>
The measurement was performed in the same procedure as in Example 1. The double layer capacity C per unit volume was a small value compared to the example of 34 F / cm 3 .

比較例3:
<電極の作成>
実施例1において、炭素材料Bを炭素材料Aに変更した以外は、実施例1と同様の手順によってシート状円板電極を作成した。
Comparative Example 3:
<Creation of electrode>
In Example 1, except that the carbon material B was changed to the carbon material A, a sheet-like disc electrode was created by the same procedure as in Example 1.

<二重層容量Cの測定>
実施例1と同様の手順により測定を行った。単位体積当たりの二重層容量Cが53F/cmという実施例と比べて小さな値であった。
<Measurement of double layer capacity C>
The measurement was performed in the same procedure as in Example 1. The double layer capacity C per unit volume was a small value as compared with the example of 53 F / cm 3 .

表1に、実施例および比較例に記載された電気二重層キャパシタの二重層容量(C)の測定結果を使用した炭素材料A〜Dの各種物性(粒子の比表面積、直径300Å以下の細孔容積に対する直径20Å以下の細孔容積の比率)と共にまとめた。   Table 1 shows various physical properties (specific surface area of particles, pores having a diameter of 300 mm or less) using the measurement results of the double layer capacity (C) of the electric double layer capacitors described in Examples and Comparative Examples. Together with the ratio of the pore volume with a diameter of 20 mm or less to the volume).

Figure 2006324604
Figure 2006324604

実施例1および比較例1に使用した炭素材料のX線回折チャートX-ray diffraction chart of carbon materials used in Example 1 and Comparative Example 1

Claims (2)

平均一次粒子径が10〜300nmであり、比表面積が200〜1000m/gであり、直径300Å以下の細孔容積に対する直径20Å以下の細孔容積の比率が30%以上であり、且つ、CuKα線(波長=1.54Å)を使用したX線回折測定結果における回折角3〜30°の範囲内で最も強いピークが10〜18°の範囲に存在する炭素材料から成ることを特徴とする電気二重層キャパシタ用電極。 The average primary particle diameter is 10 to 300 nm, the specific surface area is 200 to 1000 m 2 / g, the ratio of the pore volume with a diameter of 20 mm or less to the pore volume with a diameter of 300 mm or less is 30% or more, and CuKα Electricity characterized in that it consists of a carbon material in which the strongest peak exists in the range of 10 to 18 ° within the range of diffraction angle of 3 to 30 ° in the X-ray diffraction measurement result using the line (wavelength = 1.54 mm) Double layer capacitor electrode. 有機溶媒に不溶であり、且つ、CuKα線(波長=1.54Å)を使用したX線回折測定結果における回折角3〜30°の範囲内で最も強いピークが10〜18°の範囲に存在する炭素材料原料を不活性な雰囲気下で加熱処理して得られる炭素材料から成ることを特徴とする電気二重層キャパシタ用電極。   It is insoluble in organic solvents, and the strongest peak exists in the range of 10 to 18 ° within the diffraction angle range of 3 to 30 ° in the X-ray diffraction measurement result using CuKα ray (wavelength = 1.54Å). An electrode for an electric double layer capacitor comprising a carbon material obtained by heat-treating a carbon material raw material in an inert atmosphere.
JP2005148602A 2005-05-20 2005-05-20 Electrode for electric double layer capacitor Active JP4872061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005148602A JP4872061B2 (en) 2005-05-20 2005-05-20 Electrode for electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005148602A JP4872061B2 (en) 2005-05-20 2005-05-20 Electrode for electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2006324604A true JP2006324604A (en) 2006-11-30
JP4872061B2 JP4872061B2 (en) 2012-02-08

Family

ID=37544027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005148602A Active JP4872061B2 (en) 2005-05-20 2005-05-20 Electrode for electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP4872061B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07267618A (en) * 1994-03-23 1995-10-17 Mitsubishi Chem Corp Novel carbon fine particles
JP2001089119A (en) * 1999-04-30 2001-04-03 Adchemco Corp Carbonaceous material, method for producing and electric double layer capacitor using the carbonaceous material
JP2004091312A (en) * 2002-07-08 2004-03-25 Mitsubishi Chemicals Corp Carbon material
JP2004342778A (en) * 2003-05-14 2004-12-02 Kansai Coke & Chem Co Ltd Porous carbon, its manufacturing method, porous carbon for electric double layer capacitor and electric double layer capacitor
JP2005200259A (en) * 2003-01-14 2005-07-28 Kansai Coke & Chem Co Ltd Porous carbon and manufacturing method of porous carbon as well as manufacturing method of porous carbon for electrical double layer capacitor, porous carbon for electrical double layer obtained from the method and electrical double layer capacitor using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07267618A (en) * 1994-03-23 1995-10-17 Mitsubishi Chem Corp Novel carbon fine particles
JP2001089119A (en) * 1999-04-30 2001-04-03 Adchemco Corp Carbonaceous material, method for producing and electric double layer capacitor using the carbonaceous material
JP2004091312A (en) * 2002-07-08 2004-03-25 Mitsubishi Chemicals Corp Carbon material
JP2005200259A (en) * 2003-01-14 2005-07-28 Kansai Coke & Chem Co Ltd Porous carbon and manufacturing method of porous carbon as well as manufacturing method of porous carbon for electrical double layer capacitor, porous carbon for electrical double layer obtained from the method and electrical double layer capacitor using the same
JP2004342778A (en) * 2003-05-14 2004-12-02 Kansai Coke & Chem Co Ltd Porous carbon, its manufacturing method, porous carbon for electric double layer capacitor and electric double layer capacitor

Also Published As

Publication number Publication date
JP4872061B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
Qi et al. High pseudocapacitance in FeOOH/rGO composites with superior performance for high rate anode in Li-ion battery
Zhang et al. SnO2@ PANI core–shell nanorod arrays on 3D graphite foam: a high-performance integrated electrode for lithium-ion batteries
Wang et al. Assembling carbon-coated α-Fe 2 O 3 hollow nanohorns on the CNT backbone for superior lithium storage capability
Karuppaiah et al. Solvent dependent morphological modification of micro-nano assembled Mn2O3/NiO composites for high performance supercapacitor applications
Zhao et al. High‐performance asymmetric supercapacitors based on multilayer MnO2/graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability
Luo et al. Controlled synthesis of mesoporous MnO/C networks by microwave irradiation and their enhanced lithium-storage properties
Hao et al. Hierarchical three-dimensional Fe3O4@ porous carbon matrix/graphene anodes for high performance lithium ion batteries
Xing et al. Simple synthesis of mesoporous carbon nanofibers with hierarchical nanostructure for ultrahigh lithium storage
KR20180070507A (en) Carbonaceous composite material with snowball shape
Xiao et al. High-performance lithium storage achieved by chemically binding germanium nanoparticles with N-doped carbon
KR20160145565A (en) Amorphous Carbon Coating of Carbonaceous Particles from Dispersions Including Amphiphilic Organic Compounds
JP2015156358A (en) Method for producing graphene based composite negative electrode material, negative electrode material produced thereby, and lithium ion secondary battery
JP6375331B2 (en) Titanium oxide particles, method for producing titanium oxide particles, electrode for power storage device including titanium oxide particles, power storage device provided with electrode including titanium oxide particles
Yin et al. A novel silicon graphite composite material with core‐shell structure as an anode for lithium‐ion batteries
Zhou et al. A 3D hierarchical hybrid nanostructure of carbon nanotubes and activated carbon for high-performance supercapacitors
Wang et al. Co3O4 hollow nanospheres/carbon-assembled mesoporous polyhedron with internal bubbles encapsulating TiO2 nanosphere for high-performance lithium ion batteries
Sun et al. Construction of rice husk-derived SiOx nanoparticles encapsulated with graphene aerogel hybrid for high-performance lithium ion batteries
Yao et al. In situ integration of anisotropic SnO2 heterostructures inside three-dimensional graphene aerogel for enhanced lithium storage
Hu et al. Mesoporous Carbon Nanofibers Embedded with MoS2 Nanocrystals for Extraordinary Li‐Ion Storage
Yu et al. Neuron-mimic smart electrode: A two-dimensional multiscale synergistic strategy for densely packed and high-rate lithium storage
Zhang et al. Facile self-assembly solvothermal preparation of CuO/Cu2O/coal-based reduced graphene oxide nanosheet composites as an anode for high-performance lithium-ion batteries
Pathak et al. Facile in-situ grown spinel MnCo2O4/MWCNT and MnCo2O4/Ti3C2 MXene composites for high-performance asymmetric supercapacitor with theoretical insight
Veeramani et al. Nitrogen and high oxygen-containing metal-free porous carbon nanosheets for supercapacitor and oxygen reduction reaction applications
Astuti et al. Enhancement of electrical conductivity of bismuth oxide/activated carbon composite
Devi et al. A facile strategy for the synthesis of manganese-doped nickel sulfide nanosheets and oxygen, nitrogen-enriched 3D-graphene-like porous carbon for hybrid supercapacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Effective date: 20101005

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Effective date: 20110913

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110913

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150