JP2006322729A - Analyzing method of quantitative form of fatty acid in inorganic colloid solution - Google Patents

Analyzing method of quantitative form of fatty acid in inorganic colloid solution Download PDF

Info

Publication number
JP2006322729A
JP2006322729A JP2005143926A JP2005143926A JP2006322729A JP 2006322729 A JP2006322729 A JP 2006322729A JP 2005143926 A JP2005143926 A JP 2005143926A JP 2005143926 A JP2005143926 A JP 2005143926A JP 2006322729 A JP2006322729 A JP 2006322729A
Authority
JP
Japan
Prior art keywords
fatty acid
inorganic metal
solution
colloid solution
fourier transform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005143926A
Other languages
Japanese (ja)
Inventor
Kimihiko Fujita
公彦 冨士田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2005143926A priority Critical patent/JP2006322729A/en
Publication of JP2006322729A publication Critical patent/JP2006322729A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for grasping the form of the fatty acid type dispersant present in an inorganic colloid solution to quantify the amount of the fatty acid type dispersant. <P>SOLUTION: An inorganic metal colloid solution in a state that an inorganic metal powder is present is directly observed by a Fourier transform nuclear magnetic resonance spectrometry. The inorganic metal colloid solution in the state that the inorganic metal powder is present is directly observed by the Fourier transform nuclear magnetic resonance spectrometry using the measuring double pipe of the Fourier transform nuclear magnetic resonance spectrometry to measure the undissociated amount of fatty acid. A liquid which is prepared by dissolving a metal powder in the inorganic metal colloid solution using 0.01-20% nitric acid is observed to measure the whole dissociated amount of fatty acid. The fatty acid chemically bonded to the inorganic metal powder is quantified from the respective quantified values obtained by measuring the dissociated fatty acid in the inorganic metal colloid solution and the whole fatty acid by the Fourier transform nuclear magnetic resonance spectrometry. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、無機コロイド溶液中に存在する脂肪酸の形態と量を把握するための分析方法に関する。   The present invention relates to an analysis method for grasping the form and amount of fatty acid present in an inorganic colloid solution.

電子材料の原料として用いられる無機金属コロイド溶液には金属ナノ粒子を分散させるための分散剤として脂肪酸が配合されている場合がある。無機金属コロイド溶液中に存在する脂肪酸は、解離した状態(酢酸であれば、CH3COOーイオン)と金属と化学結合した状態(酢酸であれば、(CH3COO)2Me)で存在する。従って解離した脂肪酸は無機金属コロイドの有効な分散剤として機能していないので、過剰な脂肪酸は無駄となっている。そこで、脂肪酸の存在形態および存在量が分かれば脂肪酸の適量を把握できる。   Inorganic metal colloid solutions used as raw materials for electronic materials may contain fatty acids as a dispersant for dispersing metal nanoparticles. The fatty acid present in the inorganic metal colloid solution exists in a dissociated state (CH3COO-ion for acetic acid) and a chemical bond with the metal ((CH3COO) 2Me for acetic acid). Therefore, since the dissociated fatty acid does not function as an effective dispersant for the inorganic metal colloid, excess fatty acid is wasted. Therefore, if the form and amount of fatty acid are known, the appropriate amount of fatty acid can be determined.

この脂肪酸の存在形態および存在量を把握するためには何らかの前処理を施す必要があるが、前処理を施した場合にはコロイド溶液中に存在する脂肪酸の形態が変化し、コロイド溶液中の脂肪酸の存在形態と存在量を正確に把握することが困難である。また、遠心分離操作で得た上澄み液を直接観測する場合でも、無機コロイド溶液に共存するマトリックス成分の妨害により、選択的な観測が困難となり、コロイド溶液中の脂肪酸の存在形態と存在量を正確に把握することが困難である。   In order to grasp the form and amount of this fatty acid, it is necessary to perform some kind of pre-treatment, but when pre-treatment is performed, the form of the fatty acid present in the colloidal solution changes, and the fatty acid in the colloidal solution It is difficult to accurately grasp the existence form and the amount of existence. In addition, even when directly observing the supernatant obtained by centrifugation, selective observation becomes difficult due to interference with matrix components coexisting in the inorganic colloidal solution, and the form and amount of fatty acids in the colloidal solution are accurately determined. It is difficult to grasp.

従来の前処理方法および分析方法としては、以下に示す方法が知られている。
(1)無機コロイド溶液を遠心分離して得た上澄み液を溶離液で希釈し、イオンクロマトグラフィーで観測する方法。
(2)無機コロイド溶液を遠心分離して得た上澄み液を溶離液で希釈し、液体クロマトグラフィーで観測する方法。
(3)無機コロイド溶液を遠心分離して得た上澄み液をフーリエ変換赤外分光分析法で観測する方法。
イオンクロマトグラフィー研究懇談会編“イオンクロマトグラフィーデータブック”、p.52−p.53、(1991)、(科学新聞社) 日本分析化学会“高分子分析ハンドブック”、p.741−p.742、(1995)、紀伊国屋書店.) 日本分析化学会“高分子分析ハンドブック”、p.795、(1995)、紀伊国屋書店.)
The following methods are known as conventional pretreatment methods and analysis methods.
(1) A method in which a supernatant obtained by centrifuging an inorganic colloid solution is diluted with an eluent and observed by ion chromatography.
(2) A method in which a supernatant obtained by centrifuging an inorganic colloid solution is diluted with an eluent and observed by liquid chromatography.
(3) A method in which a supernatant obtained by centrifuging an inorganic colloid solution is observed by Fourier transform infrared spectroscopy.
“Ion Chromatography Data Book” edited by Ion Chromatography Research Roundtable, p. 52-p. 53, (1991), (Science Newspaper) Analytical Society of Japan “Polymer Analysis Handbook”, p. 741-p. 742, (1995), Kinokuniya. ) Analytical Society of Japan “Polymer Analysis Handbook”, p. 795, (1995), Kinokuniya. )

しかし、(1)および(2)に記載した方法で前処理を施した場合には、コロイド溶液中に存在する脂肪酸の形態が変化し、正確な形態と量を把握することが困難となる。また、(3)に記載した方法で観測した場合には、コロイド溶液中に存在する水分、硫酸イオンあるいは硝酸イオンが観測の妨害成分となり、正確な構造情報を得ることが困難となる。したがって、未だ無機コロイド溶液中に存在する脂肪酸の形態と量を把握するための分析方法は確立されていない状況である。   However, when pretreatment is performed by the method described in (1) and (2), the form of fatty acid present in the colloidal solution changes, making it difficult to grasp the exact form and amount. Further, when observed by the method described in (3), moisture, sulfate ions, or nitrate ions present in the colloidal solution become an obstructive component for observation, and it is difficult to obtain accurate structural information. Therefore, the analytical method for grasping | ascertaining the form and quantity of the fatty acid which exists in an inorganic colloid solution has not yet been established.

従来から利用されてきた方法では、無機コロイド溶液中の脂肪酸の形態変化やマトリックス成分の妨害により正確な観測が困難であったため、無機コロイド溶液中で解離している脂肪酸を非破壊で直接観測することができ、マトリックス成分による妨害を受けることのない分析方法を見出す必要がある。さらに、無機コロイド溶液中には解離している脂肪酸以外に無機金属微粒子と化学結合する脂肪酸も共存しているため、何らかの前処理を行い無機コロイド溶液中の全脂肪酸量を正確に把握する分析方法も同時に発案する必要がある。   In the conventional methods, it was difficult to accurately observe the fatty acid in the inorganic colloid solution due to changes in the form of fatty acids and interference with the matrix components. It is necessary to find an analytical method that can be performed and is not disturbed by matrix components. Furthermore, in addition to dissociated fatty acids in the inorganic colloidal solution, fatty acids that chemically bond with inorganic metal fine particles coexist, so an analytical method for accurately grasping the total amount of fatty acids in the inorganic colloidal solution by performing some kind of pretreatment Must be conceived at the same time.

前述した課題を解決するために、無機コロイド溶液中の解離している脂肪酸を観測するためには二重管を用いたフーリエ変換核磁気共鳴分光法を適用した。この方法を用いれば、無機コロイド溶液の平衡状態を変化させることがなく、無機コロイド溶液中に共存する水分、硫酸イオンあるいは硝酸イオンによる妨害を受けることもない。また、この方法では液体状態の物質を選択的に観測することが可能であるため、無機コロイド溶液中で解離している脂肪酸を正確に把握することが可能である。また、無機コロイド溶液中の全脂肪酸の観測には無機コロイド溶液中の無機金属微粒子を0.01%〜20%硝酸水溶液で分解し、無機コロイド溶液中に存在する全ての脂肪酸を解離させれば二重管を用いたフーリエ変換核磁気共鳴分光法で観測することができ、上手く課題を解決することができる。   In order to solve the above-described problems, Fourier transform nuclear magnetic resonance spectroscopy using a double tube was applied to observe dissociated fatty acids in an inorganic colloid solution. If this method is used, the equilibrium state of the inorganic colloid solution is not changed, and it is not disturbed by moisture, sulfate ions or nitrate ions coexisting in the inorganic colloid solution. Further, in this method, since a liquid state substance can be selectively observed, it is possible to accurately grasp the fatty acid dissociated in the inorganic colloid solution. In addition, in order to observe the total fatty acid in the inorganic colloid solution, the inorganic metal fine particles in the inorganic colloid solution are decomposed with 0.01% to 20% nitric acid aqueous solution, and all the fatty acids present in the inorganic colloid solution are dissociated. It can be observed by Fourier transform nuclear magnetic resonance spectroscopy using a double tube, and the problem can be solved successfully.

本発明によれば、無機コロイド溶液中に存在する脂肪酸の存在形態とその量を正確に把握することができ、無機金属粉をコロイド溶液として安定に存在させるための的確な添加量を知ることが可能となる。   According to the present invention, it is possible to accurately grasp the existence form and the amount of fatty acid present in the inorganic colloid solution, and to know the exact amount of addition for stably presenting the inorganic metal powder as a colloid solution. It becomes possible.

今回発明した分析方法を用いれば無機コロイド溶液中の解離している脂肪酸、全脂肪酸および無機金属と化学結合した脂肪酸を正確に把握できる理由を以下に述べる。   The reason why the dissociated fatty acid, the total fatty acid, and the fatty acid chemically bonded to the inorganic metal in the inorganic colloid solution can be accurately grasped by using the analytical method invented this time will be described below.

二重管を用いたフーリエ変換核磁気共鳴分光法で無機コロイド溶液を直接観測した場合には、この溶液を非破壊で観測することができ、かつ液体状態の物質が選択的に観測されるため、無機コロイド溶液中の解離している脂肪酸を選択的に観測することが可能であり、定量することも可能である。   When an inorganic colloid solution is directly observed by Fourier transform nuclear magnetic resonance spectroscopy using a double tube, this solution can be observed non-destructively and a liquid substance is selectively observed. The dissociated fatty acid in the inorganic colloidal solution can be selectively observed and quantified.

無機コロイド溶液中に存在する無機金属を0.01%〜20%硝酸で溶解すれば、すべての脂肪酸が解離している状態となり分解することもないため、二重管を用いたフーリエ変換核磁気共鳴分光法で無機コロイド溶液を観測すれば、無機コロイド溶液中に存在する全脂肪酸を観測することが可能であり、定量することも可能である。ここで硝酸濃度が0.01%未満であれば無機金属を十分に溶解できない。一方20%を超える場合は不経済となる。   If an inorganic metal present in an inorganic colloidal solution is dissolved with 0.01% to 20% nitric acid, all fatty acids are dissociated and do not decompose, so Fourier transform nuclear magnetism using a double tube If the inorganic colloidal solution is observed by resonance spectroscopy, it is possible to observe and quantify all fatty acids present in the inorganic colloidal solution. If the nitric acid concentration is less than 0.01%, the inorganic metal cannot be sufficiently dissolved. On the other hand, when it exceeds 20%, it becomes uneconomical.

上記方法で無機コロイド溶液中に存在する全脂肪酸量と遊離脂肪酸量が把握できれば、両者の差から無機金属と化学結合した脂肪酸量を正確に把握できる。   If the total fatty acid amount and free fatty acid amount present in the inorganic colloid solution can be grasped by the above method, the amount of fatty acid chemically bonded to the inorganic metal can be grasped accurately from the difference between the two.

また、フーリエ変換核磁気共鳴分光法の測定用二重管は図1に示す構造をしている。図1において、内管10は測定時に磁場を固定するための溶媒容器としてある。外管12は試料用である。この二重管をフーリエ変換核磁気共鳴分光装置に設定して測ればよい。   Further, the double tube for measurement of Fourier transform nuclear magnetic resonance spectroscopy has the structure shown in FIG. In FIG. 1, an inner tube 10 is a solvent container for fixing a magnetic field during measurement. The outer tube 12 is for a sample. What is necessary is just to set and measure this double tube in a Fourier transform nuclear magnetic resonance spectrometer.

次に、本発明の実施例および従来例を説明する。
(実施例1)
銀コロイド溶液を二重管を用いたフーリエ変換核磁気共鳴分光法で観測し、クエン酸の純水溶液で検量したところ、銀コロイド溶液中の解離しているクエン酸は120ppmであった。また、銀ナノ粒子を10%硝酸で溶解した溶液をフーリエ変換核磁気共鳴分光法で観測し、クエン酸の10%硝酸純水溶液で検量したところ、全クエン酸は780ppmであった。さらに、全クエン酸量と解離しているクエン酸量の差から銀と化学結合しているクエン酸量が660ppmであることが分かった。
(実施例2)
ニッケルコロイド溶液を二重管を用いたフーリエ変換核磁気共鳴分光法で観測し、コハク酸の純水溶液で検量したところ、ニッケルコロイド溶液中の解離しているコハク酸は190ppmであった。また、ニッケルナノ粒子を10%硝酸で溶解した溶液をフーリエ変換核磁気共鳴分光法で観測し、コハク酸の10%硝酸純水溶液で検量したところ、全コハク酸は720ppmであった。さらに、全コハク酸量と解離しているコハク酸量の差からニッケルと化学結合しているコハク酸量が530ppmであることが分かった。
(実施例3)
金コロイド溶液を二重管を用いたフーリエ変換核磁気共鳴分光法で観測し、クエン酸の純水溶液で検量したところ、金コロイド溶液中の解離しているクエン酸は180ppmであった。また、金ナノ粒子を20%硝酸で溶解した溶液をフーリエ変換核磁気共鳴分光法で観測し、クエン酸の20%硝酸純水溶液で検量したところ、全クエン酸は760ppmであった。さらに、全クエン酸量と解離しているクエン酸量の差から金と化学結合しているクエン酸量が580ppmであることが分かった。
(実施例4)
銅コロイド溶液を二重管を用いたフーリエ変換核磁気共鳴分光法で観測し、クエン酸の純水溶液で検量したところ、銅コロイド溶液中の解離しているクエン酸は480ppmであった。また、銅ナノ粒子を20%硝酸で溶解した溶液をフーリエ変換核磁気共鳴分光法で観測し、クエン酸の20%硝酸純水溶液で検量したところ、全クエン酸は1040ppmであった。さらに、全クエン酸量と解離しているクエン酸量の差から銅と化学結合しているクエン酸量が560ppmであることが分かった。
(実施例5)
白金コロイド溶液を二重管を用いたフーリエ変換核磁気共鳴分光法で観測し、コハク酸の純水溶液で検量したところ、白金コロイド溶液中の解離しているコハク酸は520ppmであった。また、白金ナノ粒子を10%硝酸で溶解した溶液をフーリエ変換核磁気共鳴分光法で観測し、コハク酸の10%硝酸純水溶液で検量したところ、全コハク酸は1260ppmであった。さらに、全コハク酸量と解離しているクエン酸量の差から白金と化学結合しているコハク酸量が740ppmであることが分かった。
(実施例6)
鉛コロイド溶液を二重管を用いたフーリエ変換核磁気共鳴分光法で観測し、クエン酸の純水溶液で検量したところ、鉛コロイド溶液中の解離している脂肪酸は520ppmであった。また、鉛ナノ粒子を10%硝酸で溶解した溶液をフーリエ変換核磁気共鳴分光法で観測し、クエン酸の10%硝酸純水溶液で検量したところ、全クエン酸は1260ppmであった。さらに、全クエン酸量と解離しているクエン酸量の差から鉛と化学結合しているクエン酸量が740ppmであることが分かった。
(実施例7)
コバルトコロイド溶液を二重管を用いたフーリエ変換核磁気共鳴分光法で観測し、コハク酸の純水溶液で検量したところ、コバルトコロイド溶液中の解離している脂肪酸は520ppmであった。また、コバルトナノ粒子を10%硝酸で溶解した溶液をフーリエ変換核磁気共鳴分光法で観測し、コハク酸の10%硝酸純水溶液で検量したところ、全コハク酸は1260ppmであった。さらに、全コハク酸量と解離しているコハク酸量の差からコバルトと化学結合しているコハク酸量が740ppmであることが分かった。
(従来例1)
無機コロイド溶液中を遠心分離して得た上澄み液を溶離液で希釈し、解離しているクエン酸をイオンクロマトグラフィーで観測しようと試みたが、マトリックス成分である塩素イオンが妨害し解離しているクエン酸を観測することが困難であり、定量することができなかった。
(従来例2)
無機コロイド溶液を遠心分離して得た上澄み液を溶離液で希釈し、解離しているコハク酸を液体クロマトグラフィーで観測しようと試みたが、マトリックス成分である硫酸イオンが妨害し解離しているコハク酸を観測することが困難であり、定量することができなかった。
(従来例3)
無機コロイド溶液を遠心分離して得た上澄み液をフーリエ変換ラマン分光分析法で直接観測し、解離しているクエン酸を観測しようと試みたが、マトリックス成分である硝酸イオンが妨害しクエン酸を観測することが困難であり、定量することができなかった。
(従来例4)
無機コロイド溶液を遠心分離して得た上澄み液をフーリエ変換赤外分光分析法で直接観測し、解離しているクエン酸を観測しようと試みたが、マトリックス成分である水分が妨害しクエン酸を観測することが困難であり、定量することができなかった。
(従来例5)
無機コロイド溶液中の全コハク酸量をフーリエ変換核磁気共鳴分光法で観測しようとしたが、金属粉と化学結合しているコハク酸が検出されず、定量することが困難であった。
Next, examples of the present invention and conventional examples will be described.
Example 1
When the silver colloid solution was observed by Fourier transform nuclear magnetic resonance spectroscopy using a double tube and weighed with a pure aqueous solution of citric acid, the dissociated citric acid in the silver colloid solution was 120 ppm. Moreover, when the solution which melt | dissolved the silver nanoparticle with 10% nitric acid was observed with the Fourier transform nuclear magnetic resonance spectroscopy, and it weighed with the pure nitric acid aqueous solution of a citric acid, the total citric acid was 780 ppm. Furthermore, it was found from the difference between the total amount of citric acid and the amount of citric acid dissociated that the amount of citric acid chemically bonded to silver was 660 ppm.
(Example 2)
When the nickel colloidal solution was observed by Fourier transform nuclear magnetic resonance spectroscopy using a double tube and weighed with a pure aqueous solution of succinic acid, the dissociated succinic acid in the nickel colloidal solution was 190 ppm. Moreover, when the solution which melt | dissolved the nickel nanoparticle with 10% nitric acid was observed with the Fourier transform nuclear magnetic resonance spectroscopy, and it weighed with the pure nitric acid aqueous solution of succinic acid, the total succinic acid was 720 ppm. Furthermore, it was found that the amount of succinic acid chemically bonded to nickel was 530 ppm from the difference between the total amount of succinic acid and the amount of dissociated succinic acid.
(Example 3)
The colloidal gold solution was observed by Fourier transform nuclear magnetic resonance spectroscopy using a double tube and weighed with a pure aqueous solution of citric acid. As a result, the dissociated citric acid in the colloidal gold solution was 180 ppm. Moreover, when the solution which melt | dissolved the gold nanoparticle with 20% nitric acid was observed with the Fourier transform nuclear magnetic resonance spectroscopy, and it calibrated with the 20% pure nitric acid aqueous solution of a citric acid, the total citric acid was 760 ppm. Further, it was found that the amount of citric acid chemically bonded to gold was 580 ppm from the difference between the total amount of citric acid and the amount of dissociated citric acid.
Example 4
When the copper colloid solution was observed by Fourier transform nuclear magnetic resonance spectroscopy using a double tube and weighed with a pure aqueous solution of citric acid, the dissociated citric acid in the copper colloid solution was 480 ppm. Moreover, when the solution which melt | dissolved the copper nanoparticle in 20% nitric acid was observed with the Fourier transform nuclear magnetic resonance spectroscopy, and it weighed with the 20% pure nitric acid aqueous solution of a citric acid, the total citric acid was 1040 ppm. Further, it was found that the amount of citric acid chemically bonded to copper was 560 ppm from the difference between the total amount of citric acid and the amount of citric acid dissociated.
(Example 5)
When the platinum colloid solution was observed by Fourier transform nuclear magnetic resonance spectroscopy using a double tube and weighed with a pure aqueous solution of succinic acid, the dissociated succinic acid in the platinum colloid solution was 520 ppm. Moreover, when the solution which melt | dissolved the platinum nanoparticle with 10% nitric acid was observed with the Fourier transform nuclear magnetic resonance spectroscopy, and it weighed with the pure nitric acid aqueous solution of succinic acid, the total succinic acid was 1260 ppm. Further, it was found that the amount of succinic acid chemically bonded to platinum was 740 ppm from the difference between the total amount of succinic acid and the amount of citric acid dissociated.
(Example 6)
When the lead colloidal solution was observed by Fourier transform nuclear magnetic resonance spectroscopy using a double tube and calibrated with a pure aqueous solution of citric acid, the dissociated fatty acid in the lead colloidal solution was 520 ppm. Moreover, when the solution which melt | dissolved the lead nanoparticle with 10% nitric acid was observed with the Fourier transform nuclear magnetic resonance spectroscopy, and it weighed with the pure nitric acid aqueous solution of a citric acid, the total citric acid was 1260 ppm. Further, the amount of citric acid chemically bonded to lead was found to be 740 ppm from the difference between the total amount of citric acid and the amount of citric acid dissociated.
(Example 7)
When the cobalt colloid solution was observed by Fourier transform nuclear magnetic resonance spectroscopy using a double tube and calibrated with a pure aqueous solution of succinic acid, the dissociated fatty acid in the cobalt colloid solution was 520 ppm. Moreover, when the solution which melt | dissolved the cobalt nanoparticle with 10% nitric acid was observed with the Fourier transform nuclear magnetic resonance spectroscopy, and it weighed with the pure nitric acid aqueous solution of succinic acid, the total succinic acid was 1260 ppm. Further, it was found that the amount of succinic acid chemically bonded to cobalt was 740 ppm from the difference between the total amount of succinic acid and the amount of dissociated succinic acid.
(Conventional example 1)
The supernatant obtained by centrifuging the inorganic colloidal solution was diluted with an eluent, and an attempt was made to observe the dissociated citric acid by ion chromatography. It was difficult to observe citric acid, and it was not possible to quantify it.
(Conventional example 2)
The supernatant obtained by centrifuging the inorganic colloidal solution was diluted with the eluent, and an attempt was made to observe the dissociated succinic acid by liquid chromatography, but the matrix component sulfate ions interfered and dissociated. Succinic acid was difficult to observe and could not be quantified.
(Conventional example 3)
The supernatant obtained by centrifuging the inorganic colloidal solution was directly observed by Fourier transform Raman spectroscopy, and an attempt was made to observe the dissociated citric acid. It was difficult to observe and could not be quantified.
(Conventional example 4)
The supernatant obtained by centrifuging the inorganic colloidal solution was directly observed by Fourier transform infrared spectroscopy, and an attempt was made to observe the dissociated citric acid. It was difficult to observe and could not be quantified.
(Conventional example 5)
An attempt was made to observe the total amount of succinic acid in the inorganic colloid solution by Fourier transform nuclear magnetic resonance spectroscopy, but succinic acid chemically bonded to the metal powder was not detected, and it was difficult to quantify.

フーリエ変換核磁気共鳴分光法の測定用二重管を示す図である。It is a figure which shows the double tube for a measurement of a Fourier transform nuclear magnetic resonance spectroscopy.

符号の説明Explanation of symbols

10 内管
12 外管
10 Inner pipe 12 Outer pipe

Claims (6)

無機金属粉が存在する状態の無機金属コロイド溶液をフーリエ変換核磁気共鳴分光法で直接観測することを特徴とする無機コロイド溶液中の脂肪酸の定量的形態分析方法。   A method for quantitative morphological analysis of fatty acids in an inorganic colloid solution, wherein the inorganic metal colloid solution in the presence of the inorganic metal powder is directly observed by Fourier transform nuclear magnetic resonance spectroscopy. 無機金属粉が存在する状態の無機金属コロイド溶液をフーリエ変換核磁気共鳴分光法の測定用二重管を利用してフーリエ変換核磁気共鳴分光法で直接観測し、脂肪酸の解離してない量を測定することを特徴とする請求項1記載の定量的形態分析方法。   Inorganic metal colloid solution in the presence of inorganic metal powder is directly observed with Fourier transform nuclear magnetic resonance spectroscopy using a double tube for measurement of Fourier transform nuclear magnetic resonance spectroscopy. The quantitative form analysis method according to claim 1, wherein measurement is performed. 無機金属コロイド溶液中の金属粉を0.01%〜20%硝酸で溶解した液を観測し、脂肪酸の解離した全量を測定することを特徴とする請求項1または2記載の定量的形態分析方法。   3. A quantitative morphological analysis method according to claim 1 or 2, wherein a solution in which metal powder in an inorganic metal colloid solution is dissolved with 0.01% to 20% nitric acid is observed, and the total amount of dissociated fatty acids is measured. . 無機金属コロイド溶液中の解離している脂肪酸および全脂肪酸をフーリエ変換核磁気共鳴分光法で測定した各々の定量値から無機金属粉と化学結合した脂肪酸を定量することを特徴とする請求項1、2、3のいずれかに記載の定量的形態分析方法。   2. The fatty acid chemically bonded to the inorganic metal powder is quantified from each quantitative value obtained by measuring the dissociated fatty acid and the total fatty acid in the inorganic metal colloid solution by Fourier transform nuclear magnetic resonance spectroscopy. The quantitative form analysis method according to any one of 2 and 3. 標準溶液に脂肪酸水溶液および脂肪酸の硝酸溶液を用いる請求項1、2、3、4のいずれかに記載の定量的形態分析方法。   The quantitative form analysis method according to claim 1, wherein a fatty acid aqueous solution and a fatty acid nitric acid solution are used as the standard solution. 無機金属コロイド溶液の無機金属イオンが金、銀、銅、白金、鉛、ニッケルおよびコバルトであることを特徴とする請求項1、2、3、4、5のいずれかに記載の定量的形態分析方法。   The quantitative form analysis according to any one of claims 1, 2, 3, 4, and 5, wherein the inorganic metal ions in the inorganic metal colloid solution are gold, silver, copper, platinum, lead, nickel, and cobalt. Method.
JP2005143926A 2005-05-17 2005-05-17 Analyzing method of quantitative form of fatty acid in inorganic colloid solution Pending JP2006322729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005143926A JP2006322729A (en) 2005-05-17 2005-05-17 Analyzing method of quantitative form of fatty acid in inorganic colloid solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005143926A JP2006322729A (en) 2005-05-17 2005-05-17 Analyzing method of quantitative form of fatty acid in inorganic colloid solution

Publications (1)

Publication Number Publication Date
JP2006322729A true JP2006322729A (en) 2006-11-30

Family

ID=37542535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005143926A Pending JP2006322729A (en) 2005-05-17 2005-05-17 Analyzing method of quantitative form of fatty acid in inorganic colloid solution

Country Status (1)

Country Link
JP (1) JP2006322729A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015118907A1 (en) * 2014-02-07 2015-08-13 石原ケミカル株式会社 Aqueous copper colloid catalyst solution for electroless copper plating and electroless copper plating method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015118907A1 (en) * 2014-02-07 2015-08-13 石原ケミカル株式会社 Aqueous copper colloid catalyst solution for electroless copper plating and electroless copper plating method
CN105121701A (en) * 2014-02-07 2015-12-02 石原化学株式会社 Aqueous copper colloid catalyst solution for electroless copper plating and electroless copper plating method
CN105121701B (en) * 2014-02-07 2018-09-28 石原化学株式会社 Electroless copper water system copper colloid catalyst liquid and electroless copper plating method

Similar Documents

Publication Publication Date Title
CN103398998B (en) A kind of Raman microprobe for mercury ion detecting and preparation method thereof
He et al. Surface‐enhanced Raman spectroscopy coupled with dendritic silver nanosubstrate for detection of restricted antibiotics
Coppel et al. Full characterization of colloidal solutions of long‐alkyl‐chain‐amine‐stabilized ZnO nanoparticles by NMR spectroscopy: surface state, equilibria, and affinity
Xu et al. Simultaneous preconcentration of cobalt, nickel and copper in water samples by cloud point extraction method and their determination by flame atomic absorption spectrometry
He et al. Microdroplet-captured tapes for rapid sampling and SERS detection of food contaminants
Hsu et al. Determination of Pd, Rh, Pt, Au in road dust by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling
Afkhami et al. Improvement in the performance of a Pb2+ selective potentiometric sensor using modified core/shell SiO2/Fe3O4 nano-structure
Jahandari et al. Anodic stripping voltammetry of silver (I) using a carbon paste electrode modified with multi-walled carbon nanotubes
Babaei et al. Magnetic dispersive solid‐phase extraction based on graphene oxide/Fe3O4@ polythionine nanocomposite followed by atomic absorption spectrometry for zinc monitoring in water, flour, celery and egg
Wang et al. Label-free detection of sulfide ions based on fluorescence quenching of unmodified core–shell Au@ Ag nanoclusters
Yang et al. Simultaneous determination of thiocyanate ion and melamine in milk and milk powder using surface-enhanced Raman spectroscopy
Ding et al. Speedy and surfactant-free in situ synthesis of nickel/Ag nanocomposites for reproducible SERS substrates
Skorek et al. Dispersive micro solid-phase extraction using multiwalled carbon nanotubes for simultaneous determination of trace metal ions by energy-dispersive X-ray fluorescence spectrometry
JP2008203032A (en) Analysis method of trace of metal
Liang et al. Determination of trace palladium in complicated matrices by displacement dispersive liquid-liquid microextraction and graphite furnace atomic absorption spectrometry
Kang et al. Lab‐on‐a‐Chip Sensor with Evaporated Bismuth Film Electrode for Anodic Stripping Voltammetry of Zinc
CN103884669A (en) Preparation method and application of nano-silver probe for detecting mercury ions
Yang et al. Amperometric sensor for ascorbic acid based on a glassy carbon electrode modified with gold-silver bimetallic nanotubes in a chitosan matrix
Ashrafzadeh Afshar et al. Ultra-trace determination of thallium (I) using a nanocomposite consisting of magnetite, halloysite nanotubes and dibenzo-18-crown-6 for preconcentration prior to its quantitation by ET-AAS
Cao et al. Highly sensitive ‘naked-eye’colorimetric detection of thiourea using gold nanoparticles
Iranzad et al. Synthesis and application of polythiophene-coated Fe3O4 nanoparticles for preconcentration of ultra-trace levels of cadmium in different real samples followed by electrothermal atomic absorption spectrometry
Johnson et al. Practical utilization of spICP-MS to study sucrose density gradient centrifugation for the separation of nanoparticles
Abbasi et al. Ultrasensitive simultaneous quantification of nanomolar level of Cd and Zn by cathodic adsorptive stripping voltammetry in some real samples
Wang et al. Rapid detection of estrogen compounds using surface-enhanced Raman spectroscopy with a Zn/Au-Ag/Ag sandwich-structured substrate
Regiart et al. Copper nanoparticles applied to the preconcentration and electrochemical determination of β-adrenergic agonist: An efficient tool for the control of meat production